A Solution Manual For

Differential equations and linear algebra, 4th ed., Edwards and Penney

Nasser M. Abbasi

May 15, 2024

Contents

1 Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288

2 Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300

3 Section 7.2, Matrices and Linear systems. Page 384
4 Section 7.3, The eigenvalue method for linear systems. Page 395
5 Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
6 Section 7.6, Multiple Eigenvalue Solutions. Page 451
7 Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615

8 Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
1 Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear Equations. Page 288
1.1 problem problem 38 3
1.2 problem problem 39 7
1.3 problem problem 40 11
1.4 problem problem 41 16
1.5 problem problem 42 21
1.6 problem problem 43 26
1.7 problem problem 44 31

1.1 problem problem 38

1.1.1 Maple step by step solution . 4

Internal problem ID [278]
Internal file name [OUTPUT/278_Sunday_June_05_2022_01_38_11_AM_41602886/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 38.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_euler_ode", "second__order_change__of_cvariable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second__order_change_of__variable__on_y_method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, - _with_symmetry_[0,F(x)]•]

$$
x^{2} y^{\prime \prime}+y^{\prime} x-9 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x^{3}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x^{3}\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} d x\right)}}{x^{6}} d x\right) \\
& y_{2}(x)=x^{3} \int \frac{\frac{1}{x}}{x^{6}}, d x \\
& y_{2}(x)=x^{3}\left(\int \frac{1}{x^{7}} d x\right) \\
& y_{2}(x)=-\frac{1}{6 x^{3}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{3}-\frac{c_{2}}{6 x^{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{3}-\frac{c_{2}}{6 x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x^{3}-\frac{c_{2}}{6 x^{3}}
$$

Verified OK.

1.1.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x-9 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{9 y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{9 y}{x^{2}}=0$
- Multiply by denominators of the ODE
$x^{2} y^{\prime \prime}+y^{\prime} x-9 y=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
Substitute the change of variables back into the ODE
$x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-9 y(t)=0$
- \quad Simplify
$\frac{d^{2}}{d t^{2}} y(t)-9 y(t)=0$
- Characteristic polynomial of ODE
$r^{2}-9=0$
- Factor the characteristic polynomial
$(r-3)(r+3)=0$
- Roots of the characteristic polynomial
$r=(-3,3)$
- $\quad 1$ st solution of the ODE
$y_{1}(t)=\mathrm{e}^{-3 t}$
- $\quad 2$ nd solution of the ODE
$y_{2}(t)=\mathrm{e}^{3 t}$
- General solution of the ODE

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
$$

- \quad Substitute in solutions

$$
y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{3}
$$

- Simplify

$$
y=\frac{c_{1}}{x^{3}}+c_{2} x^{3}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
dsolve([x^2*diff(y(x),x$2)+x*diff(y(x),x)-9*y(x)=0, x^3], singsol=all)
```

$$
y(x)=\frac{c_{2} x^{6}+c_{1}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve $\left[x^{\wedge} 2 * y\right.$ '' $[x]+x * y$ ' $[x]-9 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{c_{2} x^{6}+c_{1}}{x^{3}}
$$

1.2 problem problem 39

1.2.1 Maple step by step solution . 9

Internal problem ID [279]
Internal file name [OUTPUT/279_Sunday_June_05_2022_01_38_11_AM_2821455/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 39.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__linear_cconstant__coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{\frac{x}{2}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-1
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{\frac{x}{2}}\left(\int \mathrm{e}^{-\left(\int(-1) d x\right)} \mathrm{e}^{-x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{\frac{x}{2}} \int \frac{\mathrm{e}^{x}}{\mathrm{e}^{x}}, d x \\
& y_{2}(x)=\mathrm{e}^{\frac{x}{2}}\left(\int 1 d x\right) \\
& y_{2}(x)=\mathrm{e}^{\frac{x}{2}} x
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}} x
\end{aligned}
$$

Summary

The solution(s) found are the following

Figure 1: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}} x
$$

Verified OK.

1.2.1 Maple step by step solution

Let's solve

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative
$y^{\prime \prime}=y^{\prime}-\frac{y}{4}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime}+\frac{y}{4}=0$
- Characteristic polynomial of ODE
$r^{2}-r+\frac{1}{4}=0$
- Factor the characteristic polynomial
$\frac{(2 r-1)^{2}}{4}=0$
- Root of the characteristic polynomial
$r=\frac{1}{2}$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{\frac{x}{2}}$
- Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence
$y_{2}(x)=\mathrm{e}^{\frac{x}{2}} x$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{\frac{x}{2}} x$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([4*diff(y(x),x$2)-4*diff(y(x),x)+y(x)=0,exp(x/2)],singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x}{2}}\left(c_{2} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve[4*y''[x]-4*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{x / 2}\left(c_{2} x+c_{1}\right)
$$

1.3 problem problem 40

1.3.1 Maple step by step solution . 12

Internal problem ID [280]
Internal file name [OUTPUT/280_Sunday_June_05_2022_01_38_12_AM_3318965/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 40.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change__of_cariable_on_y_method_1", "second_order_change_of_cvariable__on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}-x(2+x) y^{\prime}+(2+x) y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-x^{2}-2 x}{x^{2}}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-x^{2}-2 x}{x^{2}} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{x+2 \ln (x)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \mathrm{e}^{x} d x\right) \\
& y_{2}(x)=x \mathrm{e}^{x}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x \mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x \mathrm{e}^{x}
$$

Verified OK.

1.3.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(2+x) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2 nd derivative

$$
y^{\prime \prime}=-\frac{(2+x) y}{x^{2}}+\frac{(2+x) y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{(2+x) y^{\prime}}{x}+\frac{(2+x) y}{x^{2}}=0
$$

\square
Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{2+x}{x}, P_{3}(x)=\frac{2+x}{x^{2}}\right]
$$

- $\quad x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2
$$

- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
x^{2} y^{\prime \prime}-x(2+x) y^{\prime}+(2+x) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions

$$
a_{0}(-1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)(k+r-2)-a_{k-1}(k+r-2)\right) x^{k+r}\right)=0
$$

- a_{0} cannot be 0 by assumption, giving the indicial equation

$$
(-1+r)(-2+r)=0
$$

- Values of r that satisfy the indicial equation $r \in\{1,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r-2)\left(a_{k}(k+r-1)-a_{k-1}\right)=0$
- \quad Shift index using $k->k+1$
$(k+r-1)\left(a_{k+1}(k+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+r}
$$

- Recursion relation for $r=1$
$a_{k+1}=\frac{a_{k}}{k+1}$
- \quad Solution for $r=1$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{k+1}\right]$
- Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k}}{k+2}
$$

- \quad Solution for $r=2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}}{k+2}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+2}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([x^2*diff(y(x),x$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=0,x], singsol=all)
```

$$
y(x)=x\left(c_{1}+\mathrm{e}^{x} c_{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 16
DSolve $\left[x^{\sim} 2 * y\right.$ ' ' $[x]-x *(x+2) * y^{\prime}[x]+(x+2) * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x\left(c_{2} e^{x}+c_{1}\right)
$$

1.4 problem problem 41

1.4.1 Maple step by step solution . 17

Internal problem ID [281]
Internal file name [OUTPUT/281_Sunday_June_05_2022_01_38_12_AM_1218278/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 41.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order__ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
(x+1) y^{\prime \prime}-(2+x) y^{\prime}+y=0
$$

Given that one solution of the ode is

$$
y_{1}=\mathrm{e}^{x}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{-x-2}{x+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int \frac{-x-2}{x+1} d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{\mathrm{e}^{x+\ln (x+1)}}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int(x+1) \mathrm{e}^{-x} d x\right) \\
& y_{2}(x)=-\mathrm{e}^{x} \mathrm{e}^{-x}(2+x)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} \mathrm{e}^{-x}(2+x)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} \mathrm{e}^{-x}(2+x) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{x} \mathrm{e}^{-x}(2+x)
$$

Verified OK.

1.4.1 Maple step by step solution

Let's solve

$$
(x+1) y^{\prime \prime}+(-x-2) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 2
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{y}{x+1}+\frac{(2+x) y^{\prime}}{x+1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{(2+x) y^{\prime}}{x+1}+\frac{y}{x+1}=0
$$

$\square \quad$ Check to see if $x_{0}=-1$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{2+x}{x+1}, P_{3}(x)=\frac{1}{x+1}\right]
$$

- $\quad(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-1
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if $x_{0}=-1$ is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$(x+1) y^{\prime \prime}+(-x-2) y^{\prime}+y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$

$$
u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0
$$

- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion

$$
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
$$

- Shift index using $k->k+1$
$u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}$
Rewrite ODE with series expansions

$$
a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) u^{k+r}\right)=0
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation

$$
r(-2+r)=0
$$

- Values of r that satisfy the indicial equation

$$
r \in\{0,2\}
$$

- Each term in the series must be 0, giving the recursion relation
$(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{k+1+r}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}}{k+1}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]$
- \quad Recursion relation for $r=2$
$a_{k+1}=\frac{a_{k}}{k+3}$
- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]$
- Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([(x+1)*diff(y(x),x$2)-(x+2)*diff (y (x),x)+y(x)=0, exp(x)],singsol=all)
```

$$
y(x)=c_{1}(2+x)+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 29
DSolve $[(x+1) * y$ ' $[x]-(x+2) * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{1} e^{x+1}-2 c_{2}(x+2)}{\sqrt{2 e}}
$$

1.5 problem problem 42

1.5.1 Maple step by step solution . 22

Internal problem ID [282]
Internal file name [OUTPUT/282_Sunday_June_05_2022_01_38_13_AM_3169935/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 42.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change__of_cvariable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{2 x}{-x^{2}+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int \frac{2 x}{-x^{2}+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{\ln (x-1)+\ln (x+1)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{x^{2}-1}{x^{2}} d x\right) \\
& y_{2}(x)=x\left(x+\frac{1}{x}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(x+\frac{1}{x}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(x+\frac{1}{x}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(x+\frac{1}{x}\right)
$$

Verified OK.

1.5.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=-\frac{2 x}{x^{2}-1}, P_{3}(x)=\frac{2}{x^{2}-1}\right]
$$

○ $\quad(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-1$
○ $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$

- $\quad x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=-1
$$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-2 u+2)\left(\frac{d}{d u} y(u)\right)+2 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
$\square \quad$ Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r-1)+a_{k}(k+r-1)(k+r-2)\right) u^{k+r}\right)$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(-2+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,2\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r-1)\left((-2 k-2 r-2) a_{k+1}+a_{k}(k+r-2)\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r-2)}{2(k+1+r)}$
- Recursion relation for $r=0$; series terminates at $k=2$
$a_{k+1}=\frac{a_{k}(k-2)}{2(k+1)}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{a_{1}}{4}$
- Express in terms of a_{0}
$a_{2}=\frac{a_{0}}{4}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot\left(1-u+\frac{1}{4} u^{2}\right)$
- \quad Revert the change of variables $u=x+1$
$\left[y=\frac{a_{0}(x-1)^{2}}{4}\right]$
- \quad Recursion relation for $r=2$

$$
a_{k+1}=\frac{a_{k} k}{2(k+3)}
$$

- \quad Solution for $r=2$
$\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k} k}{2(k+3)}\right]$
- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+2}, a_{k+1}=\frac{a_{k} k}{2(k+3)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\frac{a_{0}(x-1)^{2}}{4}+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+2}\right), b_{k+1}=\frac{b_{k} k}{2(k+3)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve([(1-x^2)*diff(y(x),x$2)+2*x*diff(y(x),x)-2*y(x)=0,x],singsol=all)
```

$$
y(x)=c_{2} x^{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.08 (sec). Leaf size: 39

```
DSolve[(1-x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{\sqrt{x^{2}-1}\left(c_{1}(x-1)^{2}+c_{2} x\right)}{\sqrt{1-x^{2}}}
$$

1.6 problem problem 43

1.6.1 Maple step by step solution . 27

Internal problem ID [283]
Internal file name [OUTPUT/283_Sunday_June_05_2022_01_38_13_AM_28435787/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 43.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

Given that one solution of the ode is

$$
y_{1}=x
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=-\frac{2 x}{-x^{2}+1}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2 x}{-x^{2}+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{-\ln (x-1)-\ln (x+1)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{1}{x^{2}\left(x^{2}-1\right)} d x\right) \\
& y_{2}(x)=x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} x+c_{2} x\left(-\frac{\ln (x+1)}{2}+\frac{1}{x}+\frac{\ln (x-1)}{2}\right)
$$

Verified OK.

1.6.1 Maple step by step solution

Let's solve

$$
\left(-x^{2}+1\right) y^{\prime \prime}-2 y^{\prime} x+2 y=0
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]$
- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0$
- Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation
$r=0$
- Each term in the series must be 0 , giving the recursion relation
$-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}$
- Apply recursion relation for $k=0$
$a_{1}=-a_{0}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li $y(u)=a_{0} \cdot(-u+1)$
- \quad Revert the change of variables $u=x+1$
[$\left.y=-a_{0} x\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
dsolve([(1-x^2)*diff(y(x),x$2)-2*x*diff (y (x),x)+2*y(x)=0,x], singsol=all)
```

$$
y(x)=\frac{c_{2} \ln (x-1) x}{2}-\frac{c_{2} \ln (x+1) x}{2}+c_{1} x+c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 33
DSolve[(1- $\left.x^{\wedge} 2\right) * y^{\prime}$ '[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{1} x-\frac{1}{2} c_{2}(x \log (1-x)-x \log (x+1)+2)
$$

1.7 problem problem 44

1.7.1 Maple step by step solution . 32

Internal problem ID [284]
Internal file name [OUTPUT/284_Sunday_June_05_2022_01_38_14_AM_92845526/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.2, Higher-Order Linear Differential Equations. General solutions of Linear
Equations. Page 288
Problem number: problem 44.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second_order_change_of_cvariable_on_y__method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

Given that one solution of the ode is

$$
y_{1}=\frac{\cos (x)}{\sqrt{x}}
$$

Given one basis solution $y_{1}(x)$, then the second basis solution is given by

$$
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
$$

Where $p(x)$ is the coefficient of y^{\prime} when the ode is written in the normal form

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
$$

Looking at the ode to solve shows that

$$
p(x)=\frac{1}{x}
$$

Therefore

$$
\begin{aligned}
& y_{2}(x)=\frac{\cos (x)\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} d x\right)}}{\cos (x)^{2}} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=\frac{\cos (x)}{\sqrt{x}} \int \frac{\frac{1}{x}}{\frac{\cos (x)^{2}}{x}}, d x \\
& y_{2}(x)=\frac{\cos (x)\left(\int \sec (x)^{2} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=\frac{\cos (x) \tan (x)}{\sqrt{x}}
\end{aligned}
$$

Hence the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{\cos (x) c_{1}}{\sqrt{x}}+\frac{c_{2} \cos (x) \tan (x)}{\sqrt{x}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\cos (x) c_{1}}{\sqrt{x}}+\frac{c_{2} \cos (x) \tan (x)}{\sqrt{x}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\cos (x) c_{1}}{\sqrt{x}}+\frac{c_{2} \cos (x) \tan (x)}{\sqrt{x}}
$$

Verified OK.

1.7.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x+\left(x^{2}-\frac{1}{4}\right) y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0$
Check to see if $x_{0}=0$ is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point $x_{0}=0$

- Multiply by denominators

$$
4 x^{2} y^{\prime \prime}+4 y^{\prime} x+\left(4 x^{2}-1\right) y=0
$$

- Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
$$

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
$$

- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k-}\right.\right.$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$(1+2 r)(-1+2 r)=0$
- Values of r that satisfy the indicial equation
$r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}$
- \quad Each term must be 0
$a_{1}(3+2 r)(1+2 r)=0$
- \quad Solve for the dependent coefficient(s)
$a_{1}=0$
- Each term in the series must be 0 , giving the recursion relation
$a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0$
- Recursion relation that defines series solution to ODE
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}$
- \quad Recursion relation for $r=-\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}$
- \quad Solution for $r=-\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]$
- Recursion relation for $r=\frac{1}{2}$
$a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}$
- \quad Solution for $r=\frac{1}{2}$
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]$
- \quad Combine solutions and rename parameters
$\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Group is reducible or imprimitive
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve $\left(\left[x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 2-1 / 4\right) * y(x)=0, x^{\wedge}(-1 / 2) * \cos (x)\right]\right.$, singsol=all)

$$
y(x)=\frac{c_{1} \sin (x)+c_{2} \cos (x)}{\sqrt{x}}
$$

\checkmark Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 33

```
DSolve[(1-x^2)*y''[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} x-\frac{1}{2} c_{2}(x \log (1-x)-x \log (x+1)+2)
$$

2 Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
2.1 problem problem 10 37
2.2 problem problem 11 43
2.3 problem problem 12 49
2.4 problem problem 13 51
2.5 problem problem 14 57
2.6 problem problem 15 63
2.7 problem problem 16 69
2.8 problem problem 17 71
2.9 problem problem 18 78
2.10 problem problem 19 84
2.11 problem problem 20 89
2.12 problem problem 24 92
2.13 problem problem 25 99
2.14 problem problem 26 106
2.15 problem problem 27 113
2.16 problem problem 28 118
2.17 problem problem 29 123
2.18 problem problem 30 128
2.19 problem problem 31 134
2.20 problem problem 32 139
2.21 problem problem 38 141
2.22 problem problem 48 148
2.23 problem problem 49 155
2.24 problem problem 54 163
2.25 problem problem 55 170
2.26 problem problem 56 177
2.27 problem problem 57 184
2.28 problem problem 58 191

2.1 problem problem 10

$$
\text { 2.1.1 Maple step by step solution . } 38
$$

Internal problem ID [285]
Internal file name [OUTPUT/285_Sunday_June_05_2022_01_38_15_AM_78402842/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 10.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
5 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}=0
$$

The characteristic equation is

$$
5 \lambda^{4}+3 \lambda^{3}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-\frac{3}{5} \\
\lambda_{2} & =0 \\
\lambda_{3} & =0 \\
\lambda_{4} & =0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{-\frac{3 x}{5}} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=\mathrm{e}^{-\frac{3 x}{5}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{-\frac{3 x}{5}} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{3} x^{2}+c_{2} x+c_{1}+\mathrm{e}^{-\frac{3 x}{5}} c_{4}
$$

Verified OK.

2.1.1 Maple step by step solution

Let's solve

$$
5 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}=0
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

- Isolate 4th derivative

$$
y^{\prime \prime \prime \prime}=-\frac{3 y^{\prime \prime \prime}}{5}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime \prime}+\frac{3 y^{\prime \prime \prime}}{5}=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-\frac{3 y_{4}(x)}{5}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-\frac{3 y_{4}(x)}{5}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- \quad System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -\frac{3}{5}\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -\frac{3}{5}
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{3}{5},\left[\begin{array}{c}
-\frac{125}{27} \\
\frac{25}{9} \\
-\frac{5}{3} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{3}{5},\left[\begin{array}{c}
-\frac{125}{27} \\
\frac{25}{9} \\
-\frac{5}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-\frac{3 x}{5}} \cdot\left[\begin{array}{c}
-\frac{125}{27} \\
\frac{25}{9} \\
-\frac{5}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{3 x}{5}} \cdot\left[\begin{array}{c}
-\frac{125}{27} \\
\frac{25}{9} \\
-\frac{5}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{125 c_{1} e^{-\frac{3 x}{5}}}{27}+c_{2}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve(5*diff $(y(x), x \$ 4)+3 * \operatorname{diff}(y(x), x \$ 3)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} \mathrm{e}^{-\frac{3 x}{5}}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 30
DSolve[5*y''' $[x]+3 * y$ '' ' $[x]==0, y[x], x$, IncludeSingularSolutions -> True]

$$
y(x) \rightarrow-\frac{125}{27} c_{1} e^{-3 x / 5}+x\left(c_{4} x+c_{3}\right)+c_{2}
$$

2.2 problem problem 11

2.2.1 Maple step by step solution . 44

Internal problem ID [286]
Internal file name [OUTPUT/286_Sunday_June_05_2022_01_38_15_AM_85335422/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 11.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-8 y^{\prime \prime \prime}+16 y^{\prime \prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-8 \lambda^{3}+16 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=4 \\
& \lambda_{4}=4
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{4 x} c_{3}+x \mathrm{e}^{4 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{4 x} \\
& y_{4}=x \mathrm{e}^{4 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x+c_{1}+\mathrm{e}^{4 x} c_{3}+x \mathrm{e}^{4 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x+c_{1}+\mathrm{e}^{4 x} c_{3}+x \mathrm{e}^{4 x} c_{4}
$$

Verified OK.

2.2.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-8 y^{\prime \prime \prime}+16 y^{\prime \prime}=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=8 y_{4}(x)-16 y_{3}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=8 y_{4}(x)-16 y_{3}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -16 & 8
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -16 & 8
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
$\left[4,\left[\begin{array}{c}\frac{1}{64} \\ \frac{1}{16} \\ \frac{1}{4} \\ 1\end{array}\right]\right]$
- \quad First solution from eigenvalue 4

$$
\vec{y}_{3}(x)=\mathrm{e}^{4 x} \cdot\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=4$ is the eigenvalue, an $\vec{y}_{4}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{4}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{4}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 4

$$
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -16 & 8
\end{array}\right]-4 \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-\frac{1}{256} \\ 0 \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 4

$$
\vec{y}_{4}(x)=\mathrm{e}^{4 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{256} \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=\mathrm{e}^{4 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]+c_{4} \mathrm{e}^{4 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{64} \\
\frac{1}{16} \\
\frac{1}{4} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{256} \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left((4 x-1) c_{4}+4 c_{3}\right) \mathrm{e}^{4 x}}{256}+c_{1}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$4)-8*diff(y(x),x$3)+16*diff(y(x),x$2)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{4} x+c_{3}\right) \mathrm{e}^{4 x}+c_{2} x+c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.081 (sec). Leaf size: 34

```
DSolve[y''''[x]-8*y'''[x]+16*y''[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{32} e^{4 x}\left(c_{2}(2 x-1)+2 c_{1}\right)+c_{4} x+c_{3}
$$

2.3 problem problem 12

Internal problem ID [287]
Internal file name [OUTPUT/287_Sunday_June_05_2022_01_38_16_AM_97937637/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 12.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{\prime \prime \prime \prime}-3 y^{\prime \prime \prime}+3 y^{\prime \prime}-y^{\prime}=0
$$

The characteristic equation is

$$
\lambda^{4}-3 \lambda^{3}+3 \lambda^{2}-\lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=1 \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=x \mathrm{e}^{x} \\
& y_{4}=x^{2} \mathrm{e}^{x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \mathrm{e}^{x}+x \mathrm{e}^{x} c_{3}+x^{2} \mathrm{e}^{x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve(diff($y(x), x \$ 4)-3 * \operatorname{diff}(y(x), x \$ 3)+3 * \operatorname{diff}(y(x), x \$ 2)-\operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
y(x)=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{x}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.028 (sec). Leaf size: 32
DSolve[y''''[x]-3*y'' $\quad[x]+3 * y$ '' $[x]-y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{x}\left(c_{3}\left(x^{2}-2 x+2\right)+c_{2}(x-1)+c_{1}\right)+c_{4}
$$

2.4 problem problem 13

2.4.1 Maple step by step solution . 52

Internal problem ID [288]
Internal file name [OUTPUT/288_Sunday_June_05_2022_01_38_16_AM_53478549/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 13.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
9 y^{\prime \prime \prime}+12 y^{\prime \prime}+4 y^{\prime}=0
$$

The characteristic equation is

$$
9 \lambda^{3}+12 \lambda^{2}+4 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-\frac{2}{3} \\
\lambda_{3} & =-\frac{2}{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+\mathrm{e}^{-\frac{2 x}{3}} c_{2}+x \mathrm{e}^{-\frac{2 x}{3}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-\frac{2 x}{3}} \\
& y_{3}=x \mathrm{e}^{-\frac{2 x}{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+\mathrm{e}^{-\frac{2 x}{3}} c_{2}+x \mathrm{e}^{-\frac{2 x}{3}} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+\mathrm{e}^{-\frac{2 x}{3}} c_{2}+x \mathrm{e}^{-\frac{2 x}{3}} c_{3}
$$

Verified OK.

2.4.1 Maple step by step solution

Let's solve

$$
9 y^{\prime \prime \prime}+12 y^{\prime \prime}+4 y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{4 y^{\prime \prime}}{3}-\frac{4 y^{\prime}}{9}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+\frac{4 y^{\prime \prime}}{3}+\frac{4 y^{\prime}}{9}=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-\frac{4 y_{3}(x)}{3}-\frac{4 y_{2}(x)}{9}
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-\frac{4 y_{3}(x)}{3}-\frac{4 y_{2}(x)}{9}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{4}{9} & -\frac{4}{3}
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{4}{9} & -\frac{4}{3}
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-\frac{2}{3},\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]\right],\left[-\frac{2}{3},\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-\frac{2}{3},\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue $-\frac{2}{3}$

$$
\vec{y}_{1}(x)=\mathrm{e}^{-\frac{2 x}{3}} \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-\frac{2}{3}$ is the eigenvalue,

$$
\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue $-\frac{2}{3}$

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -\frac{4}{9} & -\frac{4}{3}
\end{array}\right]--\frac{2}{3} \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{27}{8} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue $-\frac{2}{3}$

$$
\vec{y}_{2}(x)=\mathrm{e}^{-\frac{2 x}{3}} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{27}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{2 x}{3}} \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]+\mathrm{e}^{-\frac{2 x}{3}} c_{2} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{27}{8} \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{3} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{9\left((2 x+3) c_{2}+2 c_{1}\right) \mathrm{e}^{-\frac{2 x}{3}}}{8}+c_{3}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve(9*diff(y(x),x$3)+12*diff(y(x),x$2)+4*diff (y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-\frac{2 x}{3}}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 32
DSolve[9*y'' $[x]+12 * y$ '' $[x]+4 * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{3}-\frac{3}{4} e^{-2 x / 3}\left(c_{2}(2 x+3)+2 c_{1}\right)
$$

2.5 problem problem 14

$$
\text { 2.5.1 Maple step by step solution . } 58
$$

Internal problem ID [289]
Internal file name [OUTPUT/289_Sunday_June_05_2022_01_38_17_AM_80529967/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 14.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{4}+3 \lambda^{2}-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

Verified OK.

2.5.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}+3 y^{\prime \prime}-4 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -3 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
4 & 0 & -3 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{3} \sin (2 x)}{8}-\frac{c_{4} \cos (2 x)}{8} \\
-\frac{c_{3} \cos (2 x)}{4}+\frac{c_{4} \sin (2 x)}{4} \\
\frac{c_{3} \sin (2 x)}{2}+\frac{c_{4} \cos (2 x)}{2} \\
c_{3} \cos (2 x)-c_{4} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}-\frac{c_{4} \cos (2 x)}{8}-\frac{c_{3} \sin (2 x)}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 27

```
dsolve(diff(y(x),x$4)+3*\operatorname{diff}(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-x}+c_{3} \sin (2 x)+c_{4} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 34
DSolve[y'' '' $[\mathrm{x}]+3 * \mathrm{y}$ '' $[\mathrm{x}]-4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow c_{3} e^{-x}+c_{4} e^{x}+c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

2.6 problem problem 15

2.6.1 Maple step by step solution . 64

Internal problem ID [290]
Internal file name [OUTPUT/290_Sunday_June_05_2022_01_38_17_AM_37975917/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 15.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-16 y^{\prime \prime}+16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-16 \lambda^{2}+16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\sqrt{2}-\sqrt{2} \sqrt{3} \\
& \lambda_{2}=-\sqrt{2}+\sqrt{2} \sqrt{3} \\
& \lambda_{3}=\sqrt{2}+\sqrt{2} \sqrt{3} \\
& \lambda_{4}=-\sqrt{2}-\sqrt{2} \sqrt{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{2}+\mathrm{e}^{(\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{3}+\mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x} \\
& y_{2}=\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} \\
& y_{3}=\mathrm{e}^{(\sqrt{2}+\sqrt{2} \sqrt{3}) x} \\
& y_{4}=\mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{2}+\mathrm{e}^{(\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{3}+\mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{1}+\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{2}+\mathrm{e}^{(\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{3}+\mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x} c_{4}
$$

Verified OK.

2.6.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime \prime}-16 y^{\prime \prime}+16 y=0
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$ Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=16 y_{3}(x)-16 y_{1}(x)$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=16 y_{3}(x)-16 y_{1}(x)\right]$

- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x) \\ y_{4}(x)\end{array}\right]$
- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 16 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-16 & 0 & 16 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$-\sqrt{2}-\sqrt{2} \sqrt{3}$	$\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{3}}$ $\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{2}}$ $\frac{1}{-\sqrt{2}-\sqrt{2} \sqrt{3}}$ 1		$\sqrt{2}+\sqrt{2} \sqrt{3}$	$\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{3}}$ $\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{2}}$ $\frac{1}{-\sqrt{2}+\sqrt{2} \sqrt{3}}$ 1		$\sqrt{2}-\sqrt{2} \sqrt{3}$,

- Consider eigenpair

$$
\left[-\sqrt{2}-\sqrt{2} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}-\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}-\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\sqrt{2}+\sqrt{2} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}+\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}+\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\sqrt{2}-\sqrt{2} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(\sqrt{2}-\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{\sqrt{2}-\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}-\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(\sqrt{2}-\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{\sqrt{2}-\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[\sqrt{2}+\sqrt{2} \sqrt{3},\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(\sqrt{2}+\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{\sqrt{2}+\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{4}=\mathrm{e}^{(\sqrt{2}+\sqrt{2} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(\sqrt{2}+\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(\sqrt{2}+\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{\sqrt{2}+\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{(-\sqrt{2}-\sqrt{2} \sqrt{3}) x} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}-\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}-\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]+\mathrm{e}^{(-\sqrt{2}+\sqrt{2} \sqrt{3}) x} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{3}} \\
\frac{1}{(-\sqrt{2}+\sqrt{2} \sqrt{3})^{2}} \\
\frac{1}{-\sqrt{2}+\sqrt{2} \sqrt{3}} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{(\sqrt{2}-\sqrt{2} \sqrt{3}) x}
$$

- First component of the vector is the solution to the ODE

$$
y=-\frac{3\left(c_{1}\left(\sqrt{3}-\frac{5}{3}\right) \mathrm{e}^{-\sqrt{2}(1+\sqrt{3}) x}+c_{3}\left(\sqrt{3}+\frac{5}{3}\right) \mathrm{e}^{-\sqrt{2}(\sqrt{3}-1) x}-\left(\sqrt{3}-\frac{5}{3}\right) c_{4} \mathrm{e}^{\sqrt{2}(1+\sqrt{3}) x}-\left(\sqrt{3}+\frac{5}{3}\right) c_{2} \mathrm{e}^{\sqrt{2}(\sqrt{3}-1) x}\right) \sqrt{2}}{2(1+\sqrt{3})^{3}(\sqrt{3}-1)^{3}}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 59

```
dsolve(diff(y(x),x$4)-16*diff(y(x),x$2)+16*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{-\sqrt{2}(1+\sqrt{3}) x}+c_{2} \mathrm{e}^{\sqrt{2}(1+\sqrt{3}) x}+c_{3} \mathrm{e}^{-\sqrt{2}(\sqrt{3}-1) x}+c_{4} \mathrm{e}^{\sqrt{2}(\sqrt{3}-1) x}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 86
DSolve[y''''[x]-16*y''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow c_{1} e^{2 \sqrt{2-\sqrt{3}} x}+c_{2} e^{-2 \sqrt{2-\sqrt{3}} x}+c_{3} e^{2 \sqrt{2+\sqrt{3}} x}+c_{4} e^{-2 \sqrt{2+\sqrt{3}} x}
$$

2.7 problem problem 16

Internal problem ID [291]
Internal file name [OUTPUT/291_Sunday_June_05_2022_01_38_18_AM_11065771/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 16.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{\prime \prime \prime \prime}+18 y^{\prime \prime}+81 y=0
$$

The characteristic equation is

$$
\lambda^{4}+18 \lambda^{2}+81=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i \\
& \lambda_{3}=3 i \\
& \lambda_{4}=-3 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 i x} \\
& y_{2}=x \mathrm{e}^{-3 i x} \\
& y_{3}=\mathrm{e}^{3 i x} \\
& y_{4}=x \mathrm{e}^{3 i x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{-3 i x} c_{1}+x \mathrm{e}^{-3 i x} c_{2}+\mathrm{e}^{3 i x} c_{3}+x \mathrm{e}^{3 i x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve(diff $(y(x), x \$ 4)+18 * \operatorname{diff}(y(x), x \$ 2)+81 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\left(c_{4} x+c_{2}\right) \cos (3 x)+\sin (3 x)\left(c_{3} x+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y''' ' $[x]+18 * y$ '' $[x]+81 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \cos (3 x)+\left(c_{4} x+c_{3}\right) \sin (3 x)
$$

2.8 problem problem 17

$$
\text { 2.8.1 Maple step by step solution . } 72
$$

Internal problem ID [292]
Internal file name [OUTPUT/292_Sunday_June_05_2022_01_38_18_AM_83684402/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 17.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
6 y^{\prime \prime \prime \prime}+11 y^{\prime \prime}+4 y=0
$$

The characteristic equation is

$$
6 \lambda^{4}+11 \lambda^{2}+4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=\frac{i \sqrt{2}}{2} \\
& \lambda_{2}=-\frac{i \sqrt{2}}{2} \\
& \lambda_{3}=\frac{2 i \sqrt{3}}{3} \\
& \lambda_{4}=-\frac{2 i \sqrt{3}}{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{\frac{i \sqrt{2} x}{2}} c_{1}+\mathrm{e}^{-\frac{2 i \sqrt{3} x}{3}} c_{2}+\mathrm{e}^{\frac{2 i \sqrt{3} x}{3}} c_{3}+\mathrm{e}^{-\frac{i \sqrt{2} x}{2}} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\frac{i \sqrt{2} x}{2}} \\
& y_{2}=\mathrm{e}^{-\frac{2 i \sqrt{3} x}{3}} \\
& y_{3}=\mathrm{e}^{\frac{2 i \sqrt{3} x}{3}} \\
& y_{4}=\mathrm{e}^{-\frac{i \sqrt{2} x}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{i \sqrt{2} x}{2}} c_{1}+\mathrm{e}^{-\frac{2 i \sqrt{3} x}{3}} c_{2}+\mathrm{e}^{\frac{2 i \sqrt{3} x}{3}} c_{3}+\mathrm{e}^{-\frac{i \sqrt{2} x}{2}} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\frac{i \sqrt{2} x}{2}} c_{1}+\mathrm{e}^{-\frac{2 i \sqrt{3} x}{3}} c_{2}+\mathrm{e}^{\frac{2 i \sqrt{3} x}{3}} c_{3}+\mathrm{e}^{-\frac{i \sqrt{2} x}{2}} c_{4}
$$

Verified OK.

2.8.1 Maple step by step solution

Let's solve

$$
6 y^{\prime \prime \prime \prime}+11 y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

- Isolate 4th derivative

$$
y^{\prime \prime \prime \prime}=-\frac{11 y^{\prime \prime}}{6}-\frac{2 y}{3}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime \prime}+\frac{11 y^{\prime \prime}}{6}+\frac{2 y}{3}=0$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=-\frac{11 y_{3}(x)}{6}-\frac{2 y_{1}(x)}{3}$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-\frac{11 y_{3}(x)}{6}-\frac{2 y_{1}(x)}{3}\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\frac{2}{3} & 0 & -\frac{11}{6} & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{2}{3} & 0 & -\frac{11}{6} & 0\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{2 \mathrm{I}}{3} \sqrt{3},\left[\begin{array}{c}
-\frac{3 \mathrm{I}}{8} \sqrt{3} \\
-\frac{3}{4} \\
\frac{\mathrm{I}}{2} \sqrt{3} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\frac{21}{3} \sqrt{3} x} \cdot\left[\begin{array}{c}
-\frac{3 \mathrm{I}}{8} \sqrt{3} \\
-\frac{3}{4} \\
\frac{\mathrm{I}}{2} \sqrt{3} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\left(\cos \left(\frac{2 \sqrt{3} x}{3}\right)-I \sin \left(\frac{2 \sqrt{3} x}{3}\right)\right) \cdot\left[\begin{array}{c}
-\frac{3 \mathrm{I}}{8} \sqrt{3} \\
-\frac{3}{4} \\
\frac{\mathrm{I}}{2} \sqrt{3} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{3 I}{8}\left(\cos \left(\frac{2 \sqrt{3} x}{3}\right)-I \sin \left(\frac{2 \sqrt{3} x}{3}\right)\right) \sqrt{3} \\
-\frac{3 \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{4}+\frac{3 I \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{4} \\
\frac{I}{2}\left(\cos \left(\frac{2 \sqrt{3} x}{3}\right)-I \sin \left(\frac{2 \sqrt{3} x}{3}\right)\right) \sqrt{3} \\
\cos \left(\frac{2 \sqrt{3} x}{3}\right)-I \sin \left(\frac{2 \sqrt{3} x}{3}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\frac{3 \sqrt{3} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{8} \\
-\frac{3 \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{4} \\
\frac{\sqrt{3} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{2} \\
\cos \left(\frac{2 \sqrt{3} x}{3}\right)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{3 \sqrt{3} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{8} \\
\frac{3 \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{4} \\
\frac{\sqrt{3} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{2} \\
-\sin \left(\frac{2 \sqrt{3} x}{3}\right)
\end{array}\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{\mathrm{I}}{2} \sqrt{2},\left[\begin{array}{c}
-2 \mathrm{I} \sqrt{2} \\
-2 \\
\mathrm{I} \sqrt{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\frac{\mathrm{I}}{2} \sqrt{2} x} \cdot\left[\begin{array}{c}
-2 \mathrm{I} \sqrt{2} \\
-2 \\
\mathrm{I} \sqrt{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
\left(\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)\right) \cdot\left[\begin{array}{c}
-2 \mathrm{I} \sqrt{2} \\
-2 \\
\mathrm{I} \sqrt{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-2 \mathrm{I}\left(\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)\right) \sqrt{2} \\
-2 \cos \left(\frac{\sqrt{2} x}{2}\right)+2 \mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right) \\
\mathrm{I}\left(\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)\right) \sqrt{2} \\
\cos \left(\frac{\sqrt{2} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-2 \sqrt{2} \sin \left(\frac{\sqrt{2} x}{2}\right) \\
-2 \cos \left(\frac{\sqrt{2} x}{2}\right) \\
\sqrt{2} \sin \left(\frac{\sqrt{2} x}{2}\right) \\
\cos \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-2 \sqrt{2} \cos \left(\frac{\sqrt{2} x}{2}\right) \\
2 \sin \left(\frac{\sqrt{2} x}{2}\right) \\
\sqrt{2} \cos \left(\frac{\sqrt{2} x}{2}\right) \\
-\sin \left(\frac{\sqrt{2} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
-2 c_{4} \sqrt{2} \cos \left(\frac{\sqrt{2} x}{2}\right)-2 c_{3} \sqrt{2} \sin \left(\frac{\sqrt{2} x}{2}\right)-\frac{3 c_{2} \sqrt{3} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{8}-\frac{3 c_{1} \sqrt{3} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{8} \\
2 c_{4} \sin \left(\frac{\sqrt{2} x}{2}\right)-2 c_{3} \cos \left(\frac{\sqrt{2} x}{2}\right)+\frac{3 c_{2} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{4}-\frac{3 c_{1} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{4} \\
c_{4} \sqrt{2} \cos \left(\frac{\sqrt{2} x}{2}\right)+c_{3} \sqrt{2} \sin \left(\frac{\sqrt{2} x}{2}\right)+\frac{c_{2} \sqrt{3} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{2}+\frac{c_{1} \sqrt{3} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{2} \\
-c_{4} \sin \left(\frac{\sqrt{2} x}{2}\right)+c_{3} \cos \left(\frac{\sqrt{2} x}{2}\right)-c_{2} \sin \left(\frac{2 \sqrt{3} x}{3}\right)+c_{1} \cos \left(\frac{2 \sqrt{3} x}{3}\right)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=-2 c_{4} \sqrt{2} \cos \left(\frac{\sqrt{2} x}{2}\right)-2 c_{3} \sqrt{2} \sin \left(\frac{\sqrt{2} x}{2}\right)-\frac{3 c_{2} \sqrt{3} \cos \left(\frac{2 \sqrt{3} x}{3}\right)}{8}-\frac{3 c_{1} \sqrt{3} \sin \left(\frac{2 \sqrt{3} x}{3}\right)}{8}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 41
dsolve($6 * \operatorname{diff}(y(x), x \$ 4)+11 * \operatorname{diff}(y(x), x \$ 2)+4 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1} \sin \left(\frac{2 \sqrt{3} x}{3}\right)+c_{2} \cos \left(\frac{2 \sqrt{3} x}{3}\right)+c_{3} \sin \left(\frac{\sqrt{2} x}{2}\right)+c_{4} \cos \left(\frac{\sqrt{2} x}{2}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 94
DSolve[y''''[x]+11*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
y(x) \rightarrow & c_{3} \cos \left(\sqrt{\frac{1}{2}(11-\sqrt{105})} x\right)+c_{1} \cos \left(\sqrt{\frac{1}{2}(11+\sqrt{105})} x\right) \\
& +c_{4} \sin \left(\sqrt{\frac{1}{2}(11-\sqrt{105})} x\right)+c_{2} \sin \left(\sqrt{\frac{1}{2}(11+\sqrt{105})} x\right)
\end{aligned}
$$

2.9 problem problem 18

2.9.1 Maple step by step solution . 77

Internal problem ID [293]
Internal file name [OUTPUT/293_Sunday_June_05_2022_01_38_19_AM_47421981/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 18.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant__coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-16 y=0
$$

The characteristic equation is

$$
\lambda^{4}-16=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=2 i \\
& \lambda_{4}=-2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{-2 i x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{-2 i x} c_{4}
$$

Verified OK.

2.9.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-16 y=0$

- Highest derivative means the order of the ODE is 4
$y^{\prime \prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$
$y_{4}(x)=y^{\prime \prime \prime}$
- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=16 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=16 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
16 & 0 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{3} \sin (2 x)}{8}-\frac{c_{4} \cos (2 x)}{8} \\
-\frac{c_{3} \cos (2 x)}{4}+\frac{c_{4} \sin (2 x)}{4} \\
\frac{c_{3} \sin (2 x)}{2}+\frac{c_{4} \cos (2 x)}{2} \\
c_{3} \cos (2 x)-c_{4} \sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{c_{1} \mathrm{e}^{-2 x}}{8}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-\frac{c_{4} \cos (2 x)}{8}-\frac{c_{3} \sin (2 x)}{8}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 29

```
dsolve(diff(y(x),x$4)=16*y(x),y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}+c_{3} \sin (2 x)+c_{4} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 36

```
DSolve[y''''[x]==16*y[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{2 x}+c_{3} e^{-2 x}+c_{2} \cos (2 x)+c_{4} \sin (2 x)
$$

2.10 problem problem 19

2.10.1 Maple step by step solution . 85

Internal problem ID [294]
Internal file name [OUTPUT/294_Sunday_June_05_2022_01_38_20_AM_8986700/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 19.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0
$$

The characteristic equation is

$$
\lambda^{3}+\lambda^{2}-\lambda-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} \mathrm{e}^{x}
$$

Verified OK.

2.10.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+y^{\prime \prime}-y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-y_{3}(x)+y_{2}(x)+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{3}(x)+y_{2}(x)+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]-(-1) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\left((x+1) c_{2}+c_{1}\right) \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff(y(x),x$3)+diff(y(x),x$2)-diff (y(x),x)-y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26

```
DSolve[y'''[x]+y''[x]-y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{3} e^{2 x}+c_{1}\right)
$$

2.11 problem problem 20

Internal problem ID [295]
Internal file name [OUTPUT/295_Sunday_June_05_2022_01_38_20_AM_54787276/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 20.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}+y=0
$$

The characteristic equation is

$$
\lambda^{4}+2 \lambda^{3}+3 \lambda^{2}+2 \lambda+1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{4}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{1}+x \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}+x \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{2}=x \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} \\
& y_{4}=x \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{1}+x \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}+x \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{1}+x \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}+x \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{4}
$$

Verified OK.
Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
dsolve(diff(y(x),x$4)+2*diff(y(x),x$3)+3*\operatorname{diff}(y(x),x$2)+2*\operatorname{diff}(y(x),x)+y(x)=0,y(x), singsol=
```

$$
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(\left(c_{4} x+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+\sin \left(\frac{\sqrt{3} x}{2}\right)\left(c_{3} x+c_{1}\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 52
DSolve [y''''[x]+2*y'' $[x]+3 * y$ '' $[x]+2 * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x / 2}\left(\left(c_{4} x+c_{3}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)+\left(c_{2} x+c_{1}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

2.12 problem problem 24

2.12.1 Maple step by step solution . 94

Internal problem ID [296]
Internal file name [OUTPUT/296_Sunday_June_05_2022_01_38_21_AM_28338752/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 24.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant__coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
2 y^{\prime \prime \prime}-3 y^{\prime \prime}-2 y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=3\right]
$$

The characteristic equation is

$$
2 \lambda^{3}-3 \lambda^{2}-2 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =2 \\
\lambda_{3} & =-\frac{1}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-\frac{x}{2}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-\frac{x}{2}} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=2 c_{2} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{-\frac{x}{2}} c_{3}}{2}
$$

substituting $y^{\prime}=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=2 c_{2}-\frac{c_{3}}{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=4 c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-\frac{x}{2}} c_{3}}{4}
$$

substituting $y^{\prime \prime}=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=4 c_{2}+\frac{c_{3}}{4} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{7}{2} \\
& c_{2}=\frac{1}{2} \\
& c_{3}=4
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{7}{2}+\frac{\mathrm{e}^{2 x}}{2}+4 \mathrm{e}^{-\frac{x}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{7}{2}+\frac{\mathrm{e}^{2 x}}{2}+4 \mathrm{e}^{-\frac{x}{2}} \tag{1}
\end{equation*}
$$

Figure 2: Solution plot

Verification of solutions

$$
y=-\frac{7}{2}+\frac{\mathrm{e}^{2 x}}{2}+4 \mathrm{e}^{-\frac{x}{2}}
$$

Verified OK.

2.12.1 Maple step by step solution

Let's solve

$$
\left[2 y^{\prime \prime \prime}-3 y^{\prime \prime}-2 y^{\prime}=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-1,\left.y^{\prime \prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{3 y^{\prime \prime}}{2}+y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{2}-y^{\prime}=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=\frac{3 y_{3}(x)}{2}+y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\frac{3 y_{3}(x)}{2}+y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & \frac{3}{2}
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & \frac{3}{2}\end{array}\right]$
- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-\frac{1}{2},\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-\frac{1}{2},\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]$
- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}$
- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE $y=4 c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{c_{3} e^{2 x}}{4}+c_{2}$
- Use the initial condition $y(0)=1$
$1=4 c_{1}+\frac{c_{3}}{4}+c_{2}$
- Calculate the 1st derivative of the solution
$y^{\prime}=-2 c_{1} \mathrm{e}^{-\frac{x}{2}}+\frac{c_{3} e^{2 x}}{2}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-1$
$-1=-2 c_{1}+\frac{c_{3}}{2}$
- Calculate the 2nd derivative of the solution
$y^{\prime \prime}=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{3} \mathrm{e}^{2 x}$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=3$
$3=c_{1}+c_{3}$
- Solve for the unknown coefficients
$\left\{c_{1}=1, c_{2}=-\frac{7}{2}, c_{3}=2\right\}$
- Solution to the IVP
$y=-\frac{7}{2}+\frac{\mathrm{e}^{2 x}}{2}+4 \mathrm{e}^{-\frac{x}{2}}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 18

```
dsolve([2*diff (y(x),x$3)-3*\operatorname{diff}(y(x),x$2)-2*\operatorname{diff}(y(x),x)=0,y(0)=1,D(y)(0)=-1, (D@@2)(y)
```

$$
y(x)=-\frac{7}{2}+4 \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{2 x}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.351 (sec). Leaf size: 70
DSolve $[\{2 * y$ ' ' ' $[\mathrm{x}]-3 * y$ ' ' $[\mathrm{x}]-3 * y$ ' $[\mathrm{x}]==0,\{y[0]==1, \mathrm{y}$ ' $[0]==-1, \mathrm{y}$ ' ' $[0]==3\}\}, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingulars

$$
y(x) \rightarrow \frac{1}{66} e^{-\frac{1}{4}(\sqrt{33}-3) x}\left((99-13 \sqrt{33}) e^{\frac{\sqrt{33} x}{2}}-132 e^{\frac{1}{4}(\sqrt{33}-3) x}+99+13 \sqrt{33}\right)
$$

2.13 problem problem 25

2.13.1 Maple step by step solution . 101

Internal problem ID [297]
Internal file name [OUTPUT/297_Sunday_June_05_2022_01_38_22_AM_69806262/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 25.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
3 y^{\prime \prime \prime}+2 y^{\prime \prime}=0
$$

With initial conditions

$$
\left[y(0)=-1, y^{\prime}(0)=0, y^{\prime \prime}(0)=1\right]
$$

The characteristic equation is

$$
3 \lambda^{3}+2 \lambda^{2}=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =-\frac{2}{3} \\
\lambda_{2} & =0 \\
\lambda_{3} & =0
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{2} x+c_{1}+\mathrm{e}^{-\frac{2 x}{3}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=\mathrm{e}^{-\frac{2 x}{3}}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{2} x+c_{1}+\mathrm{e}^{-\frac{2 x}{3}} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=-1$ and $x=0$ in the above gives

$$
\begin{equation*}
-1=c_{1}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{2}-\frac{2 \mathrm{e}^{-\frac{2 x}{3}} c_{3}}{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{2}-\frac{2 c_{3}}{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=\frac{4 \mathrm{e}^{-\frac{2 x}{3}} c_{3}}{9}
$$

substituting $y^{\prime \prime}=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=\frac{4 c_{3}}{9} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{13}{4} \\
& c_{2}=\frac{3}{2} \\
& c_{3}=\frac{9}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{13}{4}+\frac{3 x}{2}+\frac{9 \mathrm{e}^{-\frac{2 x}{3}}}{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{13}{4}+\frac{3 x}{2}+\frac{9 \mathrm{e}^{-\frac{2 x}{3}}}{4} \tag{1}
\end{equation*}
$$

Figure 3: Solution plot

Verification of solutions

$$
y=-\frac{13}{4}+\frac{3 x}{2}+\frac{9 \mathrm{e}^{-\frac{2 x}{3}}}{4}
$$

Verified OK.

2.13.1 Maple step by step solution

Let's solve

$$
\left[3 y^{\prime \prime \prime}+2 y^{\prime \prime}=0, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative
$y^{\prime \prime \prime}=-\frac{2 y^{\prime \prime}}{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{3}=0
$$

\square
Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-\frac{2 y_{3}(x)}{3}$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-\frac{2 y_{3}(x)}{3}\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\frac{2}{3}\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix
$A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -\frac{2}{3}\end{array}\right]$
- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-\frac{2}{3},\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-\frac{2}{3},\left[\begin{array}{c}\frac{9}{4} \\ -\frac{3}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-\frac{2 x}{3}} \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-\frac{2 x}{3}} \cdot\left[\begin{array}{c}
\frac{9}{4} \\
-\frac{3}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{9 c_{1} \mathrm{e}^{-\frac{2 x}{3}}}{4}+c_{2}
$$

- Use the initial condition $y(0)=-1$

$$
-1=\frac{9 c_{1}}{4}+c_{2}
$$

- Calculate the 1st derivative of the solution

$$
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{2 x}{3}}}{2}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-\frac{3 c_{1}}{2}
$$

- Calculate the 2nd derivative of the solution

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-\frac{2 x}{3}}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=1$
$1=c_{1}$
- \quad Solve for the unknown coefficients
- The solution does not satisfy the initial conditions

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
dsolve([3*diff (y(x),x$3)+2*diff (y(x),x$2)=0,y(0) = -1, D(y)(0) = 0, (D@@2) (y) (0) = 1],y(x),
```

$$
y(x)=-\frac{13}{4}+\frac{3 x}{2}+\frac{9 \mathrm{e}^{-\frac{2 x}{3}}}{4}
$$

\checkmark Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 23
DSolve $\left[\left\{3 * y\right.\right.$ ' ' ' $[x]+2 * y$ ' ' $[x]==0,\left\{y[0]==1, y\right.$ ' $\left.\left.[0]==-1, y^{\prime}{ }^{\prime}[0]==3\right\}\right\}, y[x], x$, IncludeSingularSolutions

$$
y(x) \rightarrow \frac{1}{4}\left(14 x+27 e^{-2 x / 3}-23\right)
$$

2.14 problem problem 26

2.14.1 Maple step by step solution . 108

Internal problem ID [298]
Internal file name [OUTPUT/298_Sunday_June_05_2022_01_38_23_AM_15154783/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 26.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+10 y^{\prime \prime}+25 y^{\prime}=0
$$

With initial conditions

$$
\left[y(0)=3, y^{\prime}(0)=4, y^{\prime \prime}(0)=5\right]
$$

The characteristic equation is

$$
\lambda^{3}+10 \lambda^{2}+25 \lambda=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-5 \\
\lambda_{3} & =-5
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{-5 x}+x \mathrm{e}^{-5 x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-5 x} \\
& y_{3}=x \mathrm{e}^{-5 x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-5 x}+x \mathrm{e}^{-5 x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=3$ and $x=0$ in the above gives

$$
\begin{equation*}
3=c_{1}+c_{2} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-5 c_{2} \mathrm{e}^{-5 x}+\mathrm{e}^{-5 x} c_{3}-5 x \mathrm{e}^{-5 x} c_{3}
$$

substituting $y^{\prime}=4$ and $x=0$ in the above gives

$$
\begin{equation*}
4=-5 c_{2}+c_{3} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=25 c_{2} \mathrm{e}^{-5 x}-10 \mathrm{e}^{-5 x} c_{3}+25 x \mathrm{e}^{-5 x} c_{3}
$$

substituting $y^{\prime \prime}=5$ and $x=0$ in the above gives

$$
\begin{equation*}
5=25 c_{2}-10 c_{3} \tag{3A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=\frac{24}{5} \\
& c_{2}=-\frac{9}{5} \\
& c_{3}=-5
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{24}{5}-\frac{9 \mathrm{e}^{-5 x}}{5}-5 x \mathrm{e}^{-5 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{24}{5}-\frac{9 \mathrm{e}^{-5 x}}{5}-5 x \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
$$

Figure 4: Solution plot

Verification of solutions

$$
y=\frac{24}{5}-\frac{9 \mathrm{e}^{-5 x}}{5}-5 x \mathrm{e}^{-5 x}
$$

Verified OK.

2.14.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}+10 y^{\prime \prime}+25 y^{\prime}=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=4,\left.y^{\prime \prime}\right|_{\{x=0\}}=5\right]
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-10 y_{3}(x)-25 y_{2}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-10 y_{3}(x)-25 y_{2}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & -10
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & -10
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-5,\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]\right],\left[-5,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-5,\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue -5

$$
\vec{y}_{1}(x)=\mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-5$ is the eigenvalue, a

$$
\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
$$

- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A

$$
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
$$

- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- \quad Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -5

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -25 & -10
\end{array}\right]-(-5) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{125} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -5

$$
\vec{y}_{2}(x)=\mathrm{e}^{-5 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{125} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair
$\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-5 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{25} \\
-\frac{1}{5} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{125} \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{3} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left((5 x+1) c_{2}+5 c_{1}\right) \mathrm{e}^{-5 x}}{125}+c_{3}$
- Use the initial condition $y(0)=3$
$3=\frac{c_{1}}{25}+\frac{c_{2}}{125}+c_{3}$
- \quad Calculate the 1 st derivative of the solution
$y^{\prime}=\frac{c_{2} \mathrm{e}^{-5 x}}{25}-\frac{\left((5 x+1) c_{2}+5 c_{1}\right) \mathrm{e}^{-5 x}}{25}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=4$

$$
4=-\frac{c_{1}}{5}
$$

- Calculate the 2 nd derivative of the solution

$$
y^{\prime \prime}=-\frac{2 c_{2} e^{-5 x}}{5}+\frac{\left((5 x+1) c_{2}+5 c_{1}\right) e^{-5 x}}{5}
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=5$

$$
5=-\frac{c_{2}}{5}+c_{1}
$$

- Solve for the unknown coefficients

$$
\left\{c_{1}=-20, c_{2}=-125, c_{3}=\frac{24}{5}\right\}
$$

- \quad Solution to the IVP

$$
y=\frac{24}{5}-\frac{9 \mathrm{e}^{-5 x}}{5}-5 x \mathrm{e}^{-5 x}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

$$
y(x)=\frac{24}{5}-\frac{9 \mathrm{e}^{-5 x}}{5}-5 \mathrm{e}^{-5 x} x
$$

\checkmark Solution by Mathematica
Time used: 0.045 (sec). Leaf size: 26
DSolve[\{y' ' ' $[x]+10 * y$ ' ' $[x]+25 * y$ ' $[x]==0,\left\{y[0]==3, y^{\prime}[0]==4, y^{\prime}\right.$ ' $\left.\left.[0]==5\right\}\right\}, y[x], x$, IncludeSingularSo

$$
y(x) \rightarrow \frac{1}{5} e^{-5 x}\left(-25 x+24 e^{5 x}-9\right)
$$

2.15 problem problem 27

2.15.1 Maple step by step solution . 114

Internal problem ID [299]
Internal file name [OUTPUT/299_Sunday_June_05_2022_01_38_23_AM_18885951/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 27.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}-4=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2 \\
& \lambda_{3}=-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{-2 x} x \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+x \mathrm{e}^{-2 x} c_{2}+c_{3} \mathrm{e}^{x}
$$

Verified OK.

2.15.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-3 y_{3}(x)+4 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-2,\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue -2

$$
\vec{y}_{1}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-2$ is the eigenvalue, a $\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})$
- \quad Note that the x multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{2}(x)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{2}(x)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
4 & 0 & -3
\end{array}\right]-(-2) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{8} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue -2

$$
\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{l}
\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(8 c_{3} \mathrm{e}^{3 x}+2 c_{2} x+2 c_{1}+c_{2}\right) \mathrm{e}^{-2 x}}{8}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff(y(x),x$3)+3*diff(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{3 x}+c_{3} x+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 26
DSolve[y'''[x]+3*y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{2} x+c_{3} e^{3 x}+c_{1}\right)
$$

2.16 problem problem 28

2.16.1 Maple step by step solution . 119

Internal problem ID [300]
Internal file name [OUTPUT/300_Sunday_June_05_2022_01_38_24_AM_29981424/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 28.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
2 y^{\prime \prime \prime}-y^{\prime \prime}-5 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
2 \lambda^{3}-\lambda^{2}-5 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-\frac{1}{2} \\
\lambda_{3} & =-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-\frac{x}{2}} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-\frac{x}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-\frac{x}{2}} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-\frac{x}{2}} c_{3}
$$

Verified OK.

2.16.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime \prime}-y^{\prime \prime}-5 y^{\prime}-2 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{y^{\prime \prime}}{2}+\frac{5 y^{\prime}}{2}+y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}-\frac{y^{\prime \prime}}{2}-\frac{5 y^{\prime}}{2}-y=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=\frac{y_{3}(x)}{2}+\frac{5 y_{2}(x)}{2}+y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\frac{y_{3}(x)}{2}+\frac{5 y_{2}(x)}{2}+y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & \frac{5}{2} & \frac{1}{2}
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & \frac{5}{2} & \frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2},\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-\frac{1}{2},\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
4 \\
-2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(c_{3} \mathrm{e}^{3 x}+16 c_{2} \mathrm{e}^{\frac{x}{2}}+4 c_{1}\right) \mathrm{e}^{-x}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 23

```
dsolve(2*diff(y(x),x$3)-diff(y(x),x$2)-5*diff(y(x),x)-2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{2} \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{\frac{x}{2}}+c_{3}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 32
DSolve[2*y' ' ' $[\mathrm{x}]-\mathrm{y}$ '' $[\mathrm{x}]-5 * \mathrm{y}$ ' $[\mathrm{x}]-2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(c_{1} e^{x / 2}+c_{3} e^{3 x}+c_{2}\right)
$$

2.17 problem problem 29

$$
\text { 2.17.1 Maple step by step solution . } 124
$$

Internal problem ID [301]
Internal file name [OUTPUT/301_Sunday_June_05_2022_01_38_24_AM_24282700/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 29.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant__coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+27 y=0
$$

The characteristic equation is

$$
\lambda^{3}+27=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=\frac{3}{2}-\frac{3 i \sqrt{3}}{2} \\
& \lambda_{3}=\frac{3}{2}+\frac{3 i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(\frac{3}{2}-\frac{3 i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{3}{2}+\frac{3 i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-3 x} \\
& y_{2}=\mathrm{e}^{\left(\frac{3}{2}-\frac{3 i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{3}{2}+\frac{3 i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(\frac{3}{2}-\frac{3 i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{3}{2}+\frac{3 i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-3 x}+\mathrm{e}^{\left(\frac{3}{2}-\frac{3 i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{3}{2}+\frac{3 i \sqrt{3}}{2}\right) x} c_{3}
$$

Verified OK.

2.17.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+27 y=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=-27 y_{1}(x)$
Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-27 y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-27 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-27 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right],\left[\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{3}{2}-\frac{3 \mathrm{II} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{3 \mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{3}{2}+\frac{\mathrm{II} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{3}{2}+\frac{3 \mathrm{II} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-3,\left[\begin{array}{c}\frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{\left(\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and \cos

$$
\mathrm{e}^{\frac{3 x}{2}} \cdot\left(\cos \left(\frac{3 \sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{3 \sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{3}{2}-\frac{\mathrm{II} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{3 \sqrt{3} x}{2}\right)}{\left(\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{3 \sqrt{3} x}{2}\right)}{\frac{3}{2}-\frac{3 \mathrm{I} \sqrt{3}}{2}} \\
\cos \left(\frac{3 \sqrt{3} x}{2}\right)-I \sin \left(\frac{3 \sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)}{18}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{18} \\
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)}{6}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{6} \\
\cos \left(\frac{3 \sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{18}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right)}{18} \\
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{6}-\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right)}{6} \\
-\sin \left(\frac{3 \sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)}{18}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{18} \\
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right)}{6}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{6} \\
\cos \left(\frac{3 \sqrt{3} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{\frac{3 x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{18}+\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right)}{18} \\
\frac{\cos \left(\frac{3 \sqrt{3} x}{2}\right) \sqrt{3}}{6}-\frac{\sin \left(\frac{3 \sqrt{3} x}{2}\right)}{6} \\
-\sin \left(\frac{3 \sqrt{3} x}{2}\right)
\end{array}\right.
$$

- First component of the vector is the solution to the ODE

$$
y=\frac{\left(-\frac{\mathrm{e}^{\frac{9 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{3 \sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{9 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right) \sin \left(\frac{3 \sqrt{3} x}{2}\right)}{2}+c_{1}\right) \mathrm{e}^{-3 x}}{9}
$$

Maple trace
-Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
dsolve(diff $(y(x), x \$ 3)+27 * y(x)=0, y(x)$, singsol $=a l l)$

$$
y(x)=\left(c_{2} \mathrm{e}^{\frac{9 x}{2}} \sin \left(\frac{3 \sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{\frac{9 x}{2}} \cos \left(\frac{3 \sqrt{3} x}{2}\right)+c_{1}\right) \mathrm{e}^{-3 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 56
DSolve[y'''[x] $+27 * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-3 x}\left(c_{3} e^{9 x / 2} \cos \left(\frac{3 \sqrt{3} x}{2}\right)+c_{2} e^{9 x / 2} \sin \left(\frac{3 \sqrt{3} x}{2}\right)+c_{1}\right)
$$

2.18 problem problem 30

$$
\text { 2.18.1 Maple step by step solution . } 129
$$

Internal problem ID [302]
Internal file name [OUTPUT/302_Sunday_June_05_2022_01_38_25_AM_61857055/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 30.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}+y^{\prime \prime}-3 y^{\prime}-6 y=0
$$

The characteristic equation is

$$
\lambda^{4}-\lambda^{3}+\lambda^{2}-3 \lambda-6=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =i \sqrt{3} \\
\lambda_{4} & =-i \sqrt{3}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{i \sqrt{3} x} c_{3}+\mathrm{e}^{-i \sqrt{3} x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{i \sqrt{3} x} \\
& y_{4}=\mathrm{e}^{-i \sqrt{3} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{i \sqrt{3} x} c_{3}+\mathrm{e}^{-i \sqrt{3} x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{i \sqrt{3} x} c_{3}+\mathrm{e}^{-i \sqrt{3} x} c_{4}
$$

Verified OK.

2.18.1 Maple step by step solution

Let's solve
$y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}+y^{\prime \prime}-3 y^{\prime}-6 y=0$

- Highest derivative means the order of the ODE is 4

$$
y^{\prime \prime \prime \prime}
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$
$y_{1}(x)=y$
- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE

$$
y_{4}^{\prime}(x)=y_{4}(x)-y_{3}(x)+3 y_{2}(x)+6 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=y_{4}(x)-y_{3}(x)+3 y_{2}(x)+6 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
6 & 3 & -1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
6 & 3 & -1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{\mathrm{I}}{9} \sqrt{3} \\
-\frac{1}{3} \\
\frac{\mathrm{I}}{3} \sqrt{3} \\
1
\end{array}\right]\right],\left[\mathrm{I} \sqrt{3},\left[\begin{array}{c}
\frac{\mathrm{I}}{9} \sqrt{3} \\
-\frac{1}{3} \\
-\frac{\mathrm{I}}{3} \sqrt{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I} \sqrt{3},\left[\begin{array}{c}
-\frac{\mathrm{I}}{9} \sqrt{3} \\
-\frac{1}{3} \\
\frac{\mathrm{I}}{3} \sqrt{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} \sqrt{3} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{9} \sqrt{3} \\
-\frac{1}{3} \\
\frac{\mathrm{I}}{3} \sqrt{3} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{9} \sqrt{3} \\
-\frac{1}{3} \\
\frac{\mathrm{I}}{3} \sqrt{3} \\
1
\end{array}\right]
$$

- \quad Simplify expression

$$
\left[\begin{array}{c}
-\frac{\mathrm{I}}{9}(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \sqrt{3} \\
-\frac{\cos (\sqrt{3} x)}{3}+\frac{\mathrm{I} \sin (\sqrt{3} x)}{3} \\
\frac{\mathrm{I}}{3}(\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)) \sqrt{3} \\
\cos (\sqrt{3} x)-\mathrm{I} \sin (\sqrt{3} x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\frac{\sqrt{3} \sin (\sqrt{3} x)}{9} \\
-\frac{\cos (\sqrt{3} x)}{3} \\
\frac{\sqrt{3} \sin (\sqrt{3} x)}{3} \\
\cos (\sqrt{3} x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\frac{\sqrt{3} \cos (\sqrt{3} x)}{9} \\
\frac{\sin (\sqrt{3} x)}{3} \\
\frac{\sqrt{3} \cos (\sqrt{3} x)}{3} \\
-\sin (\sqrt{3} x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{4} \sqrt{3} \cos (\sqrt{3} x)}{9}-\frac{c_{3} \sqrt{3} \sin (\sqrt{3} x)}{9} \\
\frac{c_{4} \sin (\sqrt{3} x)}{3}-\frac{c_{3} \cos (\sqrt{3} x)}{3} \\
\frac{c_{4} \sqrt{3} \cos (\sqrt{3} x)}{3}+\frac{c_{3} \sqrt{3} \sin (\sqrt{3} x)}{3} \\
-c_{4} \sin (\sqrt{3} x)+c_{3} \cos (\sqrt{3} x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} 2^{2 x}}{8}-\frac{c_{4} \sqrt{3} \cos (\sqrt{3} x)}{9}-\frac{c_{3} \sqrt{3} \sin (\sqrt{3} x)}{9}$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 33

```
dsolve(diff(y(x),x$4)-\operatorname{diff}(y(x),x$3)+\operatorname{diff}(y(x),x$2)-3*\operatorname{diff}(y(x),x)-6*y(x)=0,y(x), singsol=al
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-x}+c_{3} \sin (\sqrt{3} x)+c_{4} \cos (\sqrt{3} x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 44
DSolve[y''''[x]-y'''[x]+y''[x]-3*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow c_{3} e^{-x}+c_{4} e^{2 x}+c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
$$

2.19 problem problem 31

2.19.1 Maple step by step solution

135
Internal problem ID [303]
Internal file name [OUTPUT/303_Sunday_June_05_2022_01_38_25_AM_57161591/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 31.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}-8 y=0
$$

The characteristic equation is

$$
\lambda^{3}+3 \lambda^{2}+4 \lambda-8=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-2-2 i \\
& \lambda_{3}=-2+2 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(-2+2 i) x} c_{2}+\mathrm{e}^{(-2-2 i) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{(-2+2 i) x} \\
& y_{3}=\mathrm{e}^{(-2-2 i) x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(-2+2 i) x} c_{2}+\mathrm{e}^{(-2-2 i) x} c_{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(-2+2 i) x} c_{2}+\mathrm{e}^{(-2-2 i) x} c_{3}
$$

Verified OK.

2.19.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime \prime}+3 y^{\prime \prime}+4 y^{\prime}-8 y=0
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-3 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-3 y_{3}(x)-4 y_{2}(x)+8 y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & -3
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
8 & -4 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-2-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right],\left[-2+2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4}-\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(-2-2 \mathrm{I}) x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-2 x} \cdot(\cos (2 x)-\mathrm{I} \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4}+\frac{\mathrm{I}}{4} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\left(-\frac{1}{4}+\frac{\mathrm{I}}{4}\right)(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4}+\frac{\sin (2 x)}{4} \\
\cos (2 x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4}+\frac{\cos (2 x)}{4} \\
-\sin (2 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4}+\frac{\sin (2 x)}{4} \\
\cos (2 x)
\end{array}\right]+c_{3} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4}+\frac{\cos (2 x)}{4} \\
-\sin (2 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(8 c_{1} \mathrm{e}^{3 x}-c_{2} \sin (2 x)-c_{3} \cos (2 x)\right) \mathrm{e}^{-2 x}}{8}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve(diff (y (x),x$3)+3*diff (y (x),x$2)+4*diff (y (x),x)-8*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{1} \mathrm{e}^{3 x}+\sin (2 x) c_{2}+\cos (2 x) c_{3}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 34
DSolve[y'''[x]+3*y''[x]+4*y'[x]-8*y[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-2 x}\left(c_{3} e^{3 x}+c_{2} \cos (2 x)+c_{1} \sin (2 x)\right)
$$

2.20 problem problem 32

Internal problem ID [304]
Internal file name [OUTPUT/304_Sunday_June_05_2022_01_38_26_AM_40263199/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 32.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

```
[[_high_order, _missing_x]]
```

$$
y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}-3 y^{\prime \prime}-5 y^{\prime}-2 y=0
$$

The characteristic equation is

$$
\lambda^{4}+\lambda^{3}-3 \lambda^{2}-5 \lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=-1 \\
& \lambda_{4}=-1
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{2 x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{2 x} c_{4} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+x^{2} \mathrm{e}^{-x} c_{3}+\mathrm{e}^{2 x} c_{4}
$$

Verified OK.
Maple trace

- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve($\operatorname{diff}(y(x), x \$ 4)+\operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)$, singsol=

$$
y(x)=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 32
DSolve[y''''[x]+y'' $[x]-3 * y$ ' ' $[x]-5 * y$ ' $[x]-2 * y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(c_{3} x^{2}+c_{2} x+c_{4} e^{3 x}+c_{1}\right)
$$

2.21 problem problem 38

2.21.1 Maple step by step solution . 143

Internal problem ID [305]
Internal file name [OUTPUT/305_Sunday_June_05_2022_01_38_27_AM_94437083/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 38.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-5 y^{\prime \prime}+100 y^{\prime}-500 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=10, y^{\prime \prime}(0)=250\right]
$$

The characteristic equation is

$$
\lambda^{3}-5 \lambda^{2}+100 \lambda-500=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=10 i \\
& \lambda_{3}=-10 i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{10 i x} c_{2}+\mathrm{e}^{-10 i x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{5 x} \\
& y_{2}=\mathrm{e}^{10 i x} \\
& y_{3}=\mathrm{e}^{-10 i x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+\mathrm{e}^{10 i x} c_{2}+\mathrm{e}^{-10 i x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+10 i \mathrm{e}^{10 i x} c_{2}-10 i \mathrm{e}^{-10 i x} c_{3}
$$

substituting $y^{\prime}=10$ and $x=0$ in the above gives

$$
\begin{equation*}
10=10 c_{2} i-10 c_{3} i+5 c_{1} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=25 c_{1} \mathrm{e}^{5 x}-100 \mathrm{e}^{10 i x} c_{2}-100 \mathrm{e}^{-10 i x} c_{3}
$$

substituting $y^{\prime \prime}=250$ and $x=0$ in the above gives

$$
\begin{equation*}
250=25 c_{1}-100 c_{2}-100 c_{3} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=2 \\
& c_{2}=-1 \\
& c_{3}=-1
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=2 \mathrm{e}^{5 x}-2 \cos (10 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=2 \mathrm{e}^{5 x}-2 \cos (10 x) \tag{1}
\end{equation*}
$$

Figure 5: Solution plot

Verification of solutions

$$
y=2 \mathrm{e}^{5 x}-2 \cos (10 x)
$$

Verified OK.

2.21.1 Maple step by step solution

Let's solve
$\left[y^{\prime \prime \prime}-5 y^{\prime \prime}+100 y^{\prime}-500 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=10,\left.y^{\prime \prime}\right|_{\{x=0\}}=250\right]$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Isolate for $y_{3}^{\prime}(x)$ using original ODE
$y_{3}^{\prime}(x)=5 y_{3}(x)-100 y_{2}(x)+500 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=5 y_{3}(x)-100 y_{2}(x)+500 y_{1}(x)\right]$
- Define vector
$\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]$
- System to solve
$\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 500 & -100 & 5\end{array}\right] \cdot \vec{y}(x)$
- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
500 & -100 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[5,\left[\begin{array}{c}\frac{1}{25} \\ \frac{1}{5} \\ 1\end{array}\right]\right],\left[-10 \mathrm{I},\left[\begin{array}{c}-\frac{1}{100} \\ \frac{\mathrm{I}}{10} \\ 1\end{array}\right]\right],\left[10 \mathrm{I},\left[\begin{array}{c}-\frac{1}{100} \\ -\frac{\mathrm{I}}{10} \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair

$$
\left[5,\left[\begin{array}{c}
\frac{1}{25} \\
\frac{1}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
\frac{1}{5} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-10 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{100} \\
\frac{\mathrm{I}}{10} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-10 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{1}{100} \\
\frac{\mathrm{I}}{10} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (10 x)-I \sin (10 x)) \cdot\left[\begin{array}{c}
-\frac{1}{100} \\
\frac{I}{10} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\frac{\cos (10 x)}{100}+\frac{I \sin (10 x)}{100} \\
\frac{\mathrm{I}}{10}(\cos (10 x)-I \sin (10 x)) \\
\cos (10 x)-I \sin (10 x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (10 x)}{100} \\
\frac{\sin (10 x)}{10} \\
\cos (10 x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\frac{\sin (10 x)}{100} \\
\frac{\cos (10 x)}{10} \\
-\sin (10 x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{5 x} \cdot\left[\begin{array}{c}
\frac{1}{25} \\
\frac{1}{5} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{c_{2} \cos (10 x)}{100}+\frac{c_{3} \sin (10 x)}{100} \\
\frac{c_{2} \sin (10 x)}{10}+\frac{c_{3} \cos (10 x)}{10} \\
c_{2} \cos (10 x)-c_{3} \sin (10 x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{c_{1} 1^{5 x}}{25}+\frac{c_{3} \sin (10 x)}{100}-\frac{c_{2} \cos (10 x)}{100}$
- Use the initial condition $y(0)=0$
$0=\frac{c_{1}}{25}-\frac{c_{2}}{100}$
- Calculate the 1st derivative of the solution
$y^{\prime}=\frac{c_{1}{ }^{5 x}}{5}+\frac{c_{3} \cos (10 x)}{10}+\frac{c_{2} \sin (10 x)}{10}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=10$
$10=\frac{c_{1}}{5}+\frac{c_{3}}{10}$
- Calculate the 2nd derivative of the solution
$y^{\prime \prime}=c_{1} \mathrm{e}^{5 x}-c_{3} \sin (10 x)+c_{2} \cos (10 x)$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=250$
$250=c_{1}+c_{2}$
- Solve for the unknown coefficients
$\left\{c_{1}=50, c_{2}=200, c_{3}=0\right\}$
- Solution to the IVP
$y=2 \mathrm{e}^{5 x}-2 \cos (10 x)$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve([diff (y (x),x$3)-5*\operatorname{diff}(y(x),x$2)+100*\operatorname{diff}(y(x),x)-500*y(x)=0,y(0)=0,D(y)(0)=10,
```

$$
y(x)=2 \mathrm{e}^{5 x}-2 \cos (10 x)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 19
DSolve[\{y'' ' $[\mathrm{x}]-5 * y$ '' $[\mathrm{x}]+100 * y$ ' $[\mathrm{x}]-500 * y[\mathrm{x}]==0,\{y[0]==0, \mathrm{y}$ ' $[0]==10, \mathrm{y}$ ' $[0]==250\}\}, y[\mathrm{x}], \mathrm{x}$, Inclu

$$
y(x) \rightarrow 2\left(e^{5 x}-\cos (10 x)\right)
$$

2.22 problem problem 48

2.22.1 Maple step by step solution

150
Internal problem ID [306]
Internal file name [OUTPUT/306_Sunday_June_05_2022_01_38_28_AM_89837690/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 48.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
y^{\prime \prime \prime}-y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=0\right]
$$

The characteristic equation is

$$
\lambda^{3}-1=0
$$

The roots of the above equation are

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=1$ and $x=0$ in the above gives

$$
\begin{equation*}
1=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{i\left(c_{2}-c_{3}\right) \sqrt{3}}{2}+c_{1}-\frac{c_{2}}{2}-\frac{c_{3}}{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{x}+\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)^{2} \mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right)^{2} \mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=\frac{i\left(-c_{2}+c_{3}\right) \sqrt{3}}{2}+c_{1}-\frac{c_{2}}{2}-\frac{c_{3}}{2} \tag{3~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}\right\}$. Solving for the constants gives

$$
\begin{aligned}
c_{1} & =\frac{1}{3} \\
c_{2} & =\frac{1}{3} \\
c_{3} & =\frac{1}{3}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=\frac{\mathrm{e}^{x}}{3}+\frac{\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{3}+\frac{\mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x}}{3}+\frac{\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{3}+\frac{\mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{3} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\mathrm{e}^{x}}{3}+\frac{\mathrm{e}^{\frac{(i \sqrt{3}-1) x}{2}}}{3}+\frac{\mathrm{e}^{-\frac{(1+i \sqrt{3}) x}{2}}}{3}
$$

Verified OK.

2.22.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime}-y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 3 $y^{\prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs $\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{1}(x)\right]$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

- Rewrite the system as

$$
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
$$

- Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+\mathrm{e}^{-\frac{x}{2}} c_{3} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{1} \mathrm{e}^{x}$
- Use the initial condition $y(0)=1$
$1=-\frac{c_{3} \sqrt{3}}{2}-\frac{c_{2}}{2}+c_{1}$
- Calculate the 1 st derivative of the solution
$y^{\prime}=\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{4}+\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{4}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \cos \left(\frac{\sqrt{3}}{2}\right.}{4}$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=\frac{c_{3} \sqrt{3}}{4}+\frac{c_{2}}{4}-\frac{\left(\sqrt{3} c_{2}-c_{3}\right) \sqrt{3}}{4}+c_{1}$
- Calculate the 2 nd derivative of the solution
$y^{\prime \prime}=\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{4}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{4}+\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{4}+\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \cos \left(\frac{\sqrt{3}}{2}\right.}{4}$
- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$
$0=\frac{c_{3} \sqrt{3}}{4}+\frac{c_{2}}{4}+\frac{\left(\sqrt{3} c_{2}-c_{3}\right) \sqrt{3}}{4}+c_{1}$
- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{1}{3}, c_{2}=-\frac{1}{3}, c_{3}=-\frac{\sqrt{3}}{3}\right\}
$$

- \quad Solution to the IVP
$y=\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}+\frac{\mathrm{e}^{x}}{3}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 22

```
dsolve([diff (y(x),x$3)=y(x),y(0) = 1, D(y)(0) = 0, (D@@2) (y)(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x}}{3}+\frac{2 \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{3}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 33
DSolve[\{y'' $[x]==y[x],\left\{y[0]==1, y{ }^{\prime}[0]==0, y\right.$ ' $\left.\left.[0]==0\right\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{3}\left(e^{x}+2 e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

2.23 problem problem 49

2.23.1 Maple step by step solution . 158

Internal problem ID [307]
Internal file name [OUTPUT/307_Sunday_June_05_2022_01_38_29_AM_34480318/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 49.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]

$$
y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=15\right]
$$

The characteristic equation is

$$
\lambda^{4}-\lambda^{3}-\lambda^{2}-\lambda-2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
$$

Initial conditions are used to solve for the constants of integration.
Looking at the above solution

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
$$

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting $y=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+c_{2}+c_{3}+c_{4} \tag{1~A}
\end{equation*}
$$

Taking derivative of the solution gives

$$
y^{\prime}=-c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{2 x}-i \mathrm{e}^{-i x} c_{3}+i \mathrm{e}^{i x} c_{4}
$$

substituting $y^{\prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=-c_{3} i+c_{4} i-c_{1}+2 c_{2} \tag{2~A}
\end{equation*}
$$

Taking two derivatives of the solution gives

$$
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+4 c_{2} \mathrm{e}^{2 x}-\mathrm{e}^{-i x} c_{3}-\mathrm{e}^{i x} c_{4}
$$

substituting $y^{\prime \prime}=0$ and $x=0$ in the above gives

$$
\begin{equation*}
0=c_{1}+4 c_{2}-c_{3}-c_{4} \tag{3~A}
\end{equation*}
$$

Taking three derivatives of the solution gives

$$
y^{\prime \prime \prime}=-c_{1} \mathrm{e}^{-x}+8 c_{2} \mathrm{e}^{2 x}+i \mathrm{e}^{-i x} c_{3}-i \mathrm{e}^{i x} c_{4}
$$

substituting $y^{\prime \prime \prime}=15$ and $x=0$ in the above gives

$$
\begin{equation*}
15=c_{3} i-c_{4} i-c_{1}+8 c_{2} \tag{4~A}
\end{equation*}
$$

Equations $\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}, 4 \mathrm{~A}\}$ are now solved for $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$. Solving for the constants gives

$$
\begin{aligned}
& c_{1}=-\frac{5}{2} \\
& c_{2}=1 \\
& c_{3}=\frac{3}{4}-\frac{9 i}{4} \\
& c_{4}=\frac{3}{4}+\frac{9 i}{4}
\end{aligned}
$$

Substituting these values back in above solution results in

$$
y=-\frac{5 \mathrm{e}^{-x}}{2}+\mathrm{e}^{2 x}+\frac{3 \cos (x)}{2}-\frac{9 \sin (x)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{5 \mathrm{e}^{-x}}{2}+\mathrm{e}^{2 x}+\frac{3 \cos (x)}{2}-\frac{9 \sin (x)}{2} \tag{1}
\end{equation*}
$$

Figure 6: Solution plot

Verification of solutions

$$
y=-\frac{5 \mathrm{e}^{-x}}{2}+\mathrm{e}^{2 x}+\frac{3 \cos (x)}{2}-\frac{9 \sin (x)}{2}
$$

Verified OK.

2.23.1 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime \prime \prime}-y^{\prime \prime \prime}-y^{\prime \prime}-y^{\prime}-2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime}\right|_{\{x=0\}}=0,\left.y^{\prime \prime \prime}\right|_{\{x=0\}}=15\right]
$$

- Highest derivative means the order of the ODE is 4 $y^{\prime \prime \prime \prime}$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$
$y_{2}(x)=y^{\prime}$
- Define new variable $y_{3}(x)$
$y_{3}(x)=y^{\prime \prime}$
- Define new variable $y_{4}(x)$

$$
y_{4}(x)=y^{\prime \prime \prime}
$$

- Isolate for $y_{4}^{\prime}(x)$ using original ODE
$y_{4}^{\prime}(x)=y_{4}(x)+y_{3}(x)+y_{2}(x)+2 y_{1}(x)$
Convert linear ODE into a system of first order ODEs
$\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=y_{4}(x)+y_{3}(x)+y_{2}(x)+2 y_{1}(x)\right]$
- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
$$

- System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
2 & 1 & 1 & 1
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of \sin and cos

$$
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{3} \sin (x)-c_{4} \cos (x) \\
-c_{3} \cos (x)+c_{4} \sin (x) \\
c_{3} \sin (x)+c_{4} \cos (x) \\
c_{3} \cos (x)-c_{4} \sin (x)
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{8}-c_{4} \cos (x)-c_{3} \sin (x)$
- Use the initial condition $y(0)=0$
$0=-c_{1}+\frac{c_{2}}{8}-c_{4}$
- Calculate the 1st derivative of the solution
$y^{\prime}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} e^{2 x}}{4}+c_{4} \sin (x)-c_{3} \cos (x)$
- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$
$0=c_{1}+\frac{c_{2}}{4}-c_{3}$
- Calculate the 2nd derivative of the solution

$$
y^{\prime \prime}=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{2}+c_{4} \cos (x)+c_{3} \sin (x)
$$

- Use the initial condition $\left.y^{\prime \prime}\right|_{\{x=0\}}=0$
$0=-c_{1}+\frac{c_{2}}{2}+c_{4}$
- Calculate the 3 rd derivative of the solution

$$
y^{\prime \prime \prime}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-c_{4} \sin (x)+c_{3} \cos (x)
$$

- Use the initial condition $\left.y^{\prime \prime \prime}\right|_{\{x=0\}}=15$

$$
15=c_{1}+c_{2}+c_{3}
$$

- \quad Solve for the unknown coefficients

$$
\left\{c_{1}=\frac{5}{2}, c_{2}=8, c_{3}=\frac{9}{2}, c_{4}=-\frac{3}{2}\right\}
$$

- \quad Solution to the IVP

$$
y=-\frac{5 \mathrm{e}^{-x}}{2}+\mathrm{e}^{2 x}+\frac{3 \cos (x)}{2}-\frac{9 \sin (x)}{2}
$$

Maple trace

```
`Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

```
dsolve([diff(y(x),x$4)=diff(y(x),x$3)+diff (y(x),x$2)+\operatorname{diff}(y(x),x)+2*y(x),y(0)=0,D(y)(0)=
```

$$
y(x)=\mathrm{e}^{2 x}-\frac{5 \mathrm{e}^{-x}}{2}-\frac{9 \sin (x)}{2}+\frac{3 \cos (x)}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 33
DSolve[\{y'''[x]==y[x],\{y[0]==1,y'[0]==0,y'C[0]==0\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3}\left(e^{x}+2 e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
$$

2.24 problem problem 54

2.24.1 Maple step by step solution

165
Internal problem ID [308]
Internal file name [OUTPUT/308_Sunday_June_05_2022_01_38_30_AM_77912269/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 54.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 y^{\prime} x=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 y^{\prime} x=0
$$

gives

$$
4 x \lambda x^{\lambda-1}+6 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
$$

Which simplifies to

$$
4 \lambda x^{\lambda}+6 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
4 \lambda+6 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{2}(\lambda+3)=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
0	2	real root
-3	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1}+c_{2} \ln (x)+\frac{c_{3}}{x^{3}}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x) \\
& y_{3}=\frac{1}{x^{3}}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \ln (x)+\frac{c_{3}}{x^{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \ln (x)+\frac{c_{3}}{x^{3}}
$$

Verified OK.

2.24.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 y^{\prime} x=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{2\left(3 y^{\prime \prime} x+2 y^{\prime}\right)}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}+\frac{6 y^{\prime \prime}}{x}+\frac{4 y^{\prime}}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime \prime} x^{2}+6 y^{\prime \prime} x+4 y^{\prime}=0
$$

- Make a change of variables
$t=\ln (x)$
$\square \quad$ Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{3}}{d t^{y}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}+6\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{4\left(\frac{d}{d t} y(t)\right)}{x}=0
$$

- \quad Simplify

$$
\frac{\frac{d^{3}}{d t^{3}} y(t)+3 \frac{d^{2}}{d t^{2}} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=-3 \frac{d^{2}}{d t^{2}} y(t)
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{3}}{d t^{3}} y(t)+3 \frac{d^{2}}{d t^{2}} y(t)=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=-3 y_{3}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=-3 y_{3}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -3
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-3,\left[\begin{array}{c}\frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right],\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right],\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right]\right]$
- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y(t)=\frac{c_{1} \mathrm{e}^{-3 t}}{9}+c_{2}$
- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{c_{1}}{9 x^{3}}+c_{2}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+6 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+4 * x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} \ln (x)+\frac{c_{3}}{x^{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 22
DSolve $\left[x^{\wedge} 3 * y\right.$ ' '' $[x]+6 * x^{\wedge} 2 * y$ ' ' $[x]+4 * x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{c_{1}}{3 x^{3}}+c_{2} \log (x)+c_{3}
$$

2.25 problem problem 55

2.25.1 Maple step by step solution . 172

Internal problem ID [309]
Internal file name [OUTPUT/309_Sunday_June_05_2022_01_38_30_AM_4305051/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 55.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

gives

$$
x \lambda x^{\lambda-1}-x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
$$

Which simplifies to

$$
\lambda x^{\lambda}-\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
\lambda-\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
$$

Simplifying gives the characteristic equation as

$$
\lambda(\lambda-2)^{2}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=2
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
0	1	real root
2	2	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{2} x^{2}+c_{1}+c_{3} \ln (x) x^{2}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x^{2} \\
& y_{3}=\ln (x) x^{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{2}+c_{1}+c_{3} \ln (x) x^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{2} x^{2}+c_{1}+c_{3} \ln (x) x^{2}
$$

Verified OK.

2.25.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}-x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative
$y^{\prime \prime \prime}=\frac{y^{\prime \prime} x-y^{\prime}}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime \prime}-\frac{y^{\prime \prime}}{x}+\frac{y^{\prime}}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime \prime} x^{2}-y^{\prime \prime} x+y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative
$y^{\prime}=\frac{\frac{d}{d} y(t)}{x}$
- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative
$y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}$
Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}-\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{\frac{d}{d t} y(t)}{x}=0
$$

- Simplify

$$
\frac{\frac{d^{3}}{d t^{3}} y(t)-4 \frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=4 \frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin $\frac{d^{3}}{d t^{3}} y(t)-4 \frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)=0$
Convert linear ODE into a system of first order ODEs
- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=4 y_{3}(t)-4 y_{2}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=4 y_{3}(t)-4 y_{2}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -4 & 4
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -4 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 2

$$
\vec{y}_{2}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, an

$$
\vec{y}_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obt
- \quad Substitute $\vec{y}_{3}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- \quad Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $\vec{y}_{3}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -4 & 4
\end{array}\right]-2 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}
$\vec{p}=\left[\begin{array}{c}-\frac{1}{8} \\ 0 \\ 0\end{array}\right]$
- \quad Second solution from eigenvalue 2

$$
\vec{y}_{3}(t)=\mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{8} \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y(t)=\frac{\left((2 t-1) c_{3}+2 c_{2}\right) \mathrm{e}^{2 t}}{8}+c_{1}
$$

- \quad Change variables back using $t=\ln (x)$

$$
y=\frac{\left((2 \ln (x)-1) c_{3}+2 c_{2}\right) x^{2}}{8}+c_{1}
$$

- \quad Simplify

$$
y=\frac{c_{3} \ln (x) x^{2}}{4}+\frac{c_{2} x^{2}}{4}-\frac{c_{3} x^{2}}{8}+c_{1}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)-x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{1}+c_{2} x^{2}+c_{3} x^{2} \ln (x)
$$

\checkmark Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 35
DSolve $\left[x^{\wedge} 3 * y\right.$ ''' $[x]-x^{\wedge} 2 * y$ ''[$\left.x\right]+x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{4}\left(2 c_{1}-c_{2}\right) x^{2}+\frac{1}{2} c_{2} x^{2} \log (x)+c_{3}
$$

2.26 problem problem 56

2.26.1 Maple step by step solution . 179

Internal problem ID [310]
Internal file name [OUTPUT/310_Sunday_June_05_2022_01_38_31_AM_34334670/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 56.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_ODE__non_constant__coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

gives

$$
x \lambda x^{\lambda-1}+3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
$$

Which simplifies to

$$
\lambda x^{\lambda}+3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
\lambda+3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=0 \\
& \lambda_{3}=0
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
0	3	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
y_{1} & =1 \\
y_{2} & =\ln (x) \\
y_{3} & =\ln (x)^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} \ln (x)+c_{3} \ln (x)^{2}
$$

Verified OK.

2.26.1 Maple step by step solution

Let's solve

$$
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

- Highest derivative means the order of the ODE is 3
$y^{\prime \prime \prime}$
- Isolate 3rd derivative
$y^{\prime \prime \prime}=-\frac{3 y^{\prime \prime} x+y^{\prime}}{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
$y^{\prime \prime \prime}+\frac{3 y^{\prime \prime}}{x}+\frac{y^{\prime}}{x^{2}}=0$
- Multiply by denominators of the ODE
$y^{\prime \prime \prime} x^{2}+3 y^{\prime \prime} x+y^{\prime}=0$
- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative
$y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}$
- Calculate the 3 rd derivative of y with respect to x , using the chain rule

$$
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
$$

- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}+3\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{\frac{d}{d t} y(t)}{x}=0
$$

- Simplify

$$
\frac{\frac{d^{3}}{d t^{3}} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=0
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=0\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$
- Rewrite the system as
$\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE

$$
y(t)=c_{1}
$$

- Change variables back using $t=\ln (x)$

$$
y=c_{1}
$$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=c_{3} \ln (x)^{2}+c_{2} \ln (x)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 23
DSolve[x^3*y'''[x]+3*x^2*y''[x]+x*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} c_{2} \log ^{2}(x)+c_{1} \log (x)+c_{3}
$$

2.27 problem problem 57

2.27.1 Maple step by step solution

Internal problem ID [311]
Internal file name [OUTPUT/311_Sunday_June_05_2022_01_38_32_AM_14832962/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 57.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_OODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+y^{\prime} x=0
$$

gives

$$
x \lambda x^{\lambda-1}-3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
$$

Which simplifies to

$$
\lambda x^{\lambda}-3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
\lambda-3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
$$

Simplifying gives the characteristic equation as

$$
\lambda^{3}-6 \lambda^{2}+6 \lambda=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=3+\sqrt{3} \\
& \lambda_{3}=3-\sqrt{3}
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
0	1	real root
$3-\sqrt{3}$	1	real root
$3+\sqrt{3}$	1	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=c_{1}+c_{2} x^{3-\sqrt{3}}+c_{3} x^{3+\sqrt{3}}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x^{3-\sqrt{3}} \\
& y_{3}=x^{3+\sqrt{3}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}+c_{2} x^{3-\sqrt{3}}+c_{3} x^{3+\sqrt{3}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1}+c_{2} x^{3-\sqrt{3}}+c_{3} x^{3+\sqrt{3}}
$$

Verified OK.

2.27.1 Maple step by step solution

Let's solve
$x^{3} y^{\prime \prime \prime}-3 x^{2} y^{\prime \prime}+y^{\prime} x=0$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=\frac{3 y^{\prime \prime} x-y^{\prime}}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime \prime}-\frac{3 y^{\prime \prime}}{x}+\frac{y^{\prime}}{x^{2}}=0$
- Multiply by denominators of the ODE

$$
y^{\prime \prime \prime} x^{2}-3 y^{\prime \prime} x+y^{\prime}=0
$$

- Make a change of variables
$t=\ln (x)$
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule $y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)$
- Compute derivative

$$
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
$$

- Calculate the 2nd derivative of y with respect to x , using the chain rule $y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime}=\frac{\frac{d^{2}}{d^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
$$

- Calculate the 3 rd derivative of y with respect to x , using the chain rule $y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)$
- Compute derivative

$$
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
$$

Substitute the change of variables back into the ODE

$$
\left(\frac{d^{3}}{\frac{d t^{3}}{} 3^{3}(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x^{2}-3\left(\frac{d^{2}}{d t^{2} y(t)} x^{2}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x+\frac{\frac{d}{d t} y(t)}{x}=0
$$

- \quad Simplify

$$
\frac{\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+6 \frac{d}{d t} y(t)}{x}=0
$$

- Isolate 3rd derivative

$$
\frac{d^{3}}{d t^{3}} y(t)=6 \frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)
$$

- Group terms with $y(t)$ on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin

$$
\frac{d^{3}}{d t^{3}} y(t)-6 \frac{d^{2}}{d t^{2}} y(t)+6 \frac{d}{d t} y(t)=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(t)$

$$
y_{1}(t)=y(t)
$$

- Define new variable $y_{2}(t)$

$$
y_{2}(t)=\frac{d}{d t} y(t)
$$

- Define new variable $y_{3}(t)$

$$
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
$$

- Isolate for $\frac{d}{d t} y_{3}(t)$ using original ODE

$$
\frac{d}{d t} y_{3}(t)=6 y_{3}(t)-6 y_{2}(t)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=6 y_{3}(t)-6 y_{2}(t)\right]
$$

- Define vector

$$
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
$$

- System to solve

$$
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -6 & 6
\end{array}\right] \cdot \vec{y}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -6 & 6
\end{array}\right]
$$

- Rewrite the system as

$$
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
$$

- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[3-\sqrt{3},\left[\begin{array}{c}
\frac{1}{(3-\sqrt{3})^{2}} \\
\frac{1}{3-\sqrt{3}} \\
1
\end{array}\right]\right],\left[3+\sqrt{3},\left[\begin{array}{c}
\frac{1}{(3+\sqrt{3})^{2}} \\
\frac{1}{3+\sqrt{3}} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3-\sqrt{3},\left[\begin{array}{c}
\frac{1}{(3-\sqrt{3})^{2}} \\
\frac{1}{3-\sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{(3-\sqrt{3}) t} \cdot\left[\begin{array}{c}
\frac{1}{(3-\sqrt{3})^{2}} \\
\frac{1}{3-\sqrt{3}} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3+\sqrt{3},\left[\begin{array}{c}
\frac{1}{(3+\sqrt{3})^{2}} \\
\frac{1}{3+\sqrt{3}} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{(3+\sqrt{3}) t} \cdot\left[\begin{array}{c}
\frac{1}{(3+\sqrt{3})^{2}} \\
\frac{1}{3+\sqrt{3}} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}$
- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{2} \mathrm{e}^{(3-\sqrt{3}) t} \cdot\left[\begin{array}{c}
\frac{1}{(3-\sqrt{3})^{2}} \\
\frac{1}{3-\sqrt{3}} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{(3+\sqrt{3}) t} \cdot\left[\begin{array}{c}
\frac{1}{(3+\sqrt{3})^{2}} \\
\frac{1}{3+\sqrt{3}} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y(t)=\frac{c_{2}(2+\sqrt{3}) \mathrm{e}^{-(-3+\sqrt{3}) t}}{6}-\frac{c_{3}(\sqrt{3}-2) \mathrm{e}^{(3+\sqrt{3}) t}}{6}+c_{1}$
- \quad Change variables back using $t=\ln (x)$
$y=\frac{c_{2}(2+\sqrt{3}) \mathrm{e}^{-(-3+\sqrt{3}) \ln (x)}}{6}-\frac{c_{3}(\sqrt{3}-2) \mathrm{e}^{(3+\sqrt{3}) \ln (x)}}{6}+c_{1}$
- Simplify
$y=\frac{x^{3}-\sqrt{3} \sqrt{3} c_{2}}{6}+\frac{c_{2} x^{3}-\sqrt{3}}{3}-\frac{x^{3+\sqrt{3}} \sqrt{3} c_{3}}{6}+\frac{c_{3} x^{3+\sqrt{3}}}{3}+c_{1}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 26

```
dsolve(x^3*diff(y(x),x$3)-3*x^2*diff(y(x),x$2)+x*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1}+c_{2} x^{3+\sqrt{3}}+c_{3} x^{3-\sqrt{3}}
$$

\checkmark Solution by Mathematica
Time used: 0.136 (sec). Leaf size: 54
DSolve[x^3*y'' ' $[x]-3 * x^{\wedge} 2 * y$ ' ' $[x]+x * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{2} x^{3+\sqrt{3}}}{3+\sqrt{3}}+\frac{c_{1} x^{3-\sqrt{3}}}{3-\sqrt{3}}+c_{3}
$$

2.28 problem problem 58

Internal problem ID [312]
Internal file name [OUTPUT/312_Sunday_June_05_2022_01_38_33_AM_14822218/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 5.3, Higher-Order Linear Differential Equations. Homogeneous Equations with Constant Coefficients. Page 300
Problem number: problem 58.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order__ODE__non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _exact, _linear, _homogeneous]]

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+7 y^{\prime} x+y=0
$$

This is Euler ODE of higher order. Let $y=x^{\lambda}$. Hence

$$
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
$$

Substituting these back into

$$
x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+7 y^{\prime} x+y=0
$$

gives

$$
7 x \lambda x^{\lambda-1}+6 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+x^{\lambda}=0
$$

Which simplifies to

$$
7 \lambda x^{\lambda}+6 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+x^{\lambda}=0
$$

And since $x^{\lambda} \neq 0$ then dividing through by x^{λ}, the above becomes

$$
7 \lambda+6 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+1=0
$$

Simplifying gives the characteristic equation as

$$
(\lambda+1)^{3}=0
$$

Solving the above gives the following roots

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
$$

This table summarises the result

root	multiplicity	type of root
-1	3	real root

The solution is generated by going over the above table. For each real root λ of multiplicity one generates a $c_{1} x^{\lambda}$ basis solution. Each real root of multiplicty two, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ basis solutions. Each real root of multiplicty three, generates $c_{1} x^{\lambda}$ and $c_{2} x^{\lambda} \ln (x)$ and $c_{3} x^{\lambda} \ln (x)^{2}$ basis solutions, and so on. Each complex root $\alpha \pm i \beta$ of multiplicity one generates $x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity two generates $\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)$ basis solutions. And each complex root $\alpha \pm i \beta$ of multiplicity three generates $\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.$ basis solutions. And so on. Using the above show that the solution is

$$
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}+\frac{c_{3} \ln (x)^{2}}{x}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x} \\
& y_{3}=\frac{\ln (x)^{2}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}+\frac{c_{3} \ln (x)^{2}}{x} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}+\frac{c_{3} \ln (x)^{2}}{x}
$$

Verified OK.
Maple trace

- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful'
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve ($x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+6 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+7 * x * \operatorname{diff}(y(x), x)+y(x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{c_{3} \ln (x)^{2}+c_{2} \ln (x)+c_{1}}{x}
$$

Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 24
DSolve $\left[x^{\wedge} 3 * y\right.$ '' ' $[x]+6 * x \wedge 2 * y$ ' $[x]+7 * x * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{c_{3} \log ^{2}(x)+c_{2} \log (x)+c_{1}}{x}
$$

3 Section 7.2, Matrices and Linear systems. Page 384
3.1 problem problem 13 195
3.2 problem problem 14 204

3.1 problem problem 13

3.1.1 Solution using Matrix exponential method 195
3.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 196
3.1.3 Maple step by step solution . 201

Internal problem ID [313]
Internal file name [OUTPUT/313_Sunday_June_05_2022_01_38_33_AM_86130880/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 384
Problem number: problem 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =6 x_{1}(t) \\
x_{2}^{\prime}(t) & =-3 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

3.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{6 t} & 0 \\
-\frac{3 \mathrm{e}^{6 t}}{7}+\frac{3 \mathrm{e}^{-t}}{7} & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{6 t} & 0 \\
-\frac{3 \mathrm{e}^{6 t}}{7}+\frac{3 \mathrm{e}^{-t}}{7} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{6 t} c_{1} \\
\left(-\frac{3 \mathrm{e}^{6 t}}{7}+\frac{3 \mathrm{e}^{-t}}{7}\right) c_{1}+\mathrm{e}^{-t} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{6 t} c_{1} \\
\frac{\left(3 c_{1}+7 c_{2}\right) \mathrm{e}^{-t}}{7}-\frac{3 \mathrm{e}^{6 t} c_{1}}{7}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

3.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
6-\lambda & 0 \\
-3 & -1-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(6-\lambda)(-1-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
7 & 0 \\
-3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
7 & 0 & 0 \\
-3 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{7} \Longrightarrow\left[\begin{array}{ll|l}
7 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
7 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]-(6)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cc|c}
0 & 0 & 0 \\
-3 & -7 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cc|c}
-3 & -7 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{7 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{7 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-7 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}0 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}-\frac{7}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{6 t}}{3} \\
\mathrm{e}^{6 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 c_{2} e^{6 t}}{3} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{6 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 7: Phase plot

3.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=6 x_{1}(t), x_{2}^{\prime}(t)=-3 x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
6 & 0 \\
-3 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x \xrightarrow{\rightarrow}^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[6,\left[\begin{array}{c}-\frac{7}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $x_{2}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}-\frac{7}{3} \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
-\frac{7}{3} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 c_{2} e^{6 t}}{3} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{6 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{7 c_{2} \mathrm{e}^{6 t}}{3}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{6 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 28

```
dsolve([diff(x__1(t),t)=4*x__1(t)+2*x__1(t), diff (x__ 2(t),t)=-3*x__1 (t) -x__ 2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{6 t} \\
& x_{2}(t)=-\frac{3 c_{2} \mathrm{e}^{6 t}}{7}+\mathrm{e}^{-t} c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 56
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]+2 * x 2[t], x 2{ }^{\prime}[t]==-3 * x 1[t]-x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolut

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(c_{1}\left(3 e^{t}-2\right)+2 c_{2}\left(e^{t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(c_{2}\left(3-2 e^{t}\right)-3 c_{1}\left(e^{t}-1\right)\right)
\end{aligned}
$$

3.2 problem problem 14

3.2.1 Solution using Matrix exponential method 204
3.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 205
3.2.3 Maple step by step solution . 210

Internal problem ID [314]
Internal file name [OUTPUT/314_Sunday_June_05_2022_01_38_34_AM_23480794/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.2, Matrices and Linear systems. Page 384
Problem number: problem 14.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-3 x_{1}(t)+2 x_{2}(t) \\
& x_{2}^{\prime}(t)=-3 x_{1}(t)+4 x_{2}(t)
\end{aligned}
$$

3.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t}}{5} & \frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(6 \mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\left(\mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t}}{5} & \frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(6 \mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t} c_{1}}{5}+\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}}{5} \\
-\frac{3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}}{5}+\frac{\left(6 \mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}}{5}
\end{array}\right] \\
& =\left[\begin{array}{l}
-\frac{\left(\left(c_{1}-2 c_{2}\right) \mathrm{e}^{5 t}-6 c_{1}+2 c_{2}\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{\left.3\left(\left(c_{1}-2 c_{2}\right)\right)^{5 t}-c_{1}+\frac{c_{2}}{3}\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

3.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 2 \\
-3 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-\lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
-1 & 2 \\
-3 & 6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-1 & 2 & 0 \\
-3 & 6 & 0
\end{array}\right]} \\
R_{2}=R_{2}-3 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-6 & 2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
-6 & 2 & 0 \\
-3 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-6 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-6 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{l}2 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{c}\frac{1}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}}{3} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{2} \mathrm{e}^{5 t}+6 c_{1}\right) \mathrm{e}^{-2 t}}{3} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 8: Phase plot

3.2.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-3 x_{1}(t)+2 x_{2}(t), x_{2}^{\prime}(t)=-3 x_{1}(t)+4 x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}\frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{2} \mathrm{e}^{5 t}+6 c_{1}\right) \mathrm{e}^{-2 t}}{3} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(c_{2} \mathrm{e}^{5 t}+6 c_{1}\right) \mathrm{e}^{-2 t}}{3}, x_{2}(t)=\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}\right\}
$$

Solution by Maple
Time used: 0.0 (sec). Leaf size: 36
dsolve $\left(\left[\operatorname{diff}\left(x_{-} 1(t), t\right)=-3 * x_{-} 1(t)+2 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=-3 * x_{-} 1(t)+4 * x_{-} 2(t)\right]\right.$, singsol $=a$

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-2 t} \\
& x_{2}(t)=3 c_{1} \mathrm{e}^{3 t}+\frac{c_{2} \mathrm{e}^{-2 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]+2 * x 2[t], x 2{ }^{\prime}[t]==-3 * x 1[t]+4 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSo

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{5} e^{-2 t}\left(2 c_{2}\left(e^{5 t}-1\right)-c_{1}\left(e^{5 t}-6\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{5} e^{-2 t}\left(c_{2}\left(6 e^{5 t}-1\right)-3 c_{1}\left(e^{5 t}-1\right)\right)
\end{aligned}
$$

4 Section 7.3, The eigenvalue method for linear systems. Page 395
4.1 problem problem 1 215
4.2 problem problem 2 224
4.3 problem problem 3 233
4.4 problem problem 4 241
4.5 problem problem 5 250
4.6 problem problem 6 259
4.7 problem problem 7 267
4.8 problem problem 8 276
4.9 problem problem 9 284
4.10 problem problem 10 291
4.11 problem problem 11 300
4.12 problem problem 12 307
4.13 problem problem 13 316
4.14 problem problem 14 325
4.15 problem problem 15 333
4.16 problem problem 16 342
4.17 problem problem 17 351
4.18 problem problem 18 363
4.19 problem problem 19 375
4.20 problem problem 20 387
4.21 problem problem 21 399
4.22 problem problem 22 412
4.23 problem problem 23 424
4.24 problem problem 24 436
4.25 problem problem 25 449
4.26 problem problem 26 462
4.27 problem problem 38 474
4.28 problem problem 39 492
4.29 problem problem 40 509
4.30 problem problem 41 527
4.31 problem problem 42 546
4.32 problem problem 43 559
4.33 problem problem 44 573
4.34 problem problem 45 586
4.35 problem problem 46 606
4.36 problem problem 47 626
4.37 problem problem 48 646
4.38 problem problem 49 667
4.39 problem problem 50 698

4.1 problem problem 1

4.1.1 Solution using Matrix exponential method
 215

4.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 216
4.1.3 Maple step by step solution . 221

Internal problem ID [315]
Internal file name [OUTPUT/315_Sunday_June_05_2022_01_38_35_AM_13749895/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+2 x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

4.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2}\right) c_{2} \\
\left(\frac{\mathrm{e}^{3 t}}{2}-\frac{\mathrm{e}^{-t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}\left(c_{1}+c_{2}\right)}{2} \\
\frac{\left(-c_{1}+c_{2}\right) \mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}\left(c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda-3=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{l}
c_{1} \mathrm{e}^{3 t}-c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 9: Phase plot

4.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x \xrightarrow{\rightarrow}^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $x_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve([diff(x__1(t),t)=x__1(t)+2*x__ 2(t), diff(x__ 2(t),t)=2*x__1(t)+x__ 2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{3 t}-c_{2} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 68
DSolve $\left[\left\{x 1^{\prime}[t]==x 1[t]+2 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]+x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolution

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(e^{4 t}+1\right)+c_{2}\left(e^{4 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(e^{4 t}-1\right)+c_{2}\left(e^{4 t}+1\right)\right)
\end{aligned}
$$

4.2 problem problem 2

4.2.1 Solution using Matrix exponential method

4.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 225
4.2.3 Maple step by step solution . 230

Internal problem ID [316]
Internal file name [OUTPUT/316_Sunday_June_05_2022_01_38_36_AM_89229362/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)+3 x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

4.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5} & \frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} \\
\frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} & \frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5} & \frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} \\
\frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} & \frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}\right) c_{1}+\left(\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5}\right) c_{2} \\
\left(\frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5}\right) c_{1}+\left(\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(2 c_{1}-3 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5} \\
\frac{\left(-2 c_{1}+3 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 3 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda-4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 3 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 3 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 3 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 3 & 0 \\
2 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
4	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ 1\end{array}\right]$
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{4 t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{4 t}}{2} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1} \mathrm{e}^{4 t}}{2}-c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 10: Phase plot

4.2.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=2 x_{1}(t)+3 x_{2}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
2 & 3 \\
2 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x \xrightarrow{\rightarrow}^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[4,\left[\begin{array}{c}\frac{3}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
\frac{3}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+\frac{3 c_{2} \mathrm{e}^{4 t}}{2} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{1} \mathrm{e}^{-t}+\frac{3 c_{2} \mathrm{e}^{4 t}}{2}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

```
dsolve([diff(x__1(t),t)=2*x__1(t)+3*x__ 2(t), diff (x__ 2(t),t)=2*x__1(t)+x__2(t)], singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t} \\
& x_{2}(t)=\frac{2 c_{1} \mathrm{e}^{4 t}}{3}-c_{2} \mathrm{e}^{-t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 74
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+3 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]+x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSoluti

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{5} e^{-t}\left(c_{1}\left(3 e^{5 t}+2\right)+3 c_{2}\left(e^{5 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{5} e^{-t}\left(2 c_{1}\left(e^{5 t}-1\right)+c_{2}\left(2 e^{5 t}+3\right)\right)
\end{aligned}
$$

4.3 problem problem 3

4.3.1 Solution using Matrix exponential method 233
4.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 234

Internal problem ID [317]
Internal file name [OUTPUT/317_Sunday_June_05_2022_01_38_37_AM_23964630/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=3 x_{1}(t)+4 x_{2}(t) \\
& x_{2}^{\prime}(t)=3 x_{1}(t)+2 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=1, x_{2}(0)=1\right]
$$

4.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{7}+\frac{4 \mathrm{e}^{6 t}}{7} & \frac{4 \mathrm{e}^{6 t}}{7}-\frac{4 \mathrm{e}^{-t}}{7} \\
\frac{3 \mathrm{e}^{6 t}}{7}-\frac{3 \mathrm{e}^{-t}}{7} & \frac{4 \mathrm{e}^{-t}}{7}+\frac{3 \mathrm{e}^{6 t}}{7}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{7}+\frac{4 \mathrm{e}^{6 t}}{7} & \frac{4 \mathrm{e}^{6 t}}{7}-\frac{4 \mathrm{e}^{-t}}{7} \\
\frac{3 \mathrm{e}^{6 t}}{7}-\frac{3 \mathrm{e}^{-t}}{7} & \frac{4 \mathrm{e}^{-t}}{7}+\frac{3 \mathrm{e}^{6 t}}{7}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{7}+\frac{8 \mathrm{e}^{6 t}}{7} \\
\frac{6 \mathrm{e}^{6 t}}{7}+\frac{\mathrm{e}^{-t}}{7}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
3 & 4 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 4 \\
3 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-5 \lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
3 & 4 \\
3 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 4 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 4 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ll|l}
4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
3 & 4 \\
3 & 2
\end{array}\right]-(6)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 4 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 4 & 0 \\
3 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{4 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{4 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{4 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{4 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{4 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
4 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}\frac{4}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{c}
\frac{4}{3} \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{4 e^{6 t}}{3} \\
\mathrm{e}^{6 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+\frac{4 c_{2} \mathrm{e}^{6 t}}{3} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{6 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=1 \tag{1}\\
x_{2}(0)=1
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+\frac{4 c_{2}}{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{1}{7} \\
c_{2}=\frac{6}{7}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{7}+\frac{8 e^{6 t}}{7} \\
\frac{6 \mathrm{e}^{6 t}}{7}+\frac{\mathrm{e}^{-t}}{7}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 11: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

```
dsolve([diff(x__1(t),t) = 3*x__ 1(t)+4*\mp@subsup{x}{_-}{\prime}2(t), diff(x__ 2(t),t) = 3*x__1(t)+2*\mp@subsup{x}{_-_}{}2(t), \mp@subsup{x}{_-_}{}1(0
```

$$
\begin{aligned}
& x_{1}(t)=-\frac{\mathrm{e}^{-t}}{7}+\frac{8 \mathrm{e}^{6 t}}{7} \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}}{7}+\frac{6 \mathrm{e}^{6 t}}{7}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 44
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]+4 * x 2[t], x 2{ }^{\prime}[t]==3 * x 1[t]+2 * x 2[t]\right\},\{x 1[0]==1, x 2[0]==1\},\{x 1[t], x 2[t]\}, t\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{7} e^{-t}\left(8 e^{7 t}-1\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{7} e^{-t}\left(6 e^{7 t}+1\right)
\end{aligned}
$$

4.4 problem problem 4

4.4.1 Solution using Matrix exponential method 241
4.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 242
4.4.3 Maple step by step solution . 247

Internal problem ID [318]
Internal file name [OUTPUT/318_Sunday_June_05_2022_01_38_39_AM_31992579/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t) \\
x_{2}^{\prime}(t) & =6 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

4.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ll}
\frac{\left(6 \mathrm{e}^{7 t}+1\right) \mathrm{e}^{-2 t}}{7} & \frac{\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t}}{7} \\
\frac{6\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t}}{7} & \frac{\left(\mathrm{e}^{7 t}+6\right) \mathrm{e}^{-2 t}}{7}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\left(6 \mathrm{e}^{7 t}+1\right) \mathrm{e}^{-2 t}}{7} & \frac{\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t}}{7} \\
\frac{6\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t}}{7} & \frac{\left(\mathrm{e}^{7 t}+6\right) \mathrm{e}^{-2 t}}{7}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(6 \mathrm{e}^{7 t}+1\right) \mathrm{e}^{-2 t} c_{1}}{7}+\frac{\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t} c_{2}}{7} \\
\frac{6\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t} c_{1}}{7}+\frac{\left(\mathrm{e}^{7 t}+6\right) \mathrm{e}^{-2 t} c_{2}}{7}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-2 t}\left(\left(6 c_{1}+c_{2}\right) \mathrm{e}^{7 t}+c_{1}-c_{2}\right)}{7} \\
\frac{6 \mathrm{e}^{-2 t}\left(\left(c_{1}+\frac{c_{2}}{6}\right) \mathrm{e}^{7 t}-c_{1}+c_{2}\right)}{7}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & 1 \\
6 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-3 \lambda-10=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
6 & 1 \\
6 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
6 & 1 & 0 \\
6 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
6 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
6 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{6}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{6} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{6} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
6 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
6 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+6 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-\frac{1}{6} \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{5 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{6} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(-6 c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}}{6} \\
\left(c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 12: Phase plot

4.4.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=4 x_{1}(t)+x_{2}(t), x_{2}^{\prime}(t)=6 x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
4 & 1 \\
6 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[5,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}^{\rightarrow}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \rightarrow c_{1} x \rightarrow{ }_{-}^{\rightarrow}+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{1}{6} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(-6 c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}}{6} \\
\left(c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{\left(-6 c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}}{6}, x_{2}(t)=\left(c_{2} \mathrm{e}^{7 t}+c_{1}\right) \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

```
dsolve([diff(x__1(t),t)=4*x__1(t)+x__2(t), diff(x__2(t),t)=6*x__1(t)-x__2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{5 t} \\
& x_{2}(t)=-6 c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{5 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 71
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]+x 2[t], x 2{ }^{\prime}[t]==6 * x 1[t]-x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolution

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{7} e^{-2 t}\left(c_{1}\left(6 e^{7 t}+1\right)+c_{2}\left(e^{7 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{7} e^{-2 t}\left(6 c_{1}\left(e^{7 t}-1\right)+c_{2}\left(e^{7 t}+6\right)\right)
\end{aligned}
$$

4.5 problem problem 5

4.5.1 Solution using Matrix exponential method 250
4.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 251
4.5.3 Maple step by step solution . 256

Internal problem ID [319]
Internal file name [OUTPUT/319_Sunday_June_05_2022_01_38_40_AM_26380635/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 5.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =6 x_{1}(t)-7 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

4.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{6}+\frac{7 \mathrm{e}^{5 t}}{6} & -\frac{7 \mathrm{e}^{5 t}}{6}+\frac{7 \mathrm{e}^{-t}}{6} \\
\frac{\mathrm{e}^{5 t}}{6}-\frac{\mathrm{e}^{-t}}{6} & \frac{7 \mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{5 t}}{6}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-t}}{6}+\frac{7 \mathrm{e}^{5 t}}{6} & -\frac{7 \mathrm{e}^{5 t}}{6}+\frac{7 \mathrm{e}^{-t}}{6} \\
\frac{\mathrm{e}^{5 t}}{6}-\frac{\mathrm{e}^{-t}}{6} & \frac{7 \mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{5 t}}{6}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\frac{\mathrm{e}^{-t}}{6}+\frac{7 \mathrm{e}^{5 t}}{6}\right) c_{1}+\left(-\frac{7 \mathrm{e}^{5 t}}{6}+\frac{7 \mathrm{e}^{-t}}{6}\right) c_{2} \\
\left(\frac{\mathrm{e}^{5 t}}{6}-\frac{\mathrm{e}^{-t}}{6}\right) c_{1}+\left(\frac{7 \mathrm{e}^{-t}}{6}-\frac{\mathrm{e}^{5 t}}{6}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{1}+7 c_{2}\right) \mathrm{e}^{-t}}{6}+\frac{7 \mathrm{e}^{5 t}\left(c_{1}-c_{2}\right)}{6} \\
\frac{\left(-c_{1}+7 c_{2}\right) \mathrm{e}^{-t}}{6}+\frac{\mathrm{e}^{5 t}\left(c_{1}-c_{2}\right)}{6}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
6-\lambda & -7 \\
1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda-5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cc}
6 & -7 \\
1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\\
{\left[\begin{array}{ll}
7 & -7 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
7 & -7 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{7} \Longrightarrow\left[\begin{array}{cc|c}
7 & -7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
7 & -7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -7 \\
1 & -7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -7 & 0 \\
1 & -7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -7 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -7 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=7 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
7 t \\
t
\end{array}\right]=\left[\begin{array}{c}
7 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
7 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
7 t \\
t
\end{array}\right]=\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	1	1	No	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{l}7 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{5 t} \\
& =\left[\begin{array}{l}
7 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
7 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+7 c_{2} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{5 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 13: Phase plot

4.5.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=6 x_{1}(t)-7 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-2 x_{2}(t)\right]$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
6 & -7 \\
1 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x \xrightarrow{\rightarrow}^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{l}
7 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair
$\left[-1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[5,\left[\begin{array}{l}7 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \rightarrow 1+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x_{\underline{A}}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left[\begin{array}{l}
7 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+7 c_{2} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{5 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=c_{1} \mathrm{e}^{-t}+7 c_{2} \mathrm{e}^{5 t}, x_{2}(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{5 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve([diff \(\left.\left(x_{-} 1(t), t\right)=6 * x_{-} 1(t)-7 * x_{-} 2(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=x_{-} 1(t)-2 * x_{-} 2(t)\right]\), singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{5 t} \\
& x_{2}(t)=\mathrm{e}^{-t} c_{1}+\frac{c_{2} \mathrm{e}^{5 t}}{7}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 72
DSolve $\left[\left\{x 1^{\prime}[t]==6 * x 1[t]-7 * x 2[t], x 2{ }^{\prime}[t]==x 1[t]-2 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSoluti

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{6} e^{-t}\left(c_{1}\left(7 e^{6 t}-1\right)-7 c_{2}\left(e^{6 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{6} e^{-t}\left(c_{1}\left(e^{6 t}-1\right)-c_{2}\left(e^{6 t}-7\right)\right)
\end{aligned}
$$

4.6 problem problem 6

4.6.1 Solution using Matrix exponential method 259
4.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 260

Internal problem ID [320]
Internal file name [OUTPUT/320_Sunday_June_05_2022_01_38_41_AM_84692260/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=9 x_{1}(t)+5 x_{2}(t) \\
& x_{2}^{\prime}(t)=-6 x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=1, x_{2}(0)=0\right]
$$

4.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
-5 \mathrm{e}^{3 t}+6 \mathrm{e}^{4 t} & 5 \mathrm{e}^{4 t}-5 \mathrm{e}^{3 t} \\
-6 \mathrm{e}^{4 t}+6 \mathrm{e}^{3 t} & 6 \mathrm{e}^{3 t}-5 \mathrm{e}^{4 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
-5 \mathrm{e}^{3 t}+6 \mathrm{e}^{4 t} & 5 \mathrm{e}^{4 t}-5 \mathrm{e}^{3 t} \\
-6 \mathrm{e}^{4 t}+6 \mathrm{e}^{3 t} & 6 \mathrm{e}^{3 t}-5 \mathrm{e}^{4 t}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-5 \mathrm{e}^{3 t}+6 \mathrm{e}^{4 t} \\
-6 \mathrm{e}^{4 t}+6 \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
9-\lambda & 5 \\
-6 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-7 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
6 & 5 & 0 \\
-6 & -5 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
6 & 5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
6 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{6}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{6} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{6} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{6} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{5 t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{6} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{6} \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
9 & 5 \\
-6 & -2
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
5 & 5 \\
-6 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
5 & 5 & 0 \\
-6 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{6 R_{1}}{5} \Longrightarrow\left[\begin{array}{ll|l}
5 & 5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
5 & 5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}-\frac{5}{6} \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{5}{6} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{3 t}}{6} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 c_{1} \mathrm{e}^{3 t}}{6}-c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=1 \tag{1}\\
x_{2}(0)=0
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 c_{1}}{6}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=6 \\
c_{2}=-6
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-5 \mathrm{e}^{3 t}+6 \mathrm{e}^{4 t} \\
-6 \mathrm{e}^{4 t}+6 \mathrm{e}^{3 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 14: Phase plot

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
dsolve([diff(x__1(t),t) = 9*x__1 (t)+5*x__2(t), diff (x__ 2(t),t) = -6*x__1(t)-2*x__ 2(t), x__ 1 (
```

$$
\begin{aligned}
& x_{1}(t)=6 \mathrm{e}^{4 t}-5 \mathrm{e}^{3 t} \\
& x_{2}(t)=-6 \mathrm{e}^{4 t}+6 \mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 33
DSolve $\left[\left\{x 1^{\prime}[t]==9 * x 1[t]+5 * x 2[t], x 2{ }^{\prime}[t]==-6 * x 1[t]-2 * x 2[t]\right\},\{x 1[0]==1, x 2[0]==0\},\{x 1[t], x 2[t]\}\right.$,

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{3 t}\left(6 e^{t}-5\right) \\
& \mathrm{x} 2(t) \rightarrow-6 e^{3 t}\left(e^{t}-1\right)
\end{aligned}
$$

4.7 problem problem 7

4.7.1 Solution using Matrix exponential method

4.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 268
4.7.3 Maple step by step solution . 273

Internal problem ID [321]
Internal file name [OUTPUT/321_Sunday_June_05_2022_01_38_42_AM_39793054/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-3 x_{1}(t)+4 x_{2}(t) \\
& x_{2}^{\prime}(t)=6 x_{1}(t)-5 x_{2}(t)
\end{aligned}
$$

4.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{\left(3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-9 t}}{5} & \frac{2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t}}{5} \\
\frac{3\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t}}{5} & \frac{\left(2 \mathrm{e}^{10 t}+3\right) \mathrm{e}^{-9 t}}{5}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\left(3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-9 t}}{5} & \frac{2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t}}{5} \\
\frac{3\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t}}{5} & \frac{\left(2 \mathrm{e}^{10 t}+3\right) \mathrm{e}^{-9 t}}{5}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-9 t} c_{1}}{5}+\frac{2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t} c_{2}}{5} \\
\frac{3\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-9 t} c_{1}}{5}+\frac{\left(2 \mathrm{e}^{10 t}+3\right) \mathrm{e}^{-9 t} c_{2}}{5}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-9 t}\left(\left(3 c_{1}+2 c_{2}\right) \mathrm{e}^{10 t}+2 c_{1}-2 c_{2}\right)}{5} \\
\frac{3\left(\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{10 t}-c_{1}+c_{2}\right) \mathrm{e}^{-9 t}}{5}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 4 \\
6 & -5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+8 \lambda-9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
-9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]-(-9)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
6 & 4 \\
6 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
6 & 4 & 0 \\
6 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
6 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
6 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
6 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{c}1 \\ 1\end{array}\right]$
-9	1	1	No	$\left[\begin{array}{c}-\frac{2}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-9 t} \\
& =\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right] e^{-9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{-9 t}}{3} \\
\mathrm{e}^{-9 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(3 c_{1} \mathrm{e}^{10 t}-2 c_{2}\right) \mathrm{e}^{-9 t}}{3} \\
\left(c_{1} \mathrm{e}^{10 t}+c_{2}\right) \mathrm{e}^{-9 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 15: Phase plot

4.7.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-3 x_{1}(t)+4 x_{2}(t), x_{2}^{\prime}(t)=6 x_{1}(t)-5 x_{2}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & 4 \\
6 & -5
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-9,\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-9,\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}^{\rightarrow}=\mathrm{e}^{-9 t} \cdot\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x \longrightarrow_{2}=\mathrm{e}^{t} .\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \rightarrow 1+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-9 t} \cdot\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-9 t} c_{2} \mathrm{e}^{10 t}-\frac{2 c_{1} \mathrm{e}^{-9 t}}{3} \\
\left(c_{2} \mathrm{e}^{10 t}+c_{1}\right) \mathrm{e}^{-9 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-9 t} c_{2} \mathrm{e}^{10 t}-\frac{2 c_{1} \mathrm{e}^{-9 t}}{3}, x_{2}(t)=\left(c_{2} \mathrm{e}^{10 t}+c_{1}\right) \mathrm{e}^{-9 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve([diff(x__1(t),t)=-3*x__1(t)+4*x__2(t), diff (x__2(t),t)=6*x__1 (t) -5*x__2 2(t)],singsol=al
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{-9 t}+c_{2} \mathrm{e}^{t} \\
& x_{2}(t)=-\frac{3 c_{1} \mathrm{e}^{-9 t}}{2}+c_{2} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 74
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]+4 * x 2[t], x 2{ }^{\prime}[t]==6 * x 1[t]-5 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{5} e^{-9 t}\left(c_{1}\left(3 e^{10 t}+2\right)+2 c_{2}\left(e^{10 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{5} e^{-9 t}\left(3 c_{1}\left(e^{10 t}-1\right)+c_{2}\left(2 e^{10 t}+3\right)\right)
\end{aligned}
$$

4.8 problem problem 8

4.8.1 Solution using Matrix exponential method 276
4.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 277
4.8.3 Maple step by step solution . 281

Internal problem ID [322]
Internal file name [OUTPUT/322_Sunday_June_05_2022_01_38_43_AM_66449525/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)-x_{2}(t)
\end{aligned}
$$

4.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (2 t)+\frac{\sin (2 t)}{2} & -\frac{5 \sin (2 t)}{2} \\
\frac{\sin (2 t)}{2} & \cos (2 t)-\frac{\sin (2 t)}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (2 t)+\frac{\sin (2 t)}{2} & -\frac{5 \sin (2 t)}{2} \\
\frac{\sin (2 t)}{2} & \cos (2 t)-\frac{\sin (2 t)}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\cos (2 t)+\frac{\sin (2 t)}{2}\right) c_{1}-\frac{5 \sin (2 t) c_{2}}{2} \\
\frac{\sin (2 t) c_{1}}{2}+\left(\cos (2 t)-\frac{\sin (2 t)}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-5 c_{2}\right) \sin (2 t)}{2}+c_{1} \cos (2 t) \\
\frac{\sin (2 t)\left(c_{1}-c_{2}\right)}{2}+c_{2} \cos (2 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -5 \\
1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 i \\
\lambda_{2} & =-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2 i$	1	complex eigenvalue
$-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right]-(-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1+2 i & -5 \\
1 & -1+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1+2 i & -5 & 0 \\
1 & -1+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{5}+\frac{2 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1+2 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1+2 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1-2 i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1-2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1-2 i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1-2 \mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1-2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1-2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-2 i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -5 \\
1 & -1
\end{array}\right]-(2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1-2 i & -5 \\
1 & -1-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1-2 i & -5 & 0 \\
1 & -1-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{5}-\frac{2 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1-2 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1-2 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(1+2 i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(1+2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(1+2 i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(1+2 \mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1+2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(1+2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+2 i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2 i$	1	1	No	$\left[\begin{array}{c}1+2 i \\ 1\end{array}\right]$
$-2 i$	1	1	No	$\left[\begin{array}{c}1-2 i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(1+2 i) \mathrm{e}^{2 i t} \\
\mathrm{e}^{2 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(1-2 i) \mathrm{e}^{-2 i t} \\
\mathrm{e}^{-2 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(1+2 i) c_{1} \mathrm{e}^{2 i t}+(1-2 i) c_{2} \mathrm{e}^{-2 i t} \\
c_{1} \mathrm{e}^{2 i t}+c_{2} \mathrm{e}^{-2 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 16: Phase plot

4.8.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)-x_{2}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right] \cdot \underline{\longrightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
1 & -5 \\
1 & -1
\end{array}\right]
$$

- Rewrite the system as
$x_{\underline{\rightarrow}}(t)=A \cdot x_{\underline{\rightarrow}}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2 \mathrm{I},\left[\begin{array}{c}
1-2 \mathrm{I} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
1+2 \mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
$\left[-2 \mathrm{I},\left[\begin{array}{c}1-2 \mathrm{I} \\ 1\end{array}\right]\right]$
- Solution from eigenpair
$\mathrm{e}^{-2 \mathrm{I} t} \cdot\left[\begin{array}{c}1-2 \mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
1-2 \mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
(1-2 \mathrm{I})(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{1}}^{\rightarrow}(t)=\left[\begin{array}{c}
\cos (2 t)-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right],{\underset{\longrightarrow}{2}}^{\rightarrow}(t)=\left[\begin{array}{c}
-2 \cos (2 t)-\sin (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow\left[\begin{array}{c}
c_{2}(-2 \cos (2 t)-\sin (2 t))+c_{1}(\cos (2 t)-2 \sin (2 t)) \\
-c_{2} \sin (2 t)+c_{1} \cos (2 t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(c_{1}-2 c_{2}\right) \cos (2 t)-2\left(c_{1}+\frac{c_{2}}{2}\right) \sin (2 t) \\
-c_{2} \sin (2 t)+c_{1} \cos (2 t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left(c_{1}-2 c_{2}\right) \cos (2 t)-2\left(c_{1}+\frac{c_{2}}{2}\right) \sin (2 t), x_{2}(t)=-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right\}
$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 50

```
dsolve([diff(x__1(t),t)=x__1(t)-5*x__2(t), diff(x__2(t),t)=x__1(t)-x__ 2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \sin (2 t)+c_{2} \cos (2 t) \\
& x_{2}(t)=-\frac{2 c_{1} \cos (2 t)}{5}+\frac{2 c_{2} \sin (2 t)}{5}+\frac{c_{1} \sin (2 t)}{5}+\frac{c_{2} \cos (2 t)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 48
DSolve $\left[\left\{x 1^{\prime}[t]==x 1[t]-5 * x 2[t], x 2^{\prime}[t]==x 1[t]-x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} \cos (2 t)+\left(c_{1}-5 c_{2}\right) \sin (t) \cos (t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (2 t)+\left(c_{1}-c_{2}\right) \sin (t) \cos (t)
\end{aligned}
$$

4.9 problem problem 9

4.9.1 Solution using Matrix exponential method 284
4.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 285

Internal problem ID [323]
Internal file name [OUTPUT/323_Sunday_June_05_2022_01_38_44_AM_41357565/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)-2 x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=2, x_{2}(0)=3\right]
$$

4.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (4 t)+\frac{\sin (4 t)}{2} & -\frac{5 \sin (4 t)}{4} \\
\sin (4 t) & \cos (4 t)-\frac{\sin (4 t)}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\cos (4 t)+\frac{\sin (4 t)}{2} & -\frac{5 \sin (4 t)}{4} \\
\sin (4 t) & \cos (4 t)-\frac{\sin (4 t)}{2}
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
2 \cos (4 t)-\frac{11 \sin (4 t)}{4} \\
\frac{\sin (4 t)}{2}+3 \cos (4 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
2 & -5 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
2 & -5 \\
4 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & -5 \\
4 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+16=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=4 i \\
& \lambda_{2}=-4 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-4 i$	1	complex eigenvalue
$4 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
2 & -5 \\
4 & -2
\end{array}\right]-(-4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+4 i & -5 \\
4 & -2+4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+4 i & -5 & 0 \\
4 & -2+4 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{4 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+4 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+4 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-i\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-i\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-i \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
2 & -5 \\
4 & -2
\end{array}\right]-(4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-4 i & -5 \\
4 & -2-4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-4 i & -5 & 0 \\
4 & -2-4 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{4 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-4 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-4 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+i\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+i \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+2 i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $4 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{4 i t} \\
\mathrm{e}^{4 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-i\right) \mathrm{e}^{-4 i t} \\
\mathrm{e}^{-4 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) c_{1} \mathrm{e}^{4 i t}+\left(\frac{1}{2}-i\right) c_{2} \mathrm{e}^{-4 i t} \\
c_{1} \mathrm{e}^{4 i t}+c_{2} \mathrm{e}^{-4 i t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=2 \tag{1}\\
x_{2}(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) c_{1}+\left(\frac{1}{2}-i\right) c_{2} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=\frac{3}{2}-\frac{i}{4} \\
c_{2}=\frac{3}{2}+\frac{i}{4}
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(1+\frac{11 i}{8}\right) \mathrm{e}^{4 i t}+\left(1-\frac{11 i}{8}\right) \mathrm{e}^{-4 i t} \\
\left(\frac{3}{2}-\frac{i}{4}\right) \mathrm{e}^{4 i t}+\left(\frac{3}{2}+\frac{i}{4}\right) \mathrm{e}^{-4 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 17: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 34

```
dsolve([diff(x__1(t),t) = 2*x__1(t)-5*x__ 2(t), diff(x__ 2(t),t) = 4*x__1(t)-2*x__ 2(t), x__1 (0
```

$$
\begin{aligned}
& x_{1}(t)=-\frac{11 \sin (4 t)}{4}+2 \cos (4 t) \\
& x_{2}(t)=3 \cos (4 t)+\frac{\sin (4 t)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 34
DSolve $\left[\left\{x 1^{\prime}[t]==x 1[t]-5 * x 2[t], x 2{ }^{\prime}[t]==x 1[t]-x 2[t]\right\},\{x 1[0]==2, x 2[0]==3\},\{x 1[t], x 2[t]\}, t\right.$, Inclu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow 2 \cos (2 t)-13 \sin (t) \cos (t) \\
& \mathrm{x} 2(t) \rightarrow 3 \cos (2 t)-\sin (t) \cos (t)
\end{aligned}
$$

4.10 problem problem 10

4.10.1 Solution using Matrix exponential method
4.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 292
4.10.3 Maple step by step solution 297

Internal problem ID [324]
Internal file name [OUTPUT/324_Sunday_June_05_2022_01_38_45_AM_72543614/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-3 x_{1}(t)-2 x_{2}(t) \\
& x_{2}^{\prime}(t)=9 x_{1}(t)+3 x_{2}(t)
\end{aligned}
$$

4.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\cos (3 t)-\sin (3 t) & -\frac{2 \sin (3 t)}{3} \\
3 \sin (3 t) & \sin (3 t)+\cos (3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (3 t)-\sin (3 t) & -\frac{2 \sin (3 t)}{3} \\
3 \sin (3 t) & \sin (3 t)+\cos (3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (3 t)-\sin (3 t)) c_{1}-\frac{2 \sin (3 t) c_{2}}{3} \\
3 \sin (3 t) c_{1}+(\sin (3 t)+\cos (3 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-3 c_{1}-2 c_{2}\right) \sin (3 t)}{3}+c_{1} \cos (3 t) \\
\left(3 c_{1}+c_{2}\right) \sin (3 t)+c_{2} \cos (3 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & -2 \\
9 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-3 i$	1	complex eigenvalue
$3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]-(-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3+3 i & -2 \\
9 & 3+3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3+3 i & -2 & 0 \\
9 & 3+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{2}+\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3+3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3+3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{3}-\frac{i}{3}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{i}{3}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3}-\frac{i}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3}-\frac{i}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]-(3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3-3 i & -2 \\
9 & 3-3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3-3 i & -2 & 0 \\
9 & 3-3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{3}{2}-\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3-3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3-3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{1}{3}+\frac{i}{3}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{i}{3}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3}+\frac{i}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3}+\frac{i}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{\mathrm{I}}{3}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
$3 i$	1	1	No	$\left[\begin{array}{c}-\frac{1}{3}+\frac{i}{3} \\ 1\end{array}\right]$
-3i	1	1	No	$\left[\begin{array}{c}-\frac{1}{3}-\frac{i}{3} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{i}{3}\right) \mathrm{e}^{3 i t} \\
\mathrm{e}^{3 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{i}{3}\right) \mathrm{e}^{-3 i t} \\
\mathrm{e}^{-3 i t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{3}+\frac{i}{3}\right) c_{1} \mathrm{e}^{3 i t}+\left(-\frac{1}{3}-\frac{i}{3}\right) c_{2} \mathrm{e}^{-3 i t} \\
c_{1} \mathrm{e}^{3 i t}+c_{2} \mathrm{e}^{-3 i t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 18: Phase plot

4.10.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-3 x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=9 x_{1}(t)+3 x_{2}(t)\right]
$$

- Define vector

$$
\vec{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-3 & -2 \\
9 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow}(t)=A \cdot x^{\rightarrow}(t
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{3}-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right],\left[3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{3}+\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-3 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{3}-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-3 \mathrm{I} t} \cdot\left[\begin{array}{c}
-\frac{1}{3}-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
-\frac{1}{3}-\frac{\mathrm{I}}{3} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(-\frac{1}{3}-\frac{\mathrm{I}}{3}\right)(\cos (3 t)-I \sin (3 t)) \\
\cos (3 t)-I \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{\rightarrow}}_{1}(t)=\left[\begin{array}{c}
-\frac{\cos (3 t)}{3}-\frac{\sin (3 t)}{3} \\
\cos (3 t)
\end{array}\right], x_{2}^{\rightarrow}(t)=\left[\begin{array}{c}
\frac{\sin (3 t)}{3}-\frac{\cos (3 t)}{3} \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=\left[\begin{array}{c}
c_{2}\left(\frac{\sin (3 t)}{3}-\frac{\cos (3 t)}{3}\right)+c_{1}\left(-\frac{\cos (3 t)}{3}-\frac{\sin (3 t)}{3}\right) \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-c_{1}-c_{2}\right) \cos (3 t)}{3}-\frac{\sin (3 t)\left(c_{1}-c_{2}\right)}{3} \\
-c_{2} \sin (3 t)+c_{1} \cos (3 t)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(-c_{1}-c_{2}\right) \cos (3 t)}{3}-\frac{\sin (3 t)\left(c_{1}-c_{2}\right)}{3}, x_{2}(t)=-c_{2} \sin (3 t)+c_{1} \cos (3 t)\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 50

```
dsolve([diff(x__1(t),t)=-3*x__1(t)-2*x__2(t), diff(x__2(t),t)=9*x__1 (t)+3*x__2(t)],singsol=al
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \sin (3 t)+c_{2} \cos (3 t) \\
& x_{2}(t)=-\frac{3 c_{1} \cos (3 t)}{2}+\frac{3 c_{2} \sin (3 t)}{2}-\frac{3 c_{1} \sin (3 t)}{2}-\frac{3 c_{2} \cos (3 t)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 53
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]-2 * x 2[t], x 2{ }^{\prime}[t]==9 * x 1[t]+3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} \cos (3 t)-\frac{1}{3}\left(3 c_{1}+2 c_{2}\right) \sin (3 t) \\
& \mathrm{x} 2(t) \rightarrow c_{2} \cos (3 t)+\left(3 c_{1}+c_{2}\right) \sin (3 t)
\end{aligned}
$$

4.11 problem problem 11

4.11.1 Solution using Matrix exponential method 300
4.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 301

Internal problem ID [325]
Internal file name [OUTPUT/325_Sunday_June_05_2022_01_38_46_AM_67850612/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=0, x_{2}(0)=4\right]
$$

4.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
\mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t) & -\mathrm{e}^{t} \sin (2 t) \\
\mathrm{e}^{t} \sin (2 t) & \mathrm{e}^{t} \cos (2 t)
\end{array}\right]\left[\begin{array}{l}
0 \\
4
\end{array}\right] \\
& =\left[\begin{array}{c}
-4 \mathrm{e}^{t} \sin (2 t) \\
4 \mathrm{e}^{t} \cos (2 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-2 \lambda+5=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$1+2 i$	1	complex eigenvalue
$1-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-(1-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i & -2 \\
2 & 2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i & -2 & 0 \\
2 & 2 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]-(1+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 i & -2 \\
2 & -2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i & -2 & 0 \\
2 & -2 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$1+2 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$1-2 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(1+2 i) t} \\
\mathrm{e}^{(1+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(1-2 i) t} \\
\mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{2} \mathrm{e}^{(1-2 i) t}-c_{1} \mathrm{e}^{(1+2 i) t}\right) \\
c_{1} \mathrm{e}^{(1+2 i) t}+c_{2} \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=0 \tag{1}\\
x_{2}(0)=4
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{l}
0 \\
4
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1}-c_{2}\right) \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=2 \\
c_{2}=2
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(2 \mathrm{e}^{(1-2 i) t}-2 \mathrm{e}^{(1+2 i) t}\right) \\
2 \mathrm{e}^{(1+2 i) t}+2 \mathrm{e}^{(1-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 19: Phase plot

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve([diff(x__1(t),t) = x__1(t)-2*x__2(t), diff(x__2(t),t) = 2*x__1(t)+x__ 2(t), x__1 (0) =
```

$$
\begin{aligned}
& x_{1}(t)=-4 \mathrm{e}^{t} \sin (2 t) \\
& x_{2}(t)=4 \mathrm{e}^{t} \cos (2 t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 26

```
DSolve[{x1'[t]==x1[t]-2*x2[t], x2'[t]==2*x1[t]+x2[t]},{x1[0]==0, x2[0]==4},{x1[t],x2[t]},t, Inc
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-4 e^{t} \sin (2 t) \\
& \mathrm{x} 2(t) \rightarrow 4 e^{t} \cos (2 t)
\end{aligned}
$$

4.12 problem problem 12

4.12.1 Solution using Matrix exponential method 307
4.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 308
4.12.3 Maple step by step solution . 312

Internal problem ID [326]
Internal file name [OUTPUT/326_Sunday_June_05_2022_01_38_48_AM_91837534/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t)
\end{aligned}
$$

4.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{2 t} \cos (2 t)-\frac{\mathrm{e}^{2 t} \sin (2 t)}{2} & -\frac{5 \mathrm{e}^{2 t} \sin (2 t)}{2} \\
\frac{\mathrm{e}^{2 t} \sin (2 t)}{2} & \mathrm{e}^{2 t} \cos (2 t)+\frac{\mathrm{e}^{2 t} \sin (2 t)}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(2 \cos (2 t)-\sin (2 t))}{2} & -\frac{5 \mathrm{e}^{2 t} \sin (2 t)}{2} \\
\frac{\mathrm{e}^{2 t} \sin (2 t)}{2} & \frac{\mathrm{e}^{2 t}(2 \cos (2 t)+\sin (2 t))}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(2 \cos (2 t)-\sin (2 t))}{2} & -\frac{5 \mathrm{e}^{2 t} \sin (2 t)}{2} \\
\frac{\mathrm{e}^{2 t} \sin (2 t)}{2} & \frac{\mathrm{e}^{2 t}(2 \cos (2 t)+\sin (2 t))}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{2 t}(2 \cos (2 t)-\sin (2 t)) c_{1}}{2}-\frac{5 \mathrm{e}^{2 t} \sin (2 t) c_{2}}{2} \\
\frac{\mathrm{e}^{2 t} \sin (2 t) c_{1}}{2}+\frac{\mathrm{e}^{2 t}(2 \cos (2 t)+\sin (2 t)) c_{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}\left(-c_{1}-5 c_{2}\right) \sin (2 t)}{2}+\mathrm{e}^{2 t} \cos (2 t) c_{1} \\
\frac{\left(\left(c_{1}+c_{2}\right) \sin (2 t)+2 c_{2} \cos (2 t)\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -5 \\
1 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+8=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+2 i \\
& \lambda_{2}=2-2 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2-2 i$	1	complex eigenvalue
$2+2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]-(2-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1+2 i & -5 \\
1 & 1+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1+2 i & -5 & 0 \\
1 & 1+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{5}+\frac{2 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1+2 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1+2 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1-2 i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1-2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1-2 i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1-2 \mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1-2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1-2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-2 i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]-(2+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1-2 i & -5 \\
1 & 1-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1-2 i & -5 & 0 \\
1 & 1-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(\frac{1}{5}-\frac{2 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1-2 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1-2 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=(-1+2 i) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
(-1+2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
(-1+2 i) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
(-1+2 \mathrm{I}) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1+2 i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
(-1+2 \mathrm{I}) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+2 i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$2+2 i$	1	1	No	$\left[\begin{array}{c}-1+2 i \\ 1\end{array}\right]$
$2-2 i$	1	1	No	$\left[\begin{array}{c}-1-2 i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
(-1+2 i) \mathrm{e}^{(2+2 i) t} \\
\mathrm{e}^{(2+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
(-1-2 i) \mathrm{e}^{(2-2 i) t} \\
\mathrm{e}^{(2-2 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
(-1+2 i) c_{1} \mathrm{e}^{(2+2 i) t}+(-1-2 i) c_{2} \mathrm{e}^{(2-2 i) t} \\
c_{1} \mathrm{e}^{(2+2 i) t}+c_{2} \mathrm{e}^{(2-2 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 20: Phase plot

4.12.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)+3 x_{2}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -5 \\
1 & 3
\end{array}\right]
$$

- Rewrite the system as
$x_{\underline{\rightarrow}}(t)=A \cdot x_{\underline{\rightarrow}}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2-2 \mathrm{I},\left[\begin{array}{c}
-1-2 \mathrm{I} \\
1
\end{array}\right]\right],\left[2+2 \mathrm{I},\left[\begin{array}{c}
-1+2 \mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-2 \mathrm{I},\left[\begin{array}{c}
-1-2 \mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(2-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}-1-2 \mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{2 t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}-1-2 \mathrm{I} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
(-1-2 \mathrm{I})(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{\rightarrow}}^{\rightarrow}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\cos (2 t)-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right], x \longrightarrow_{2}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-2 \cos (2 t)+\sin (2 t) \\
-\sin (2 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}(t)+c_{2} x \rightarrow{ }_{2}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\cos (2 t)-2 \sin (2 t) \\
\cos (2 t)
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-2 \cos (2 t)+\sin (2 t) \\
-\sin (2 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(\left(c_{1}+2 c_{2}\right) \cos (2 t)+2\left(c_{1}-\frac{c_{2}}{2}\right) \sin (2 t)\right) \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\left(\left(c_{1}+2 c_{2}\right) \cos (2 t)+2\left(c_{1}-\frac{c_{2}}{2}\right) \sin (2 t)\right) \mathrm{e}^{2 t}, x_{2}(t)=\mathrm{e}^{2 t}\left(-c_{2} \sin (2 t)+c_{1} \cos (2 t)\right)\right\}
$$

Solution by Maple

Time used: 0.094 (sec). Leaf size: 59

```
dsolve([diff(x__1(t),t)=x__1(t)-5*x__2(t), diff(x__2(t),t)=x__1(t)+3*x__2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{2 t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{2 t}\left(2 c_{1} \cos (2 t)+c_{2} \cos (2 t)+c_{1} \sin (2 t)-2 c_{2} \sin (2 t)\right)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 67
DSolve $\left[\left\{x 1^{\prime}[t]==x 1[t]-5 * x 2[t], x 22^{\prime}[t]==x 1[t]+3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolution

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{2 t}\left(2 c_{1} \cos (2 t)-\left(c_{1}+5 c_{2}\right) \sin (2 t)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{2 t}\left(2 c_{2} \cos (2 t)+\left(c_{1}+c_{2}\right) \sin (2 t)\right)
\end{aligned}
$$

4.13 problem problem 13

4.13.1 Solution using Matrix exponential method 316
4.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 317
4.13.3 Maple step by step solution . 322

Internal problem ID [327]
Internal file name [OUTPUT/327_Sunday_June_05_2022_01_38_49_AM_39023998/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 13.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=5 x_{1}(t)-9 x_{2}(t) \\
& x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)
\end{aligned}
$$

4.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -9 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{2 t} \cos (3 t)+\mathrm{e}^{2 t} \sin (3 t) & -3 \mathrm{e}^{2 t} \sin (3 t) \\
\frac{2 \mathrm{e}^{2 t} \sin (3 t)}{3} & \mathrm{e}^{2 t} \cos (3 t)-\mathrm{e}^{2 t} \sin (3 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & -3 \mathrm{e}^{2 t} \sin (3 t) \\
\frac{2 \mathrm{e}^{2 t} \sin (3 t)}{3} & \mathrm{e}^{2 t}(\cos (3 t)-\sin (3 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & -3 \mathrm{e}^{2 t} \sin (3 t) \\
\frac{2 \mathrm{e}^{2 t} \sin (3 t)}{3} & \mathrm{e}^{2 t}(\cos (3 t)-\sin (3 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) c_{1}-3 \mathrm{e}^{2 t} \sin (3 t) c_{2} \\
\frac{2 \mathrm{e}^{2 t} \sin (3 t) c_{1}}{3}+\mathrm{e}^{2 t}(\cos (3 t)-\sin (3 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{1}-3 c_{2}\right) \sin (3 t)+c_{1} \cos (3 t)\right) \mathrm{e}^{2 t} \\
\frac{\mathrm{e}^{2 t}\left(2 c_{1}-3 c_{2}\right) \sin (3 t)}{3}+\mathrm{e}^{2 t} \cos (3 t) c_{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & -9 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ll}
5 & -9 \\
2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & -9 \\
2 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+13=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2+3 i$	1	complex eigenvalue
$2-3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
5 & -9 \\
2 & -1
\end{array}\right]-(2-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
3+3 i & -9 \\
2 & -3+3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3+3 i & -9 & 0 \\
2 & -3+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{3}+\frac{i}{3}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3+3 i & -9 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3+3 i & -9 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{3}{2}-\frac{3 i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2}-\frac{3 i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2}-\frac{3 i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
3-3 i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
5 & -9 \\
2 & -1
\end{array}\right]-(2+3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
3-3 i & -9 \\
2 & -3-3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
3-3 i & -9 & 0 \\
2 & -3-3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{3}-\frac{i}{3}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
3-3 i & -9 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
3-3 i & -9 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{3}{2}+\frac{3 i}{2}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 i}{2}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2}+\frac{3 i}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2}+\frac{3 i}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 \mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
3+3 i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $2+3 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 i}{2}\right) \mathrm{e}^{(2+3 i) t} \\
\mathrm{e}^{(2+3 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 i}{2}\right) \mathrm{e}^{(2-3 i) t} \\
\mathrm{e}^{(2-3 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{3}{2}+\frac{3 i}{2}\right) c_{1} \mathrm{e}^{(2+3 i) t}+\left(\frac{3}{2}-\frac{3 i}{2}\right) c_{2} \mathrm{e}^{(2-3 i) t} \\
c_{1} \mathrm{e}^{(2+3 i) t}+c_{2} \mathrm{e}^{(2-3 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 21: Phase plot

4.13.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=5 x_{1}(t)-9 x_{2}(t), x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)\right]$

- Define vector
$x \xrightarrow{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}5 & -9 \\ 2 & -1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ll}
5 & -9 \\
2 & -1
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ll}
5 & -9 \\
2 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{3}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[2+3 \mathrm{I},\left[\begin{array}{c}
\frac{3}{2}+\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{3}{2}-\frac{3 \mathrm{I}}{2} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(2-3 \mathrm{I}) t} \cdot\left[\begin{array}{c}\frac{3}{2}-\frac{3 \mathrm{I}}{2} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{2 t} \cdot(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}\frac{3}{2}-\frac{3 \mathrm{I}}{2} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\left(\frac{3}{2}-\frac{3 \mathrm{I}}{2}\right)(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{\sim}{1}}_{1}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{3 \cos (3 t)}{2}-\frac{3 \sin (3 t)}{2} \\
\cos (3 t)
\end{array}\right], x_{2}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{3 \sin (3 t)}{2}-\frac{3 \cos (3 t)}{2} \\
-\sin (3 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{3 \cos (3 t)}{2}-\frac{3 \sin (3 t)}{2} \\
\cos (3 t)
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{3 \sin (3 t)}{2}-\frac{3 \cos (3 t)}{2} \\
-\sin (3 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3\left(\left(c_{1}-c_{2}\right) \cos (3 t)-\left(c_{1}+c_{2}\right) \sin (3 t)\right) \mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}\left(-c_{2} \sin (3 t)+c_{1} \cos (3 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{3\left(\left(c_{1}-c_{2}\right) \cos (3 t)-\left(c_{1}+c_{2}\right) \sin (3 t)\right) \mathrm{e}^{2 t}}{2}, x_{2}(t)=\mathrm{e}^{2 t}\left(-c_{2} \sin (3 t)+c_{1} \cos (3 t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 58

```
dsolve([diff(x__1(t),t)=5*x__1(t)-9*x__2(t), diff(x__2(t),t)=2*x__1(t)-x__ 2(t)],singsol=all)
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{2 t}\left(c_{1} \sin (3 t)+c_{2} \cos (3 t)\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{2 t}\left(c_{1} \sin (3 t)+c_{2} \sin (3 t)-c_{1} \cos (3 t)+c_{2} \cos (3 t)\right)}{3}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 66
DSolve $\left[\left\{x 1^{\prime}[t]==5 * x 1[t]-9 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]-x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSoluti

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{2 t}\left(c_{1} \cos (3 t)+\left(c_{1}-3 c_{2}\right) \sin (3 t)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{2 t}\left(3 c_{2} \cos (3 t)+\left(2 c_{1}-3 c_{2}\right) \sin (3 t)\right)
\end{aligned}
$$

4.14 problem problem 14

4.14.1 Solution using Matrix exponential method
4.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 326
4.14.3 Maple step by step solution 330

Internal problem ID [328]
Internal file name [OUTPUT/328_Sunday_June_05_2022_01_38_50_AM_99833809/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)+3 x_{2}(t)
\end{aligned}
$$

4.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) \\
\mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) \\
\mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \cos (4 t) c_{1}-\mathrm{e}^{3 t} \sin (4 t) c_{2} \\
\mathrm{e}^{3 t} \sin (4 t) c_{1}+\mathrm{e}^{3 t} \cos (4 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(\cos (4 t) c_{1}-\sin (4 t) c_{2}\right) \\
\mathrm{e}^{3 t}\left(\sin (4 t) c_{1}+\cos (4 t) c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -4 \\
4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+25=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$3+4 i$	1	complex eigenvalue
$3-4 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3-4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]-(3-4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
4 i & -4 \\
4 & 4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
4 i & -4 & 0 \\
4 & 4 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
4 i & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
4 i & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3+4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]-(3+4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 i & -4 \\
4 & -4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 i & -4 & 0 \\
4 & -4 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 i & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 i & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$3+4 i$	1	1	No	$\left[\begin{array}{c}i \\ 1\end{array}\right]$
$3-4 i$	1	1	No	$\left[\begin{array}{c}-i \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(3+4 i) t} \\
\mathrm{e}^{(3+4 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(3-4 i) t} \\
\mathrm{e}^{(3-4 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-i\left(c_{2} \mathrm{e}^{(3-4 i) t}-c_{1} \mathrm{e}^{(3+4 i) t}\right) \\
c_{1} \mathrm{e}^{(3+4 i) t}+c_{2} \mathrm{e}^{(3-4 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 22: Phase plot

4.14.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=3 x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)+3 x_{2}(t)\right]
$$

- Define vector

$$
\overrightarrow{x^{\rightarrow}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & -4 \\
4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]\right],\left[3+4 \mathrm{I},\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[3-4 \mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(3-4 \mathrm{I}) t} \cdot\left[\begin{array}{c}-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{3 t} \cdot(\cos (4 t)-\mathrm{I} \sin (4 t)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\mathrm{I}(\cos (4 t)-\mathrm{I} \sin (4 t)) \\
\cos (4 t)-\mathrm{I} \sin (4 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x{ }_{1}(t)+c_{2} x \xrightarrow{\rightarrow}_{2}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\sin (4 t) \\
\cos (4 t)
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\cos (4 t) \\
-\sin (4 t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{3 t}\left(c_{1} \sin (4 t)+c_{2} \cos (4 t)\right) \\
\mathrm{e}^{3 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\mathrm{e}^{3 t}\left(c_{1} \sin (4 t)+c_{2} \cos (4 t)\right), x_{2}(t)=\mathrm{e}^{3 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right)\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 46

```
dsolve([diff(x__1(t),t)=3*x__1(t)-4*x__2(t), diff (x__ 2(t),t)=4*x__1 (t)+3*x__2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{3 t}\left(c_{1} \sin (4 t)+c_{2} \cos (4 t)\right) \\
& x_{2}(t)=-\mathrm{e}^{3 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 51
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==4 * x 1[t]+3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{3 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{3 t}\left(c_{2} \cos (4 t)+c_{1} \sin (4 t)\right)
\end{aligned}
$$

4.15 problem problem 15

4.15.1 Solution using Matrix exponential method
4.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 334
4.15.3 Maple step by step solution 339

Internal problem ID [329]
Internal file name [OUTPUT/329_Sunday_June_05_2022_01_38_51_AM_23405210/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =7 x_{1}(t)-5 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)+3 x_{2}(t)
\end{aligned}
$$

4.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{5 t} \cos (4 t)+\frac{\mathrm{e}^{5 t} \sin (4 t)}{2} & -\frac{5 \mathrm{e}^{5 t} \sin (4 t)}{4} \\
\mathrm{e}^{5 t} \sin (4 t) & \mathrm{e}^{5 t} \cos (4 t)-\frac{\mathrm{e}^{5 t} \sin (4 t)}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{5 t}(2 \cos (4 t)+\sin (4 t))}{2} & -\frac{5 \mathrm{e}^{5 t} \sin (4 t)}{4} \\
\mathrm{e}^{5 t} \sin (4 t) & \frac{\mathrm{e}^{5 t}(2 \cos (4 t)-\sin (4 t))}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{5 t}(2 \cos (4 t)+\sin (4 t))}{2} & -\frac{5 \mathrm{e}^{5 t} \sin (4 t)}{4} \\
\mathrm{e}^{5 t} \sin (4 t) & \frac{\mathrm{e}^{5 t}(2 \cos (4 t)-\sin (4 t))}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{5 t}(2 \cos (4 t)+\sin (4 t)) c_{1}}{2}-\frac{5 \mathrm{e}^{5 t} \sin (4 t) c_{2}}{4} \\
\mathrm{e}^{5 t} \sin (4 t) c_{1}+\frac{\mathrm{e}^{5 t}(2 \cos (4 t)-\sin (4 t)) c_{2}}{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{5 t}\left(2 c_{1}-5 c_{2}\right) \sin (4 t)}{4}+\mathrm{e}^{5 t} \cos (4 t) c_{1} \\
\left(\left(c_{1}-\frac{c_{2}}{2}\right) \sin (4 t)+c_{2} \cos (4 t)\right) \mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7-\lambda & -5 \\
4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-10 \lambda+41=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=5+4 i \\
& \lambda_{2}=5-4 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$5-4 i$	1	complex eigenvalue
$5+4 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=5-4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]-(5-4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2+4 i & -5 \\
4 & -2+4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2+4 i & -5 & 0 \\
4 & -2+4 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}+\frac{4 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2+4 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2+4 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-i\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-i\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-i \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-2 i \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=5+4 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]-(5+4 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-4 i & -5 \\
4 & -2-4 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2-4 i & -5 & 0 \\
4 & -2-4 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{2}{5}-\frac{4 i}{5}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2-4 i & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
2-4 i & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+i\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+i \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+i \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\mathrm{I}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+2 i \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

| eigenvalue | multiplicity | | | algebraic m |
| :---: | :---: | :---: | :---: | :---: | geometric k defective? | eigenvectors |
| :---: |
| $5+4 i$ |

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) \mathrm{e}^{(5+4 i) t} \\
\mathrm{e}^{(5+4 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-i\right) \mathrm{e}^{(5-4 i) t} \\
\mathrm{e}^{(5-4 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+i\right) c_{1} \mathrm{e}^{(5+4 i) t}+\left(\frac{1}{2}-i\right) c_{2} \mathrm{e}^{(5-4 i) t} \\
c_{1} \mathrm{e}^{(5+4 i) t}+c_{2} \mathrm{e}^{(5-4 i) t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 23: Phase plot

4.15.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=7 x_{1}(t)-5 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)+3 x_{2}(t)\right]$

- Define vector
$x^{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}7 & -5 \\ 4 & 3\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
7 & -5 \\
4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\longrightarrow^{\prime}}(t)=A \cdot x_{\underline{\rightarrow}}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[5-4 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\mathrm{I} \\
1
\end{array}\right]\right],\left[5+4 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\mathrm{I} \\
1
\end{array}\right]\right]\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[5-4 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\mathrm{I} \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair
$\mathrm{e}^{(5-4 \mathrm{I}) t} \cdot\left[\begin{array}{c}\frac{1}{2}-\mathrm{I} \\ 1\end{array}\right]$
- Use Euler identity to write solution in terms of sin and cos
$\mathrm{e}^{5 t} \cdot(\cos (4 t)-\mathrm{I} \sin (4 t)) \cdot\left[\begin{array}{c}\frac{1}{2}-\mathrm{I} \\ 1\end{array}\right]$
- Simplify expression

$$
\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
\left(\frac{1}{2}-\mathrm{I}\right)(\cos (4 t)-\mathrm{I} \sin (4 t)) \\
\cos (4 t)-\mathrm{I} \sin (4 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system

$$
\left[{\underset{x}{\rightarrow}}_{1}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
\frac{\cos (4 t)}{2}-\sin (4 t) \\
\cos (4 t)
\end{array}\right], x_{2}^{\rightarrow}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{\sin (4 t)}{2}-\cos (4 t) \\
-\sin (4 t)
\end{array}\right]\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \rightarrow_{2}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
\frac{\cos (4 t)}{2}-\sin (4 t) \\
\cos (4 t)
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{\sin (4 t)}{2}-\cos (4 t) \\
-\sin (4 t)
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(c_{1}-2 c_{2}\right) \cos (4 t)-2\left(c_{1}+\frac{c_{2}}{2}\right) \sin (4 t)\right) \mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(\left(c_{1}-2 c_{2}\right) \cos (4 t)-2\left(c_{1}+\frac{c_{2}}{2}\right) \sin (4 t)\right) \mathrm{e}^{5 t}}{2}, x_{2}(t)=\mathrm{e}^{5 t}\left(c_{1} \cos (4 t)-c_{2} \sin (4 t)\right)\right\}
$$

\checkmark Solution by Maple

Time used: 0.015 (sec). Leaf size: 61

```
dsolve([diff (x__1(t),t)=7*x__1(t) -5*x__2(t), diff(x__2(t),t)=4*x__1(t)+3*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{5 t}\left(c_{1} \sin (4 t)+c_{2} \cos (4 t)\right) \\
& x_{2}(t)=-\frac{2 \mathrm{e}^{5 t}\left(2 c_{1} \cos (4 t)-c_{2} \cos (4 t)-c_{1} \sin (4 t)-2 c_{2} \sin (4 t)\right)}{5}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 72
DSolve $\left[\left\{x 1^{\prime}[t]==7 * x 1[t]-5 * x 2[t], x 2{ }^{\prime}[t]==4 * x 1[t]+3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{5 t}\left(4 c_{1} \cos (4 t)+\left(2 c_{1}-5 c_{2}\right) \sin (4 t)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{5 t}\left(2 c_{2} \cos (4 t)+\left(2 c_{1}-c_{2}\right) \sin (4 t)\right)
\end{aligned}
$$

4.16 problem problem 16

4.16.1 Solution using Matrix exponential method 342
4.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 343
4.16.3 Maple step by step solution . 348

Internal problem ID [330]
Internal file name [OUTPUT/330_Sunday_June_05_2022_01_38_53_AM_18915798/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-50 x_{1}(t)+20 x_{2}(t) \\
x_{2}^{\prime}(t) & =100 x_{1}(t)-60 x_{2}(t)
\end{aligned}
$$

4.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-50 & 20 \\
100 & -60
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\frac{4 \mathrm{e}^{-100 t}}{9}+\frac{5 \mathrm{e}^{-10 t}}{9} & \frac{2 \mathrm{e}^{-10 t}}{9}-\frac{2 \mathrm{e}^{-100 t}}{9} \\
\frac{10 \mathrm{e}^{-10 t}}{9}-\frac{10 \mathrm{e}^{-100 t}}{9} & \frac{5 \mathrm{e}^{-100 t}}{9}+\frac{4 \mathrm{e}^{-10 t}}{9}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cl}
\frac{4 \mathrm{e}^{-100 t}}{9}+\frac{5 \mathrm{e}^{-10 t}}{9} & \frac{2 \mathrm{e}^{-10 t}}{9}-\frac{2 \mathrm{e}^{-100 t}}{9} \\
\frac{10 \mathrm{e}^{-10 t}}{9}-\frac{10 \mathrm{e}^{-100 t}}{9} & \frac{5 \mathrm{e}^{-100 t}}{9}+\frac{4 \mathrm{e}^{-10 t}}{9}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{4 \mathrm{e}^{-100 t}}{9}+\frac{5 \mathrm{e}^{-10 t}}{9}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-10 t}}{9}-\frac{2 \mathrm{e}^{-100 t}}{9}\right) c_{2} \\
\left(\frac{10 \mathrm{e}^{-10 t}}{9}-\frac{10 \mathrm{e}^{-100 t}}{9}\right) c_{1}+\left(\frac{5 \mathrm{e}^{-100 t}}{9}+\frac{4 \mathrm{e}^{-10 t}}{9}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(4 c_{1}-2 c_{2}\right) \mathrm{e}^{-100 t}}{9}+\frac{5\left(c_{1}+\frac{2 c_{2}}{5}\right) \mathrm{e}^{-10 t}}{9} \\
\frac{5\left(-2 c_{1}+c_{2}\right) \mathrm{e}^{-100 t}}{9}+\frac{10\left(c_{1}+\frac{2 c_{2}}{5}\right) \mathrm{e}^{-10 t}}{9}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-50 & 20 \\
100 & -60
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-50 & 20 \\
100 & -60
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-50-\lambda & 20 \\
100 & -60-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+110 \lambda+1000=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-10 \\
& \lambda_{2}=-100
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-10	1	real eigenvalue
-100	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-100$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-50 & 20 \\
100 & -60
\end{array}\right]-(-100)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
50 & 20 \\
100 & 40
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
50 & 20 & 0 \\
100 & 40 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
50 & 20 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
50 & 20 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{5}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-10$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-50 & 20 \\
100 & -60
\end{array}\right]-(-10)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-40 & 20 \\
100 & -50
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-40 & 20 & 0 \\
100 & -50 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-40 & 20 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-40 & 20 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-10	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1\end{array}\right]$
-100	1	1	No	$\left[\begin{array}{c}-\frac{2}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -10 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-10 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-10 t}
\end{aligned}
$$

Since eigenvalue -100 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-100 t} \\
& =\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right] e^{-100 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-10 t}}{2} \\
\mathrm{e}^{-10 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{-100 t}}{5} \\
\mathrm{e}^{-100 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-10 t}}{2}-\frac{2 c_{2} \mathrm{e}^{-100 t}}{5} \\
c_{1} \mathrm{e}^{-10 t}+c_{2} \mathrm{e}^{-100 t}
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 24: Phase plot

4.16.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-50 x_{1}(t)+20 x_{2}(t), x_{2}^{\prime}(t)=100 x_{1}(t)-60 x_{2}(t)\right]$

- Define vector
$\underset{\longrightarrow}{\rightarrow}(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}-50 & 20 \\ 100 & -60\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}-50 & 20 \\ 100 & -60\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)$
- Define the coefficient matrix
$A=\left[\begin{array}{cc}-50 & 20 \\ 100 & -60\end{array}\right]$
- Rewrite the system as
$x \longrightarrow{ }^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-100,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right],\left[-10,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-100,\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{-}^{\rightarrow}=\mathrm{e}^{-100 t} \cdot\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-10,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{-10 t} \cdot\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \rightarrow{ }_{-1}+c_{2} x \rightarrow 2
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-100 t} \cdot\left[\begin{array}{c}
-\frac{2}{5} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-10 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{1} \mathrm{e}^{-100 t}}{5}+\frac{c_{2} \mathrm{e}^{-10 t}}{2} \\
c_{1} \mathrm{e}^{-100 t}+c_{2} \mathrm{e}^{-10 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{2 c_{1} \mathrm{e}^{-100 t}}{5}+\frac{c_{2} \mathrm{e}^{-10 t}}{2}, x_{2}(t)=c_{1} \mathrm{e}^{-100 t}+c_{2} \mathrm{e}^{-10 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 36

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{-_} 1(\mathrm{t}), \mathrm{t}\right)=-50 * \mathrm{x}_{_-} 1(\mathrm{t})+20 * \mathrm{x}_{_-} 2(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{_-} 2(\mathrm{t}), \mathrm{t}\right)=100 * \mathrm{x}_{--} 1(\mathrm{t})-60 * \mathrm{x}_{-} 2(\mathrm{t})\right],\right. \text { sings } \\
& \\
& x_{1}(t)=c_{1} \mathrm{e}^{-100 t}+c_{2} \mathrm{e}^{-10 t} \\
& x_{2}(t)=-\frac{5 c_{1} \mathrm{e}^{-100 t}}{2}+2 c_{2} \mathrm{e}^{-10 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 74
DSolve $\left[\left\{x 1^{\prime}[t]==-50 * x 1[t]+20 * x 2[t], x 2{ }^{\prime}[t]==100 * x 1[t]-60 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingul

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{9} e^{-100 t}\left(c_{1}\left(5 e^{90 t}+4\right)+2 c_{2}\left(e^{90 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{9} e^{-100 t}\left(10 c_{1}\left(e^{90 t}-1\right)+c_{2}\left(4 e^{90 t}+5\right)\right)
\end{aligned}
$$

4.17 problem problem 17

4.17.1 Solution using Matrix exponential method 351
4.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 352
4.17.3 Maple step by step solution . 359

Internal problem ID [331]
Internal file name [OUTPUT/331_Sunday_June_05_2022_01_38_54_AM_11743124/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t)+4 x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+7 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t)+4 x_{3}(t)
\end{aligned}
$$

4.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2} \\
\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} \\
\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2} \\
\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} \\
\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2}\right) c_{3} \\
\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{1}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{1}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{6}+\frac{\left(2 c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{6}+\frac{c_{1}}{2}-\frac{c_{3}}{2} \\
\frac{\left(-c_{1}+2 c_{2}-c_{3}\right) \mathrm{e}^{6 t}}{3}+\frac{\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{9 t}}{3} \\
\frac{\left(c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{6}+\frac{\left(2 c_{1}+2 c_{2}+2 c_{3} \mathrm{e}^{\mathrm{e}^{9 t}}\right.}{6}-\frac{c_{1}}{2}+\frac{c_{3}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
4-\lambda & 1 & 4 \\
1 & 7-\lambda & 1 \\
4 & 1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-15 \lambda^{2}+54 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=6 \\
& \lambda_{3}=9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
6	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
4 & 1 & 4 & 0 \\
1 & 7 & 1 & 0 \\
4 & 1 & 4 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{lll|l}
4 & 1 & 4 & 0 \\
0 & \frac{27}{4} & 0 & 0 \\
4 & 1 & 4 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lcc|c}
4 & 1 & 4 & 0 \\
0 & \frac{27}{4} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 1 & 4 \\
0 & \frac{27}{4} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & 1 & 4 & 0 \\
1 & 1 & 1 & 0 \\
4 & 1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 4 & 0 \\
0 & \frac{3}{2} & 3 & 0 \\
4 & 1 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 4 & 0 \\
0 & \frac{3}{2} & 3 & 0 \\
0 & 3 & 6 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{2} \Longrightarrow
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 4 \\
0 & \frac{3}{2} & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]-(9)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-5 & 1 & 4 \\
1 & -2 & 1 \\
4 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-5 & 1 & 4 & 0 \\
1 & -2 & 1 & 0 \\
4 & 1 & -5 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 1 & 4 & 0 \\
0 & -\frac{9}{5} & \frac{9}{5} & 0 \\
4 & 1 & -5 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{4 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 1 & 4 & 0 \\
0 & -\frac{9}{5} & \frac{9}{5} & 0 \\
0 & \frac{9}{5} & -\frac{9}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2}
\end{gathered}>\left[\begin{array}{ccc|c}
-5 & 1 & 4 & 0 \\
0 & -\frac{9}{5} & \frac{9}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & 1 & 4 \\
0 & -\frac{9}{5} & \frac{9}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	1	1	No	$\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{6 t} \\
-2 \mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

4.17.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=4 x_{1}(t)+x_{2}(t)+4 x_{3}(t), x_{2}^{\prime}(t)=x_{1}(t)+7 x_{2}(t)+x_{3}(t), x_{3}^{\prime}(t)=4 x_{1}(t)+x_{2}(t)+4 x_{3}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\mathrm{A}}{ }}^{\prime}(t)=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
4 & 1 & 4 \\
1 & 7 & 1 \\
4 & 1 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\longrightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[6,\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}^{\rightarrow}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[9,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{3}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\square}^{\rightarrow}=c_{1} x_{\square}^{\rightarrow}+c_{2} x_{\square}^{\rightarrow}+c_{3} x \rightarrow{ }_{3}
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=c_{2} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{1} \\
0 \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}, x_{2}(t)=-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}, x_{3}(t)=c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 55

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{_-} 1(\mathrm{t}), \mathrm{t}\right)=4 * \mathrm{x}_{_-} 1(\mathrm{t})+\mathrm{x}_{_-} 2(\mathrm{t})+4 * \mathrm{x}_{_-} 3(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{_-} 2(\mathrm{t}), \mathrm{t}\right)=\mathrm{x}_{_-} 1(\mathrm{t})+7 * \mathrm{x}_{_-} 2(\mathrm{t})+\mathrm{x}_{\neq-} 3(\mathrm{t}\right.\right. \\
& \\
& x_{1}(t)=c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
& x_{2}(t)=-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}-c_{1}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 158
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]+x 2[t]+4 * x 3[t], x 2{ }^{\prime}[t]==x 1[t]+7 * x 2[t]+x 3[t], x 3^{\prime}[t]==4 * x 1[t]+x 2[t]+4 * x 3\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{6}\left(c_{1}\left(e^{6 t}+2 e^{9 t}+3\right)+\left(e^{3 t}-1\right)\left(3 c_{3} e^{3 t}+2\left(c_{2}+c_{3}\right) e^{6 t}+3 c_{3}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{6 t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}+2\right)+c_{3}\left(e^{3 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{6}\left(c_{1}\left(e^{6 t}+2 e^{9 t}-3\right)+\left(c_{3}-2 c_{2}\right) e^{6 t}+2\left(c_{2}+c_{3}\right) e^{9 t}+3 c_{3}\right)
\end{aligned}
$$

4.18 problem problem 18

4.18.1 Solution using Matrix exponential method 363
4.18.2 Solution using explicit Eigenvalue and Eigenvector method . . . 364
4.18.3 Maple step by step solution . 372

Internal problem ID [332]
Internal file name [OUTPUT/332_Sunday_June_05_2022_01_38_55_AM_43808668/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+2 x_{2}(t)+2 x_{3}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+7 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)+7 x_{3}(t)
\end{aligned}
$$

4.18.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{8}{9}+\frac{\mathrm{e}^{9 t}}{9} & \frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} \\
\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2} & \frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18} \\
\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18} & \frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{8}{9}+\frac{\mathrm{e}^{9 t}}{9} & \frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} \\
\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2} & \frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18} \\
\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9} & \frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18} & \frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& {\left[\left(\frac{8}{9}+\frac{\mathrm{e}^{9 t}}{9}\right) c_{1}+\left(\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9}\right) c_{2}+\left(\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9}\right) c_{3}\right.} \\
& =\left(\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9}\right) c_{1}+\left(\frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2}\right) c_{2}+\left(\frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18}\right) c_{3} \\
& \left.\left(\frac{2 \mathrm{e}^{9 t}}{9}-\frac{2}{9}\right) c_{1}+\left(\frac{4 \mathrm{e}^{9 t}}{9}-\frac{\mathrm{e}^{6 t}}{2}+\frac{1}{18}\right) c_{2}+\left(\frac{1}{18}+\frac{4 \mathrm{e}^{9 t}}{9}+\frac{\mathrm{e}^{6 t}}{2}\right) c_{3}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{9}+\frac{8 c_{1}}{9}-\frac{2 c_{2}}{9}-\frac{2 c_{3}}{9} \\
\frac{2\left(c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{9}+\frac{\left(c_{2}-c_{3}\right) \mathrm{e}^{6 t}}{2}-\frac{2 c_{1}}{9}+\frac{c_{2}}{18}+\frac{c_{3}}{18} \\
\frac{2\left(c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{9}+\frac{\left(-c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{2}-\frac{2 c_{1}}{9}+\frac{c_{2}}{18}+\frac{c_{3}}{18}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.18.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 2 & 2 \\
2 & 7-\lambda & 1 \\
2 & 1 & 7-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-15 \lambda^{2}+54 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=6 \\
& \lambda_{3}=9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
6	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 2 & 2 & 0 \\
2 & 7 & 1 & 0 \\
2 & 1 & 7 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 2 & 0 \\
0 & 3 & -3 & 0 \\
2 & 1 & 7 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 2 & 0 \\
0 & 3 & -3 & 0 \\
0 & -3 & 3 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 2 & 2 & 0 \\
0 & 3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-4 t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-4 t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-4 t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-4 t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-5 & 2 & 2 & 0 \\
2 & 1 & 1 & 0 \\
2 & 1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 2 & 2 & 0 \\
0 & \frac{9}{5} & \frac{9}{5} & 0 \\
2 & 1 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 2 & 2 & 0 \\
0 & \frac{9}{5} & \frac{9}{5} & 0 \\
0 & \frac{9}{5} & \frac{9}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 2 & 2 & 0 \\
0 & \frac{9}{5} & \frac{9}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & 2 & 2 \\
0 & \frac{9}{5} & \frac{9}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]-(9)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-8 & 2 & 2 \\
2 & -2 & 1 \\
2 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-8 & 2 & 2 & 0 \\
2 & -2 & 1 & 0 \\
2 & 1 & -2 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & 2 & 2 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
2 & 1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & 2 & 2 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-8 & 2 & 2 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-8 & 2 & 2 \\
0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	1	1	No	$\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{9 t}}{2} \\
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-4 c_{1}+\frac{c_{3} \mathrm{e}^{9 t}}{2} \\
c_{1}-c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

4.18.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t)+2 x_{2}(t)+2 x_{3}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+7 x_{2}(t)+x_{3}(t), x_{3}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)+7 x_{3}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 7 & 1 \\
2 & 1 & 7
\end{array}\right]
$$

- Rewrite the system as
$x_{\underline{\prime}}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-4 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$x_{-}^{\rightarrow}=\left[\begin{array}{c}-4 \\ 1 \\ 1\end{array}\right]$
- Consider eigenpair
$\left[6,\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$x \longrightarrow_{2}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
- Consider eigenpair
$\left[9,\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair $x_{3}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}\frac{1}{2} \\ 1 \\ 1\end{array}\right]$
- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x_{\xrightarrow{\rightarrow}}+c_{2} x_{\square}^{\rightarrow}+c_{3} x \rightarrow 3
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{2} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{9 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-4 c_{1} \\
c_{1} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-4 c_{1}+\frac{c_{3} \mathrm{e}^{9 t}}{2} \\
c_{1}-c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-4 c_{1}+\frac{c_{3} \mathrm{e}^{9 t}}{2}, x_{2}(t)=c_{1}-c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}, x_{3}(t)=c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 54

```
dsolve([diff(x__1(t),t)=x__1(t)+2*x__ 2(t)+2*x__ 3(t), diff (x__ 2(t),t)=2*\mp@subsup{x}{_-_}{}1(t)+7*\mp@subsup{x}{_-_}{}2(t)+\mp@subsup{x}{_-_}{}3
```

$$
\begin{aligned}
& x_{1}(t)=c_{2}+c_{3} \mathrm{e}^{9 t} \\
& x_{2}(t)=2 c_{3} \mathrm{e}^{9 t}+\mathrm{e}^{6 t} c_{1}-\frac{c_{2}}{4} \\
& x_{3}(t)=2 c_{3} \mathrm{e}^{9 t}-\mathrm{e}^{6 t} c_{1}-\frac{c_{2}}{4}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 148
DSolve $\left[\left\{x 1^{\prime}[t]==x 1[t]+2 * x 2[t]+2 * x 3[t], x 2{ }^{\prime}[t]==2 * x 1[t]+7 * x 2[t]+x 3[t], x 3{ }^{\prime}[t]==2 * x 1[t]+x 2[t]+7 *\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{9}\left(c_{1}\left(e^{9 t}+8\right)+2\left(c_{2}+c_{3}\right)\left(e^{9 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{18}\left(4 c_{1}\left(e^{9 t}-1\right)+c_{2}\left(9 e^{6 t}+8 e^{9 t}+1\right)+c_{3}\left(-9 e^{6 t}+8 e^{9 t}+1\right)\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{18}\left(4 c_{1}\left(e^{9 t}-1\right)+c_{2}\left(-9 e^{6 t}+8 e^{9 t}+1\right)+c_{3}\left(9 e^{6 t}+8 e^{9 t}+1\right)\right)
\end{aligned}
$$

4.19 problem problem 19

4.19.1 Solution using Matrix exponential method
 375

4.19.2 Solution using explicit Eigenvalue and Eigenvector method 376
4.19.3 Maple step by step solution 383

Internal problem ID [333]
Internal file name [OUTPUT/333_Sunday_June_05_2022_01_38_57_AM_83880904/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+4 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+x_{2}(t)+4 x_{3}(t)
\end{aligned}
$$

4.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} \\
\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} \\
\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} \\
\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} \\
\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3} & \frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right){c_{3}}^{\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right) c_{1}+\left(\frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right) c_{3}} \\
\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right){c_{1}}^{3}+\left(\frac{\mathrm{e}^{6 t}}{3}-\frac{\mathrm{e}^{3 t}}{3}\right) c_{2}+\left(\frac{2 \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{6 t}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(2 c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{3} \\
\frac{\left(-c_{1}+2 c_{2}-c_{3}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{3} \\
\frac{\left(-c_{1}-c_{2}+2 c_{3}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
4-\lambda & 1 & 1 \\
1 & 4-\lambda & 1 \\
1 & 1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-12 \lambda^{2}+45 \lambda-54=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue
6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
1 & -2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
1 & 1 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & \frac{3}{2} & -\frac{3}{2} & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
0 & -\frac{3}{2} & \frac{3}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -\frac{3}{2} & \frac{3}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	2	No	$\left[\begin{array}{cc}-1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$	
6	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 25: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{6 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t} \\
c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t} \\
c_{1} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}
\end{array}\right]
$$

4.19.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=4 x_{1}(t)+x_{2}(t)+x_{3}(t), x_{2}^{\prime}(t)=x_{1}(t)+4 x_{2}(t)+x_{3}(t), x_{3}^{\prime}(t)=x_{1}(t)+x_{2}(t)+4 x_{3}(t)\right]
$$

- Define vector

$$
\vec{\longrightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right] \cdot x \underline{ }(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[3,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[6,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3

$$
{\underset{-}{\rightarrow}}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and $x^{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtai
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x{ }_{2}(t)$ to be a solution to the homogeneous system
$(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{lll}
4 & 1 & 1 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3
$x_{2}^{\rightarrow}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right]\right)$
- Consider eigenpair
$\left[6,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\underline{x}_{3}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+c_{3} x \xrightarrow{\rightarrow}$
- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{6 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t} \\
c_{3} \mathrm{e}^{6 t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x_{1}(t)=\left((-t-1) c_{2}-c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}, x_{2}(t)=c_{3} \mathrm{e}^{6 t}, x_{3}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}\right\}$
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 64
dsolve ([diff $\left(x_{-} 1(t), t\right)=4 * x_{-} 1(t)+1 * x_{-} 2(t)+1 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=1 * x_{-} 1(t)+4 * x_{-} 2(t)+1 *$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t} \\
& x_{2}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}+c_{1} \mathrm{e}^{3 t} \\
& x_{3}(t)=-2 c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}-c_{1} \mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 124
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==4 * \mathrm{x} 1[\mathrm{t}]+1 * \mathrm{x} 2[\mathrm{t}]+1 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+4 * \mathrm{x} 2[\mathrm{t}]+1 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+1 * \mathrm{x} 2\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{3} e^{3 t}\left(c_{1}\left(e^{3 t}+2\right)+\left(c_{2}+c_{3}\right)\left(e^{3 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{3} e^{3 t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}+2\right)+c_{3}\left(e^{3 t}-1\right)\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{3} e^{3 t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}-1\right)+c_{3}\left(e^{3 t}+2\right)\right)
\end{aligned}
$$

4.20 problem problem 20

4.20.1 Solution using Matrix exponential method
 387

4.20.2 Solution using explicit Eigenvalue and Eigenvector method 388
4.20.3 Maple step by step solution 395

Internal problem ID [334]
Internal file name [OUTPUT/334_Sunday_June_05_2022_01_38_58_AM_59671171/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =5 x_{1}(t)+x_{2}(t)+3 x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+7 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =3 x_{1}(t)+x_{2}(t)+5 x_{3}(t)
\end{aligned}
$$

4.20.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} \\
\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2} \\
\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} \\
\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2} & \frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3} & \frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2}\right) c_{3} \\
\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{3} \\
\left(\frac{\mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{6 t}}{6}-\frac{\mathrm{e}^{2 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}\right) c_{2}+\left(\frac{\mathrm{e}^{2 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}+\frac{\mathrm{e}^{9 t}}{3}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{6}+\frac{\left(2 c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{6}+\frac{\mathrm{e}^{2 t}\left(c_{1}-c_{3}\right)}{2} \\
\frac{\left(-c_{1}+2 c_{2}-c_{3}\right) \mathrm{e}^{6 t}}{3}+\frac{\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{9 t}}{3} \\
\frac{\left(c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{6 t}}{6}+\frac{\left(2 c_{1}+2 c_{2}+2 c_{3}\right) \mathrm{e}^{9 t}}{6}-\frac{\mathrm{e}^{2 t}\left(c_{1}-c_{3}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.20.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & 1 & 3 \\
1 & 7-\lambda & 1 \\
3 & 1 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-17 \lambda^{2}+84 \lambda-108=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=6 \\
& \lambda_{2}=2 \\
& \lambda_{3}=9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
6	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{aligned}\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{lll|l}
3 & 1 & 3 & 0 \\
1 & 5 & 1 & 0 \\
3 & 1 & 3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{lll|l}
3 & 1 & 3 & 0 \\
0 & \frac{14}{3} & 0 & 0 \\
3 & 1 & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
3 & 1 & 3 & 0 \\
0 & \frac{14}{3} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3 & 1 & 3 \\
0 & \frac{14}{3} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-1 & 1 & 3 & 0 \\
1 & 1 & 1 & 0 \\
3 & 1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 3 & 0 \\
0 & 2 & 4 & 0 \\
3 & 1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+3 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 3 & 0 \\
0 & 2 & 4 & 0 \\
0 & 4 & 8 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-1 & 1 & 3 & 0 \\
0 & 2 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-1 & 1 & 3 \\
0 & 2 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]-(9)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-4 & 1 & 3 \\
1 & -2 & 1 \\
3 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-4 & 1 & 3 & 0 \\
1 & -2 & 1 & 0 \\
3 & 1 & -4 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{c}
R_{2}=R_{2}+\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 1 & 3 & 0 \\
0 & -\frac{7}{4} & \frac{7}{4} & 0 \\
3 & 1 & -4 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 1 & 3 & 0 \\
0 & -\frac{7}{4} & \frac{7}{4} & 0 \\
0 & \frac{7}{4} & -\frac{7}{4} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2}
\end{array}>\left[\begin{array}{ccc|c}
-4 & 1 & 3 & 0 \\
0 & -\frac{7}{4} & \frac{7}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & 1 & 3 \\
0 & -\frac{7}{4} & \frac{7}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
6	1	1	No	$\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{6 t} \\
& =\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{6 t} \\
-2 \mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{6 t}-c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{9 t} \\
-2 c_{1} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1} \mathrm{e}^{6 t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

4.20.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=5 x_{1}(t)+x_{2}(t)+3 x_{3}(t), x_{2}^{\prime}(t)=x_{1}(t)+7 x_{2}(t)+x_{3}(t), x_{3}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+5 x_{3}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{lll}
5 & 1 & 3 \\
1 & 7 & 1 \\
3 & 1 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[6,\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{A}}_{2}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[9,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{3}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\hookrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x^{\rightarrow}+c_{3} x \rightarrow 3
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}, x_{2}(t)=-2 c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}, x_{3}(t)=c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}\right\}
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 64

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{6 t} c_{1}+c_{2} \mathrm{e}^{9 t}+c_{3} \mathrm{e}^{2 t} \\
& x_{2}(t)=-2 \mathrm{e}^{6 t} c_{1}+c_{2} \mathrm{e}^{9 t} \\
& x_{3}(t)=\mathrm{e}^{6 t} c_{1}+c_{2} \mathrm{e}^{9 t}-c_{3} \mathrm{e}^{2 t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 163
DSolve $\left[\left\{x 1^{\prime}[t]==5 * x 1[t]+1 * x 2[t]+3 * x 3[t], x 2{ }^{\prime}[t]==1 * x 1[t]+7 * x 2[t]+1 * x 3[t], x 3 '[t]==3 * x 1[t]+1 * x 2\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{6} e^{2 t}\left(c_{1}\left(e^{4 t}+2 e^{7 t}+3\right)+\left(c_{3}-2 c_{2}\right) e^{4 t}+2\left(c_{2}+c_{3}\right) e^{7 t}-3 c_{3}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{6 t}\left(c_{1}\left(e^{3 t}-1\right)+c_{2}\left(e^{3 t}+2\right)+c_{3}\left(e^{3 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{6} e^{2 t}\left(c_{1}\left(e^{4 t}+2 e^{7 t}-3\right)+\left(c_{3}-2 c_{2}\right) e^{4 t}+2\left(c_{2}+c_{3}\right) e^{7 t}+3 c_{3}\right)
\end{aligned}
$$

4.21 problem problem 21

4.21.1 Solution using Matrix exponential method 399
4.21.2 Solution using explicit Eigenvalue and Eigenvector method . . . 400
4.21.3 Maple step by step solution . 408

Internal problem ID [335]
Internal file name [OUTPUT/335_Sunday_June_05_2022_01_39_00_AM_76937184/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =5 x_{1}(t)-6 x_{3}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)-x_{2}(t)-2 x_{3}(t) \\
x_{3}^{\prime}(t) & =4 x_{1}(t)-2 x_{2}(t)-4 x_{3}(t)
\end{aligned}
$$

4.21.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-2 \mathrm{e}^{-t}+3 \mathrm{e}^{t} & -12+6 \mathrm{e}^{t}+6 \mathrm{e}^{-t} & -6 \mathrm{e}^{t}+6 \\
\mathrm{e}^{t}-\mathrm{e}^{-t} & 3 \mathrm{e}^{-t}+2 \mathrm{e}^{t}-4 & -2 \mathrm{e}^{t}+2 \\
-2 \mathrm{e}^{-t}+2 \mathrm{e}^{t} & -10+6 \mathrm{e}^{-t}+4 \mathrm{e}^{t} & -4 \mathrm{e}^{t}+5
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-2 \mathrm{e}^{-t}+3 \mathrm{e}^{t} & -12+6 \mathrm{e}^{t}+6 \mathrm{e}^{-t} & -6 \mathrm{e}^{t}+6 \\
\mathrm{e}^{t}-\mathrm{e}^{-t} & 3 \mathrm{e}^{-t}+2 \mathrm{e}^{t}-4 & -2 \mathrm{e}^{t}+2 \\
-2 \mathrm{e}^{-t}+2 \mathrm{e}^{t} & -10+6 \mathrm{e}^{-t}+4 \mathrm{e}^{t} & -4 \mathrm{e}^{t}+5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 \mathrm{e}^{-t}+3 \mathrm{e}^{t}\right) c_{1}+\left(-12+6 \mathrm{e}^{t}+6 \mathrm{e}^{-t}\right) c_{2}+\left(-6 \mathrm{e}^{t}+6\right) c_{3} \\
\left(\mathrm{e}^{t}-\mathrm{e}^{-t}\right) c_{1}+\left(3 \mathrm{e}^{-t}+2 \mathrm{e}^{t}-4\right) c_{2}+\left(-2 \mathrm{e}^{t}+2\right) c_{3} \\
\left(-2 \mathrm{e}^{-t}+2 \mathrm{e}^{t}\right) c_{1}+\left(-10+6 \mathrm{e}^{-t}+4 \mathrm{e}^{t}\right) c_{2}+\left(-4 \mathrm{e}^{t}+5\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 c_{1}+6 c_{2}\right) \mathrm{e}^{-t}+\left(3 c_{1}+6 c_{2}-6 c_{3}\right) \mathrm{e}^{t}-12 c_{2}+6 c_{3} \\
\left(-c_{1}+3 c_{2}\right) \mathrm{e}^{-t}+\left(c_{1}+2 c_{2}-2 c_{3}\right) \mathrm{e}^{t}-4 c_{2}+2 c_{3} \\
\left(-2 c_{1}+6 c_{2}\right) \mathrm{e}^{-t}+\left(2 c_{1}+4 c_{2}-4 c_{3}\right) \mathrm{e}^{t}-10 c_{2}+5 c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.21.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & 0 & -6 \\
2 & -1-\lambda & -2 \\
4 & -2 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =1 \\
\lambda_{3} & =0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
0	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
6 & 0 & -6 & 0 \\
2 & 0 & -2 & 0 \\
4 & -2 & -3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
6 & 0 & -6 & 0 \\
0 & 0 & 0 & 0 \\
4 & -2 & -3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
6 & 0 & -6 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
6 & 0 & -6 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
6 & 0 & -6 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
t \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
5 & 0 & -6 & 0 \\
2 & -1 & -2 & 0 \\
4 & -2 & -4 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 0 & -6 & 0 \\
0 & -1 & \frac{2}{5} & 0 \\
4 & -2 & -4 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{4 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 0 & -6 & 0 \\
0 & -1 & \frac{2}{5} & 0 \\
0 & -2 & \frac{4}{5} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 0 & -6 & 0 \\
0 & -1 & \frac{2}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
5 & 0 & -6 \\
0 & -1 & \frac{2}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{6 t}{5}, v_{2}=\frac{2 t}{5}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{6 t}{5} \\
\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6 t}{5} \\
\frac{2 t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{6 t}{5} \\
\frac{2 t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{6 t}{5} \\
\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{6 t}{5} \\
\frac{2 t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
6 \\
2 \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
4 & 0 & -6 \\
2 & -2 & -2 \\
4 & -2 & -5
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
4 & 0 & -6 & 0 \\
2 & -2 & -2 & 0 \\
4 & -2 & -5 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 0 & -6 & 0 \\
0 & -2 & 1 & 0 \\
4 & -2 & -5 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 0 & -6 & 0 \\
0 & -2 & 1 & 0 \\
0 & -2 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 0 & -6 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 0 & -6 \\
0 & -2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}, v_{2}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	algebraic m	geometric k	defective?
eigenvectors				
1	1	No	$\left[\begin{array}{c}1 \\ \frac{1}{2} \\ 1\end{array}\right]$	
	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$
	1	1	No	$\left[\begin{array}{c}\frac{6}{5} \\ \frac{2}{5} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{0} \\
& =\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{t}}{2} \\
\frac{\mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+\frac{3 c_{2} e^{t}}{2}+\frac{6 c_{3}}{5} \\
\frac{c_{1} \mathrm{e}^{-t}}{2}+\frac{c_{2} \mathrm{e}^{t}}{2}+\frac{2 c_{3}}{5} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+c_{3}
\end{array}\right]
$$

4.21.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=5 x_{1}(t)-6 x_{3}(t), x_{2}^{\prime}(t)=2 x_{1}(t)-x_{2}(t)-2 x_{3}(t), x_{3}^{\prime}(t)=4 x_{1}(t)-2 x_{2}(t)-4 x_{3}(t)\right]
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right] \cdot \underline{\square}^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
5 & 0 & -6 \\
2 & -1 & -2 \\
4 & -2 & -4
\end{array}\right]
$$

- Rewrite the system as
$x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\left[\begin{array}{c}
\frac{6}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{c}\frac{3}{2} \\ \frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\underline{\rightarrow}_{3}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x_{-}^{\rightarrow}+c_{3} x \rightarrow 3
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{6 c_{2}}{5} \\
\frac{2 c_{2}}{5} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-t}+\frac{3 c_{3} e^{t}}{2}+\frac{6 c_{2}}{5} \\
\frac{c_{1} \mathrm{e}^{-t}}{2}+\frac{c_{3} \mathrm{e}^{t}}{2}+\frac{2 c_{2}}{5} \\
c_{1} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t}+c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs
$\left\{x_{1}(t)=c_{1} \mathrm{e}^{-t}+\frac{3 c_{3} \mathrm{e}^{t}}{2}+\frac{6 c_{2}}{5}, x_{2}(t)=\frac{c_{1} \mathrm{e}^{-t}}{2}+\frac{c_{3} \mathrm{e}^{t}}{2}+\frac{2 c_{2}}{5}, x_{3}(t)=c_{1} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t}+c_{2}\right\}$
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 54
dsolve([diff $\left(x_{-} 1(t), t\right)=5 * x_{-} 1(t)+0 * x_{-} 2(t)-6 * x_{\neq-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=2 * x_{-} 1(t)-1 * x_{-} 2(t)-2 *$

$$
\begin{aligned}
& x_{1}(t)=c_{1}+c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=\frac{c_{2} \mathrm{e}^{-t}}{2}+\frac{c_{3} \mathrm{e}^{t}}{3}+\frac{c_{1}}{3} \\
& x_{3}(t)=c_{2} \mathrm{e}^{-t}+\frac{2 c_{3} \mathrm{e}^{t}}{3}+\frac{5 c_{1}}{6}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 139
DSolve $\left[\left\{x 1^{\prime}[t]==5 * x 1[t]+0 * x 2[t]-6 * x 3[t], x 2{ }^{\prime}[t]==2 * x 1[t]-1 * x 2[t]-2 * x 3[t], x 3 '[t]==4 * x 1[t]-2 * x 2\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(c_{1}\left(3 e^{2 t}-2\right)+6\left(e^{t}-1\right)\left(c_{2}\left(e^{t}-1\right)-c_{3} e^{t}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(c_{1}\left(e^{2 t}-1\right)+c_{2}\left(-4 e^{t}+2 e^{2 t}+3\right)-2 c_{3} e^{t}\left(e^{t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow-2\left(c_{1}-3 c_{2}\right) e^{-t}+2\left(c_{1}+2 c_{2}-2 c_{3}\right) e^{t}+5\left(c_{3}-2 c_{2}\right)
\end{aligned}
$$

4.22 problem problem 22

4.22.1 Solution using Matrix exponential method 412
4.22.2 Solution using explicit Eigenvalue and Eigenvector method . . . 413
4.22.3 Maple step by step solution . 421

Internal problem ID [336]
Internal file name [OUTPUT/336_Sunday_June_05_2022_01_39_01_AM_64273904/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 22.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)+2 x_{2}(t)+2 x_{3}(t) \\
x_{2}^{\prime}(t) & =-5 x_{1}(t)-4 x_{2}(t)-2 x_{3}(t) \\
x_{3}^{\prime}(t) & =5 x_{1}(t)+5 x_{2}(t)+3 x_{3}(t)
\end{aligned}
$$

4.22.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{3 t} & \mathrm{e}^{3 t}-\mathrm{e}^{t} & \mathrm{e}^{3 t}-\mathrm{e}^{t} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-\mathrm{e}^{5 t}+\mathrm{e}^{3 t}+1\right) \mathrm{e}^{-2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{t} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{3 t} & \mathrm{e}^{3 t}-\mathrm{e}^{t} & \mathrm{e}^{3 t}-\mathrm{e}^{t} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-\mathrm{e}^{5 t}+\mathrm{e}^{3 t}+1\right) \mathrm{e}^{-2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{t} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1}+\left(\mathrm{e}^{3 t}-\mathrm{e}^{t}\right) c_{2}+\left(\mathrm{e}^{3 t}-\mathrm{e}^{t}\right) c_{3} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}+\left(-\mathrm{e}^{5 t}+\mathrm{e}^{3 t}+1\right) \mathrm{e}^{-2 t} c_{2}+\left(-\mathrm{e}^{3 t}+\mathrm{e}^{t}\right) c_{3} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}+\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}+\mathrm{e}^{3 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{3 t}-\mathrm{e}^{t}\left(c_{2}+c_{3}\right) \\
-\left(\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{5 t}+\left(-c_{2}-c_{3}\right) \mathrm{e}^{3 t}-c_{1}-c_{2}\right) \mathrm{e}^{-2 t} \\
\left(\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{5 t}-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.22.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & 2 & 2 \\
-5 & -4-\lambda & -2 \\
5 & 5 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-2 \lambda^{2}-5 \lambda+6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =3 \\
\lambda_{3} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
5 & 2 & 2 & 0 \\
-5 & -2 & -2 & 0 \\
5 & 5 & 5 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{lll|l}
5 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
5 & 5 & 5 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
5 & 2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 3 & 3 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
5 & 2 & 2 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
5 & 2 & 2 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & 2 & 2 & 0 \\
-5 & -5 & -2 & 0 \\
5 & 5 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
2 & 2 & 2 & 0 \\
0 & 0 & 3 & 0 \\
5 & 5 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{5 R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
2 & 2 & 2 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & -3 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{lll|l}
2 & 2 & 2 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]-(3)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 2 & 2 & 0 \\
-5 & -7 & -2 & 0 \\
5 & 5 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-5 & -7 & -2 & 0 \\
0 & 2 & 2 & 0 \\
5 & 5 & 0 & 0
\end{array}\right]} \\
& R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & -7 & -2 & 0 \\
0 & 2 & 2 & 0 \\
0 & -2 & -2 & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & -7 & -2 & 0 \\
0 & 2 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & -7 & -2 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
	1	1	No	$\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-2 t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{3 t} \\
\left(-c_{2} \mathrm{e}^{5 t}+c_{1} \mathrm{e}^{3 t}-c_{3}\right) \mathrm{e}^{-2 t} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{3}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

4.22.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=3 x_{1}(t)+2 x_{2}(t)+2 x_{3}(t), x_{2}^{\prime}(t)=-5 x_{1}(t)-4 x_{2}(t)-2 x_{3}(t), x_{3}^{\prime}(t)=5 x_{1}(t)+5 x_{2}(t)+3 x\right.
$$

- Define vector

$$
\underset{\longrightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{A}}^{\prime}(t)=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-5 & -4 & -2 \\
5 & 5 & 3
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow{ }^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2} \mathrm{e}^{t}+c_{3} \mathrm{e}^{3 t} \\
-\left(c_{3} \mathrm{e}^{5 t}-c_{2} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
\left(c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{2} \mathrm{e}^{t}+c_{3} \mathrm{e}^{3 t}, x_{2}(t)=-\left(c_{3} \mathrm{e}^{5 t}-c_{2} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t}, x_{3}(t)=\left(c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}\right\}
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 55

```
dsolve([diff (x__1(t),t)=3*x__1(t)+2*\mp@subsup{x}{_-_}{}2(t)+2*\mp@subsup{x}{_-}{\prime}3(t),\operatorname{diff}(\mp@subsup{x}{_-_}{}2(t),t)=-5*\mp@subsup{x}{_-_}{}1(t)-4*\mp@subsup{x}{_-_}{}2(t)-2
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=-c_{2} \mathrm{e}^{3 t}-c_{3} \mathrm{e}^{t}+c_{1} \mathrm{e}^{-2 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{3 t}-c_{1} \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 123

```
DSolve[{x1'[t]==3*x1[t]+2*x2[t]+2*x3[t],x2'[t]==-5*x1[t]-4*x2[t]-2*x3[t],x3'[t]==5*x1[t]+5*x
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(\left(c_{1}+c_{2}+c_{3}\right) e^{2 t}-c_{2}-c_{3}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-2 t}\left(-\left(c_{1}\left(e^{5 t}-1\right)\right)+c_{2}\left(e^{3 t}-e^{5 t}+1\right)-c_{3} e^{3 t}\left(e^{2 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-2 t}\left(c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}-1\right)+c_{3} e^{5 t}\right)
\end{aligned}
$$

4.23 problem problem 23

4.23.1 Solution using Matrix exponential method

4.23.2 Solution using explicit Eigenvalue and Eigenvector method . . . 425
4.23.3 Maple step by step solution 433

Internal problem ID [337]
Internal file name [OUTPUT/337_Sunday_June_05_2022_01_39_03_AM_51136371/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)+x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =-5 x_{1}(t)-3 x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t) & =5 x_{1}(t)+5 x_{2}(t)+3 x_{3}(t)
\end{aligned}
$$

4.23.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{3 t} & \mathrm{e}^{3 t}-\mathrm{e}^{2 t} & \mathrm{e}^{3 t}-\mathrm{e}^{2 t} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-\mathrm{e}^{5 t}+\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{3 t} & \mathrm{e}^{3 t}-\mathrm{e}^{2 t} & \mathrm{e}^{3 t}-\mathrm{e}^{2 t} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-\mathrm{e}^{5 t}+\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} c_{1}+\left(\mathrm{e}^{3 t}-\mathrm{e}^{2 t}\right) c_{2}+\left(\mathrm{e}^{3 t}-\mathrm{e}^{2 t}\right) c_{3} \\
-\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}+\left(-\mathrm{e}^{5 t}+\mathrm{e}^{4 t}+1\right) \mathrm{e}^{-2 t} c_{2}+\left(-\mathrm{e}^{3 t}+\mathrm{e}^{2 t}\right) c_{3} \\
\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}+\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}+\mathrm{e}^{3 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{3 t}-\mathrm{e}^{2 t}\left(c_{2}+c_{3}\right) \\
-\left(\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{5 t}+\left(-c_{2}-c_{3}\right) \mathrm{e}^{4 t}-c_{1}-c_{2}\right) \mathrm{e}^{-2 t} \\
\left(\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{5 t}-c_{1}-c_{2}\right) \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.23.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & 1 & 1 \\
-5 & -3-\lambda & -1 \\
5 & 5 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}-4 \lambda+12=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =2 \\
\lambda_{3} & =3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
5 & 1 & 1 & 0 \\
-5 & -1 & -1 & 0 \\
5 & 5 & 5 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{lll|l}
5 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
5 & 5 & 5 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
5 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 4 & 4 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{lll|l}
5 & 1 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
5 & 1 & 1 \\
0 & 4 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
-5 & -5 & -1 & 0 \\
5 & 5 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+5 R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 4 & 0 \\
5 & 5 & 1 & 0
\end{array}\right] \\
R_{3}=R_{3}-5 R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & -4 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 1 & 1 & 0 \\
-5 & -6 & -1 & 0 \\
5 & 5 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-5 & -6 & -1 & 0 \\
0 & 1 & 1 & 0 \\
5 & 5 & 0 & 0
\end{array}\right]} \\
& R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & -6 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & -1 & -1 & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & -6 & -1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & -6 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
3	1	1	No	$\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care
of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{3 t} \\
-\left(c_{3} \mathrm{e}^{5 t}-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
\left(c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

4.23.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=3 x_{1}(t)+x_{2}(t)+x_{3}(t), x_{2}^{\prime}(t)=-5 x_{1}(t)-3 x_{2}(t)-x_{3}(t), x_{3}^{\prime}(t)=5 x_{1}(t)+5 x_{2}(t)+3 x_{3}(t)\right.$

- Define vector

$$
\underset{\longrightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-5 & -3 & -1 \\
5 & 5 & 3
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{2}}^{\longrightarrow_{2}} \mathrm{e}^{2 t} .\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{3 t} \\
-\left(c_{3} \mathrm{e}^{5 t}-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
\left(c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{3 t}, x_{2}(t)=-\left(c_{3} \mathrm{e}^{5 t}-c_{2} \mathrm{e}^{4 t}+c_{1}\right) \mathrm{e}^{-2 t}, x_{3}(t)=\left(c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}\right\}
$$

Solution by Maple
Time used: 0.016 (sec). Leaf size: 59

```
dsolve([diff(x__1(t),t)=3*x__1(t)+1*x__2(t)+1*\mp@subsup{x}{___}{\prime}3(t),\operatorname{diff}(\mp@subsup{x}{__-}{\prime2}(t),t)=-5*\mp@subsup{x}{__}{\prime}1(t)-3*\mp@subsup{x}{__}{\prime}2(t)-1
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{2 t} \\
& x_{2}(t)=-c_{2} \mathrm{e}^{3 t}-c_{3} \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{-2 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{3 t}-c_{1} \mathrm{e}^{-2 t}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 121

```
DSolve[{x1'[t]==3*x1[t]+1*x2[t]+1*x3[t],x2'[t]==-5*x1[t]-3*x2[t]-1*x3[t], x3'[t]==5*x1[t]+5*x
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{2 t}\left(\left(c_{1}+c_{2}+c_{3}\right) e^{t}-c_{2}-c_{3}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-2 t}\left(-\left(c_{1}\left(e^{5 t}-1\right)\right)+c_{2}\left(e^{4 t}-e^{5 t}+1\right)-c_{3} e^{4 t}\left(e^{t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-2 t}\left(c_{1}\left(e^{5 t}-1\right)+c_{2}\left(e^{5 t}-1\right)+c_{3} e^{5 t}\right)
\end{aligned}
$$

4.24 problem problem 24

4.24.1 Solution using Matrix exponential method 436
4.24.2 Solution using explicit Eigenvalue and Eigenvector method . . . 437
4.24.3 Maple step by step solution . 445

Internal problem ID [338]
Internal file name [OUTPUT/338_Sunday_June_05_2022_01_39_04_AM_78020164/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)-x_{3}(t) \\
x_{2}^{\prime}(t) & =-4 x_{1}(t)-3 x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t) & =4 x_{1}(t)+4 x_{2}(t)+2 x_{3}(t)
\end{aligned}
$$

4.24.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\cos (2 t)+\sin (2 t) & -\mathrm{e}^{t}+\cos (2 t)+\sin (2 t) & -\mathrm{e}^{t}+\cos (2 t) \\
-2 \sin (2 t) & \mathrm{e}^{t}-2 \sin (2 t) & \mathrm{e}^{t}-\cos (2 t)-\sin (2 t) \\
2 \sin (2 t) & 2 \sin (2 t) & \cos (2 t)+\sin (2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\cos (2 t)+\sin (2 t) & -\mathrm{e}^{t}+\cos (2 t)+\sin (2 t) \\
-2 \sin (2 t) & -\mathrm{e}^{t}+\cos (2 t) \\
2 \sin (2 t) & \mathrm{e}^{t}-2 \sin (2 t) \\
2 \sin (2 t) & \mathrm{e}^{t}-\cos (2 t)-\sin (2 t) \\
& \cos (2 t)+\sin (2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
(\cos (2 t)+\sin (2 t)) c_{1}+\left(-\mathrm{e}^{t}+\cos (2 t)+\sin (2 t)\right) c_{2}+\left(-\mathrm{e}^{t}+\cos (2 t)\right) c_{3} \\
-2 \sin (2 t) c_{1}+\left(\mathrm{e}^{t}-2 \sin (2 t)\right) c_{2}+\left(\mathrm{e}^{t}-\cos (2 t)-\sin (2 t)\right) c_{3} \\
2 \sin (2 t) c_{1}+2 \sin (2 t) c_{2}+(\cos (2 t)+\sin (2 t)) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}+c_{2}+c_{3}\right) \cos (2 t)+\left(c_{1}+c_{2}\right) \sin (2 t)-\mathrm{e}^{t}\left(c_{2}+c_{3}\right) \\
\left(-2 c_{1}-2 c_{2}-c_{3}\right) \sin (2 t)-c_{3} \cos (2 t)+\mathrm{e}^{t}\left(c_{2}+c_{3}\right) \\
\left(2 c_{1}+2 c_{2}+c_{3}\right) \sin (2 t)+c_{3} \cos (2 t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.24.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 1 & -1 \\
-4 & -3-\lambda & -1 \\
4 & 4 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\lambda^{2}+4 \lambda-4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
$2 i$	1	complex eigenvalue
$-2 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & 1 & -1 & 0 \\
-4 & -4 & -1 & 0 \\
4 & 4 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{llc|l}
1 & 1 & -1 & 0 \\
0 & 0 & -5 & 0 \\
4 & 4 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}-4 R_{1} \Longrightarrow\left[\begin{array}{llc|l}
1 & 1 & -1 & 0 \\
0 & 0 & -5 & 0 \\
0 & 0 & 5 & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{llc|c}
1 & 1 & -1 & 0 \\
0 & 0 & -5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 0 & -5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]-(-2 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
2+2 i & 1 & -1 \\
-4 & -3+2 i & -1 \\
4 & 4 & 2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2+2 i & 1 & -1 & 0 \\
-4 & -3+2 i & -1 & 0 \\
4 & 4 & 2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2+2 i & 1 & -1 & 0 \\
0 & -2+i & -2+i & 0 \\
4 & 4 & 2+2 i & 0
\end{array}\right] \\
R_{3}=R_{3}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2+2 i & 1 & -1 & 0 \\
0 & -2+i & -2+i & 0 \\
0 & 3+i & 3+i & 0
\end{array}\right] \\
R_{3}=R_{3}+(1+i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2+2 i & 1 & -1 & 0 \\
0 & -2+i & -2+i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2+2 i & 1 & -1 \\
0 & -2+i & -2+i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
-2 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]-(2 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2-2 i & 1 & -1 & 0 \\
-4 & -3-2 i & -1 & 0 \\
4 & 4 & 2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2-2 i & 1 & -1 & 0 \\
0 & -2-i & -2-i & 0 \\
4 & 4 & 2-2 i & 0
\end{array}\right] \\
R_{3}=R_{3}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
2-2 i & 1 & -1 & 0 \\
0 & -2-i & -2-i & 0 \\
0 & 3-i & 3-i & 0
\end{array}\right] \\
R_{3}=R_{3}+(1-i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2-2 i & 1 & -1 & 0 \\
0 & -2-i & -2-i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2-2 i & 1 & -1 \\
0 & -2-i & -2-i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
-2 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	algebraic m	geometric k	defective?
eigenvectors				
$-2 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ -1 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{i}{2} \\ -1 \\ 1\end{array}\right]$
			No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{2 i t} \\
-\mathrm{e}^{2 i t} \\
\mathrm{e}^{2 i t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{-2 i t} \\
-\mathrm{e}^{-2 i t} \\
\mathrm{e}^{-2 i t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{2 i t}+\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{-2 i t}-c_{3} \mathrm{e}^{t} \\
-c_{1} \mathrm{e}^{2 i t}-c_{2} \mathrm{e}^{-2 i t}+c_{3} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{2 i t}+c_{2} \mathrm{e}^{-2 i t}
\end{array}\right]
$$

4.24.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t)+x_{2}(t)-x_{3}(t), x_{2}^{\prime}(t)=-4 x_{1}(t)-3 x_{2}(t)-x_{3}(t), x_{3}^{\prime}(t)=4 x_{1}(t)+4 x_{2}(t)+2 x_{3}(t)\right.
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-4 & -3 & -1 \\
4 & 4 & 2
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{A}}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[-2 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{-2 \mathrm{I} t} \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]
$$

- Simplify expression

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
-\cos (2 t)+\mathrm{I} \sin (2 t) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x_{\square}^{\rightarrow}=c_{1} x \longrightarrow_{1}+c_{2} x^{\rightarrow}(t)+c_{3} x \longrightarrow_{3}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
c_{2}\left(\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2}\right)+c_{3}\left(-\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2}\right) \\
-c_{2} \cos (2 t)+c_{3} \sin (2 t) \\
-c_{3} \sin (2 t)+c_{2} \cos (2 t)
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{2}-c_{3}\right) \cos (2 t)}{2}+\frac{\left(-c_{2}-c_{3}\right) \sin (2 t)}{2}-c_{1} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}+c_{3} \sin (2 t)-c_{2} \cos (2 t) \\
-c_{3} \sin (2 t)+c_{2} \cos (2 t)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(c_{2}-c_{3}\right) \cos (2 t)}{2}+\frac{\left(-c_{2}-c_{3}\right) \sin (2 t)}{2}-c_{1} \mathrm{e}^{t}, x_{2}(t)=c_{1} \mathrm{e}^{t}+c_{3} \sin (2 t)-c_{2} \cos (2 t), x_{3}(t)=-c_{3} \sin \right.
$$

\checkmark Solution by Maple
Time used: 0.11 (sec). Leaf size: 87

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{t}+c_{2} \sin (2 t)+c_{3} \cos (2 t) \\
& x_{2}(t)=-c_{1} \mathrm{e}^{t}-c_{2} \sin (2 t)-c_{3} \cos (2 t)+c_{2} \cos (2 t)-c_{3} \sin (2 t) \\
& x_{3}(t)=-c_{2} \cos (2 t)+c_{3} \sin (2 t)+c_{2} \sin (2 t)+c_{3} \cos (2 t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 103
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+1 * x 2[t]-1 * x 3[t], x 2{ }^{\prime}[t]==-4 * x 1[t]-3 * x 2[t]-1 * x 3[t], x 3 '[t]==4 * x 1[t]+4 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow\left(c_{2}+c_{3}\right)\left(-e^{t}\right)+\left(c_{1}+c_{2}+c_{3}\right) \cos (2 t)+\left(c_{1}+c_{2}\right) \sin (2 t) \\
& \mathrm{x} 2(t) \rightarrow\left(c_{2}+c_{3}\right) e^{t}-c_{3} \cos (2 t)-\left(2 c_{1}+2 c_{2}+c_{3}\right) \sin (2 t) \\
& \mathrm{x} 3(t) \rightarrow c_{3} \cos (2 t)+\left(2 c_{1}+2 c_{2}+c_{3}\right) \sin (2 t)
\end{aligned}
$$

4.25 problem problem 25

4.25.1 Solution using Matrix exponential method 449
4.25.2 Solution using explicit Eigenvalue and Eigenvector method . . . 450
4.25.3 Maple step by step solution . 458

Internal problem ID [339]
Internal file name [OUTPUT/339_Sunday_June_05_2022_01_39_05_AM_97894964/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 25.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =5 x_{1}(t)+5 x_{2}(t)+2 x_{3}(t) \\
x_{2}^{\prime}(t) & =-6 x_{1}(t)-6 x_{2}(t)-5 x_{3}(t) \\
x_{3}^{\prime}(t) & =6 x_{1}(t)+6 x_{2}(t)+5 x_{3}(t)
\end{aligned}
$$

4.25.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} \cos (3 t)+\mathrm{e}^{2 t} \sin (3 t) & \mathrm{e}^{2 t} \cos (3 t)+\mathrm{e}^{2 t} \sin (3 t)-1 & \mathrm{e}^{2 t} \cos (3 t)-1 \\
-2 \mathrm{e}^{2 t} \sin (3 t) & 1-2 \mathrm{e}^{2 t} \sin (3 t) & -\mathrm{e}^{2 t} \cos (3 t)-\mathrm{e}^{2 t} \sin (3 t)+1 \\
2 \mathrm{e}^{2 t} \sin (3 t) & 2 \mathrm{e}^{2 t} \sin (3 t) & \mathrm{e}^{2 t} \cos (3 t)+\mathrm{e}^{2 t} \sin (3 t)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & -1+\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & \mathrm{e}^{2 t} \cos (3 t)-1 \\
-2 \mathrm{e}^{2 t} \sin (3 t) & 1-2 \mathrm{e}^{2 t} \sin (3 t) & 1+(-\sin (3 t)-\cos (3 t)) \mathrm{e}^{2 t} \\
2 \mathrm{e}^{2 t} \sin (3 t) & 2 \mathrm{e}^{2 t} \sin (3 t) & \mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t))
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & -1+\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) & \mathrm{e}^{2 t} \cos (3 t)-1 \\
-2 \mathrm{e}^{2 t} \sin (3 t) & 1-2 \mathrm{e}^{2 t} \sin (3 t) & 1+(-\sin (3 t)-\cos (3 t)) \mathrm{e}^{2 t} \\
2 \mathrm{e}^{2 t} \sin (3 t) & 2 \mathrm{e}^{2 t} \sin (3 t) & \mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) c_{1}+\left(-1+\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t))\right) c_{2}+\left(\mathrm{e}^{2 t} \cos (3 t)-1\right) c_{3} \\
-2 \mathrm{e}^{2 t} \sin (3 t) c_{1}+\left(1-2 \mathrm{e}^{2 t} \sin (3 t)\right) c_{2}+\left(1+(-\sin (3 t)-\cos (3 t)) \mathrm{e}^{2 t}\right) c_{3} \\
2 \mathrm{e}^{2 t} \sin (3 t) c_{1}+2 \mathrm{e}^{2 t} \sin (3 t) c_{2}+\mathrm{e}^{2 t}(\sin (3 t)+\cos (3 t)) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{1}+c_{2}+c_{3}\right) \cos (3 t)+\left(c_{1}+c_{2}\right) \sin (3 t)\right) \mathrm{e}^{2 t}-c_{2}-c_{3} \\
\left(\left(-2 c_{1}-2 c_{2}-c_{3}\right) \sin (3 t)-\cos (3 t) c_{3}\right) \mathrm{e}^{2 t}+c_{2}+c_{3} \\
2\left(\left(c_{1}+c_{2}+\frac{c_{3}}{2}\right) \sin (3 t)+\frac{\cos (3 t) c_{3}}{2}\right) \mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.25.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & 5 & 2 \\
-6 & -6-\lambda & -5 \\
6 & 6 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-4 \lambda^{2}+13 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i \\
& \lambda_{3}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
$2+3 i$	1	complex eigenvalue
$2-3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
5 & 5 & 2 & 0 \\
-6 & -6 & -5 & 0 \\
6 & 6 & 5 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{6 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 5 & 2 & 0 \\
0 & 0 & -\frac{13}{5} & 0 \\
6 & 6 & 5 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{6 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 5 & 2 & 0 \\
0 & 0 & -\frac{13}{5} & 0 \\
0 & 0 & \frac{13}{5} & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
5 & 5 & 2 & 0 \\
0 & 0 & -\frac{13}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
5 & 5 & 2 \\
0 & 0 & -\frac{13}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]-(2-3 i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
3+3 i & 5 & 2 & 0 \\
-6 & -8+3 i & -5 & 0 \\
6 & 6 & 3+3 i & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3+3 i & 5 & 2 & 0 \\
0 & -3-2 i & -3-2 i & 0 \\
6 & 6 & 3+3 i & 0
\end{array}\right] \\
& R_{3}=R_{3}+(-1+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3+3 i & 5 & 2 & 0 \\
0 & -3-2 i & -3-2 i & 0 \\
0 & 1+5 i & 1+5 i & 0
\end{array}\right] \\
& R_{3}=R_{3}+(1+i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
3+3 i & 5 & 2 & 0 \\
0 & -3-2 i & -3-2 i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3+3 i & 5 & 2 \\
0 & -3-2 i & -3-2 i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}-\frac{i}{2}\right) t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}-\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-i \\
-2 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]-(2+3 i)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
3-3 i & 5 & 2 & 0 \\
-6 & -8-3 i & -5 & 0 \\
6 & 6 & 3-3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3-3 i & 5 & 2 & 0 \\
0 & -3+2 i & -3+2 i & 0 \\
6 & 6 & 3-3 i & 0
\end{array}\right] \\
R_{3}=R_{3}+(-1-i) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
3-3 i & 5 & 2 & 0 \\
0 & -3+2 i & -3+2 i & 0 \\
0 & 1-5 i & 1-5 i & 0
\end{array}\right] \\
R_{3}=R_{3}+(1-i) R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
3-3 i & 5 & 2 & 0 \\
0 & -3+2 i & -3+2 i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
3-3 i & 5 & 2 \\
0 & -3+2 i & -3+2 i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(\frac{1}{2}+\frac{i}{2}\right) t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2}+\frac{i}{2} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+i \\
-2 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	1	algebraic m	geometric k
defective?	eigenvectors			
$2-3 i$	1	1	No	$\left[\begin{array}{c}\frac{1}{2}+\frac{i}{2} \\ -1 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}\frac{1}{2}-\frac{i}{2} \\ -1 \\ 1\end{array}\right]$
			No	$\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(2+3 i) t} \\
-\mathrm{e}^{(2+3 i) t} \\
\mathrm{e}^{(2+3 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(2-3 i) t} \\
-\mathrm{e}^{(2-3 i) t} \\
\mathrm{e}^{(2-3 i) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(2+3 i) t}+\left(\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(2-3 i) t}-c_{3} \\
-c_{1} \mathrm{e}^{(2+3 i) t}-c_{2} \mathrm{e}^{(2-3 i) t}+c_{3} \\
c_{1} \mathrm{e}^{(2+3 i) t}+c_{2} \mathrm{e}^{(2-3 i) t}
\end{array}\right]
$$

4.25.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=5 x_{1}(t)+5 x_{2}(t)+2 x_{3}(t), x_{2}^{\prime}(t)=-6 x_{1}(t)-6 x_{2}(t)-5 x_{3}(t), x_{3}^{\prime}(t)=6 x_{1}(t)+6 x_{2}(t)+5 x\right.$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x{\underset{\sim}{\prime}}^{\prime}(t)=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
5 & 5 & 2 \\
-6 & -6 & -5 \\
6 & 6 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right],\left[2+3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}_{1}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

- Consider complex eigenpair, complex conjugate eigenvalue can be ignored

$$
\left[2-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution from eigenpair

$$
\mathrm{e}^{(2-3 \mathrm{I}) t} \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]
$$

- Use Euler identity to write solution in terms of sin and cos

$$
\mathrm{e}^{2 t} \cdot(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
-1 \\
1
\end{array}\right]
$$

- Simplify expression

$$
\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\left(\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
-\cos (3 t)+\mathrm{I} \sin (3 t) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
$$

- Both real and imaginary parts are solutions to the homogeneous system
- General solution to the system of ODEs

$$
x_{\square}^{\rightarrow}=c_{1} x \longrightarrow_{1}+c_{2} x^{\rightarrow}(t)+c_{3} x \longrightarrow_{3}(t)
$$

- Substitute solutions into the general solution

$$
x \xrightarrow{\rightarrow}=c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{\cos (3 t)}{2}-\frac{\sin (3 t)}{2} \\
-\cos (3 t) \\
\cos (3 t)
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{\sin (3 t)}{2}-\frac{\cos (3 t)}{2} \\
\sin (3 t) \\
-\sin (3 t)
\end{array}\right]+\left[\begin{array}{c}
-c_{1} \\
c_{1} \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(c_{2}-c_{3}\right) \cos (3 t)-\sin (3 t)\left(c_{2}+c_{3}\right)\right) \mathrm{e}^{2 t}}{2}-c_{1} \\
-c_{2} \mathrm{e}^{2 t} \cos (3 t)+c_{3} \mathrm{e}^{2 t} \sin (3 t)+c_{1} \\
\mathrm{e}^{2 t}\left(c_{2} \cos (3 t)-\sin (3 t) c_{3}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left(\left(c_{2}-c_{3}\right) \cos (3 t)-\sin (3 t)\left(c_{2}+c_{3}\right)\right) \mathrm{e}^{2 t}}{2}-c_{1}, x_{2}(t)=-c_{2} \mathrm{e}^{2 t} \cos (3 t)+c_{3} \mathrm{e}^{2 t} \sin (3 t)+c_{1}, x_{3}(t)=\mathrm{e}^{2 t}(c\right.
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 111

```
dsolve([diff(x__1(t),t)=5*x__1(t)+5*x__ 2(t)+2*x__ 3(t), diff (x__ 2(t),t)=-6*x__1 (t)-6*x__ 2(t) -5
```

$$
\begin{aligned}
& x_{1}(t)=c_{1}+c_{2} \mathrm{e}^{2 t} \sin (3 t)+c_{3} \mathrm{e}^{2 t} \cos (3 t) \\
& x_{2}(t)=-c_{2} \mathrm{e}^{t} \sin (3 t)+c_{2} \mathrm{e}^{2 t} \cos (3 t)-c_{3} \mathrm{e}^{2 t} \cos (3 t)-c_{3} \mathrm{e}^{2 t} \sin (3 t)-c_{1} \\
& x_{3}(t)=\mathrm{e}^{2 t}\left(c_{2} \sin (3 t)+\sin (3 t) c_{3}-c_{2} \cos (3 t)+\cos (3 t) c_{3}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 122
DSolve $\left[\left\{x 1^{\prime}[t]==5 * x 1[t]+5 * x 2[t]+2 * x 3[t], x 2{ }^{\prime}[t]==-6 * x 1[t]-6 * x 2[t]-5 * x 3[t], x 3 '[t]==6 * x 1[t]+6 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow\left(c_{1}+c_{2}+c_{3}\right) e^{2 t} \cos (3 t)+\left(c_{1}+c_{2}\right) e^{2 t} \sin (3 t)-c_{2}-c_{3} \\
& \mathrm{x} 2(t) \rightarrow-c_{3} e^{2 t} \cos (3 t)-\left(2 c_{1}+2 c_{2}+c_{3}\right) e^{2 t} \sin (3 t)+c_{2}+c_{3} \\
& \mathrm{x} 3(t) \rightarrow e^{2 t}\left(c_{3} \cos (3 t)+\left(2 c_{1}+2 c_{2}+c_{3}\right) \sin (3 t)\right)
\end{aligned}
$$

4.26 problem problem 26

4.26.1 Solution using Matrix exponential method 462
4.26.2 Solution using explicit Eigenvalue and Eigenvector method . . . 463

Internal problem ID [340]
Internal file name [OUTPUT/340_Sunday_June_05_2022_01_39_06_AM_11246814/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =9 x_{1}(t)-x_{2}(t)+2 x_{3}(t) \\
x_{3}^{\prime}(t) & =-9 x_{1}(t)+4 x_{2}(t)-x_{3}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=0, x_{2}(0)=0, x_{3}(0)=17\right]
$$

4.26.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{ccc}
\frac{8 \mathrm{e}^{3 t}}{17}+\frac{9 \mathrm{e}^{-t} \cos (t)}{17}+\frac{36 \mathrm{e}^{-t} \sin (t)}{17} & -\frac{4 \mathrm{e}^{-t} \cos (t)}{17}-\frac{16 \mathrm{e}^{-t} \sin (t)}{17}+\frac{4 \mathrm{e}^{3 t}}{17} & -\frac{4 \mathrm{e}^{-t} \cos (t)}{17}+\frac{\mathrm{e}^{-t} \sin (t)}{17}+\frac{4 \mathrm{e}^{3 t}}{17} \\
-\frac{18 \mathrm{e}^{-t} \cos (t)}{17}+\frac{81 \mathrm{e}^{-t} \sin (t)}{17}+\frac{18 \mathrm{e}^{3 t}}{17} & \frac{9 \mathrm{e}^{3 t}}{17}+\frac{8 \mathrm{e}^{-t} \cos (t)}{17}-\frac{36 \mathrm{e}^{-t} \sin (t)}{17} & -\frac{9 \mathrm{e}^{-t} \cos (t)}{17}-\frac{2 \mathrm{e}^{-t} \sin (t)}{17}+\frac{9 \mathrm{e}^{3 t}}{17} \\
-9 \mathrm{e}^{-t} \sin (t) & 4 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{9(\cos (t)+4 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{8 \mathrm{e}^{3 t}}{17} & \frac{4(-\cos (t)-4 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{4 \mathrm{e}^{3 t}}{17} & \frac{(-4 \cos (t)+\sin (t)) \mathrm{e}^{-t}}{17}+\frac{4 \mathrm{e}^{3 t}}{17} \\
\frac{9(-2 \cos (t)+9 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{18 \mathrm{e}^{3 t}}{17} & \frac{4(2 \cos (t)-9 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{9 \mathrm{e}^{3 t}}{17} & \frac{(-9 \cos (t)-2 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{9 \mathrm{e}^{3 t}}{17} \\
-9 \mathrm{e}^{-t} \sin (t) & 4 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)
\end{array}\right]
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ccc}
\frac{9(\cos (t)+4 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{8 \mathrm{e}^{3 t}}{17} & \frac{4(-\cos (t)-4 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{4 \mathrm{e}^{3 t}}{17} & \frac{(-4 \cos (t)+\sin (t)) \mathrm{e}^{-t}}{17}+\frac{4 \mathrm{e}^{3 t}}{17} \\
\frac{9(-2 \cos (t)+9 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{18 \mathrm{e}^{3 t}}{17} & \frac{4(2 \cos (t)-9 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{9 \mathrm{e}^{3 t}}{17} & \frac{(-9 \cos (t)-2 \sin (t)) \mathrm{e}^{-t}}{17}+\frac{9 \mathrm{e}^{3 t}}{17} \\
-9 \mathrm{e}^{-t} \sin (t) & 4 \mathrm{e}^{-t} \sin (t) & \mathrm{e}^{-t} \cos (t)
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
17
\end{array}\right] \\
& =\left[\begin{array}{c}
(-4 \cos (t)+\sin (t)) \mathrm{e}^{-t}+4 \mathrm{e}^{3 t} \\
(-9 \cos (t)-2 \sin (t)) \mathrm{e}^{-t}+9 \mathrm{e}^{3 t} \\
17 \mathrm{e}^{-t} \cos (t)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.26.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & 0 & 1 \\
9 & -1-\lambda & 2 \\
-9 & 4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-\lambda^{2}-4 \lambda-6=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-1+i \\
\lambda_{2} & =-1-i \\
\lambda_{3} & =3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$-1-i$	1	complex eigenvalue
3	1	real eigenvalue
$-1+i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
9 & -4 & 2 & 0 \\
-9 & 4 & -4 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
9 & -4 & 2 & 0 \\
0 & 0 & 1 & 0 \\
-9 & 4 & -4 & 0
\end{array}\right]} \\
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
9 & -4 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}+2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
9 & -4 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
9 & -4 & 2 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{4 t}{9}, v_{3}=0\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{4 t}{9} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{9} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{4 t}{9} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{9} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{4 t}{9} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{9} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{4 t}{9} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
9 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1-i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]-(-1-i)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
4+i & 0 & 1 & 0 \\
9 & i & 2 & 0 \\
-9 & 4 & i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{36}{17}+\frac{9 i}{17}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
4+i & 0 & 1 & 0 \\
0 & i & -\frac{2}{17}+\frac{9 i}{17} & 0 \\
-9 & 4 & i & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\left(\frac{36}{17}-\frac{9 i}{17}\right) R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
4+i & 0 & 1 & 0 \\
0 & i & -\frac{2}{17}+\frac{9 i}{17} & 0 \\
0 & 4 & \frac{36}{17}+\frac{8 i}{17} & 0
\end{array}\right] \\
R_{3}=4 i R_{2}+R_{3} \Longrightarrow\left[\begin{array}{ccc|c}
4+i & 0 & 1 & 0 \\
0 & i & -\frac{2}{17}+\frac{9 i}{17} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4+i & 0 & 1 \\
0 & i & -\frac{2}{17}+\frac{9 i}{17} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{4}{17}+\frac{i}{17}\right) t, v_{2}=\left(-\frac{9}{17}-\frac{2 i}{17}\right) t\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}-\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{i}{17}\right) t \\
\left(-\frac{9}{17}-\frac{2 i}{17}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}-\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{17}+\frac{i}{17} \\
-\frac{9}{17}-\frac{2 i}{17} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}-\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{17}+\frac{i}{17} \\
-\frac{9}{17}-\frac{2 i}{17} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}-\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4+i \\
-9-2 i \\
17
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=-1+i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left(\begin{array}{rcc}
\left.\left[\begin{array}{ccc}
3 & 0 & 1 \\
9 & -1 & 2 \\
-9 & 4 & -1
\end{array}\right]-(-1+i)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
4-i & 0 & 1 \\
9 & -i & 2 \\
-9 & 4 & -i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]} & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{array}\right.
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{array}{cc}
{\left[\begin{array}{ccc|c}
4-i & 0 & 1 & 0 \\
9 & -i & 2 & 0 \\
-9 & 4 & -i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{36}{17}-\frac{9 i}{17}\right) R_{1} & \Longrightarrow\left[\begin{array}{ccc|c}
4-i & 0 & 1 & 0 \\
0 & -i & -\frac{2}{17}-\frac{9 i}{17} & 0 \\
-9 & 4 & -i & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(\frac{36}{17}+\frac{9 i}{17}\right) R_{1} & \Longrightarrow\left[\begin{array}{ccc|c}
4-i & 0 & 1 & 0 \\
0 & -i & -\frac{2}{17}-\frac{9 i}{17} & 0 \\
0 & 4 & \frac{36}{17}-\frac{8 i}{17} & 0
\end{array}\right] \\
R_{3}=-4 i R_{2}+R_{3} \Longrightarrow\left[\begin{array}{ccc|c}
4-i & 0 & 1 & 0 \\
0 & -i & -\frac{2}{17}-\frac{9 i}{17} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{array}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4-i & 0 & 1 \\
0 & -i & -\frac{2}{17}-\frac{9 i}{17} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\left(-\frac{4}{17}-\frac{i}{17}\right) t, v_{2}=\left(-\frac{9}{17}+\frac{2 i}{17}\right) t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}+\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{i}{17}\right) t \\
\left(-\frac{9}{17}+\frac{2 i}{17}\right) t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}+\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{17}-\frac{i}{17} \\
-\frac{9}{17}+\frac{2 i}{17} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}+\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{17}-\frac{i}{17} \\
-\frac{9}{17}+\frac{2 i}{17} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{\mathrm{I}}{17}\right) t \\
\left(-\frac{9}{17}+\frac{2 \mathrm{I}}{17}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-4-i \\
-9+2 i \\
17
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
$-1+i$	1	1	No	$\left[\begin{array}{c}-\frac{4}{17}-\frac{i}{17} \\ -\frac{9}{17}+\frac{2 i}{17} \\ 1\end{array}\right]$
$-1-i$	1	1	No	$\left[\begin{array}{c}-\frac{4}{17}+\frac{i}{17} \\ -\frac{9}{17}-\frac{2 i}{17} \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{c}\frac{4}{9} \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
\frac{4}{9} \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{i}{17}\right) \mathrm{e}^{(-1+i) t} \\
\left(-\frac{9}{17}+\frac{2 i}{17}\right) \mathrm{e}^{(-1+i) t} \\
\mathrm{e}^{(-1+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{4}{17}+\frac{i}{17}\right) \mathrm{e}^{(-1-i) t} \\
\left(-\frac{9}{17}-\frac{2 i}{17}\right) \mathrm{e}^{(-1-i) t} \\
\mathrm{e}^{(-1-i) t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{3 t}}{9} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{i}{17}\right) c_{1} \mathrm{e}^{(-1+i) t}+\left(-\frac{4}{17}+\frac{i}{17}\right) c_{2} \mathrm{e}^{(-1-i) t}+\frac{4 c_{3} \mathrm{e}^{3 t}}{9} \\
\left(-\frac{9}{17}+\frac{2 i}{17}\right) c_{1} \mathrm{e}^{(-1+i) t}+\left(-\frac{9}{17}-\frac{2 i}{17}\right) c_{2} \mathrm{e}^{(-1-i) t}+c_{3} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{(-1+i) t}+c_{2} \mathrm{e}^{(-1-i) t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{c}
x_{1}(0)=0 \tag{1}\\
x_{2}(0)=0 \\
x_{3}(0)=17
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
0 \\
0 \\
17
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{4}{17}-\frac{i}{17}\right) c_{1}+\left(-\frac{4}{17}+\frac{i}{17}\right) c_{2}+\frac{4 c_{3}}{9} \\
\left(-\frac{9}{17}+\frac{2 i}{17}\right) c_{1}+\left(-\frac{9}{17}-\frac{2 i}{17}\right) c_{2}+c_{3} \\
c_{1}+c_{2}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{c}
c_{1}=\frac{17}{2} \\
c_{2}=\frac{17}{2} \\
c_{3}=9
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-2-\frac{i}{2}\right) \mathrm{e}^{(-1+i) t}+\left(-2+\frac{i}{2}\right) \mathrm{e}^{(-1-i) t}+4 \mathrm{e}^{3 t} \\
\left(-\frac{9}{2}+i\right) \mathrm{e}^{(-1+i) t}+\left(-\frac{9}{2}-i\right) \mathrm{e}^{(-1-i) t}+9 \mathrm{e}^{3 t} \\
\frac{17 \mathrm{e}^{(-1+i) t}}{2}+\frac{17 \mathrm{e}^{(-1-i) t}}{2}
\end{array}\right]
$$

The following are plots of each solution against another.

The following are plots of each solution.
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 64

```
dsolve([diff(x__1 (t),t) = 3*x__ 1 (t)+x__ 3 (t), diff(x__ 2(t),t) = 9*x__1 (t)-x__ 2 (t)+2*x__ 3(t),
```

$$
\begin{aligned}
& x_{1}(t)=4 \mathrm{e}^{3 t}+\mathrm{e}^{-t} \sin (t)-4 \mathrm{e}^{-t} \cos (t) \\
& x_{2}(t)=9 \mathrm{e}^{3 t}-9 \mathrm{e}^{-t} \cos (t)-2 \mathrm{e}^{-t} \sin (t) \\
& x_{3}(t)=17 \mathrm{e}^{-t} \cos (t)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 62
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]+0 * x 2[t]+1 * x 3[t], x 2{ }^{\prime}[t]==9 * x 1[t]-1 * x 2[t]+2 * x 3[t], x 3^{\prime}[t]==-9 * x 1[t]+4 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(4 e^{4 t}+\sin (t)-4 \cos (t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(9 e^{4 t}-2 \sin (t)-9 \cos (t)\right) \\
& \mathrm{x} 3(t) \rightarrow 17 e^{-t} \cos (t)
\end{aligned}
$$

4.27 problem problem 38

4.27.1 Solution using Matrix exponential method 474
4.27.2 Solution using explicit Eigenvalue and Eigenvector method . . . 475
4.27.3 Maple step by step solution . 488

Internal problem ID [341]
Internal file name [OUTPUT/341_Sunday_June_05_2022_01_39_08_AM_70749370/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 38.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+2 x_{2}(t) \\
x_{3}^{\prime}(t) & =3 x_{2}(t)+3 x_{3}(t) \\
x_{4}^{\prime}(t) & =4 x_{3}(t)+4 x_{4}(t)
\end{aligned}
$$

4.27.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{t} & 0 & 0 & 0 \\
2 \mathrm{e}^{2 t}-2 \mathrm{e}^{t} & \mathrm{e}^{2 t} & 0 & 0 \\
3 \mathrm{e}^{3 t}-6 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & -3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} & \mathrm{e}^{3 t} & 0 \\
4 \mathrm{e}^{4 t}-12 \mathrm{e}^{3 t}+12 \mathrm{e}^{2 t}-4 \mathrm{e}^{t} & -12 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t}+6 \mathrm{e}^{4 t} & -4 \mathrm{e}^{3 t}+4 \mathrm{e}^{4 t} & \mathrm{e}^{4 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
2 \mathrm{e}^{2 t}-2 \mathrm{e}^{t} & 0 & 0 \\
3 \mathrm{e}^{3 t}-6 \mathrm{e}^{2 t}+3 \mathrm{e}^{t} & -3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} & \mathrm{e}^{3 t} \\
4 \mathrm{e}^{4 t}-12 \mathrm{e}^{3 t}+12 \mathrm{e}^{2 t}-4 \mathrm{e}^{t} & -12 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t}+6 \mathrm{e}^{4 t} & -4 \mathrm{e}^{3 t}+4 \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\left(2 \mathrm{e}^{2 t}-2 \mathrm{e}^{t}\right) c_{1}+\mathrm{e}^{2 t} c_{2} \\
\left(4 \mathrm{e}^{4 t}-12 \mathrm{e}^{3 t}+12 \mathrm{e}^{2 t}-4 \mathrm{e}^{t}\right) c_{1}+\left(-12 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t}+6 \mathrm{e}^{4 t}\right) c_{2}+\left(-4 \mathrm{e}^{3 t}+4 \mathrm{e}^{4 t}\right) c_{3}+\mathrm{e}^{4 t} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\mathrm{e}^{2 t}\left(2 c_{1}+c_{2}\right)-2 \mathrm{e}^{t} c_{1} \\
\left(3 c_{1}+3 c_{2}+c_{3}\right) \mathrm{e}^{3 t}+\left(-6 c_{1}-3 c_{2}\right) \mathrm{e}^{2 t}+3 \mathrm{e}^{t} c_{1} \\
\left(4 c_{1}+6 c_{2}+4 c_{3}+c_{4}\right) \mathrm{e}^{4 t}+4\left(-3 c_{1}-3 c_{2}-c_{3}\right) \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t}\left(2 c_{1}+c_{2}\right)-4 \mathrm{e}^{t} c_{1}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.27.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1-\lambda & 0 & 0 & 0 \\
2 & 2-\lambda & 0 & 0 \\
0 & 3 & 3-\lambda & 0 \\
0 & 0 & 4 & 4-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(1-\lambda)(2-\lambda)(3-\lambda)(4-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2 \\
& \lambda_{3}=4 \\
& \lambda_{4}=1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]-(1)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{llll|l}
0 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 \\
0 & 0 & 4 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 \\
0 & 0 & 4 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{llll|l}
2 & 1 & 0 & 0 & 0 \\
0 & 3 & 2 & 0 & 0 \\
0 & 0 & 4 & 3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 3 & 2 & 0 \\
0 & 0 & 4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{4}, v_{2}=\frac{t}{2}, v_{3}=-\frac{3 t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
\frac{t}{2} \\
-\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{4} \\
\frac{t}{2} \\
-\frac{3 t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
\frac{t}{2} \\
-\frac{3 t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
\frac{t}{2} \\
-\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{4} \\
\frac{t}{2} \\
-\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2 \\
-3 \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
2 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 4 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 4 & 2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 2 & 0
\end{array}\right]
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 & 0 \\
0 & 0 & 4 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 3 & 1 & 0 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=\frac{t}{6}, v_{3}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
\frac{t}{6} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{t}{6} \\
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
\frac{t}{6} \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
\frac{t}{6} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
0 \\
\frac{t}{6} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-3 \\
6
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]-(3)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
-2 & 0 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0
\end{array}\right] \\
& R_{3}=R_{3}+3 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-2 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=-\frac{t}{4}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{4} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{4} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
4
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]-(4)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
2 & -2 & 0 & 0 & 0 \\
0 & 3 & -1 & 0 & 0 \\
0 & 0 & 4 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 3 & -1 & 0 & 0 \\
0 & 0 & 4 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 R_{2}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 4 & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+4 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
3	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ -\frac{1}{4} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}0 \\ \frac{1}{6} \\ -\frac{1}{2} \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$
1	1	1	No	$\left[\begin{array}{c}-\frac{1}{4} \\ \frac{1}{2} \\ -\frac{3}{4} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{4} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{4 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{t} \\
& =\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
-\frac{\mathrm{e}^{3 t}}{4} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\frac{\mathrm{e}^{2 t}}{6} \\
-\frac{\mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}}{4} \\
\frac{\mathrm{e}^{t}}{2} \\
-\frac{3 \mathrm{e}^{t}}{4} \\
\mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{4} \mathrm{e}^{t}}{4} \\
\frac{c_{2} \mathrm{e}^{2 t}}{6}+\frac{c_{4} \mathrm{e}^{t}}{2} \\
-\frac{c_{1} \mathrm{e}^{3 t}}{4}-\frac{c_{2} \mathrm{e}^{2 t}}{2}-\frac{3 c_{4} \mathrm{e}^{t}}{4} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{4 t}+c_{4} \mathrm{e}^{t}
\end{array}\right]
$$

4.27.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=x_{1}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+2 x_{2}(t), x_{3}^{\prime}(t)=3 x_{2}(t)+3 x_{3}(t), x_{4}^{\prime}(t)=4 x_{3}(t)+4 x_{4}(t)\right]
$$

- Define vector

$$
\underset{x^{\prime}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{\prime}}^{\prime}(t)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right] \cdot \underline{x^{\prime}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
2 & 2 & 0 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 4 & 4
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

- Consider eigenpair

$$
\left[1,\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{2}}^{\rightarrow}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}0 \\ 0 \\ -\frac{1}{4} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$x \rightarrow 3=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}0 \\ 0 \\ -\frac{1}{4} \\ 1\end{array}\right]$
- Consider eigenpair
$\left[4,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
{\underset{-}{4}}^{\rightarrow^{4 t}} \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$x_{-}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \rightarrow 2+c_{3} x \rightarrow 3+c_{4} x \rightarrow 4$
- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-\frac{1}{4} \\
\frac{1}{2} \\
-\frac{3}{4} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
0 \\
\frac{1}{6} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{4} \\
1
\end{array}\right]+c_{4} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{t}}{4} \\
\frac{c_{1} \mathrm{e}^{t}}{2}+\frac{c_{2} \mathrm{e}^{2 t}}{6} \\
-\frac{3 c_{1} \mathrm{e}^{t}}{4}-\frac{c_{2} \mathrm{e}^{2 t}}{2}-\frac{c_{3} \mathrm{e}^{3 t}}{4} \\
c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{4 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{c_{1} \mathrm{e}^{t}}{4}, x_{2}(t)=\frac{c_{1} \mathrm{e}^{t}}{2}+\frac{c_{2} \mathrm{e}^{2 t}}{6}, x_{3}(t)=-\frac{3 c_{1} \mathrm{e}^{t}}{4}-\frac{c_{2} \mathrm{e}^{2 t}}{2}-\frac{c_{3} \mathrm{e}^{3 t}}{4}, x_{4}(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}\right.
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 75

```
dsolve([diff(x__1 (t),t)=x__1(t)+0*x__2(t)+0*x__ 3(t)+0*x__ 4(t), diff (x__ 2(t),t)=2*x__ 1(t)+2*x_
```

$$
\begin{aligned}
& x_{1}(t)=c_{4} \mathrm{e}^{t} \\
& x_{2}(t)=-2 c_{4} \mathrm{e}^{t}+c_{3} \mathrm{e}^{2 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{3 t}-3 c_{3} \mathrm{e}^{2 t}+3 c_{4} \mathrm{e}^{t} \\
& x_{4}(t)=c_{1} \mathrm{e}^{4 t}-4 c_{2} \mathrm{e}^{3 t}+6 c_{3} \mathrm{e}^{2 t}-4 c_{4} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 128
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+0 * x 2[t]+0 * x 3[t]+0 * x 4[t], x 2{ }^{\prime}[t]==2 * x 1[t]+2 * x 2[t]+0 * x 3[t]+0 * x 4[t], x 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{t} \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(2 c_{1}\left(e^{t}-1\right)+c_{2} e^{t}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{t}\left(3 c_{1}\left(e^{t}-1\right)^{2}+e^{t}\left(3 c_{2}\left(e^{t}-1\right)+c_{3} e^{t}\right)\right) \\
& \mathrm{x} 4(t) \rightarrow e^{t}\left(4 c_{1}\left(e^{t}-1\right)^{3}+e^{t}\left(6 c_{2}\left(e^{t}-1\right)^{2}+e^{t}\left(4 c_{3}\left(e^{t}-1\right)+c_{4} e^{t}\right)\right)\right)
\end{aligned}
$$

4.28 problem problem 39

4.28.1 Solution using Matrix exponential method 492
4.28.2 Solution using explicit Eigenvalue and Eigenvector method . . . 493
4.28.3 Maple step by step solution . 504

Internal problem ID [342]
Internal file name [OUTPUT/342_Sunday_June_05_2022_01_39_09_AM_80092057/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 39.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=-2 x_{1}(t)+9 x_{4}(t) \\
& x_{2}^{\prime}(t)=4 x_{1}(t)+2 x_{2}(t)-10 x_{4}(t) \\
& x_{3}^{\prime}(t)=-x_{3}(t)+8 x_{4}(t) \\
& x_{4}^{\prime}(t)=x_{4}(t)
\end{aligned}
$$

4.28.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{-2 t} & 0 & 0 & 3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} \\
\mathrm{e}^{2 t}-\mathrm{e}^{-2 t} & \mathrm{e}^{2 t} & 0 & \left(-\mathrm{e}^{4 t}-2 \mathrm{e}^{3 t}+3\right) \mathrm{e}^{-2 t} \\
0 & 0 & \mathrm{e}^{-t} & 4 \mathrm{e}^{t}-4 \mathrm{e}^{-t} \\
0 & 0 & 0 & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\mathrm{e}^{-2 t} & 0 & 0 & 3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} \\
\mathrm{e}^{2 t}-\mathrm{e}^{-2 t} & \mathrm{e}^{2 t} & 0 & \left(-\mathrm{e}^{4 t}-2 \mathrm{e}^{3 t}+3\right) \mathrm{e}^{-2 t} \\
0 & 0 & \mathrm{e}^{-t} & 4 \mathrm{e}^{t}-4 \mathrm{e}^{-t} \\
0 & 0 & 0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-2 t} c_{1}+3\left(\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-2 t} c_{4} \\
\left(\mathrm{e}^{2 t}-\mathrm{e}^{-2 t}\right) c_{1}+\mathrm{e}^{2 t} c_{2}+\left(-\mathrm{e}^{4 t}-2 \mathrm{e}^{3 t}+3\right) \mathrm{e}^{-2 t} c_{4} \\
\mathrm{e}^{-t} c_{3}+\left(4 \mathrm{e}^{t}-4 \mathrm{e}^{-t}\right) c_{4} \\
\mathrm{e}^{t} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(3 \mathrm{e}^{3 t} c_{4}+c_{1}-3 c_{4}\right) \mathrm{e}^{-2 t} \\
\left(\left(c_{1}+c_{2}-c_{4}\right) \mathrm{e}^{4 t}-2 \mathrm{e}^{3 t} c_{4}-c_{1}+3 c_{4}\right) \mathrm{e}^{-2 t} \\
\left(c_{3}-4 c_{4}\right) \mathrm{e}^{-t}+4 \mathrm{e}^{t} c_{4} \\
\mathrm{e}^{t} c_{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.28.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-2-\lambda & 0 & 0 & 9 \\
4 & 2-\lambda & 0 & -10 \\
0 & 0 & -1-\lambda & 8 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-5 \lambda^{2}+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =1 \\
\lambda_{4} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
-2	1	real eigenvalue
1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{r}
\left.\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]-(-2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
0 & 0 & 0 & 9 & 0 \\
4 & 4 & 0 & -10 & 0 \\
0 & 0 & 1 & 8 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cccc|c}
4 & 4 & 0 & -10 & 0 \\
0 & 0 & 0 & 9 & 0 \\
0 & 0 & 1 & 8 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
4 & 4 & 0 & -10 & 0 \\
0 & 0 & 1 & 8 & 0 \\
0 & 0 & 0 & 9 & 0 \\
0 & 0 & 0 & 3 & 0
\end{array}\right]
$$

$$
R_{4}=R_{4}-\frac{R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
4 & 4 & 0 & -10 & 0 \\
0 & 0 & 1 & 8 & 0 \\
0 & 0 & 0 & 9 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
4 & 4 & 0 & -10 \\
0 & 0 & 1 & 8 \\
0 & 0 & 0 & 9 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 9 & 0 \\
4 & 3 & 0 & -10 & 0 \\
0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 9 & 0 \\
0 & 3 & 0 & 26 & 0 \\
0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 2 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{R_{3}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & 0 & 0 & 9 & 0 \\
0 & 3 & 0 & 26 & 0 \\
0 & 0 & 0 & 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1 & 0 & 0 & 9 \\
0 & 3 & 0 & 26 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{4}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 9 & 0 \\
4 & 1 & 0 & -10 & 0 \\
0 & 0 & -2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{4 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 9 & 0 \\
0 & 1 & 0 & 2 & 0 \\
0 & 0 & -2 & 8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 & 0 & 0 & 9 \\
0 & 1 & 0 & 2 \\
0 & 0 & -2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t, v_{2}=-2 t, v_{3}=4 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
-2 t \\
4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
-2 t \\
4 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
-2 t \\
4 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
-2 t \\
4 t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]\right. & \left.-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-4 & 0 & 0 & 9 & 0 \\
4 & 0 & 0 & -10 & 0 \\
0 & 0 & -3 & 8 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-4 & 0 & 0 & 9 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & -3 & 8 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-4 & 0 & 0 & 9 & 0 \\
0 & 0 & -3 & 8 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 & 0
\end{array}\right]} \\
R_{4}=R_{4}-R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-4 & 0 & 0 & 9 & 0 \\
0 & 0 & -3 & 8 & 0 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-4 & 0 & 0 & 9 \\
0 & 0 & -3 & 8 \\
0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
		algebraic m	geometric k	defective?
eigenvectors				
-1	1	1	No	$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
1	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
1	1		No	$\left[\begin{array}{c}3 \\ -2 \\ 4 \\ 1\end{array}\right]$
1				

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{t} \\
& =\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right] e^{t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{-2 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
3 \mathrm{e}^{t} \\
-2 \mathrm{e}^{t} \\
4 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t} \\
0 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(3 c_{3} \mathrm{e}^{3 t}-c_{4}\right) \mathrm{e}^{-2 t} \\
\left(c_{1} \mathrm{e}^{4 t}-2 c_{3} \mathrm{e}^{3 t}+c_{4}\right) \mathrm{e}^{-2 t} \\
c_{2} \mathrm{e}^{-t}+4 c_{3} \mathrm{e}^{t} \\
c_{3} \mathrm{e}^{t}
\end{array}\right]
$$

4.28.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-2 x_{1}(t)+9 x_{4}(t), x_{2}^{\prime}(t)=4 x_{1}(t)+2 x_{2}(t)-10 x_{4}(t), x_{3}^{\prime}(t)=-x_{3}(t)+8 x_{4}(t), x_{4}^{\prime}(t)=x_{4}\right.
$$

- Define vector

$$
\underset{x^{\prime}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
-2 & 0 & 0 & 9 \\
4 & 2 & 0 & -10 \\
0 & 0 & -1 & 8 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{x}_{2}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{c}3 \\ -2 \\ 4 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{3}}^{\rightarrow}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[2,\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\underline{-}_{4}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+c_{3} x \longrightarrow_{3}+c_{4} x \rightarrow 4
$$

- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
3 \\
-2 \\
4 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(-3 c_{3} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
\left(c_{4} \mathrm{e}^{4 t}-2 c_{3} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
c_{2} \mathrm{e}^{-t}+4 c_{3} \mathrm{e}^{t} \\
c_{3} \mathrm{e}^{t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\left(-3 c_{3} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t}, x_{2}(t)=\left(c_{4} \mathrm{e}^{4 t}-2 c_{3} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-2 t}, x_{3}(t)=c_{2} \mathrm{e}^{-t}+4 c_{3} \mathrm{e}^{t}, x_{4}(t)=c_{3} \mathrm{e}^{t}\right.
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 61

```
dsolve([diff (x__ 1(t),t)=-2*x__1 (t)+0*x__2(t)+0*x__ 3(t)+9*x__ 4 (t), diff (x__ 2(t),t)=4*x__ 1(t)+2
```

$$
\begin{aligned}
& x_{1}(t)=3 c_{4} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-2 t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{2 t}-2 c_{4} \mathrm{e}^{t}-c_{2} \mathrm{e}^{-2 t} \\
& x_{3}(t)=4 c_{4} \mathrm{e}^{t}+c_{3} \mathrm{e}^{-t} \\
& x_{4}(t)=c_{4} \mathrm{e}^{t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 103
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-2 * \mathrm{x} 1[\mathrm{t}]+0 * \mathrm{x} 2[\mathrm{t}]+0 * \mathrm{x} 3[\mathrm{t}]+9 * \mathrm{x} 4[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==4 * \mathrm{x} 1[\mathrm{t}]+2 * \mathrm{x} 2[\mathrm{t}]+0 * \mathrm{x} 3[\mathrm{t}]-10 * \mathrm{x} 4[\mathrm{t}], \mathrm{x} 3\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-2 t}\left(3 c_{4}\left(e^{3 t}-1\right)+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-2 t}\left(c_{1}\left(e^{4 t}-1\right)+\left(c_{2}-c_{4}\right) e^{4 t}-2 c_{4} e^{3 t}+3 c_{4}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(4 c_{4}\left(e^{2 t}-1\right)+c_{3}\right) \\
& \mathrm{x} 4(t) \rightarrow c_{4} e^{t}
\end{aligned}
$$

4.29 problem problem 40

4.29.1 Solution using Matrix exponential method
 509

4.29.2 Solution using explicit Eigenvalue and Eigenvector method 510
4.29.3 Maple step by step solution 523

Internal problem ID [343]
Internal file name [OUTPUT/343_Sunday_June_05_2022_01_39_11_AM_717931/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 40.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=2 x_{1}(t) \\
& x_{2}^{\prime}(t)=-21 x_{1}(t)-5 x_{2}(t)-27 x_{3}(t)-9 x_{4}(t) \\
& x_{3}^{\prime}(t)=5 x_{3}(t) \\
& x_{4}^{\prime}(t)=-21 x_{3}(t)-2 x_{4}(t)
\end{aligned}
$$

4.29.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{2 t} & 0 & 0 & 0 \\
-3\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-5 t} & \mathrm{e}^{-5 t} & 9 \mathrm{e}^{-5 t}-9 \mathrm{e}^{-2 t} & -3 \mathrm{e}^{-2 t}+3 \mathrm{e}^{-5 t} \\
0 & 0 & \mathrm{e}^{5 t} & 0 \\
0 & 0 & -3\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & 0 & 0 \\
-3\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-5 t} & \mathrm{e}^{-5 t} & 9 \mathrm{e}^{-5 t}-9 \mathrm{e}^{-2 t} \\
0 & 0 & \mathrm{e}^{5 t} \\
0 & 0 & -3 \mathrm{e}^{-2 t}+3 \mathrm{e}^{-5 t} \\
0 & -3\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-2 t} & 0 \\
\mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
-3\left(\mathrm{e}^{7 t}-1\right) \mathrm{e}^{-5 t} c_{1}+\mathrm{e}^{-5 t} c_{2}+\left(9 \mathrm{e}^{-5 t}-9 \mathrm{e}^{-2 t}\right) c_{3}+\left(-3 \mathrm{e}^{-2 t}+3 \mathrm{e}^{-5 t}\right) c_{4} \\
\mathrm{e}^{5 t} c_{3} \\
-3\left(\left(3 c_{3}+c_{4}\right) \mathrm{e}^{3 t}+\mathrm{e}^{7 t} c_{1}-c_{1}-\frac{c_{2}}{3}-3 \mathrm{e}^{-2 t} c_{3}+\mathrm{e}^{-2 t} c_{4}\right. \\
\mathrm{e}^{2 t} c_{1}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{e}^{5 t} c_{3} \\
-3\left(\mathrm{e}^{7 t} c_{3}-c_{3}-\frac{c_{4}}{3}\right) \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.29.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2-\lambda & 0 & 0 & 0 \\
-21 & -5-\lambda & -27 & -9 \\
0 & 0 & 5-\lambda & 0 \\
0 & 0 & -21 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-29 \lambda^{2}+100=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-5 \\
\lambda_{3} & =5 \\
\lambda_{4} & =-2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
2	1	real eigenvalue
-5	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]-(-5)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
7 & 0 & 0 & 0 & 0 \\
-21 & 0 & -27 & -9 & 0 \\
0 & 0 & 10 & 0 & 0 \\
0 & 0 & -21 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+3 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 0 & 0 & 0 & 0 \\
0 & 0 & -27 & -9 & 0 \\
0 & 0 & 10 & 0 & 0 \\
0 & 0 & -21 & 3 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{10 R_{2}}{27} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 0 & 0 & 0 & 0 \\
0 & 0 & -27 & -9 & 0 \\
0 & 0 & 0 & -\frac{10}{3} & 0 \\
0 & 0 & -21 & 3 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{7 R_{2}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 0 & 0 & 0 & 0 \\
0 & 0 & -27 & -9 & 0 \\
0 & 0 & 0 & -\frac{10}{3} & 0 \\
0 & 0 & 0 & 10 & 0
\end{array}\right] \\
& R_{4}=R_{4}+3 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 0 & 0 & 0 & 0 \\
0 & 0 & -27 & -9 & 0 \\
0 & 0 & 0 & -\frac{10}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
7 & 0 & 0 & 0 \\
0 & 0 & -27 & -9 \\
0 & 0 & 0 & -\frac{10}{3} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left.\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]-(-2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
\left(\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
-21 & -3 & -27 & -9 \\
0 & 0 & 7 & 0 \\
0 & 0 & -21 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right.
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
4 & 0 & 0 & 0 & 0 \\
-21 & -3 & -27 & -9 & 0 \\
0 & 0 & 7 & 0 & 0 \\
0 & 0 & -21 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{21 R_{1}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
4 & 0 & 0 & 0 & 0 \\
0 & -3 & -27 & -9 & 0 \\
0 & 0 & 7 & 0 & 0 \\
0 & 0 & -21 & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+3 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
4 & 0 & 0 & 0 & 0 \\
0 & -3 & -27 & -9 & 0 \\
0 & 0 & 7 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
4 & 0 & 0 & 0 \\
0 & -3 & -27 & -9 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-3 t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-3 t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-3 t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-3 t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rc}
{\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
0 & 0 & 0 & 0 & 0 \\
-21 & -7 & -27 & -9 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & -21 & -4 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cccc|c}
-21 & -7 & -27 & -9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & -21 & -4 & 0
\end{array}\right]
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
-21 & -7 & -27 & -9 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -21 & -4 & 0
\end{array}\right]
$$

$$
R_{4}=R_{4}+7 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-21 & -7 & -27 & -9 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right]
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-21 & -7 & -27 & -9 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-21 & -7 & -27 & -9 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & -4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]-(5)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array} \begin{aligned}
& {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
-3 & 0 & 0 & 0 \\
-21 & -10 & -27 & -9 \\
0 & 0 & 0 & 0 \\
0 & 0 & -21 & -7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
-21 & -10 & -27 & -9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -21 & -7 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-7 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
0 & -10 & -27 & -9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -21 & -7 & 0
\end{array}\right]
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-3 & 0 & 0 & 0 & 0 \\
0 & -10 & -27 & -9 & 0 \\
0 & 0 & -21 & -7 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 & 0 & 0 & 0 \\
0 & -10 & -27 & -9 \\
0 & 0 & -21 & -7 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=-\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
0 \\
0 \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
2	1	1	No	$\left[\begin{array}{c}-\frac{1}{3} \\ 1 \\ 0 \\ 0\end{array}\right]$
-5	1	1	No	$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ -\frac{1}{3} \\ 1\end{array}\right]$
-2	1	1	No	$\left[\begin{array}{c}0 \\ -3 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] e^{-5 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{5 t} \\
& =\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{-2 t} \\
& =\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}}{3} \\
\mathrm{e}^{2 t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-5 t} \\
0 \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
0 \\
-\frac{\mathrm{e}^{5 t}}{3} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
-3 \mathrm{e}^{-2 t} \\
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{2 t}}{3} \\
\left(c_{1} \mathrm{e}^{7 t}-3 c_{4} \mathrm{e}^{3 t}+c_{2}\right) \mathrm{e}^{-5 t} \\
-\frac{c_{3} \mathrm{e}^{5 t}}{3} \\
\left(c_{3} \mathrm{e}^{7 t}+c_{4}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

4.29.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=2 x_{1}(t), x_{2}^{\prime}(t)=-21 x_{1}(t)-5 x_{2}(t)-27 x_{3}(t)-9 x_{4}(t), x_{3}^{\prime}(t)=5 x_{3}(t), x_{4}^{\prime}(t)=-21 x_{3}(t)-\right.
$$

- Define vector

$$
\underset{x^{\prime}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{x}^{\prime}(t)=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-21 & -5 & -27 & -9 \\
0 & 0 & 5 & 0 \\
0 & 0 & -21 & -2
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-5,\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right],\left[-2,\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-5,\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
{\underset{3}{3}}_{\rightarrow}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]
$$

- Consider eigenpair

$$
\left[5,\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{4}}^{\rightarrow}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\xrightarrow{\rightarrow}}=c_{1} x_{-}^{\rightarrow}+c_{2} x_{-}^{\rightarrow}+c_{3} x_{\square}^{\rightarrow}+c_{4} x \rightarrow 4
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+\mathrm{e}^{-2 t} c_{2} \cdot\left[\begin{array}{c}
0 \\
-3 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0 \\
0
\end{array}\right]+c_{4} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{3} \mathrm{e}^{2 t}}{3} \\
\left(c_{3} \mathrm{e}^{7 t}-3 c_{2} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-5 t} \\
-\frac{c_{4} 5^{5 t}}{3} \\
\left(c_{4} \mathrm{e}^{7 t}+c_{2}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{c_{3} \mathrm{e}^{2 t}}{3}, x_{2}(t)=\left(c_{3} \mathrm{e}^{7 t}-3 c_{2} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-5 t}, x_{3}(t)=-\frac{c_{4} \mathrm{e}^{5 t}}{3}, x_{4}(t)=\left(c_{4} \mathrm{e}^{7 t}+c_{2}\right) \mathrm{e}^{-2 t}\right\}
$$

\checkmark Solution by Maple

Time used: 0.047 (sec). Leaf size: 61

```
dsolve([diff(x__1(t),t)=2*x__1(t)+0*x__2(t)+0*x__ 3(t)+0*x__ 4(t), diff(x__2(t),t)=-21*x__1(t)-
```

$$
\begin{aligned}
& x_{1}(t)=c_{4} \mathrm{e}^{2 t} \\
& x_{2}(t)=-3 c_{4} \mathrm{e}^{2 t}-3 c_{2} \mathrm{e}^{-2 t}+c_{1} \mathrm{e}^{-5 t} \\
& x_{3}(t)=c_{3} \mathrm{e}^{5 t} \\
& x_{4}(t)=-3 c_{3} \mathrm{e}^{5 t}+c_{2} \mathrm{e}^{-2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 86
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+0 * x 2[t]+0 * x 3[t]+0 * x 4[t], x 2{ }^{\prime}[t]==-21 * x 1[t]-5 * x 2[t]-27 * x 3[t]-9 * x 4[t], x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{2 t} \\
& \mathrm{x} 2(t) \rightarrow e^{-5 t}\left(-3 c_{1}\left(e^{7 t}-1\right)-3\left(3 c_{3}+c_{4}\right)\left(e^{3 t}-1\right)+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow c_{3} e^{5 t} \\
& \mathrm{x} 4(t) \rightarrow e^{-2 t}\left(c_{4}-3 c_{3}\left(e^{7 t}-1\right)\right)
\end{aligned}
$$

4.30 problem problem 41

4.30.1 Solution using Matrix exponential method

4.30.2 Solution using explicit Eigenvalue and Eigenvector method . . . 528

Internal problem ID [344]
Internal file name [OUTPUT/344_Sunday_June_05_2022_01_39_13_AM_79418298/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 41.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =4 x_{1}(t)+x_{2}(t)+x_{3}(t)+7 x_{4}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+4 x_{2}(t)+10 x_{3}(t)+x_{4}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+10 x_{2}(t)+4 x_{3}(t)+x_{4}(t) \\
x_{4}^{\prime}(t) & =7 x_{1}(t)+x_{2}(t)+x_{3}(t)+4 x_{4}(t)
\end{aligned}
$$

With initial conditions

$$
\left[x_{1}(0)=3, x_{2}(0)=1, x_{3}(0)=1, x_{4}(0)=3\right]
$$

4.30.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} \\
\frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}}{10} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} \\
\frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{ccc}
\frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} \\
\frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10} & \frac{\left.\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10} \\
\frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}}{10} & \frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10} \\
\frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10} & \frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} & \frac{\mathrm{e}^{10 t}}{5} \\
\frac{\mathrm{e}^{15 t}}{5}-\frac{\mathrm{e}^{10 t}}{5} \\
5 & \frac{\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10}-\frac{\mathrm{e}^{10 t}}{5} & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
1 \\
3
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{3\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10}+\frac{2 \mathrm{e}^{15 t}}{5}-\frac{2 \mathrm{e}^{10 t}}{5}+\frac{3\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10} \\
\frac{6 \mathrm{e}^{15 t}}{5}-\frac{6 \mathrm{e}^{10 t}}{5}+\frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10}+\frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}}{10} \\
\frac{6 \mathrm{e}^{15 t}}{5}-\frac{6 \mathrm{e}^{10 t}}{5}+\frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}+5\right) \mathrm{e}^{-6 t}}{10}+\frac{\left(4 \mathrm{e}^{21 t}+\mathrm{e}^{16 t}-5\right) \mathrm{e}^{-6 t}}{10} \\
\frac{3\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}+5\right) \mathrm{e}^{-3 t}}{10}+\frac{2 \mathrm{e}^{15 t}}{5}-\frac{2 \mathrm{e}^{10 t}}{5}+\frac{3\left(\mathrm{e}^{18 t}+4 \mathrm{e}^{13 t}-5\right) \mathrm{e}^{-3 t}}{10}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{15 t}+2 \mathrm{e}^{10 t} \\
2 \mathrm{e}^{15 t}-\mathrm{e}^{10 t} \\
2 \mathrm{e}^{15 t}-\mathrm{e}^{10 t} \\
\mathrm{e}^{15 t}+2 \mathrm{e}^{10 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.30.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
4-\lambda & 1 & 1 & 7 \\
1 & 4-\lambda & 10 & 1 \\
1 & 10 & 4-\lambda & 1 \\
7 & 1 & 1 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-16 \lambda^{3}-57 \lambda^{2}+900 \lambda+2700=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=10 \\
& \lambda_{3}=-6 \\
& \lambda_{4}=15
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
-6	1	real eigenvalue
10	1	real eigenvalue
15	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]-(-6)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
1 & 10 & 10 & 1 & 0 \\
1 & 10 & 10 & 1 & 0 \\
7 & 1 & 1 & 10 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
1 & 10 & 10 & 1 & 0 \\
7 & 1 & 1 & 10 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{R_{1}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
7 & 1 & 1 & 10 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{7 R_{1}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & \frac{3}{10} & \frac{3}{10} & \frac{51}{10} & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & \frac{3}{10} & \frac{3}{10} & \frac{51}{10} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{R_{2}}{33} \Longrightarrow\left[\begin{array}{llll|l}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{56}{11} & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(3,4)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
10 & 1 & 1 & 7 & 0 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} & 0 \\
0 & 0 & 0 & \frac{56}{11} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
10 & 1 & 1 & 7 \\
0 & \frac{99}{10} & \frac{99}{10} & \frac{3}{10} \\
0 & 0 & 0 & \frac{56}{11} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{4}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]-(-3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
7 & 1 & 1 & 7 & 0 \\
1 & 7 & 10 & 1 & 0 \\
1 & 10 & 7 & 1 & 0 \\
7 & 1 & 1 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 1 & 1 & 7 & 0 \\
0 & \frac{48}{7} & \frac{69}{7} & 0 & 0 \\
1 & 10 & 7 & 1 & 0 \\
7 & 1 & 1 & 7 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 1 & 1 & 7 & 0 \\
0 & \frac{48}{7} & \frac{69}{7} & 0 & 0 \\
0 & \frac{69}{7} & \frac{48}{7} & 0 & 0 \\
7 & 1 & 1 & 7 & 0
\end{array}\right] \\
R_{4}=R_{4}-R_{1} \Longrightarrow\left[\begin{array}{llll|l}
7 & 1 & 1 & 7 & 0 \\
0 & \frac{48}{7} & \frac{69}{7} & 0 & 0 \\
0 & \frac{69}{7} & \frac{48}{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{23 R_{2}}{16} \Longrightarrow\left[\begin{array}{cccc|c}
7 & 1 & 1 & 7 & 0 \\
0 & \frac{48}{7} & \frac{69}{7} & 0 & 0 \\
0 & 0 & -\frac{117}{16} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
7 & 1 & 1 & 7 \\
0 & \frac{48}{7} & \frac{69}{7} & 0 \\
0 & 0 & -\frac{117}{16} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=10$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]-(10)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
1 & -6 & 10 & 1 & 0 \\
1 & 10 & -6 & 1 & 0 \\
7 & 1 & 1 & -6 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{6} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
1 & 10 & -6 & 1 & 0 \\
7 & 1 & 1 & -6 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{1}}{6} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
0 & \frac{61}{6} & -\frac{35}{6} & \frac{13}{6} & 0 \\
7 & 1 & 1 & -6 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{7 R_{1}}{6} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
0 & \frac{61}{6} & -\frac{35}{6} & \frac{13}{6} & 0 \\
0 & \frac{13}{6} & \frac{13}{6} & \frac{13}{6} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{61 R_{2}}{35} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
0 & 0 & \frac{416}{35} & \frac{208}{35} & 0 \\
0 & \frac{13}{6} & \frac{13}{6} & \frac{13}{6} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{13 R_{2}}{35} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
0 & 0 & \frac{416}{35} & \frac{208}{35} & 0 \\
0 & 0 & \frac{208}{35} & \frac{104}{35} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{4}=R_{4}-\frac{R_{3}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-6 & 1 & 1 & 7 & 0 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} & 0 \\
0 & 0 & \frac{416}{35} & \frac{208}{35} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-6 & 1 & 1 & 7 \\
0 & -\frac{35}{6} & \frac{61}{6} & \frac{13}{6} \\
0 & 0 & \frac{416}{35} & \frac{208}{35} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-\frac{t}{2}, v_{3}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
t \\
-\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-1 \\
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=15$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
4 & 1 & 1 & 7 \\
1 & 4 & 10 & 1 \\
1 & 10 & 4 & 1 \\
7 & 1 & 1 & 4
\end{array}\right]-(15)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
1 & -11 & 10 & 1 & 0 \\
1 & 10 & -11 & 1 & 0 \\
7 & 1 & 1 & -11 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
1 & 10 & -11 & 1 & 0 \\
7 & 1 & 1 & -11 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
0 & \frac{111}{11} & -\frac{120}{11} & \frac{18}{11} & 0 \\
7 & 1 & 1 & -11 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{7 R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
0 & \frac{111}{11} & -\frac{120}{11} & \frac{18}{11} & 0 \\
0 & \frac{18}{11} & \frac{18}{11} & -\frac{72}{11} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{37 R_{2}}{40} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
0 & 0 & -\frac{63}{40} & \frac{63}{20} & 0 \\
0 & \frac{18}{11} & \frac{18}{11} & -\frac{72}{11} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{3 R_{2}}{20} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
0 & 0 & -\frac{63}{40} & \frac{63}{20} & 0 \\
0 & 0 & \frac{63}{20} & -\frac{63}{10} & 0
\end{array}\right] \\
& R_{4}=R_{4}+2 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-11 & 1 & 1 & 7 & 0 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} & 0 \\
0 & 0 & -\frac{63}{40} & \frac{63}{20} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-11 & 1 & 1 & 7 \\
0 & -\frac{120}{11} & \frac{111}{11} & \frac{18}{11} \\
0 & 0 & -\frac{63}{40} & \frac{63}{20} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t, v_{3}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
2 t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
-3	1	1	No	$\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$
10	1	1	No	$\left[\begin{array}{c}1 \\ -\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$
-6	1	1	No	$\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]$
15	1	1	No	$\left[\begin{array}{l}1 \\ 2 \\ 2 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue 10 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{10 t} \\
& =\left[\begin{array}{c}
1 \\
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] e^{10 t}
\end{aligned}
$$

Since eigenvalue -6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-6 t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right] e^{-6 t}
\end{aligned}
$$

Since eigenvalue 15 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{15 t} \\
& =\left[\begin{array}{l}
1 \\
2 \\
2 \\
1
\end{array}\right] e^{15 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
0 \\
0 \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{10 t} \\
-\frac{\mathrm{e}^{10 t}}{2} \\
-\frac{\mathrm{e}^{10 t}}{2} \\
\mathrm{e}^{10 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{-6 t} \\
\mathrm{e}^{-6 t} \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
\mathrm{e}^{15 t} \\
2 \mathrm{e}^{15 t} \\
2 \mathrm{e}^{15 t} \\
\mathrm{e}^{15 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(-c_{4} \mathrm{e}^{18 t}-c_{2} \mathrm{e}^{13 t}+c_{1}\right) \mathrm{e}^{-3 t} \\
-\frac{\left(-4 c_{4} \mathrm{e}^{21 t}+c_{2} \mathrm{e}^{16 t}+2 c_{3}\right) \mathrm{e}^{-6 t}}{2} \\
-\frac{\left(-4 c_{4} \mathrm{e}^{21 t}+c_{2} \mathrm{e}^{16 t}-2 c_{3}\right) \mathrm{e}^{-6 t}}{2} \\
\left(c_{4} \mathrm{e}^{18 t}+c_{2} \mathrm{e}^{13 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions

$$
\left[\begin{array}{l}
x_{1}(0)=3 \tag{1}\\
x_{2}(0)=1 \\
x_{3}(0)=1 \\
x_{4}(0)=3
\end{array}\right]
$$

Substituting initial conditions into the above solution at $t=0$ gives

$$
\left[\begin{array}{c}
3 \\
1 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
c_{4}+c_{2}-c_{1} \\
2 c_{4}-\frac{c_{2}}{2}-c_{3} \\
2 c_{4}-\frac{c_{2}}{2}+c_{3} \\
c_{4}+c_{2}+c_{1}
\end{array}\right]
$$

Solving for the constants of integrations gives

$$
\left[\begin{array}{l}
c_{1}=0 \\
c_{2}=2 \\
c_{3}=0 \\
c_{4}=1
\end{array}\right]
$$

Substituting these constants back in original solution in Eq. (1) gives

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(-\mathrm{e}^{18 t}-2 \mathrm{e}^{13 t}\right) \mathrm{e}^{-3 t} \\
-\frac{\left(-4 \mathrm{e}^{21 t}+2 \mathrm{e}^{16 t}\right) \mathrm{e}^{-6 t}}{2} \\
-\frac{\left(-4 \mathrm{e}^{21 t}+2 \mathrm{e}^{16 t}\right) \mathrm{e}^{-6 t}}{2} \\
\left(\mathrm{e}^{18 t}+2 \mathrm{e}^{13 t}\right) \mathrm{e}^{-3 t}
\end{array}\right]
$$

The following are plots of each solution against another.

The following are plots of each solution.

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 62

```
dsolve([diff(x__1(t),t) = 4*x__1 (t)+x__ 2(t)+x__ 3(t)+7*\mp@subsup{x}{___}{\prime}4(t), diff(x__ 2(t),t) = x__ 1(t)+4*x
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{15 t}+2 \mathrm{e}^{10 t} \\
& x_{2}(t)=2 \mathrm{e}^{15 t}-\mathrm{e}^{10 t} \\
& x_{3}(t)=2 \mathrm{e}^{15 t}-\mathrm{e}^{10 t} \\
& x_{4}(t)=\mathrm{e}^{15 t}+2 \mathrm{e}^{10 t}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 70
DSolve $\left[\left\{x 1^{\prime}[t]==4 * x 1[t]+1 * x 2[t]+1 * x 3[t]+7 * x 4[t], x 2{ }^{\prime}[t]==1 * x 1[t]+4 * x 2[t]+10 * x 3[t]+1 * x 4[t], x 3 '\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{10 t}\left(e^{5 t}+2\right) \\
& \mathrm{x} 2(t) \rightarrow e^{10 t}\left(2 e^{5 t}-1\right) \\
& \mathrm{x} 3(t) \rightarrow e^{10 t}\left(2 e^{5 t}-1\right) \\
& \mathrm{x} 4(t) \rightarrow e^{10 t}\left(e^{5 t}+2\right)
\end{aligned}
$$

4.31 problem problem 42

4.31.1 Solution using Matrix exponential method

4.31.2 Solution using explicit Eigenvalue and Eigenvector method . . . 547
4.31.3 Maple step by step solution 555

Internal problem ID [345]
Internal file name [OUTPUT/345_Sunday_June_05_2022_01_39_14_AM_55224577/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 42.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-40 x_{1}(t)-12 x_{2}(t)+54 x_{3}(t) \\
x_{2}^{\prime}(t) & =35 x_{1}(t)+13 x_{2}(t)-46 x_{3}(t) \\
x_{3}^{\prime}(t) & =-25 x_{1}(t)-7 x_{2}(t)+34 x_{3}(t)
\end{aligned}
$$

4.31.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
12-5 \mathrm{e}^{2 t}-6 \mathrm{e}^{5 t} & -2 \mathrm{e}^{5 t}-\mathrm{e}^{2 t}+3 & 8 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}-15 \\
-5 \mathrm{e}^{2 t}-4+9 \mathrm{e}^{5 t} & -1+3 \mathrm{e}^{5 t}-\mathrm{e}^{2 t} & -12 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}+5 \\
-5 \mathrm{e}^{2 t}+8-3 \mathrm{e}^{5 t} & -\mathrm{e}^{5 t}-\mathrm{e}^{2 t}+2 & -10+4 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
12-5 \mathrm{e}^{2 t}-6 \mathrm{e}^{5 t} & -2 \mathrm{e}^{5 t}-\mathrm{e}^{2 t}+3 & 8 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}-15 \\
-5 \mathrm{e}^{2 t}-4+9 \mathrm{e}^{5 t} & -1+3 \mathrm{e}^{5 t}-\mathrm{e}^{2 t} & -12 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}+5 \\
-5 \mathrm{e}^{2 t}+8-3 \mathrm{e}^{5 t} & -\mathrm{e}^{5 t}-\mathrm{e}^{2 t}+2 & -10+4 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(12-5 \mathrm{e}^{2 t}-6 \mathrm{e}^{5 t}\right) c_{1}+\left(-2 \mathrm{e}^{5 t}-\mathrm{e}^{2 t}+3\right) c_{2}+\left(8 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}-15\right) c_{3} \\
\left(-5 \mathrm{e}^{2 t}-4+9 \mathrm{e}^{5 t}\right) c_{1}+\left(-1+3 \mathrm{e}^{5 t}-\mathrm{e}^{2 t}\right) c_{2}+\left(-12 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}+5\right) c_{3} \\
\left(-5 \mathrm{e}^{2 t}+8-3 \mathrm{e}^{5 t}\right) c_{1}+\left(-\mathrm{e}^{5 t}-\mathrm{e}^{2 t}+2\right) c_{2}+\left(-10+4 \mathrm{e}^{5 t}+7 \mathrm{e}^{2 t}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-5 c_{1}-c_{2}+7 c_{3}\right) \mathrm{e}^{2 t}+\left(-6 c_{1}-2 c_{2}+8 c_{3}\right) \mathrm{e}^{5 t}+12 c_{1}+3 c_{2}-15 c_{3} \\
\left(-5 c_{1}-c_{2}+7 c_{3}\right) \mathrm{e}^{2 t}+3\left(3 c_{1}+c_{2}-4 c_{3}\right) \mathrm{e}^{5 t}-4 c_{1}-c_{2}+5 c_{3} \\
\left(-5 c_{1}-c_{2}+7 c_{3}\right) \mathrm{e}^{2 t}+\left(-3 c_{1}-c_{2}+4 c_{3}\right) \mathrm{e}^{5 t}+8 c_{1}+2 c_{2}-10 c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.31.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-40-\lambda & -12 & 54 \\
35 & 13-\lambda & -46 \\
-25 & -7 & 34-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-7 \lambda^{2}+10 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
2	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]-(0)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-40 & -12 & 54 & 0 \\
35 & 13 & -46 & 0 \\
-25 & -7 & 34 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{7 R_{1}}{8} \Longrightarrow\left[\begin{array}{ccc|c}
-40 & -12 & 54 & 0 \\
0 & \frac{5}{2} & \frac{5}{4} & 0 \\
-25 & -7 & 34 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{5 R_{1}}{8} \Longrightarrow\left[\begin{array}{ccc|c}
-40 & -12 & 54 & 0 \\
0 & \frac{5}{2} & \frac{5}{4} & 0 \\
0 & \frac{1}{2} & \frac{1}{4} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-40 & -12 & 54 & 0 \\
0 & \frac{5}{2} & \frac{5}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-40 & -12 & 54 \\
0 & \frac{5}{2} & \frac{5}{4} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}, v_{2}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-42 & -12 & 54 \\
35 & 11 & -46 \\
-25 & -7 & 32
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-42 & -12 & 54 & 0 \\
35 & 11 & -46 & 0 \\
-25 & -7 & 32 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{5 R_{1}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-42 & -12 & 54 & 0 \\
0 & 1 & -1 & 0 \\
-25 & -7 & 32 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{25 R_{1}}{42} \Longrightarrow\left[\begin{array}{ccc|c}
-42 & -12 & 54 & 0 \\
0 & 1 & -1 & 0 \\
0 & \frac{1}{7} & -\frac{1}{7} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}-\frac{R_{2}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-42 & -12 & 54 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-42 & -12 & 54 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=5$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]-(5)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-45 & -12 & 54 \\
35 & 8 & -46 \\
-25 & -7 & 29
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-45 & -12 & 54 & 0 \\
35 & 8 & -46 & 0 \\
-25 & -7 & 29 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{7 R_{1}}{9} \Longrightarrow\left[\begin{array}{ccc|c}
-45 & -12 & 54 & 0 \\
0 & -\frac{4}{3} & -4 & 0 \\
-25 & -7 & 29 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{5 R_{1}}{9} \Longrightarrow\left[\begin{array}{ccc|c}
-45 & -12 & 54 & 0 \\
0 & -\frac{4}{3} & -4 & 0 \\
0 & -\frac{1}{3} & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-45 & -12 & 54 & 0 \\
0 & -\frac{4}{3} & -4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-45 & -12 & 54 \\
0 & -\frac{4}{3} & -4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
0	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$
2	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{5 t} \\
& =\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
2 \mathrm{e}^{5 t} \\
-3 \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1}}{2}+c_{2} \mathrm{e}^{2 t}+2 c_{3} \mathrm{e}^{5 t} \\
-\frac{c_{1}}{2}+c_{2} \mathrm{e}^{2 t}-3 c_{3} \mathrm{e}^{5 t} \\
c_{1}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

4.31.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-40 x_{1}(t)-12 x_{2}(t)+54 x_{3}(t), x_{2}^{\prime}(t)=35 x_{1}(t)+13 x_{2}(t)-46 x_{3}(t), x_{3}^{\prime}(t)=-25 x_{1}(t)-7\right.$

- Define vector

$$
x \longrightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-40 & -12 & 54 \\
35 & 13 & -46 \\
-25 & -7 & 34
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow}{ }^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[0,\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}_{1}=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{2}}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[5,\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{3}}^{\longrightarrow^{5 t}} .\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\underline{\longrightarrow}}=c_{1} x_{1}+c_{2} x_{2}+c_{3} x \vec{\coprod}_{3}
$$

- Substitute solutions into the general solution

$$
x_{-}=c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{3 c_{1}}{2} \\
-\frac{c_{1}}{2} \\
c_{1}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1}}{2}+c_{2} \mathrm{e}^{2 t}+2 c_{3} \mathrm{e}^{5 t} \\
-\frac{c_{1}}{2}+c_{2} \mathrm{e}^{2 t}-3 c_{3} \mathrm{e}^{5 t} \\
c_{1}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{3 c_{1}}{2}+c_{2} \mathrm{e}^{2 t}+2 c_{3} \mathrm{e}^{5 t}, x_{2}(t)=-\frac{c_{1}}{2}+c_{2} \mathrm{e}^{2 t}-3 c_{3} \mathrm{e}^{5 t}, x_{3}(t)=c_{1}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{5 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 59

$$
\begin{aligned}
& x_{1}(t)=c_{1}+c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{5 t} \\
& x_{2}(t)=c_{2} \mathrm{e}^{2 t}-\frac{3 c_{3} \mathrm{e}^{5 t}}{2}-\frac{c_{1}}{3} \\
& x_{3}(t)=c_{2} \mathrm{e}^{2 t}+\frac{c_{3} \mathrm{e}^{5 t}}{2}+\frac{2 c_{1}}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 181
DSolve $\left[\left\{x 1^{\prime}[t]==-40 * x 1[t]-12 * x 2[t]+54 * x 3[t], x 2{ }^{\prime}[t]==35 * x 1[t]+13 * x 2[t]-46 * x 3[t], x 3 '[t]==-25 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1}\left(-5 e^{2 t}-6 e^{5 t}+12\right)-c_{2}\left(e^{2 t}+2 e^{5 t}-3\right)+c_{3}\left(7 e^{2 t}+8 e^{5 t}-15\right) \\
& \mathrm{x} 2(t) \rightarrow c_{1}\left(-5 e^{2 t}+9 e^{5 t}-4\right)+c_{2}\left(-e^{2 t}+3 e^{5 t}-1\right)+c_{3}\left(7 e^{2 t}-12 e^{5 t}+5\right) \\
& \mathrm{x} 3(t) \rightarrow c_{1}\left(-5 e^{2 t}-3 e^{5 t}+8\right)-c_{2}\left(e^{2 t}+e^{5 t}-2\right)+c_{3}\left(7 e^{2 t}+4 e^{5 t}-10\right)
\end{aligned}
$$

4.32 problem problem 43

4.32.1 Solution using Matrix exponential method 559
4.32.2 Solution using explicit Eigenvalue and Eigenvector method . . . 560
4.32.3 Maple step by step solution . 568

Internal problem ID [346]
Internal file name [OUTPUT/346_Sunday_June_05_2022_01_39_15_AM_48202215/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 43.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-20 x_{1}(t)+11 x_{2}(t)+13 x_{3}(t) \\
x_{2}^{\prime}(t) & =12 x_{1}(t)-x_{2}(t)-7 x_{3}(t) \\
x_{3}^{\prime}(t) & =-48 x_{1}(t)+21 x_{2}(t)+31 x_{3}(t)
\end{aligned}
$$

4.32.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
3 \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{8 t}}{2} & \frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-2 t}}{2} & \mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}-\mathrm{e}^{-2 t}+\frac{3 \mathrm{e}^{8 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}-\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t} & -\mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+5 \mathrm{e}^{-2 t}-\frac{9 \mathrm{e}^{8 t}}{2} & \frac{3 \mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{5 \mathrm{e}^{-2 t}}{2} & -\frac{5 \mathrm{e}^{-2 t}}{2}+3 \mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
3 \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{8 t}}{2} & \frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-2 t}}{2} & \mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}-\mathrm{e}^{-2 t}+\frac{3 \mathrm{e}^{8 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}-\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t} & -\mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2} \\
-\frac{\mathrm{e}^{4 t}}{2}+5 \mathrm{e}^{-2 t}-\frac{9 \mathrm{e}^{8 t}}{2} & \frac{3 \mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{5 \mathrm{e}^{-2 t}}{2} & -\frac{5 \mathrm{e}^{-2 t}}{2}+3 \mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(3 \mathrm{e}^{-2 t}-\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{8 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-2 t}}{2}\right) c_{2}+\left(\mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{-2 t}}{2}\right) c_{3} \\
\left(-\frac{\mathrm{e}^{4 t}}{2}-\mathrm{e}^{-2 t}+\frac{3 \mathrm{e}^{8 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-2 t}}{2}-\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}\right) c_{2}+\left(-\mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}+\frac{\mathrm{e}^{-2 t}}{2}\right) c_{3} \\
\left(-\frac{\mathrm{e}^{4 t}}{2}+5 \mathrm{e}^{-2 t}-\frac{9 \mathrm{e}^{8 t}}{2}\right) c_{1}+\left(\frac{3 \mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{5 \mathrm{e}^{-2 t}}{2}\right) c_{2}+\left(-\frac{5 \mathrm{e}^{-2 t}}{2}+3 \mathrm{e}^{8 t}+\frac{\mathrm{e}^{4 t}}{2}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(6 c_{1}-3 c_{2}-3 c_{3}\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(-c_{1}+2 c_{2}+c_{3}\right) \mathrm{e}^{4 t}}{2}-\frac{3 \mathrm{e}^{8 t}\left(-\frac{2 c_{3}}{3}-\frac{c_{2}}{3}+c_{1}\right)}{2} \\
\frac{\left(-2 c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(-c_{1}+2 c_{2}+c_{3}\right) \mathrm{e}^{4 t}}{2}+\frac{3 \mathrm{e}^{8 t}\left(-\frac{2 c_{3}}{3}-\frac{c_{2}}{3}+c_{1}\right)}{2} \\
\frac{5\left(2 c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-2 t}}{2}+\frac{\left(-c_{1}+2 c_{2}+c_{3}\right) \mathrm{e}^{4 t}}{2}-\frac{9 \mathrm{e}^{8 t}\left(-\frac{2 c_{3}}{3}-\frac{c_{2}}{3}+c_{1}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.32.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-20-\lambda & 11 & 13 \\
12 & -1-\lambda & -7 \\
-48 & 21 & 31-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-10 \lambda^{2}+8 \lambda+64=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =-2 \\
\lambda_{2} & =8 \\
\lambda_{3} & =4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
4	1	real eigenvalue
8	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]-(-2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-18 & 11 & 13 & 0 \\
12 & 1 & -7 & 0 \\
-48 & 21 & 33 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-18 & 11 & 13 & 0 \\
0 & \frac{25}{3} & \frac{5}{3} & 0 \\
-48 & 21 & 33 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{8 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-18 & 11 & 13 & 0 \\
0 & \frac{25}{3} & \frac{5}{3} & 0 \\
0 & -\frac{25}{3} & -\frac{5}{3} & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-18 & 11 & 13 & 0 \\
0 & \frac{25}{3} & \frac{5}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-18 & 11 & 13 \\
0 & \frac{25}{3} & \frac{5}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{5}, v_{2}=-\frac{t}{5}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{5} \\
-\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{5} \\
-\frac{t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{5} \\
-\frac{t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{5} \\
-\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{5} \\
-\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]-(4)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-24 & 11 & 13 \\
12 & -5 & -7 \\
-48 & 21 & 27
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-24 & 11 & 13 & 0 \\
12 & -5 & -7 & 0 \\
-48 & 21 & 27 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-24 & 11 & 13 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
-48 & 21 & 27 & 0
\end{array}\right] \\
& R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-24 & 11 & 13 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & -1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}+2 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-24 & 11 & 13 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-24 & 11 & 13 \\
0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=8$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]-(8)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-28 & 11 & 13 \\
12 & -9 & -7 \\
-48 & 21 & 23
\end{array}\right] }
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-28 & 11 & 13 & 0 \\
12 & -9 & -7 & 0 \\
-48 & 21 & 23 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-28 & 11 & 13 & 0 \\
0 & -\frac{30}{7} & -\frac{10}{7} & 0 \\
-48 & 21 & 23 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{12 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-28 & 11 & 13 & 0 \\
0 & -\frac{30}{7} & -\frac{10}{7} & 0 \\
0 & \frac{15}{7} & \frac{5}{7} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-28 & 11 & 13 & 0 \\
0 & -\frac{30}{7} & -\frac{10}{7} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-28 & 11 & 13 \\
0 & -\frac{30}{7} & -\frac{10}{7} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}, v_{2}=-\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}\frac{3}{5} \\ -\frac{1}{5} \\ 1\end{array}\right]$
8	1	1	No	$\left[\begin{array}{c}\frac{1}{3} \\ -\frac{1}{3} \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

Since eigenvalue 8 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{8 t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right] e^{8 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{4 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-2 t}}{5} \\
-\frac{\mathrm{e}^{-2 t}}{5} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{8 t}}{3} \\
-\frac{\mathrm{e}^{8 t}}{3} \\
\mathrm{e}^{8 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1} \mathrm{e}^{-2 t}}{5}+\frac{c_{2} \mathrm{e}^{8 t}}{3}+c_{3} \mathrm{e}^{4 t} \\
-\frac{c_{1} \mathrm{e}^{-2 t}}{5}-\frac{c_{2} \mathrm{e}^{8 t}}{3}+c_{3} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{8 t}+c_{3} \mathrm{e}^{4 t}
\end{array}\right]
$$

4.32.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-20 x_{1}(t)+11 x_{2}(t)+13 x_{3}(t), x_{2}^{\prime}(t)=12 x_{1}(t)-x_{2}(t)-7 x_{3}(t), x_{3}^{\prime}(t)=-48 x_{1}(t)+21 x_{2}\right.$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-20 & 11 & 13 \\
12 & -1 & -7 \\
-48 & 21 & 31
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-2,\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[8,\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{2}}_{2}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[8,\left[\begin{array}{c}\frac{1}{3} \\ -\frac{1}{3} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{3}}^{\rightarrow}=\mathrm{e}^{8 t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x_{\square}^{\rightarrow}+c_{2} x_{\square}^{\rightarrow}+c_{3} x \rightarrow{ }_{3}
$$

- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{3}{5} \\
-\frac{1}{5} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{8 t} \cdot\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1} \mathrm{e}^{-2 t}}{5}+c_{2} \mathrm{e}^{4 t}+\frac{c_{3} \mathrm{e}^{8 t}}{3} \\
-\frac{c_{1} \mathrm{e}^{-2 t}}{5}+c_{2} \mathrm{e}^{4 t}-\frac{c_{3} \mathrm{e}^{8 t}}{3} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}+c_{3} \mathrm{e}^{8 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{3 c_{1} \mathrm{e}^{-2 t}}{5}+c_{2} \mathrm{e}^{4 t}+\frac{c_{3} \mathrm{e}^{8 t}}{3}, x_{2}(t)=-\frac{c_{1} \mathrm{e}^{-2 t}}{5}+c_{2} \mathrm{e}^{4 t}-\frac{c_{3} \mathrm{e}^{8 t}}{3}, x_{3}(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}+c_{3} \mathrm{e}^{8 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 72
dsolve([diff $\left(x_{--} 1(t), t\right)=-20 * x_{-} 1(t)+11 * x_{-} 2(t)+13 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=12 * x_{-} 1(t)-1 * x_{-} 2$

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-2 t}+c_{3} \mathrm{e}^{8 t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{4 t}-\frac{c_{2} \mathrm{e}^{-2 t}}{3}-c_{3} \mathrm{e}^{8 t} \\
& x_{3}(t)=c_{1} \mathrm{e}^{4 t}+\frac{5 c_{2} \mathrm{e}^{-2 t}}{3}+3 c_{3} \mathrm{e}^{8 t}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.027 (sec). Leaf size: 554

```
DSolve[{x1'[t]==20*x1[t]+11*x2[t]+13*x3[t],x2'[t]==12*x1[t]-1*x2[t]-7*x3[t],x3'[t]==-48*x1[t
```

$$
\begin{aligned}
\mathrm{x} 1(t) \rightarrow & c_{2} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{11 \# 1 e^{\# 1 t}-68 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right] \\
& +c_{3} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{13 \# 1 e^{\# 1 t}-64 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right] \\
& +c_{1} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1\right. \\
& \left.-4576 \&, \frac{\# 1^{2} e^{\# 1 t}-30 \# 1 e^{\# 1 t}+116 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
\end{aligned}
$$

$$
\mathrm{x} 2(t) \rightarrow 12 c_{1} \operatorname{RootSum}\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{\# 1 e^{\# 1 t}-3 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

$$
-c_{3} \operatorname{RootSum}\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{7 \# 1 e^{\# 1 t}-296 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

$$
+c_{2} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1\right.
$$

$$
\left.-4576 \&, \frac{\# 1^{2} e^{\# 1 t}-51 \# 1 e^{\# 1 t}+1244 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

$$
\mathrm{x} 3(t) \rightarrow-12 c_{1} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{4 \# 1 e^{\# 1 t}-17 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

$$
+3 c_{2} \operatorname{RootSum}\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1-4576 \&, \frac{7 \# 1 e^{\# 1 t}-316 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

$$
+c_{3} \text { RootSum }\left[\# 1^{3}-50 \# 1^{2}+1208 \# 1\right.
$$

$$
\left.-4576 \&, \frac{\# 1^{2} e^{\# 1 t}-19 \# 1 e^{\# 1 t}-152 e^{\# 1 t}}{3 \# 1^{2}-100 \# 1+1208} \&\right]
$$

4.33 problem problem 44

4.33.1 Solution using Matrix exponential method 573

4.33.2 Solution using explicit Eigenvalue and Eigenvector method . . . 574
4.33.3 Maple step by step solution 582

Internal problem ID [347]
Internal file name [DUTPUT/347_Sunday_June_05_2022_01_39_17_AM_8252262/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 44.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =147 x_{1}(t)+23 x_{2}(t)-202 x_{3}(t) \\
x_{2}^{\prime}(t) & =-90 x_{1}(t)-9 x_{2}(t)+129 x_{3}(t) \\
x_{3}^{\prime}(t) & =90 x_{1}(t)+15 x_{2}(t)-123 x_{3}(t)
\end{aligned}
$$

4.33.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-9 \mathrm{e}^{-3 t}+10 \mathrm{e}^{12 t} & \frac{5 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}-2 \mathrm{e}^{-3 t} & -\frac{85 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}+13 \mathrm{e}^{-3 t} \\
6 \mathrm{e}^{-3 t}-6 \mathrm{e}^{12 t} & \frac{4 \mathrm{e}^{-3 t}}{3}-\frac{\mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6} & \frac{17 \mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}-\frac{26 \mathrm{e}^{-3 t}}{3} \\
-6 \mathrm{e}^{-3 t}+6 \mathrm{e}^{12 t} & \frac{\mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}-\frac{4 \mathrm{e}^{-3 t}}{3} & \frac{26 \mathrm{e}^{-3 t}}{3}-\frac{17 \mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-9 \mathrm{e}^{-3 t}+10 \mathrm{e}^{12 t} & \frac{5 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}-2 \mathrm{e}^{-3 t} & -\frac{85 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}+13 \mathrm{e}^{-3 t} \\
6 \mathrm{e}^{-3 t}-6 \mathrm{e}^{12 t} & \frac{4 \mathrm{e}^{-3 t}}{3}-\frac{\mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6} & \frac{17 \mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}-\frac{26 \mathrm{e}^{-3 t}}{3} \\
-6 \mathrm{e}^{-3 t}+6 \mathrm{e}^{12 t} & \frac{\mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}-\frac{4 \mathrm{e}^{-3 t}}{3} & \frac{26 \mathrm{e}^{-3 t}}{3}-\frac{17 \mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-9 \mathrm{e}^{-3 t}+10 \mathrm{e}^{12 t}\right) c_{1}+\left(\frac{5 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}-2 \mathrm{e}^{-3 t}\right) c_{2}+\left(-\frac{85 \mathrm{e}^{12 t}}{6}+\frac{7 \mathrm{e}^{6 t}}{6}+13 \mathrm{e}^{-3 t}\right) c_{3} \\
\left(6 \mathrm{e}^{-3 t}-6 \mathrm{e}^{12 t}\right) c_{1}+\left(\frac{4 \mathrm{e}^{-3 t}}{3}-\frac{\mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}\right) c_{2}+\left(\frac{17 \mathrm{e}^{12 t}}{2}+\frac{\mathrm{e}^{6 t}}{6}-\frac{26 \mathrm{e}^{-3 t}}{3}\right) c_{3} \\
\left(-6 \mathrm{e}^{-3 t}+6 \mathrm{e}^{12 t}\right) c_{1}+\left(\frac{\mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}-\frac{4 \mathrm{e}^{-3 t}}{3}\right) c_{2}+\left(\frac{26 \mathrm{e}^{-3 t}}{3}-\frac{17 \mathrm{e}^{12 t}}{2}+\frac{5 \mathrm{e}^{6 t}}{6}\right) c_{3}
\end{array}\right] \\
& {\left[\begin{array}{c}
\frac{5\left(12 c_{1}+c_{2}-17 c_{3}\right) \mathrm{e}^{12 t}}{6}+\left(-9 c_{1}-2 c_{2}+13 c_{3}\right) \mathrm{e}^{-3 t}+\frac{7 \mathrm{e}^{6 t}\left(c_{2}+c_{3}\right)}{6} \\
\frac{\left(-12 c_{1}-c_{2}+17 c_{3}\right) \mathrm{e}^{12 t}}{2}+\frac{2\left(9 c_{1}+2 c_{2}-13 c_{3}\right) \mathrm{e}^{-3 t}}{3}+\frac{\mathrm{e}^{6 t}\left(c_{2}+c_{3}\right)}{6} \\
\frac{\left(12 c_{1}+c_{2}-17 c_{3}\right) \mathrm{e}^{12 t}}{2}+\frac{2\left(-9 c_{1}-2 c_{2}+13 c_{3}\right) \mathrm{e}^{-3 t}}{3}+\frac{5 \mathrm{e}^{6 t}\left(c_{2}+c_{3}\right)}{6}
\end{array}\right] }
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.33.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
147-\lambda & 23 & -202 \\
-90 & -9-\lambda & 129 \\
90 & 15 & -123-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-15 \lambda^{2}+18 \lambda+216=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =12 \\
\lambda_{2} & =6 \\
\lambda_{3} & =-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
6	1	real eigenvalue
12	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]-(-3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
150 & 23 & -202 \\
-90 & -6 & 129 \\
90 & 15 & -120
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
150 & 23 & -202 & 0 \\
-90 & -6 & 129 & 0 \\
90 & 15 & -120 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
150 & 23 & -202 & 0 \\
0 & \frac{39}{5} & \frac{39}{5} & 0 \\
90 & 15 & -120 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
150 & 23 & -202 & 0 \\
0 & \frac{39}{5} & \frac{39}{5} & 0 \\
0 & \frac{6}{5} & \frac{6}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{2 R_{2}}{13} \Longrightarrow\left[\begin{array}{ccc|c}
150 & 23 & -202 & 0 \\
0 & \frac{39}{5} & \frac{39}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
150 & 23 & -202 \\
0 & \frac{39}{5} & \frac{39}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-2 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]-(6)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
141 & 23 & -202 \\
-90 & -15 & 129 \\
90 & 15 & -129
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
141 & 23 & -202 & 0 \\
-90 & -15 & 129 & 0 \\
90 & 15 & -129 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{30 R_{1}}{47} \Longrightarrow\left[\begin{array}{ccc|c}
141 & 23 & -202 & 0 \\
0 & -\frac{15}{47} & \frac{3}{47} & 0 \\
90 & 15 & -129 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{30 R_{1}}{47} \Longrightarrow\left[\begin{array}{ccc|c}
141 & 23 & -202 & 0 \\
0 & -\frac{15}{47} & \frac{3}{47} & 0 \\
0 & \frac{15}{47} & -\frac{3}{47} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
141 & 23 & -202 & 0 \\
0 & -\frac{15}{47} & \frac{3}{47} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
141 & 23 & -202 \\
0 & -\frac{15}{47} & \frac{3}{47} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{7 t}{5}, v_{2}=\frac{t}{5}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{7 t}{5} \\
\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{7 t}{5} \\
\frac{t}{5} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{7 t}{5} \\
\frac{t}{5} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{7 t}{5} \\
\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{7 t}{5} \\
\frac{t}{5} \\
t
\end{array}\right]=\left[\begin{array}{c}
7 \\
1 \\
5
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=12$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]-(12)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
135 & 23 & -202 \\
-90 & -21 & 129 \\
90 & 15 & -135
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
135 & 23 & -202 & 0 \\
-90 & -21 & 129 & 0 \\
90 & 15 & -135 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
135 & 23 & -202 & 0 \\
0 & -\frac{17}{3} & -\frac{17}{3} & 0 \\
90 & 15 & -135 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
135 & 23 & -202 & 0 \\
0 & -\frac{17}{3} & -\frac{17}{3} & 0 \\
0 & -\frac{1}{3} & -\frac{1}{3} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{2}}{17} \Longrightarrow\left[\begin{array}{ccc|c}
135 & 23 & -202 & 0 \\
0 & -\frac{17}{3} & -\frac{17}{3} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
135 & 23 & -202 \\
0 & -\frac{17}{3} & -\frac{17}{3} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{5 t}{3}, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5 t}{3} \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	algebraic m	geometric k	defective?
eigenvectors				
				No
6	1	1	$\left[\begin{array}{c}\frac{5}{3} \\ -1 \\ 1\end{array}\right]$	
-3	1	1	No	$\left[\begin{array}{c}\frac{7}{5} \\ \frac{1}{5} \\ 1\end{array}\right]$
			No	$\left[\begin{array}{c}\frac{3}{2} \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 12 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{12 t} \\
& =\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right] e^{12 t}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-3 t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{5 \mathrm{e}^{12 t}}{3} \\
-\mathrm{e}^{12 t} \\
\mathrm{e}^{12 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{7 \mathrm{e}^{6 t}}{5} \\
\frac{\mathrm{e}^{6 t}}{5} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-3 t}}{2} \\
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{5 c_{1} \mathrm{e}^{12 t}}{3}+\frac{7 c_{2} \mathrm{e}^{6 t}}{5}+\frac{3 c_{3} \mathrm{e}^{-3 t}}{2} \\
-c_{1} \mathrm{e}^{12 t}+\frac{c_{2} \mathrm{e}^{6 t}}{5}-c_{3} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{12 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{-3 t}
\end{array}\right]
$$

4.33.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=147 x_{1}(t)+23 x_{2}(t)-202 x_{3}(t), x_{2}^{\prime}(t)=-90 x_{1}(t)-9 x_{2}(t)+129 x_{3}(t), x_{3}^{\prime}(t)=90 x_{1}(t)+\right.
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
147 & 23 & -202 \\
-90 & -9 & 129 \\
90 & 15 & -123
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]\right],\left[12,\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[6,\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{\rightarrow}}_{2}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[12,\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{3}{3}}_{3}=\mathrm{e}^{12 t} \cdot\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x_{\square}^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x_{-}^{\rightarrow}+c_{3} x \rightarrow 3
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
\frac{7}{5} \\
\frac{1}{5} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{12 t} \cdot\left[\begin{array}{c}
\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1} \mathrm{e}^{-3 t}}{2}+\frac{7 c_{2} \mathrm{e}^{6 t}}{5}+\frac{5 c_{3} \mathrm{e}^{12 t}}{3} \\
-c_{1} \mathrm{e}^{-3 t}+\frac{c_{2} \mathrm{e}^{6 t}}{5}-c_{3} \mathrm{e}^{12 t} \\
c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{12 t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x_{1}(t)=\frac{3 c_{1} \mathrm{e}^{-3 t}}{2}+\frac{7 c_{2} e^{6 t}}{5}+\frac{5 c_{3} \mathrm{e}^{12 t}}{3}, x_{2}(t)=-c_{1} \mathrm{e}^{-3 t}+\frac{c_{2} \mathrm{e}^{6 t}}{5}-c_{3} \mathrm{e}^{12 t}, x_{3}(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{12 t}\right\}$
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 74

```
dsolve([diff(x__1(t),t)=147*x__1 (t)+23*x__2(t)-202*x__3(t), diff (x__ 2(t),t)=-90*x__1(t)-9*x__
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{6 t} c_{1}+c_{2} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{12 t} \\
& x_{2}(t)=\frac{\mathrm{e}^{6 t} c_{1}}{7}-\frac{2 c_{2} \mathrm{e}^{-3 t}}{3}-\frac{3 c_{3} \mathrm{e}^{12 t}}{5} \\
& x_{3}(t)=\frac{5 \mathrm{e}^{6 t} c_{1}}{7}+\frac{2 c_{2} \mathrm{e}^{-3 t}}{3}+\frac{3 c_{3} \mathrm{e}^{12 t}}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 188
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==147 * \mathrm{x} 1[\mathrm{t}]+23 * \mathrm{x} 2[\mathrm{t}]-202 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2^{\prime}[\mathrm{t}]==-90 * \mathrm{x} 1[\mathrm{t}]-9 * \mathrm{x} 2[\mathrm{t}]+129 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3\right.\right.$ ' $[\mathrm{t}]==90 *$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{6} e^{-3 t}\left(6 c_{1}\left(10 e^{15 t}-9\right)+c_{2}\left(7 e^{9 t}+5 e^{15 t}-12\right)-c_{3}\left(-7 e^{9 t}+85 e^{15 t}-78\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{6} e^{-3 t}\left(-36 c_{1}\left(e^{15 t}-1\right)+c_{2}\left(e^{9 t}-3 e^{15 t}+8\right)+c_{3}\left(e^{9 t}+51 e^{15 t}-52\right)\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{6} e^{-3 t}\left(36 c_{1}\left(e^{15 t}-1\right)+c_{2}\left(5 e^{9 t}+3 e^{15 t}-8\right)-c_{3}\left(-5 e^{9 t}+51 e^{15 t}-52\right)\right)
\end{aligned}
$$

4.34 problem problem 45

4.34.1 Solution using Matrix exponential method 586
4.34.2 Solution using explicit Eigenvalue and Eigenvector method . . . 587
4.34.3 Maple step by step solution . 601

Internal problem ID [348]
Internal file name [OUTPUT/348_Sunday_June_05_2022_01_39_18_AM_42100891/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 45.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =9 x_{1}(t)-7 x_{2}(t)-5 x_{3}(t) \\
x_{2}^{\prime}(t) & =-12 x_{1}(t)+7 x_{2}(t)+11 x_{3}(t)+9 x_{4}(t) \\
x_{3}^{\prime}(t) & =24 x_{1}(t)-17 x_{2}(t)-19 x_{3}(t)-9 x_{4}(t) \\
x_{4}^{\prime}(t) & =-18 x_{1}(t)+13 x_{2}(t)+17 x_{3}(t)+9 x_{4}(t)
\end{aligned}
$$

4.34.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
-\mathrm{e}^{-3 t}+2-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{6 t} & -\frac{4 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-1+\mathrm{e}^{-3 t} & -\frac{5 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{3 t}}{3}-2+\mathrm{e}^{-3 t} & -\mathrm{e}^{6 t}+2 \mathrm{e}^{3 t}-1 \\
4-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t} & \mathrm{e}^{-3 t}+\frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-2 & \frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-4+\mathrm{e}^{-3 t} & \mathrm{e}^{3 t}-2+\mathrm{e}^{6 t} \\
-2-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}+4 \mathrm{e}^{6 t} & -\frac{8 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}+1+\mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}-\frac{10 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}+2 & -2 \mathrm{e}^{6 t}+\mathrm{e}^{3 t}+1 \\
2+\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t} & \frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-1-\mathrm{e}^{-3 t} & \frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-2-\mathrm{e}^{-3 t} & \mathrm{e}^{6 t}+\mathrm{e}^{3 t}-1
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
-\mathrm{e}^{-3 t}+2-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{6 t} & -\frac{4 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-1+\mathrm{e}^{-3 t} & -\frac{5 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{3 t}}{3}-2+\mathrm{e}^{-3 t} & -\mathrm{e}^{6 t}+2 \mathrm{e}^{3 t}-1 \\
4-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t} & \mathrm{e}^{-3 t}+\frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-2 & \frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-4+\mathrm{e}^{-3 t} & \mathrm{e}^{3 t}-2+\mathrm{e}^{6 t} \\
-2-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}+4 \mathrm{e}^{6 t} & -\frac{8 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}+1+\mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}-\frac{10 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}+2 & -2 \mathrm{e}^{6 t}+\mathrm{e}^{3 t}+1 \\
2+\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t} & \frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-1-\mathrm{e}^{-3 t} & \frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-2-\mathrm{e}^{-3 t} & \mathrm{e}^{6 t}+\mathrm{e}^{3 t}-1
\end{array}\right] \\
& {\left[\left(-\mathrm{e}^{-3 t}+2-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{6 t}\right) c_{1}+\left(-\frac{4 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-1+\mathrm{e}^{-3 t}\right) c_{2}+\left(-\frac{5 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{3 t}}{3}-2+\mathrm{e}^{-3 t}\right) c_{3}+(\right.} \\
& \begin{array}{l}
\left(4-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t}\right) c_{1}+\left(\mathrm{e}^{-3 t}+\frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-2\right) c_{2}+\left(\frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-4+\mathrm{e}^{-3 t}\right) c_{3}+\left(\mathrm{e}^{3}\right. \\
\left.2-\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}+4 \mathrm{e}^{6 t}\right) c_{1}+\left(-\frac{8 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}+1+\mathrm{e}^{-3 t}\right) c_{2}+\left(\mathrm{e}^{-3 t}-\frac{10 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}+2\right) c_{3}+(-
\end{array} \\
& \left(2+\mathrm{e}^{-3 t}-\mathrm{e}^{3 t}-2 \mathrm{e}^{6 t}\right) c_{1}+\left(\frac{4 \mathrm{e}^{6 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3}-1-\mathrm{e}^{-3 t}\right) c_{2}+\left(\frac{5 \mathrm{e}^{6 t}}{3}+\frac{4 \mathrm{e}^{3 t}}{3}-2-\mathrm{e}^{-3 t}\right) c_{3}+\left(\mathrm{e}^{6}\right. \\
& =\left[\begin{array}{c}
\frac{2\left(-3 c_{1}+2 c_{2}+4 c_{3}+3 c_{4}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(6 c_{1}-4 c_{2}-5 c_{3}-3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\left(-c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{-3 t}+2 c_{1}-c_{2}-2 c_{3}-c_{4} \\
\frac{\left(-3 c_{1}+2 c_{2}+4 c_{3}+3 c_{4}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(-6 c_{1}+4 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\left(-c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{-3 t}+4 c_{1}-2 c_{2}-4 c_{3}-2 c_{4} \\
\frac{\left(-3 c_{1}+2 c_{2}+4 c_{3}+3 c_{4}\right) \mathrm{e}^{3 t}}{3}+\frac{2\left(6 c_{1}-4 c_{2}-5 c_{3}-3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\left(-c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{-3 t}-2 c_{1}+c_{2}+2 c_{3}+c_{4} \\
\frac{\left(-3 c_{1}+2 c_{2}+4 c_{3}+3 c_{4}\right) \mathrm{e}^{3 t}}{3}+\frac{\left(-6 c_{1}+4 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-3 t}+2 c_{1}-c_{2}-2 c_{3}-c_{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.34.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
9-\lambda & -7 & -5 & 0 \\
-12 & 7-\lambda & 11 & 9 \\
24 & -17 & -19-\lambda & -9 \\
-18 & 13 & 17 & 9-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-6 \lambda^{3}-9 \lambda^{2}+54 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=0 \\
& \lambda_{3}=6 \\
& \lambda_{4}=-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-3	1	real eigenvalue
3	1	real eigenvalue
6	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]-(-3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
-12 & 10 & 11 & 9 & 0 \\
24 & -17 & -16 & -9 & 0 \\
-18 & 13 & 17 & 12 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
24 & -17 & -16 & -9 & 0 \\
-18 & 13 & 17 & 12 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
0 & -3 & -6 & -9 & 0 \\
-18 & 13 & 17 & 12 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
0 & -3 & -6 & -9 & 0 \\
0 & \frac{5}{2} & \frac{19}{2} & 12 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & \frac{5}{2} & \frac{19}{2} & 12 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{5 R_{2}}{6} \Longrightarrow\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{9}{2} & \frac{9}{2} & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
12 & -7 & -5 & 0 & 0 \\
0 & 3 & 6 & 9 & 0 \\
0 & 0 & \frac{9}{2} & \frac{9}{2} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
12 & -7 & -5 & 0 \\
0 & 3 & 6 & 9 \\
0 & 0 & \frac{9}{2} & \frac{9}{2} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=-t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
-t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
-t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
-t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
-t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]-(0)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
-12 & 7 & 11 & 9 & 0 \\
24 & -17 & -19 & -9 & 0 \\
-18 & 13 & 17 & 9 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{4 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
24 & -17 & -19 & -9 & 0 \\
-18 & 13 & 17 & 9 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{8 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
0 & \frac{5}{3} & -\frac{17}{3} & -9 & 0 \\
-18 & 13 & 17 & 9 & 0
\end{array}\right] \\
& R_{4}=R_{4}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
0 & \frac{5}{3} & -\frac{17}{3} & -9 & 0 \\
0 & -1 & 7 & 9 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{5 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
0 & 0 & -\frac{18}{7} & -\frac{18}{7} & 0 \\
0 & -1 & 7 & 9 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{3 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
0 & 0 & -\frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & \frac{36}{7} & \frac{36}{7} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{4}=R_{4}+2 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -7 & -5 & 0 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 & 0 \\
0 & 0 & -\frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
0 & -\frac{7}{3} & \frac{13}{3} & 9 \\
0 & 0 & -\frac{18}{7} & -\frac{18}{7} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left(\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]-(3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
6 & -7 & -5 & 0 \\
-12 & 4 & 11 & 9 \\
24 & -17 & -22 & -9 \\
-18 & 13 & 17 & 6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
-12 & 4 & 11 & 9 & 0 \\
24 & -17 & -22 & -9 & 0 \\
-18 & 13 & 17 & 6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
24 & -17 & -22 & -9 & 0 \\
-18 & 13 & 17 & 6 & 0
\end{array}\right] \\
R_{3}=R_{3}-4 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
0 & 11 & -2 & -9 & 0 \\
-18 & 13 & 17 & 6 & 0
\end{array}\right] \\
R_{4}=R_{4}+3 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
0 & 11 & -2 & -9 & 0 \\
0 & -8 & 2 & 6 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+\frac{11 R_{2}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
0 & 0 & -\frac{9}{10} & \frac{9}{10} & 0 \\
0 & -8 & 2 & 6 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{4 R_{2}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
0 & 0 & -\frac{9}{10} & \frac{9}{10} & 0 \\
0 & 0 & \frac{6}{5} & -\frac{6}{5} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{4 R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -7 & -5 & 0 & 0 \\
0 & -10 & 1 & 9 & 0 \\
0 & 0 & -\frac{9}{10} & \frac{9}{10} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
6 & -7 & -5 & 0 \\
0 & -10 & 1 & 9 \\
0 & 0 & -\frac{9}{10} & \frac{9}{10} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=t, v_{3}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]-(6)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
3 & -7 & -5 & 0 \\
-12 & 1 & 11 & 9 \\
24 & -17 & -25 & -9 \\
-18 & 13 & 17 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
-12 & 1 & 11 & 9 & 0 \\
24 & -17 & -25 & -9 & 0 \\
-18 & 13 & 17 & 3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
24 & -17 & -25 & -9 & 0 \\
-18 & 13 & 17 & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-8 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
0 & 39 & 15 & -9 & 0 \\
-18 & 13 & 17 & 3 & 0
\end{array}\right] \\
& R_{4}=R_{4}+6 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
0 & 39 & 15 & -9 & 0 \\
0 & -29 & -13 & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{13 R_{2}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
0 & 0 & 2 & 4 & 0 \\
0 & -29 & -13 & 3 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{29 R_{2}}{27} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
0 & 0 & 2 & 4 & 0 \\
0 & 0 & -\frac{10}{3} & -\frac{20}{3} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{5 R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
3 & -7 & -5 & 0 & 0 \\
0 & -27 & -9 & 9 & 0 \\
0 & 0 & 2 & 4 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
3 & -7 & -5 & 0 \\
0 & -27 & -9 & 9 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t, v_{3}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
3	1	1	No	$\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]$
0	1	1	No	$\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ -2 \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}-1 \\ -1 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{6 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{-3 t} \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t} \\
-2 \mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
-\mathrm{e}^{-3 t} \\
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{3 t}+c_{2}-c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{3 t}+2 c_{2}+c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{3 t}-c_{2}-2 c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{-3 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2}+c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{-3 t}
\end{array}\right]
$$

4.34.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=9 x_{1}(t)-7 x_{2}(t)-5 x_{3}(t), x_{2}^{\prime}(t)=-12 x_{1}(t)+7 x_{2}(t)+11 x_{3}(t)+9 x_{4}(t), x_{3}^{\prime}(t)=24 x_{1}(t)-\right.$

- Define vector

$$
\overrightarrow{x^{\prime}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\mathrm{x}}{ }}(t)=\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
9 & -7 & -5 & 0 \\
-12 & 7 & 11 & 9 \\
24 & -17 & -19 & -9 \\
-18 & 13 & 17 & 9
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[-3,\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}_{\rightarrow}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{x}}_{2}=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{c}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\underline{-}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[6,\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
x_{4}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$x_{马}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x \xrightarrow{\rightarrow}+c_{3} x{ }_{3}+c_{4} x \longrightarrow_{4}$
- Substitute solutions into the general solution

$$
\underset{-}{\rightarrow}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
-1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
2 \\
1 \\
1 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
2 c_{2} \\
-c_{2} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-3 t}+2 c_{3} \mathrm{e}^{3 t}-c_{4} \mathrm{e}^{6 t}+c_{2} \\
-c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+2 c_{2} \\
-c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}-2 c_{4} \mathrm{e}^{6 t}-c_{2} \\
c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+c_{2}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-c_{1} \mathrm{e}^{-3 t}+2 c_{3} \mathrm{e}^{3 t}-c_{4} \mathrm{e}^{6 t}+c_{2}, x_{2}(t)=-c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+2 c_{2}, x_{3}(t)=-c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 105

$$
\begin{aligned}
& x_{1}(t)=c_{1}+c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{-3 t} \\
& x_{2}(t)=\frac{c_{2} \mathrm{e}^{3 t}}{2}-c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{-3 t}+2 c_{1} \\
& x_{3}(t)=\frac{c_{2} \mathrm{e}^{3 t}}{2}+2 c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{-3 t}-c_{1} \\
& x_{4}(t)=\frac{c_{2} \mathrm{e}^{3 t}}{2}-c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{-3 t}+c_{1}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 430
DSolve $\left[\left\{x 1^{\prime}[t]==9 * x 1[t]-7 * x 2[t]-5 * x 3[t]+0 * x 4[t], x 2{ }^{\prime}[t]=-12 * x 1[t]+7 * x 2[t]+11 * x 3[t]+9 * x 4[t], x\right.\right.$
$\mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{-3 t}\left(c_{1}\left(6 e^{3 t}-6 e^{6 t}+6 e^{9 t}-3\right)\right.$
$\left.-\left(e^{3 t}-1\right)\left(c_{2}\left(4 e^{6 t}+3\right)+c_{3}\left(-3 e^{3 t}+5 e^{6 t}+3\right)+3 c_{4} e^{3 t}\left(e^{3 t}-1\right)\right)\right)$
$\mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{-3 t}\left(-3 c_{1}\left(-4 e^{3 t}+e^{6 t}+2 e^{9 t}+1\right)+c_{2}\left(-6 e^{3 t}+2 e^{6 t}+4 e^{9 t}+3\right)\right.$ $\left.+\left(e^{3 t}-1\right)\left(c_{3}\left(9 e^{3 t}+5 e^{6 t}-3\right)+3 c_{4} e^{3 t}\left(e^{3 t}+2\right)\right)\right)$
$\mathrm{x} 3(t) \rightarrow c_{1}\left(-e^{-3 t}-e^{3 t}+4 e^{6 t}-2\right)+c_{2}\left(e^{-3 t}+\frac{2 e^{3 t}}{3}-\frac{8 e^{6 t}}{3}+1\right)$
$+c_{3} e^{-3 t}+\frac{4}{3} c_{3} e^{3 t}-\frac{10}{3} c_{3} e^{6 t}+c_{4} e^{3 t}-2 c_{4} e^{6 t}+2 c_{3}+c_{4}$
$\mathrm{x} 4(t) \rightarrow \frac{1}{3}\left(c_{1}\left(3 e^{-3 t}-3 e^{3 t}-6 e^{6 t}+6\right)+c_{2}\left(-3 e^{-3 t}+2 e^{3 t}+4 e^{6 t}-3\right)-3 c_{3} e^{-3 t}+4 c_{3} e^{3 t}\right.$ $\left.+5 c_{3} e^{6 t}+3 c_{4} e^{3 t}+3 c_{4} e^{6 t}-6 c_{3}-3 c_{4}\right)$

4.35 problem problem 46

4.35.1 Solution using Matrix exponential method 606
4.35.2 Solution using explicit Eigenvalue and Eigenvector method . . . 607
4.35.3 Maple step by step solution . 621

Internal problem ID [349]
Internal file name [OUTPUT/349_Sunday_June_05_2022_01_39_19_AM_94056782/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 46.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =13 x_{1}(t)-42 x_{2}(t)+106 x_{3}(t)+139 x_{4}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)-16 x_{2}(t)+52 x_{3}(t)+70 x_{4}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+6 x_{2}(t)-20 x_{3}(t)-31 x_{4}(t) \\
x_{4}^{\prime}(t) & =-x_{1}(t)-6 x_{2}(t)+22 x_{3}(t)+33 x_{4}(t)
\end{aligned}
$$

4.35.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
-\frac{3 \mathrm{e}^{-4 t}}{4}+\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t} & -\frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{9 \mathrm{e}^{-4 t}}{2} & \left(3 \mathrm{e}^{12 t}+8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}-12\right) \mathrm{e}^{-4 t} & \frac{\left(15 \mathrm{e}^{12 t}+44 \mathrm{e}^{8 t}+4 \mathrm{e}^{6 t}-63\right) \mathrm{e}}{4} \\
-\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{2} & \mathrm{e}^{8 t}-3 \mathrm{e}^{4 t}+3 \mathrm{e}^{-4 t} & -2\left(\mathrm{e}^{12 t}-4 \mathrm{e}^{8 t}-\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} & -\frac{\left(5 \mathrm{e}^{12 t}-22 \mathrm{e}^{8 t}-4 \mathrm{e}^{6 t}+21\right)}{2} \\
\frac{3 \mathrm{e}^{8 t}}{4}-\mathrm{e}^{4 t}+\frac{\mathrm{e}^{-4 t}}{4} & -\frac{3 \mathrm{e}^{8 t}}{2}+3 \mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-4 t}}{2} & \left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+2 \mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} & \frac{\left(15 \mathrm{e}^{12 t}-44 \mathrm{e}^{8 t}+8 \mathrm{e}^{6 t}+21\right) \mathrm{e}}{4} \\
-\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{4} & \frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{3 \mathrm{e}^{-4 t}}{2} & -\left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} & -\frac{\left(15 \mathrm{e}^{12 t}-44 \mathrm{e}^{8 t}+4 \mathrm{e}^{6 t}+21\right)}{4}
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& {\left[-\frac{3 \mathrm{e}^{-4 t}}{4}+\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t} \quad-\frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{9 \mathrm{e}^{-4 t}}{2} \quad\left(3 \mathrm{e}^{12 t}+8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}-12\right) \mathrm{e}^{-4 t} \quad \frac{\left(15 \mathrm{e}^{12 t}+44 \mathrm{e}^{8 t}+4 \mathrm{e}^{6 t}-6\right.}{4}\right.} \\
& -\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{2} \quad \mathrm{e}^{8 t}-3 \mathrm{e}^{4 t}+3 \mathrm{e}^{-4 t} \quad-2\left(\mathrm{e}^{12 t}-4 \mathrm{e}^{8 t}-\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} \quad-\frac{\left(5 \mathrm{e}^{12 t}-22 \mathrm{e}^{8 t}-4 \mathrm{e}^{6 t}+2\right.}{2} \\
& \frac{3 \mathrm{e}^{8 t}}{4}-\mathrm{e}^{4 t}+\frac{\mathrm{e}^{-4 t}}{4} \quad-\frac{3 \mathrm{e}^{8 t}}{2}+3 \mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-4 t}}{2} \quad\left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+2 \mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} \quad \frac{\left(15 \mathrm{e}^{12 t}-44 \mathrm{e}^{8 t}+8 \mathrm{e}^{6 t}+2\right.}{4} \\
& -\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{4} \quad \frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{3 \mathrm{e}^{-4 t}}{2} \quad-\left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} \quad-\frac{\left(15 \mathrm{e}^{12 t}-44 \mathrm{e}^{8 t}+4 \mathrm{e}^{6 t}+\right.}{4} \\
& {\left[\left(-\frac{3 \mathrm{e}^{-4 t}}{4}+\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t}\right) c_{1}+\left(-\frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{9 \mathrm{e}^{-4 t}}{2}\right) c_{2}+\left(3 \mathrm{e}^{12 t}+8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}-12\right) \mathrm{e}^{-4 t} c_{3}+\frac{\left(15 \mathrm{e}^{12}\right.}{}\right.} \\
& \left(-\frac{\mathrm{e}^{8 t}}{2}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{2}\right) c_{1}+\left(\mathrm{e}^{8 t}-3 \mathrm{e}^{4 t}+3 \mathrm{e}^{-4 t}\right) c_{2}-2\left(\mathrm{e}^{12 t}-4 \mathrm{e}^{8 t}-\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} c_{3}-\underline{\left(5 \mathrm{e}^{12 t}-22\right.} \\
& \left(\frac{3 \mathrm{e}^{8 t}}{4}-\mathrm{e}^{4 t}+\frac{\mathrm{e}^{-4 t}}{4}\right) c_{1}+\left(-\frac{3 \mathrm{e}^{8 t}}{2}+3 \mathrm{e}^{4 t}-\frac{3 \mathrm{e}^{-4 t}}{2}\right) c_{2}+\left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+2 \mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} c_{3}+\frac{\left(15 \mathrm{e}^{12 t}\right.}{} \\
& \left(-\frac{3 \mathrm{e}^{8 t}}{4}+\mathrm{e}^{4 t}-\frac{\mathrm{e}^{-4 t}}{4}\right) c_{1}+\left(\frac{3 \mathrm{e}^{8 t}}{2}-3 \mathrm{e}^{4 t}+\frac{3 \mathrm{e}^{-4 t}}{2}\right) c_{2}-\left(3 \mathrm{e}^{12 t}-8 \mathrm{e}^{8 t}+\mathrm{e}^{6 t}+4\right) \mathrm{e}^{-4 t} c_{3}-\frac{\left(15 \mathrm{e}^{12 t}-\right.}{} \\
& \left(3\left(\frac{c_{1}}{4}-\frac{c_{2}}{2}+c_{3}+\frac{5 c_{4}}{4}\right) \mathrm{e}^{12 t}+\left(c_{1}-3 c_{2}+8 c_{3}+11 c_{4}\right) \mathrm{e}^{8 t}+\left(c_{3}+c_{4}\right) \mathrm{e}^{6 t}-\frac{3 c_{1}}{4}+\frac{9 c_{2}}{2}-12 c_{3}-\right. \\
& \left(\left(-\frac{c_{1}}{2}+c_{2}-2 c_{3}-\frac{5 c_{4}}{2}\right) \mathrm{e}^{12 t}+\left(c_{1}-3 c_{2}+8 c_{3}+11 c_{4}\right) \mathrm{e}^{8 t}+\left(2 c_{3}+2 c_{4}\right) \mathrm{e}^{6 t}-\frac{c_{1}}{2}+3 c_{2}-8 c_{3}\right. \\
& -\left(\left(-\frac{3 c_{1}}{4}+\frac{3 c_{2}}{2}-3 c_{3}-\frac{15 c_{4}}{4}\right) \mathrm{e}^{12 t}+\left(c_{1}-3 c_{2}+8 c_{3}+11 c_{4}\right) \mathrm{e}^{8 t}+\left(-2 c_{3}-2 c_{4}\right) \mathrm{e}^{6 t}-\frac{c_{1}}{4}+\frac{3 c_{2}}{2}-4\right. \\
& \left(\left(-\frac{3 c_{1}}{4}+\frac{3 c_{2}}{2}-3 c_{3}-\frac{15 c_{4}}{4}\right) \mathrm{e}^{12 t}+\left(c_{1}-3 c_{2}+8 c_{3}+11 c_{4}\right) \mathrm{e}^{8 t}+\left(-c_{3}-c_{4}\right) \mathrm{e}^{6 t}-\frac{c_{1}}{4}+\frac{3 c_{2}}{2}-4 c_{3}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.35.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
13-\lambda & -42 & 106 & 139 \\
2 & -16-\lambda & 52 & 70 \\
1 & 6 & -20-\lambda & -31 \\
-1 & -6 & 22 & 33-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-10 \lambda^{3}+160 \lambda-256=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =8 \\
\lambda_{3} & =4 \\
\lambda_{4} & =-4
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
-4	1	real eigenvalue
4	1	real eigenvalue
8	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]-(-4)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
2 & -12 & 52 & 70 & 0 \\
1 & 6 & -16 & -31 & 0 \\
-1 & -6 & 22 & 37 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
1 & 6 & -16 & -31 & 0 \\
-1 & -6 & 22 & 37 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
0 & \frac{144}{17} & -\frac{378}{17} & -\frac{666}{17} & 0 \\
-1 & -6 & 22 & 37 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
0 & \frac{144}{17} & -\frac{378}{17} & -\frac{666}{17} & 0 \\
0 & -\frac{144}{17} & \frac{480}{17} & \frac{768}{17} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{6 R_{2}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
0 & 0 & \frac{126}{5} & \frac{126}{5} & 0 \\
0 & -\frac{144}{17} & \frac{480}{17} & \frac{768}{17} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{6 R_{2}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
0 & 0 & \frac{126}{5} & \frac{126}{5} & 0 \\
0 & 0 & -\frac{96}{5} & -\frac{96}{5} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{16 R_{3}}{21} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -42 & 106 & 139 & 0 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} & 0 \\
0 & 0 & \frac{126}{5} & \frac{126}{5} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
17 & -42 & 106 & 139 \\
0 & -\frac{120}{17} & \frac{672}{17} & \frac{912}{17} \\
0 & 0 & \frac{126}{5} & \frac{126}{5} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t, v_{2}=2 t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
2 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
2 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rc}
\left.\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
2 & -18 & 52 & 70 & 0 \\
1 & 6 & -22 & -31 & 0 \\
-1 & -6 & 22 & 31 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{2 R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
1 & 6 & -22 & -31 & 0 \\
-1 & -6 & 22 & 31 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
0 & \frac{108}{11} & -\frac{348}{11} & -\frac{480}{11} & 0 \\
-1 & -6 & 22 & 31 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{R_{1}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
0 & \frac{108}{11} & -\frac{348}{11} & -\frac{480}{11} & 0 \\
0 & -\frac{108}{11} & \frac{348}{11} & \frac{480}{11} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{18 R_{2}}{19} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
0 & 0 & -\frac{12}{19} & -\frac{24}{19} & 0 \\
0 & -\frac{108}{11} & \frac{348}{11} & \frac{480}{11} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{18 R_{2}}{19} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
0 & 0 & -\frac{12}{19} & -\frac{24}{19} & 0 \\
0 & 0 & \frac{12}{19} & \frac{24}{19} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{4}=R_{4}+R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
11 & -42 & 106 & 139 & 0 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} & 0 \\
0 & 0 & -\frac{12}{19} & -\frac{24}{19} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
11 & -42 & 106 & 139 \\
0 & -\frac{114}{11} & \frac{360}{11} & \frac{492}{11} \\
0 & 0 & -\frac{12}{19} & -\frac{24}{19} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=-2 t, v_{3}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
-2 t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
-2 t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
-2 t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
-2 t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left(\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]-(4)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
9 & -42 & 106 & 139 \\
2 & -20 & 52 & 70 \\
1 & 6 & -24 & -31 \\
-1 & -6 & 22 & 29
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
2 & -20 & 52 & 70 & 0 \\
1 & 6 & -24 & -31 & 0 \\
-1 & -6 & 22 & 29 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{2 R_{1}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
1 & 6 & -24 & -31 & 0 \\
-1 & -6 & 22 & 29 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
0 & \frac{32}{3} & -\frac{322}{9} & -\frac{418}{9} & 0 \\
-1 & -6 & 22 & 29 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{R_{1}}{9} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
0 & \frac{32}{3} & -\frac{322}{9} & -\frac{418}{9} & 0 \\
0 & -\frac{32}{3} & \frac{304}{9} & \frac{400}{9} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
0 & 0 & -\frac{22}{3} & -\frac{22}{3} & 0 \\
0 & -\frac{32}{3} & \frac{304}{9} & \frac{400}{9} & 0
\end{array}\right] \\
R_{4}=R_{4}-R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
0 & 0 & -\frac{22}{3} & -\frac{22}{3} & 0 \\
0 & 0 & \frac{16}{3} & \frac{16}{3} & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{8 R_{3}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
9 & -42 & 106 & 139 & 0 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} & 0 \\
0 & 0 & -\frac{22}{3} & -\frac{22}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
9 & -42 & 106 & 139 \\
0 & -\frac{32}{3} & \frac{256}{9} & \frac{352}{9} \\
0 & 0 & -\frac{22}{3} & -\frac{22}{3} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=8$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]-(8)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
5 & -42 & 106 & 139 \\
2 & -24 & 52 & 70 \\
1 & 6 & -28 & -31 \\
-1 & -6 & 22 & 25
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
2 & -24 & 52 & 70 & 0 \\
1 & 6 & -28 & -31 & 0 \\
-1 & -6 & 22 & 25 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
1 & 6 & -28 & -31 & 0 \\
-1 & -6 & 22 & 25 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
0 & \frac{72}{5} & -\frac{246}{5} & -\frac{294}{5} & 0 \\
-1 & -6 & 22 & 25 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{R_{1}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
0 & \frac{72}{5} & -\frac{246}{5} & -\frac{294}{5} & 0 \\
0 & -\frac{72}{5} & \frac{216}{5} & \frac{264}{5} & 0
\end{array}\right] \\
& R_{3}=R_{3}+2 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
0 & 0 & -30 & -30 & 0 \\
0 & -\frac{72}{5} & \frac{216}{5} & \frac{264}{5} & 0
\end{array}\right] \\
& R_{4}=R_{4}-2 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
0 & 0 & -30 & -30 & 0 \\
0 & 0 & 24 & 24 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{4 R_{3}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
5 & -42 & 106 & 139 & 0 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} & 0 \\
0 & 0 & -30 & -30 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
5 & -42 & 106 & 139 \\
0 & -\frac{36}{5} & \frac{48}{5} & \frac{72}{5} \\
0 & 0 & -30 & -30 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=\frac{2 t}{3}, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
\frac{2 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
\frac{2 t}{3} \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
\frac{2 t}{3} \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
\frac{2 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-t \\
\frac{2 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2 \\
-3 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
8	1	1	No	$\left[\begin{array}{c}-1 \\ -2 \\ -2 \\ 1\end{array}\right]$
8	1	1	No	$\left[\begin{array}{c}-1 \\ \frac{2}{3} \\ -1 \\ 1\end{array}\right]$
4	1	1	No	$\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]$
1				
1				

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 8 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{8 t} \\
& =\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right] e^{8 t}
\end{aligned}
$$

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{4 t} \\
& =\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
$$

Since eigenvalue -4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{-4 t} \\
& =\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
-2 \mathrm{e}^{2 t} \\
-2 \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{8 t} \\
\frac{2 \mathrm{e}^{8 t}}{3} \\
-\mathrm{e}^{8 t} \\
\mathrm{e}^{8 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t} \\
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
3 \mathrm{e}^{-4 t} \\
2 \mathrm{e}^{-4 t} \\
-\mathrm{e}^{-4 t} \\
\mathrm{e}^{-4 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left(c_{2} \mathrm{e}^{12 t}-c_{3} \mathrm{e}^{8 t}+c_{1} \mathrm{e}^{6 t}-3 c_{4}\right) \mathrm{e}^{-4 t} \\
\frac{\left(2 c_{2} \mathrm{e}^{12 t}+3 c_{3} \mathrm{e}^{8 t}-6 c_{1} \mathrm{e}^{6 t}+6 c_{4}\right) \mathrm{e}^{-4 t}}{3} \\
\mathrm{e}^{-4 t}\left(-c_{2} \mathrm{e}^{12 t}-c_{3} \mathrm{e}^{8 t}-2 c_{1} \mathrm{e}^{6 t}-c_{4}\right) \\
\left(c_{2} \mathrm{e}^{12 t}+c_{3} \mathrm{e}^{8 t}+c_{1} \mathrm{e}^{6 t}+c_{4}\right) \mathrm{e}^{-4 t}
\end{array}\right]
$$

4.35.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=13 x_{1}(t)-42 x_{2}(t)+106 x_{3}(t)+139 x_{4}(t), x_{2}^{\prime}(t)=2 x_{1}(t)-16 x_{2}(t)+52 x_{3}(t)+70 x_{4}(t), x\right.
$$

- Define vector

$$
\vec{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
\underline{-}^{\prime}(t)=\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
13 & -42 & 106 & 139 \\
2 & -16 & 52 & 70 \\
1 & 6 & -20 & -31 \\
-1 & -6 & 22 & 33
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-4,\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[8,\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[2,\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x \longrightarrow_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[4,\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x \longrightarrow_{3}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[8,\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{4}}^{\rightarrow}=\mathrm{e}^{8 t} \cdot\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x \longrightarrow_{2}+c_{3} x^{\rightarrow}+c_{4} x \longrightarrow_{4}
$$

- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
3 \\
2 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
-2 \\
-2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{8 t} \cdot\left[\begin{array}{c}
-1 \\
\frac{2}{3} \\
-1 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-c_{4} \mathrm{e}^{12 t}+c_{3} \mathrm{e}^{8 t}-c_{2} \mathrm{e}^{6 t}+3 c_{1}\right) \mathrm{e}^{-4 t} \\
\frac{\left(2 c_{4} \mathrm{e}^{12 t}+3 c_{3} \mathrm{e}^{8 t}-6 c_{2} \mathrm{e}^{6 t}+6 c_{1}\right) \mathrm{e}^{-4 t}}{3} \\
-\left(c_{4} \mathrm{e}^{12 t}+c_{3} \mathrm{e}^{8 t}+2 c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-4 t} \\
\left(c_{4} \mathrm{e}^{12 t}+c_{3} \mathrm{e}^{8 t}+c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-4 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left(-c_{4} \mathrm{e}^{12 t}+c_{3} \mathrm{e}^{8 t}-c_{2} \mathrm{e}^{6 t}+3 c_{1}\right) \mathrm{e}^{-4 t}, x_{2}(t)=\frac{\left(2 c_{4} \mathrm{e}^{12 t}+3 c_{3} \mathrm{e}^{8 t}-6 c_{2} \mathrm{e}^{6 t}+6 c_{1}\right) \mathrm{e}^{-4 t}}{3}, x_{3}(t)=-\left(c_{4} \mathrm{e}^{12 t}-\right.\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 123

```
dsolve([diff(x__ 1(t),t)=13*\mp@subsup{x}{_-_}{}1(t)-42*\mp@subsup{x}{__}{\prime}2(t)+106*\mp@subsup{x}{__}{\prime}3(t)+139*\mp@subsup{x}{__}{\prime}4(t),\operatorname{diff}(\mp@subsup{x}{_}{\prime}2(t),t)=2*\mp@subsup{x}{_-}{\prime}1
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-4 t}+c_{3} \mathrm{e}^{2 t}+c_{4} \mathrm{e}^{8 t} \\
& x_{2}(t)=c_{1} \mathrm{e}^{4 t}+\frac{2 c_{2} \mathrm{e}^{-4 t}}{3}+2 c_{3} \mathrm{e}^{2 t}-\frac{2 c_{4} \mathrm{e}^{8 t}}{3} \\
& x_{3}(t)=-c_{1} \mathrm{e}^{4 t}-\frac{c_{2} \mathrm{e}^{-4 t}}{3}+2 c_{3} \mathrm{e}^{2 t}+c_{4} \mathrm{e}^{8 t} \\
& x_{4}(t)=c_{1} \mathrm{e}^{4 t}+\frac{c_{2} \mathrm{e}^{-4 t}}{3}-c_{3} \mathrm{e}^{2 t}-c_{4} \mathrm{e}^{8 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 449

```
DSolve[{x1'[t]==13*x1[t]-42*x2[t]+106*x3[t]+139*x4[t],x2'[t]==2*x1[t]-16*x2[t] +52*x3[t]+70*x
```

$\mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-4 t}\left(c_{1}\left(4 e^{8 t}+3 e^{12 t}-3\right)-6 c_{2}\left(2 e^{8 t}+e^{12 t}-3\right)+4 c_{3} e^{6 t}+32 c_{3} e^{8 t}+12 c_{3} e^{12 t}\right.$ $\left.+4 c_{4} e^{6 t}+44 c_{4} e^{8 t}+15 c_{4} e^{12 t}-48 c_{3}-63 c_{4}\right)$
$\mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-4 t}\left(-\left(c_{1}\left(-2 e^{8 t}+e^{12 t}+1\right)\right)+2 c_{2}\left(-3 e^{8 t}+e^{12 t}+3\right)+4 c_{3} e^{6 t}+16 c_{3} e^{8 t}\right.$
$\left.-4 c_{3} e^{12 t}+4 c_{4} e^{6 t}+22 c_{4} e^{8 t}-5 c_{4} e^{12 t}-16 c_{3}-21 c_{4}\right)$
$\mathrm{x} 3(t) \rightarrow \frac{1}{4} e^{-4 t}\left(c_{1}\left(-4 e^{8 t}+3 e^{12 t}+1\right)-6 c_{2}\left(-2 e^{8 t}+e^{12 t}+1\right)+8 c_{3} e^{6 t}-32 c_{3} e^{8 t}\right.$ $\left.+12 c_{3} e^{12 t}+8 c_{4} e^{6 t}-44 c_{4} e^{8 t}+15 c_{4} e^{12 t}+16 c_{3}+21 c_{4}\right)$
$\mathrm{x} 4(t) \rightarrow \frac{1}{4} e^{-4 t}\left(c_{1}\left(4 e^{8 t}-3 e^{12 t}-1\right)+6 c_{2}\left(-2 e^{8 t}+e^{12 t}+1\right)-4 c_{3} e^{6 t}+32 c_{3} e^{8 t}-12 c_{3} e^{12 t}\right.$ $\left.-4 c_{4} e^{6 t}+44 c_{4} e^{8 t}-15 c_{4} e^{12 t}-16 c_{3}-21 c_{4}\right)$

4.36 problem problem 47

4.36.1 Solution using Matrix exponential method
 626

4.36.2 Solution using explicit Eigenvalue and Eigenvector method 627
4.36.3 Maple step by step solution 641

Internal problem ID [350]
Internal file name [OUTPUT/350_Sunday_June_05_2022_01_39_21_AM_71857108/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 47.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =23 x_{1}(t)-18 x_{2}(t)-16 x_{3}(t) \\
x_{2}^{\prime}(t) & =-8 x_{1}(t)+6 x_{2}(t)+7 x_{3}(t)+9 x_{4}(t) \\
x_{3}^{\prime}(t) & =34 x_{1}(t)-27 x_{2}(t)-26 x_{3}(t)-9 x_{4}(t) \\
x_{4}^{\prime}(t) & =-26 x_{1}(t)+21 x_{2}(t)+25 x_{3}(t)+12 x_{4}(t)
\end{aligned}
$$

4.36.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
-2 \mathrm{e}^{-3 t}+3 \mathrm{e}^{3 t}-\frac{8 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{9 t}}{3} & -2 \mathrm{e}^{9 t}+2 \mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & -\frac{7 \mathrm{e}^{9 t}}{3}+\frac{10 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & -\mathrm{e}^{9 t} \\
6 \mathrm{e}^{3 t}-2 \mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3} & 2 \mathrm{e}^{-3 t}+2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-4 \mathrm{e}^{3 t} & \frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-6 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & \mathrm{e}^{9 t}- \\
-3 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}+\frac{16 \mathrm{e}^{9 t}}{3} & -4 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}+2 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}-\frac{14 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}+3 \mathrm{e}^{3 t} & -2 \mathrm{e}^{9} \\
3 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3} & 2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t} & \frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t} & \mathrm{e}^{9 t}-
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
-2 \mathrm{e}^{-3 t}+3 \mathrm{e}^{3 t}-\frac{8 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{9 t}}{3} & -2 \mathrm{e}^{9 t}+2 \mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & -\frac{7 \mathrm{e}^{9 t}}{3}+\frac{10 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & -\mathrm{e}^{\mathrm{g}} \\
6 \mathrm{e}^{3 t}-2 \mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3} & 2 \mathrm{e}^{-3 t}+2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-4 \mathrm{e}^{3 t} & \frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-6 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t} & \mathrm{e}^{9 t} \\
-3 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}+\frac{16 \mathrm{e}^{9 t}}{3} & -4 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}+2 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}-\frac{14 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}+3 \mathrm{e}^{3 t} & -2 \\
3 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3} & 2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t} & \frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t} & \mathrm{e}^{9}
\end{array}\right. \\
& {\left[\left(-2 \mathrm{e}^{-3 t}+3 \mathrm{e}^{3 t}-\frac{8 \mathrm{e}^{6 t}}{3}+\frac{8 \mathrm{e}^{9 t}}{3}\right) c_{1}+\left(-2 \mathrm{e}^{9 t}+2 \mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{-3 t}\right) c_{2}+\left(-\frac{7 \mathrm{e}^{9 t}}{3}+\frac{10 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}-\right.\right.} \\
& \left(6 \mathrm{e}^{3 t}-2 \mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3}\right) c_{1}+\left(2 \mathrm{e}^{-3 t}+2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-4 \mathrm{e}^{3 t}\right) c_{2}+\left(\frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-6 \mathrm{e}^{3 t}+2\right. \\
& =\quad\left(-3 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}+\frac{16 \mathrm{e}^{9 t}}{3}\right) c_{1}+\left(-4 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}+2 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t}\right) c_{2}+\left(\mathrm{e}^{-3 t}-\frac{14 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}+3\right. \\
& \left(3 \mathrm{e}^{3 t}+\mathrm{e}^{-3 t}-\frac{4 \mathrm{e}^{6 t}}{3}-\frac{8 \mathrm{e}^{9 t}}{3}\right) c_{1}+\left(2 \mathrm{e}^{9 t}+\mathrm{e}^{6 t}-2 \mathrm{e}^{3 t}-\mathrm{e}^{-3 t}\right) c_{2}+\left(\frac{7 \mathrm{e}^{9 t}}{3}+\frac{5 \mathrm{e}^{6 t}}{3}-3 \mathrm{e}^{3 t}-\mathrm{e}\right. \\
& =\left[\begin{array}{c}
\left(3 c_{1}-2 c_{2}-3 c_{3}-c_{4}\right) \mathrm{e}^{3 t}+\frac{2\left(-4 c_{1}+3 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\frac{\left(8 c_{1}-6 c_{2}-7 c_{3}-3 c_{4}\right) \mathrm{e}^{9 t}}{3}-2\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-3 t} \\
2\left(3 c_{1}-2 c_{2}-3 c_{3}-c_{4}\right) \mathrm{e}^{3 t}+\frac{\left(-4 c_{1}+3 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\frac{\left(-8 c_{1}+6 c_{2}+7 c_{3}+3 c_{4}\right) \mathrm{e}^{9 t}}{3}-2\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-3 t} \\
\left(-3 c_{1}+2 c_{2}+3 c_{3}+c_{4}\right) \mathrm{e}^{3 t}+\frac{\left(-4 c_{1}+3 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\frac{2\left(8 c_{1}-6 c_{2}-7 c_{3}-3 c_{4}\right) \mathrm{e}^{9 t}}{3}-\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-3 t} \\
\left(3 c_{1}-2 c_{2}-3 c_{3}-c_{4}\right) \mathrm{e}^{3 t}+\frac{\left(-4 c_{1}+3 c_{2}+5 c_{3}+3 c_{4}\right) \mathrm{e}^{6 t}}{3}+\frac{\left(-8 c_{1}+6 c_{2}+7 c_{3}+3 c_{4}\right) \mathrm{e}^{9 t}}{3}+\left(c_{1}-c_{2}-c_{3}\right) \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.36.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
23-\lambda & -18 & -16 & 0 \\
-8 & 6-\lambda & 7 & 9 \\
34 & -27 & -26-\lambda & -9 \\
-26 & 21 & 25 & 12-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-15 \lambda^{3}+45 \lambda^{2}+135 \lambda-486=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=-3 \\
& \lambda_{3}=9 \\
& \lambda_{4}=6
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue
3	1	real eigenvalue
6	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rc}
{\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]-(-3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
-8 & 9 & 7 & 9 & 0 \\
34 & -27 & -23 & -9 & 0 \\
-26 & 21 & 25 & 15 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{4 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 & 0 \\
34 & -27 & -23 & -9 & 0 \\
-26 & 21 & 25 & 15 & 0
\end{array}\right]
\end{gathered}
$$

$$
\left.\begin{array}{c}
R_{3}=R_{3}-\frac{17 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 & 0 \\
0 & -\frac{45}{13} & -\frac{27}{13} & -9 & 0 \\
-26 & 21 & 25 & 15 & 0
\end{array}\right] \\
R_{4}=R_{4}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 & 0 \\
0 & -\frac{45}{13} & -\frac{27}{13} & -9 & 0 \\
0 & 3 & 9 & 15 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2}
\end{array}\right]\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 3 & 9 & 15 & 0
\end{array}\right]
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\left[\begin{array}{cccc|c}
26 & -18 & -16 & 0 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 & 0 \\
0 & 0 & \frac{36}{5} & \frac{36}{5} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
26 & -18 & -16 & 0 \\
0 & \frac{45}{13} & \frac{27}{13} & 9 \\
0 & 0 & \frac{36}{5} & \frac{36}{5} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t, v_{2}=-2 t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
-2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
-2 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
-2 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
-2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]-(3)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
20 & -18 & -16 & 0 \\
-8 & 3 & 7 & 9 \\
34 & -27 & -29 & -9 \\
-26 & 21 & 25 & 9
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
20 & -18 & -16 & 0 & 0 \\
-8 & 3 & 7 & 9 & 0 \\
34 & -27 & -29 & -9 & 0 \\
-26 & 21 & 25 & 9 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
20 & -18 & -16 & 0 & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 & 0 \\
34 & -27 & -29 & -9 & 0 \\
-26 & 21 & 25 & 9 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{17 R_{1}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
20 & -18 & -16 & 0 & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 & 0 \\
0 & \frac{18}{5} & -\frac{9}{5} & -9 & 0 \\
-26 & 21 & 25 & 9 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{13 R_{1}}{10} \Longrightarrow\left[\begin{array}{cccc|c}
20 & -18 & -16 & 0 & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 & 0 \\
0 & \frac{18}{5} & -\frac{9}{5} & -9 & 0 \\
0 & -\frac{12}{5} & \frac{21}{5} & 9 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{4 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & {\left[\begin{array}{cccc|c}
\\
R_{3}
\end{array}\right.} & {\left[\begin{array}{cccc}
20 & -18 & -16 & 0
\end{array}\right.} & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 & 0 \\
0 & 0 & -\frac{9}{7} & -\frac{9}{7} & 0 \\
0 & 0 & \frac{27}{7} & \frac{27}{7} & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{4}=R_{4}+3 R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
20 & -18 & -16 & 0 & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 & 0 \\
0 & 0 & -\frac{9}{7} & -\frac{9}{7} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
20 & -18 & -16 & 0 \\
0 & -\frac{21}{5} & \frac{3}{5} & 9 \\
0 & 0 & -\frac{9}{7} & -\frac{9}{7} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=2 t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
2 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=6$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]-(6)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
17 & -18 & -16 & 0 \\
-8 & 0 & 7 & 9 \\
34 & -27 & -32 & -9 \\
-26 & 21 & 25 & 6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
-8 & 0 & 7 & 9 & 0 \\
34 & -27 & -32 & -9 & 0 \\
-26 & 21 & 25 & 6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{8 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
34 & -27 & -32 & -9 & 0 \\
-26 & 21 & 25 & 6 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
0 & 9 & 0 & -9 & 0 \\
-26 & 21 & 25 & 6 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{26 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
0 & 9 & 0 & -9 & 0 \\
0 & -\frac{111}{17} & \frac{9}{17} & 6 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{17 R_{2}}{16} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
0 & 0 & -\frac{9}{16} & \frac{9}{16} & 0 \\
0 & -\frac{111}{17} & \frac{9}{17} & 6 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{37 R_{2}}{48} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
0 & 0 & -\frac{9}{16} & \frac{9}{16} & 0 \\
0 & 0 & \frac{15}{16} & -\frac{15}{16} & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{5 R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
17 & -18 & -16 & 0 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 & 0 \\
0 & 0 & -\frac{9}{16} & \frac{9}{16} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
17 & -18 & -16 & 0 \\
0 & -\frac{144}{17} & -\frac{9}{17} & 9 \\
0 & 0 & -\frac{9}{16} & \frac{9}{16} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=t, v_{3}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]-(9)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
14 & -18 & -16 & 0 \\
-8 & -3 & 7 & 9 \\
34 & -27 & -35 & -9 \\
-26 & 21 & 25 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
-8 & -3 & 7 & 9 & 0 \\
34 & -27 & -35 & -9 & 0 \\
-26 & 21 & 25 & 3 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+\frac{4 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
34 & -27 & -35 & -9 & 0 \\
-26 & 21 & 25 & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{17 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
0 & \frac{117}{7} & \frac{27}{7} & -9 & 0 \\
-26 & 21 & 25 & 3 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{13 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
0 & \frac{117}{7} & \frac{27}{7} & -9 & 0 \\
0 & -\frac{87}{7} & -\frac{33}{7} & 3 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{39 R_{2}}{31} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
0 & 0 & \frac{36}{31} & \frac{72}{31} & 0 \\
0 & -\frac{87}{7} & -\frac{33}{7} & 3 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{29 R_{2}}{31} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
0 & 0 & \frac{36}{31} & \frac{72}{31} & 0 \\
0 & 0 & -\frac{84}{31} & -\frac{168}{31} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{7 R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
14 & -18 & -16 & 0 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 & 0 \\
0 & 0 & \frac{36}{31} & \frac{72}{31} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
14 & -18 & -16 & 0 \\
0 & -\frac{93}{7} & -\frac{15}{7} & 9 \\
0 & 0 & \frac{36}{31} & \frac{72}{31} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=t, v_{3}=-2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	1	1	No	$\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{c}-2 \\ -2 \\ -1 \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{c}-1 \\ 1 \\ -2 \\ 1\end{array}\right]$
6	1	1		

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-3 t} \\
& =\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{6 t} \\
& =\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
2 \mathrm{e}^{3 t} \\
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{-3 t} \\
-2 \mathrm{e}^{-3 t} \\
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t} \\
-2 \mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
2 \mathrm{e}^{6 t} \\
\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{3 t}-2 c_{2} \mathrm{e}^{-3 t}-c_{3} \mathrm{e}^{9 t}+2 c_{4} \mathrm{e}^{6 t} \\
2 c_{1} \mathrm{e}^{3 t}-2 c_{2} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{6 t} \\
-c_{1} \mathrm{e}^{3 t}-c_{2} \mathrm{e}^{-3 t}-2 c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{6 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{6 t}
\end{array}\right]
$$

4.36.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=23 x_{1}(t)-18 x_{2}(t)-16 x_{3}(t), x_{2}^{\prime}(t)=-8 x_{1}(t)+6 x_{2}(t)+7 x_{3}(t)+9 x_{4}(t), x_{3}^{\prime}(t)=34 x_{1}(t)\right.
$$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
23 & -18 & -16 & 0 \\
-8 & 6 & 7 & 9 \\
34 & -27 & -26 & -9 \\
-26 & 21 & 25 & 12
\end{array}\right]
$$

- Rewrite the system as
$x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[\left[-3,\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}_{\rightarrow}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[3,\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{2}}^{\rightarrow}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[6,\left[\begin{array}{l}2 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\underline{-}_{3}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[9,\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]\right]
$$

- \quad Solution to homogeneous system from eigenpair

$$
x_{4}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

- Substitute solutions into the general solution

$$
x \longrightarrow=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
2 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{6 t} \cdot\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{9 t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-2 \\
1
\end{array}\right]
$$

- \quad Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}+2 c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{9 t} \\
-2 c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{9 t} \\
-c_{1} \mathrm{e}^{-3 t}-c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}-2 c_{4} \mathrm{e}^{9 t} \\
c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{9 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-2 c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{3 t}+2 c_{3} \mathrm{e}^{6 t}-c_{4} \mathrm{e}^{9 t}, x_{2}(t)=-2 c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{6 t}+c_{4} \mathrm{e}^{9 t}, x_{3}(t)=-c_{1} \mathrm{e}^{-}\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 124

```
dsolve([diff(x__1(t),t)=23*x__1(t)-18*x__2(t)-16*x__3(t)+0*x__ 4(t), diff (x__2(t),t)=-8*x__ 1(t
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{-3 t} \\
& x_{2}(t)=2 c_{1} \mathrm{e}^{3 t}+\frac{c_{2} \mathrm{e}^{6 t}}{2}-c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{-3 t} \\
& x_{3}(t)=-c_{1} \mathrm{e}^{3 t}+\frac{c_{2} \mathrm{e}^{6 t}}{2}+2 c_{3} \mathrm{e}^{9 t}+\frac{c_{4} \mathrm{e}^{-3 t}}{2} \\
& x_{4}(t)=c_{1} \mathrm{e}^{3 t}+\frac{c_{2} \mathrm{e}^{6 t}}{2}-c_{3} \mathrm{e}^{9 t}-\frac{c_{4} \mathrm{e}^{-3 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 469

```
DSolve[{x1'[t]==23*x1[t]-18*x2[t]-16*x3[t]+0*x4[t],x2'[t]==-8*x1[t]+6*x2[t]+7*x3[t]+9*x4[t],
```

$$
\begin{aligned}
& \begin{aligned}
\mathrm{x} 1(t) \rightarrow & \frac{1}{3} e^{-3 t}\left(c_{1}\left(9 e^{6 t}-8 e^{9 t}+8 e^{12 t}-6\right)\right.
\end{aligned} \\
&\left.\quad-\left(e^{3 t}-1\right)\left(6 c_{2}\left(e^{3 t}+e^{9 t}+1\right)+c_{3}\left(6 e^{3 t}-3 e^{6 t}+7 e^{9 t}+6\right)+3 c_{4} e^{6 t}\left(e^{3 t}-1\right)\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{-3 t}\left(-2 c_{1}\left(-9 e^{6 t}+2 e^{9 t}+4 e^{12 t}+3\right)+3 c_{2}\left(-4 e^{6 t}+e^{9 t}+2 e^{12 t}+2\right)\right. \\
&\left.\quad+\left(e^{3 t}-1\right)\left(c_{3}\left(-6 e^{3 t}+12 e^{6 t}+7 e^{9 t}-6\right)+3 c_{4} e^{6 t}\left(e^{3 t}+2\right)\right)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{3} e^{-3 t}\left(c_{1}\left(-9 e^{6 t}-4 e^{9 t}+16 e^{12 t}-3\right)+3 c_{2}\left(2 e^{6 t}+e^{9 t}-4 e^{12 t}+1\right)+9 c_{3} e^{6 t}\right. \\
&\left.\quad+5 c_{3} e^{9 t}-14 c_{3} e^{12 t}+3 c_{4} e^{6 t}+3 c_{4} e^{9 t}-6 c_{4} e^{12 t}+3 c_{3}\right)
\end{aligned} \quad \begin{array}{r}
\mathrm{x} 4(t) \rightarrow \frac{1}{3} e^{-3 t}\left(c_{1}\left(9 e^{6 t}-4 e^{9 t}-8 e^{12 t}+3\right)+3 c_{2}\left(-2 e^{6 t}+e^{9 t}+2 e^{12 t}-1\right)-9 c_{3} e^{6 t}\right. \\
\\
\left.\quad+5 c_{3} e^{9 t}+7 c_{3} e^{12 t}-3 c_{4} e^{6 t}+3 c_{4} e^{9 t}+3 c_{4} e^{12 t}-3 c_{3}\right)
\end{array}
$$

4.37 problem problem 48

4.37.1 Solution using Matrix exponential method
 646

4.37.2 Solution using explicit Eigenvalue and Eigenvector method 647
4.37.3 Maple step by step solution 662

Internal problem ID [351]
Internal file name [OUTPUT/351_Sunday_June_05_2022_01_39_23_AM_18060656/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 48.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =47 x_{1}(t)-8 x_{2}(t)+5 x_{3}(t)-5 x_{4}(t) \\
x_{2}^{\prime}(t) & =-10 x_{1}(t)+32 x_{2}(t)+18 x_{3}(t)-2 x_{4}(t) \\
x_{3}^{\prime}(t) & =139 x_{1}(t)-40 x_{2}(t)-167 x_{3}(t)-121 x_{4}(t) \\
x_{4}^{\prime}(t) & =-232 x_{1}(t)+64 x_{2}(t)+360 x_{3}(t)+248 x_{4}(t)
\end{aligned}
$$

4.37.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{33 \mathrm{e}^{16 t}}{16}-\frac{19 \mathrm{e}^{32 t}}{8}-\frac{3 \mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16} & -\frac{\mathrm{e}^{64 t}}{2}+\mathrm{e}^{32 t}-\frac{\mathrm{e}^{16 t}}{2} & -\frac{39 \mathrm{e}^{64 t}}{16}+\frac{15 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}^{32 t}}{8}-\frac{53 \mathrm{e}^{16 t}}{16} & -\frac{25 \mathrm{e}^{64 t}}{16}+ \\
-\frac{95 \mathrm{e}^{32 t}}{16}+\frac{33 \mathrm{e}^{16 t}}{8}+\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16} & -\mathrm{e}^{16 t}-\frac{\mathrm{e}^{64 t}}{2}+\frac{5 \mathrm{e}^{32 t}}{2} & -\frac{39 \mathrm{e}^{64 t}}{16}-\frac{5 \mathrm{e}^{48 t}}{8}+\frac{155 \mathrm{e}^{32 t}}{16}-\frac{53 \mathrm{e}^{16 t}}{8} & -\frac{25 \mathrm{e}^{64 t}}{16}- \\
-\frac{19 \mathrm{e}^{32 t}}{16}-\frac{33 \mathrm{e}^{16 t}}{16}-\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{8} & -\mathrm{e}^{64 t}+\frac{\mathrm{e}^{32 t}}{2}+\frac{\mathrm{e}^{16 t}}{2} & \frac{53 \mathrm{e}^{16 t}}{16}-\frac{39 \mathrm{e}^{64 t}}{8}+\frac{5 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}^{32 t}}{16} & -\frac{25 \mathrm{e}^{64 t}}{8}+ \\
\frac{19 \mathrm{e}^{32 t}}{16}+\frac{33 \mathrm{e}^{16 t}}{8}-\frac{\mathrm{e}^{48 t}}{4}-\frac{81 \mathrm{e}^{64 t}}{16} & \frac{3 \mathrm{e}^{64 t}}{2}-\frac{\mathrm{e}^{32 t}}{2}-\mathrm{e}^{16 t} & \frac{117 \mathrm{e}^{64 t}}{16}+\frac{5 \mathrm{e}^{48 t}}{4}-\frac{31 \mathrm{e}^{32 t}}{16}-\frac{53 \mathrm{e}^{16 t}}{8} & -\frac{27 \mathrm{e}^{16 t}}{8}+
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& {\left[\frac{33 \mathrm{e}^{16 t}}{16}-\frac{19 \mathrm{e}^{32 t}}{8}-\frac{3 \mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16}-\frac{\mathrm{e}^{64 t}}{2}+\mathrm{e}^{32 t}-\frac{\mathrm{e}^{16 t}}{2}-\frac{39 \mathrm{e}^{64 t}}{16}+\frac{15 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}^{32 t}}{8}-\frac{53 \mathrm{e}^{16 t}}{16}-\frac{25 \mathrm{e}^{64 t}}{16}\right.} \\
& =-\frac{95 \mathrm{e}^{32 t}}{16}+\frac{33 \mathrm{e}^{16 t}}{8}+\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16}-\mathrm{e}^{16 t}-\frac{\mathrm{e}^{64 t}}{2}+\frac{5 \mathrm{e}^{32 t}}{2}-\frac{39 \mathrm{e}^{64 t}}{16}-\frac{5 \mathrm{e}^{48 t}}{8}+\frac{155 \mathrm{e}^{32 t}}{16}-\frac{53 \mathrm{e}^{16 t}}{8}-\frac{25 \mathrm{e}^{64 t}}{16} \\
& -\frac{19 \mathrm{e}^{32 t}}{16}-\frac{33 \mathrm{e}^{16 t}}{16}-\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{8}-\mathrm{e}^{64 t}+\frac{\mathrm{e}^{32 t}}{2}+\frac{\mathrm{e}^{16 t}}{2} \quad \frac{53 \mathrm{e}^{16 t}}{16}-\frac{39 \mathrm{e}^{64 t}}{8}+\frac{5 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}^{32 t}}{16}-\frac{25 \mathrm{e}^{64 t}}{8} \\
& \frac{19 \mathrm{e}^{32 t}}{16}+\frac{33 \mathrm{e}^{16 t}}{8}-\frac{\mathrm{e}^{48 t}}{4}-\frac{81 \mathrm{e}^{64 t}}{16} \quad \frac{3 \mathrm{e}^{64 t}}{2}-\frac{\mathrm{e}^{32 t}}{2}-\mathrm{e}^{16 t} \quad \frac{117 \mathrm{e}^{64 t}}{16}+\frac{5 \mathrm{e}^{48 t}}{4}-\frac{31 \mathrm{e}^{32 t}}{16}-\frac{53 \mathrm{e}^{16 t}}{8}-\frac{27 \mathrm{e}^{16 t}}{8} \\
& {\left[\left(\frac{33 \mathrm{e}^{16 t}}{16}-\frac{19 \mathrm{e}^{32 t}}{8}-\frac{3 \mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16}\right) c_{1}+\left(-\frac{\mathrm{e}^{64 t}}{2}+\mathrm{e}^{32 t}-\frac{\mathrm{e}^{16 t}}{2}\right) c_{2}+\left(-\frac{39 \mathrm{e}^{64 t}}{16}+\frac{15 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}^{32 t}}{8}-\frac{53}{8}\right.\right.} \\
& =\left[\begin{array}{c}
\left(-\frac{95 \mathrm{e}^{32 t}}{16}+\frac{33 \mathrm{e}^{16 t}}{8}+\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{16}\right) c_{1}+\left(-\mathrm{e}^{16 t}-\frac{\mathrm{e}^{64 t}}{2}+\frac{5 \mathrm{e}^{32 t}}{2}\right) c_{2}+\left(-\frac{39 \mathrm{e}^{64 t}}{16}-\frac{5 \mathrm{e}^{48 t}}{8}+\frac{155 \mathrm{e}^{32 t}}{16}-\frac{5}{16}-\frac{33 \mathrm{e}^{16 t}}{16}-\frac{\mathrm{e}^{48 t}}{8}+\frac{27 \mathrm{e}^{64 t}}{8}\right) c_{1}+\left(-\mathrm{e}^{64 t}+\frac{\mathrm{e}^{32 t}}{2}+\frac{\mathrm{e}^{16 t}}{2}\right) c_{2}+\left(\frac{53 \mathrm{e}^{16 t}}{16}-\frac{39 \mathrm{e}^{64 t}}{8}+\frac{5 \mathrm{e}^{48 t}}{8}+\frac{31 \mathrm{e}}{16}\right. \\
\left(-\frac{19 \mathrm{e}^{32 t}}{16}-\frac{31 \mathrm{e}^{64 t}}{16}\right) c_{1}+\left(\frac{3 \mathrm{e}^{64 t}}{2}-\frac{\mathrm{e}^{32 t}}{2}-\mathrm{e}^{16 t}\right){c_{2}}^{2}+\left(\frac{117 \mathrm{e}^{64 t}}{16}+\frac{5 \mathrm{e}^{48 t}}{4}-\frac{31 \mathrm{e}^{32 t}}{16}-\frac{53 \mathrm{e}^{1}}{8}\right.
\end{array}\right. \\
& =\left[\begin{array}{l}
\frac{\left(33 c_{1}-8 c_{2}-53 c_{3}-27 c_{4}\right) \mathrm{e}^{16 t}}{16}+\frac{\left(-19 c_{1}+8 c_{2}+31 c_{3}+17 c_{4}\right) \mathrm{e}^{32 t}}{8}+\frac{\left(27 c_{1}-8 c_{2}-39 c_{3}-25 c_{4}\right) \mathrm{e}^{64 t}}{16}-\frac{3 \mathrm{e}^{48 t}\left(c_{1}-5 c_{3}-3 c_{4}\right)}{8} \\
\frac{\left(33 c_{1}-8 c_{2}-53 c_{3}-27 c_{4}\right) \mathrm{e}^{16 t}}{8}+\frac{5\left(-19 c_{1}+8 c_{2}+31 c_{3}+17 c_{4}\right) \mathrm{e}^{32 t}}{16}+\frac{\left(27 c_{1}-8 c_{2}-39 c_{3}-25 c_{4}\right) \mathrm{e}^{64 t}}{16}+\frac{\mathrm{e}^{48 t}\left(c_{1}-5 c_{3}-3 c_{4}\right)}{8} \\
\frac{\left(-33 c_{1}+8 c_{2}+53 c_{3}+27 c_{4}\right) \mathrm{e}^{16 t}}{16}+\frac{\left(-19 c_{1}+8 c_{2}+31 c_{3}+17 c_{4}\right) \mathrm{e}^{32 t}}{16}+\frac{\left(27 c_{1}-8 c_{2}-39 c_{3}-25 c_{4}\right) \mathrm{e}^{64 t}}{8}-\frac{\mathrm{e}^{48 t}\left(c_{1}-5 c_{3}-3 c_{4}\right)}{8} \\
\frac{\left(33 c_{1}-8 c_{2}-53 c_{3}-27 c_{4}\right) \mathrm{e}^{16 t}}{8}+\frac{\left(19 c_{1}-8 c_{2}-31 c_{3}-17 c_{4}\right) \mathrm{e}^{32 t}}{16}+\frac{3\left(-27 c_{1}+8 c_{2}+39 c_{3}+25 c_{4}\right) \mathrm{e}^{64 t}}{16}-\frac{\mathrm{e}^{48 t}\left(c_{1}-5 c_{3}-3 c_{4}\right)}{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.37.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
47-\lambda & -8 & 5 & -5 \\
-10 & 32-\lambda & 18 & -2 \\
139 & -40 & -167-\lambda & -121 \\
-232 & 64 & 360 & 248-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-160 \lambda^{3}+8960 \lambda^{2}-204800 \lambda+1572864=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=48 \\
& \lambda_{2}=32 \\
& \lambda_{3}=16 \\
& \lambda_{4}=64
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
16	1	real eigenvalue
32	1	real eigenvalue
48	1	real eigenvalue
64	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=16$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left.\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]-(16)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
-10 & 16 & 18 & -2 & 0 \\
139 & -40 & -183 & -121 & 0 \\
-232 & 64 & 360 & 232 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{10 R_{1}}{31} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
139 & -40 & -183 & -121 & 0 \\
-232 & 64 & 360 & 232 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{139 R_{1}}{31} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
0 & -\frac{128}{31} & -\frac{6368}{31} & -\frac{3056}{31} & 0 \\
-232 & 64 & 360 & 232 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{232 R_{1}}{31} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
0 & -\frac{128}{31} & -\frac{6368}{31} & -\frac{3056}{31} & 0 \\
0 & \frac{128}{31} & \frac{12320}{31} & \frac{6032}{31} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{4 R_{2}}{13} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
0 & 0 & -\frac{2592}{13} & -\frac{1296}{13} & 0 \\
0 & \frac{128}{31} & \frac{12320}{31} & \frac{6032}{31} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{4 R_{2}}{13} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
0 & 0 & -\frac{2592}{13} & -\frac{1296}{13} & 0 \\
0 & 0 & \frac{5088}{13} & \frac{2544}{13} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{53 R_{3}}{27} \Longrightarrow\left[\begin{array}{cccc|c}
31 & -8 & 5 & -5 & 0 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} & 0 \\
0 & 0 & -\frac{2592}{13} & -\frac{1296}{13} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
31 & -8 & 5 & -5 \\
0 & \frac{416}{31} & \frac{608}{31} & -\frac{112}{31} \\
0 & 0 & -\frac{2592}{13} & -\frac{1296}{13} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=t, v_{3}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t \\
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
t \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
2 \\
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=32$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]-(32)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
-10 & 0 & 18 & -2 & 0 \\
139 & -40 & -199 & -121 & 0 \\
-232 & 64 & 360 & 216 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
139 & -40 & -199 & -121 & 0 \\
-232 & 64 & 360 & 216 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{139 R_{1}}{15} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
0 & \frac{512}{15} & -\frac{736}{3} & -\frac{224}{3} & 0 \\
-232 & 64 & 360 & 216 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{232 R_{1}}{15} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
0 & \frac{512}{15} & -\frac{736}{3} & -\frac{224}{3} & 0 \\
0 & -\frac{896}{15} & \frac{1312}{3} & \frac{416}{3} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+\frac{32 R_{2}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
0 & 0 & -\frac{544}{5} & -\frac{544}{5} & 0 \\
0 & -\frac{896}{15} & \frac{1312}{3} & \frac{416}{3} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{56 R_{2}}{5} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
0 & 0 & -\frac{544}{5} & -\frac{544}{5} & 0 \\
0 & 0 & \frac{992}{5} & \frac{992}{5} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{31 R_{3}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
15 & -8 & 5 & -5 & 0 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} & 0 \\
0 & 0 & -\frac{544}{5} & -\frac{544}{5} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
15 & -8 & 5 & -5 \\
0 & -\frac{16}{3} & \frac{64}{3} & -\frac{16}{3} \\
0 & 0 & -\frac{544}{5} & -\frac{544}{5} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t, v_{2}=-5 t, v_{3}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t \\
-5 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
-5 t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-2 t \\
-5 t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-2 t \\
-5 t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=48$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]-(48)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
-10 & -16 & 18 & -2 & 0 \\
139 & -40 & -215 & -121 & 0 \\
-232 & 64 & 360 & 200 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}-10 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
139 & -40 & -215 & -121 & 0 \\
-232 & 64 & 360 & 200 & 0
\end{array}\right] \\
& R_{3}=R_{3}+139 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
0 & -1152 & 480 & -816 & 0 \\
-232 & 64 & 360 & 200 & 0
\end{array}\right] \\
& R_{4}=R_{4}-232 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
0 & -1152 & 480 & -816 & 0 \\
0 & 1920 & -800 & 1360 & 0
\end{array}\right] \\
& R_{3}=R_{3}+18 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
0 & 0 & -96 & 48 & 0 \\
0 & 1920 & -800 & 1360 & 0
\end{array}\right] \\
& R_{4}=R_{4}-30 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
0 & 0 & -96 & 48 & 0 \\
0 & 0 & 160 & -80 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{5 R_{3}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-1 & -8 & 5 & -5 & 0 \\
0 & 64 & -32 & 48 & 0 \\
0 & 0 & -96 & 48 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-1 & -8 & 5 & -5 \\
0 & 64 & -32 & 48 \\
0 & 0 & -96 & 48 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{3 t}{2}, v_{2}=-\frac{t}{2}, v_{3}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-1 \\
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=64$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]-(64)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
\left(\left[\begin{array}{cccc}
-17 & -8 & 5 & -5 \\
-10 & -32 & 18 & -2 \\
139 & -40 & -231 & -121 \\
-232 & 64 & 360 & 184
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right.
\end{array}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
-10 & -32 & 18 & -2 & 0 \\
139 & -40 & -231 & -121 & 0 \\
-232 & 64 & 360 & 184 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{10 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
139 & -40 & -231 & -121 & 0 \\
-232 & 64 & 360 & 184 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{139 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
0 & -\frac{1792}{17} & -\frac{3232}{17} & -\frac{2752}{17} & 0 \\
-232 & 64 & 360 & 184 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{232 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
0 & -\frac{1792}{17} & -\frac{3232}{17} & -\frac{2752}{17} & 0 \\
0 & \frac{2944}{17} & \frac{4960}{17} & \frac{4288}{17} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{112 R_{2}}{29} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
0 & 0 & -\frac{7200}{29} & -\frac{4800}{29} & 0 \\
0 & \frac{2944}{17} & \frac{4960}{17} & \frac{4288}{17} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{184 R_{2}}{29} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
0 & 0 & -\frac{7200}{29} & -\frac{4800}{29} & 0 \\
0 & 0 & \frac{11232}{29} & \frac{7488}{29} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{39 R_{3}}{25} \Longrightarrow\left[\begin{array}{cccc|c}
-17 & -8 & 5 & -5 & 0 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} & 0 \\
0 & 0 & -\frac{7200}{29} & -\frac{4800}{29} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-17 & -8 & 5 & -5 \\
0 & -\frac{464}{17} & \frac{256}{17} & \frac{16}{17} \\
0 & 0 & -\frac{7200}{29} & -\frac{4800}{29} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}, v_{2}=-\frac{t}{3}, v_{3}=-\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
-\frac{t}{3} \\
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3} \\
-\frac{t}{3} \\
-\frac{2 t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
-\frac{t}{3} \\
-\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
-\frac{t}{3} \\
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{3} \\
-\frac{t}{3} \\
-\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
-2 \\
3
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
48	1	1	No	$\left[\begin{array}{c}\frac{3}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$
32	1	1	No	$\left[\begin{array}{c}-2 \\ -5 \\ -1 \\ 1\end{array}\right]$
16	1	1	No	$\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ 1\end{array}\right]$
64				
1				

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 48 is real and distinct then the
corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{48 t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right] e^{48 t}
\end{aligned}
$$

Since eigenvalue 32 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{32 t} \\
& =\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right] e^{32 t}
\end{aligned}
$$

Since eigenvalue 16 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{16 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right] e^{16 t}
\end{aligned}
$$

Since eigenvalue 64 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{64 t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right] e^{64 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{48 t}}{2} \\
-\frac{\mathrm{e}^{48 t}}{2} \\
\frac{\mathrm{e}^{48 t}}{2} \\
\mathrm{e}^{48 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{32 t} \\
-5 \mathrm{e}^{32 t} \\
-\mathrm{e}^{32 t} \\
\mathrm{e}^{32 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{16 t}}{2} \\
\mathrm{e}^{16 t} \\
-\frac{\mathrm{e}^{16 t}}{2} \\
\mathrm{e}^{16 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-\frac{\mathrm{e}^{64 t}}{3} \\
-\frac{\mathrm{e}^{64 t}}{3} \\
-\frac{2 \mathrm{e}^{64 t}}{3} \\
\mathrm{e}^{64 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 c_{1} \mathrm{e}^{48 t}}{2}-2 c_{2} \mathrm{e}^{32 t}+\frac{c_{3} \mathrm{e}^{16 t}}{2}-\frac{c_{4} \mathrm{e}^{64 t}}{3} \\
-\frac{c_{1} \mathrm{e}^{48 t}}{2}-5 c_{2} \mathrm{e}^{32 t}+c_{3} \mathrm{e}^{16 t}-\frac{c_{4} \mathrm{e}^{64 t}}{3} \\
\frac{c_{1} \mathrm{e}^{48 t}}{2}-c_{2} \mathrm{e}^{32 t}-\frac{c_{3} \mathrm{e}^{16 t}}{2}-\frac{2 c_{4} \mathrm{e}^{64 t}}{3} \\
c_{1} \mathrm{e}^{48 t}+c_{2} \mathrm{e}^{32 t}+c_{3} \mathrm{e}^{16 t}+c_{4} \mathrm{e}^{64 t}
\end{array}\right]
$$

4.37.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=47 x_{1}(t)-8 x_{2}(t)+5 x_{3}(t)-5 x_{4}(t), x_{2}^{\prime}(t)=-10 x_{1}(t)+32 x_{2}(t)+18 x_{3}(t)-2 x_{4}(t), x_{3}^{\prime}(t)\right.$

- Define vector

$$
\underline{x^{\prime}}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{A}}^{\prime}(t)=\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
47 & -8 & 5 & -5 \\
-10 & 32 & 18 & -2 \\
139 & -40 & -167 & -121 \\
-232 & 64 & 360 & 248
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair
$\left[16,\left[\begin{array}{c}\frac{1}{2} \\ 1 \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{16 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[32,\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{乙}{2}}=\mathrm{e}^{32 t} .\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
{\underset{\longrightarrow}{3}}^{\rightarrow}=\mathrm{e}^{48 t} .\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{4}=\mathrm{e}^{64 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{16 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{32 t} \cdot\left[\begin{array}{c}
-2 \\
-5 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{48 t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{1}{2} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{4} \mathrm{e}^{64 t} \cdot\left[\begin{array}{c}
-\frac{1}{3} \\
-\frac{1}{3} \\
-\frac{2}{3} \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{16 t}}{2}-2 c_{2} \mathrm{e}^{32 t}+\frac{3 c_{3} \mathrm{e}^{48 t}}{2}-\frac{c_{4} \mathrm{e}^{64 t}}{3} \\
c_{1} \mathrm{e}^{16 t}-5 c_{2} \mathrm{e}^{32 t}-\frac{c_{3} \mathrm{e}^{88 t}}{2}-\frac{c_{4} \mathrm{e}^{64 t}}{3} \\
-\frac{c_{1} \mathrm{e}^{16 t}}{2}-c_{2} \mathrm{e}^{32 t}+\frac{c_{3} \mathrm{e}^{48 t}}{2}-\frac{2 c_{4} \mathrm{e}^{64 t}}{3} \\
c_{1} \mathrm{e}^{16 t}+c_{2} \mathrm{e}^{32 t}+c_{3} \mathrm{e}^{48 t}+c_{4} \mathrm{e}^{64 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{c_{1} \mathrm{e}^{16 t}}{2}-2 c_{2} \mathrm{e}^{32 t}+\frac{3 c_{3} e^{48 t}}{2}-\frac{c_{4} \mathrm{e}^{64 t}}{3}, x_{2}(t)=c_{1} \mathrm{e}^{16 t}-5 c_{2} \mathrm{e}^{32 t}-\frac{c_{3} \mathrm{e}^{48 t}}{2}-\frac{c_{4} \mathrm{e}^{64 t}}{3}, x_{3}(t)=-\frac{c_{1} \mathrm{e}^{16 t}}{2}-\right.
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 125
dsolve ([diff $\left(x_{-} 1(t), t\right)=47 * x_{_} 1(t)-8 * x_{-} 2(t)+5 * x_{-} 3(t)-5 * x_{-} 4(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=-10 * x_{-} 1(t)$

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{48 t}+c_{2} \mathrm{e}^{16 t}+c_{3} \mathrm{e}^{32 t}+c_{4} \mathrm{e}^{64 t} \\
& x_{2}(t)=-\frac{c_{1} \mathrm{e}^{48 t}}{3}+2 c_{2} \mathrm{e}^{16 t}+\frac{5 c_{3} \mathrm{e}^{22 t}}{2}+c_{4} \mathrm{e}^{64 t} \\
& x_{3}(t)=\frac{c_{1} \mathrm{e}^{48 t}}{3}-c_{2} \mathrm{e}^{16 t}+\frac{c_{3} \mathrm{e}^{32 t}}{2}+2 c_{4} \mathrm{e}^{64 t} \\
& x_{4}(t)=\frac{2 c_{1} \mathrm{e}^{48 t}}{3}+2 c_{2} \mathrm{e}^{16 t}-\frac{c_{3} \mathrm{e}^{32 t}}{2}-3 c_{4} \mathrm{e}^{64 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 448

```
DSolve[{x1'[t]==47*x1[t]-8*x2[t]+5*x3[t]-5*x4[t],x2'[t]==-10*x1[t]+32*x2[t]+18*x3[t]-2*x4[t]
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{16} e^{16 t}\left(c_{1}\left(-38 e^{16 t}-6 e^{32 t}+27 e^{48 t}+33\right)\right. \\
& \left.-\left(e^{16 t}-1\right)\left(8 c_{2}\left(e^{16 t}+e^{32 t}-1\right)+c_{3}\left(9 e^{16 t}+39 e^{32 t}-53\right)+c_{4}\left(7 e^{16 t}+25 e^{32 t}-27\right)\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{16} e^{16 t}\left(c_{1}\left(-95 e^{16 t}+2 e^{32 t}+27 e^{48 t}+66\right)-8 c_{2}\left(-5 e^{16 t}+e^{48 t}+2\right)\right. \\
& \left.-\left(e^{16 t}-1\right)\left(c_{3}\left(49 e^{16 t}+39 e^{32 t}-106\right)+c_{4}\left(31 e^{16 t}+25 e^{32 t}-54\right)\right)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{16} e^{16 t}\left(c_{1}\left(-19 e^{16 t}-2 e^{32 t}+54 e^{48 t}-33\right)+8 c_{2}\left(e^{16 t}-2 e^{48 t}+1\right)+31 c_{3} e^{16 t}\right. \\
& \left.+10 c_{3} e^{32 t}-78 c_{3} e^{48 t}+17 c_{4} e^{16 t}+6 c_{4} e^{32 t}-50 c_{4} e^{48 t}+53 c_{3}+27 c_{4}\right) \\
& \mathrm{x} 4(t) \rightarrow-\frac{1}{16} e^{16 t}\left(c_{1}\left(-19 e^{16 t}+4 e^{32 t}+81 e^{48 t}-66\right)+8 c_{2}\left(e^{16 t}-3 e^{48 t}+2\right)+31 c_{3} e^{16 t}\right. \\
& \left.-20 c_{3} e^{32 t}-117 c_{3} e^{48 t}+17 c_{4} e^{16 t}-12 c_{4} e^{32 t}-75 c_{4} e^{48 t}+106 c_{3}+54 c_{4}\right)
\end{aligned}
$$

4.38 problem problem 49

4.38.1 Solution using Matrix exponential method
 667

4.38.2 Solution using explicit Eigenvalue and Eigenvector method 668
4.38.3 Maple step by step solution 693

Internal problem ID [352]
Internal file name [OUTPUT/352_Sunday_June_05_2022_01_39_25_AM_55030875/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 49.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =139 x_{1}(t)-14 x_{2}(t)-52 x_{3}(t)-14 x_{4}(t)+28 x_{5}(t) \\
x_{2}^{\prime}(t) & =-22 x_{1}(t)+5 x_{2}(t)+7 x_{3}(t)+8 x_{4}(t)-7 x_{5}(t) \\
x_{3}^{\prime}(t) & =370 x_{1}(t)-38 x_{2}(t)-139 x_{3}(t)-38 x_{4}(t)+76 x_{5}(t) \\
x_{4}^{\prime}(t) & =152 x_{1}(t)-16 x_{2}(t)-59 x_{3}(t)-13 x_{4}(t)+35 x_{5}(t) \\
x_{5}^{\prime}(t) & =95 x_{1}(t)-10 x_{2}(t)-38 x_{3}(t)-7 x_{4}(t)+23 x_{5}(t)
\end{aligned}
$$

4.38.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{38 \mathrm{e}^{9 t}}{3} & -\frac{4 \mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}+\mathrm{e}^{-3 t} & \frac{2 \mathrm{e}^{3 t}}{3}+4 \mathrm{e}^{-3 t}-\frac{14 \mathrm{e}^{9 t}}{3} \\
\frac{19}{2}-\frac{35 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6} & -\frac{\mathrm{e}^{6 t}}{3}+\frac{7 \mathrm{e}^{3 t}}{3}-1 & -\frac{7 \mathrm{e}^{6 t}}{6}+\frac{14 \mathrm{e}^{3 t}}{3}-\frac{7}{2} \\
-30 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{95 \mathrm{e}^{9 t}}{3} & -\frac{10 \mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}+3 \mathrm{e}^{-3 t} & 12 \mathrm{e}^{-3 t}-\frac{35 \mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3} \\
-\frac{19}{6}-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6}+\frac{38 \mathrm{e}^{9 t}}{3} & -\frac{4 \mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}+\frac{1}{3}+\mathrm{e}^{-3 t} & -\frac{14 \mathrm{e}^{9 t}}{3}-\frac{7 \mathrm{e}^{6 t}}{6}+\frac{2 \mathrm{e}^{3 t}}{3}+\frac{7}{6}+4 \mathrm{e} \\
\frac{19}{6}-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6}+\frac{19 \mathrm{e}^{9 t}}{3} & -\frac{2 \mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{3}+\mathrm{e}^{-3 t} & -\frac{7 \mathrm{e}^{9 t}}{3}-\frac{7 \mathrm{e}^{6 t}}{6}+\frac{2 \mathrm{e}^{3 t}}{3}-\frac{7}{6}+4 \mathrm{e}
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{38 \mathrm{e}^{9 t}}{3} & -\frac{4 \mathrm{e}^{9 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}+\mathrm{e}^{-3 t} & \frac{2 \mathrm{e}^{3 t}}{3}+4 \mathrm{e}^{-3 t}-\frac{14 \mathrm{e}^{9 t}}{3} \\
\frac{19}{2}-\frac{35 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6} & -\frac{\mathrm{e}^{6 t}}{3}+\frac{7 \mathrm{e}^{3 t}}{3}-1 & -\frac{7 \mathrm{e}^{6 t}}{6}+\frac{14 \mathrm{e}^{3 t}}{3}-\frac{7}{2} \\
-30 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{95 \mathrm{e}^{9 t}}{3} & -\frac{10 \mathrm{e}^{\mathrm{ett}}}{3}+\frac{\mathrm{e}^{3 t}}{3}+3 \mathrm{e}^{-3 t} & 12 \mathrm{e}^{-3 t}-\frac{35 \mathrm{e}^{9 t}}{3}+\frac{2 \mathrm{e}^{3 t}}{3} \\
-\frac{19}{6}-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6}+\frac{38 \mathrm{e}^{9 t}}{3} & -\frac{4 \mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}+\frac{1}{3}+\mathrm{e}^{-3 t} & -\frac{14 \mathrm{e}^{9 t}}{3}-\frac{7 \mathrm{e}^{6 t}}{6}+\frac{2 \mathrm{e}^{3 t}}{3}+\frac{7}{6}+ \\
\frac{19}{6}-10 \mathrm{e}^{-3 t}-\frac{5 \mathrm{e}^{3 t}}{3}+\frac{13 \mathrm{e}^{6 t}}{6}+\frac{19 \mathrm{e}^{9 t}}{3} & -\frac{2 \mathrm{e}^{9 t}}{3}-\frac{\mathrm{e}^{6 t}}{3}+\frac{\mathrm{e}^{3 t}}{3}-\frac{1}{3}+\mathrm{e}^{-3 t} & -\frac{7 \mathrm{e}^{9 t}}{3}-\frac{7 \mathrm{e}^{6 t}}{6}+\frac{2 \mathrm{e}^{3 t}}{3}-\frac{7}{6}+4 \\
\left(-10 c_{1}+c_{2}+4 c_{3}+c_{4}-2 c_{5}\right) \mathrm{e}^{-3 t}+\frac{\left(-5 c_{1}+c_{2}+2 c_{3}+c_{4}-2 c_{5}\right) \mathrm{e}^{3 t}}{3}+\frac{38\left(c_{1}-\frac{2 c}{15}\right.}{15} \\
1\left(-5 c_{1}+c_{2}+2 c_{3}+c_{4}-2 c_{5}\right) \mathrm{e}^{3 t} \\
3
\end{array}+\frac{\left(13 c_{1}-2 c_{2}-7 c_{3}+c_{4}+7 c_{5}\right) \mathrm{e}^{6 t}}{6}+\frac{19 c_{1}}{2}-c_{2}-\frac{7 c_{3}}{2}\right. \\
& 3\left(-10 c_{1}+c_{2}+4 c_{3}+c_{4}-2 c_{5}\right) \mathrm{e}^{-3 t}+\frac{\left(-5 c_{1}+c_{2}+2 c_{3}+c_{4}-2 c_{5}\right) \mathrm{e}^{3 t}}{3}+\frac{95\left(c_{1}-\frac{2 t}{1}\right.}{1}
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.38.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-\lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
139-\lambda & -14 & -52 & -14 & 28 \\
-22 & 5-\lambda & 7 & 8 & -7 \\
370 & -38 & -139-\lambda & -38 & 76 \\
152 & -16 & -59 & -13-\lambda & 35 \\
95 & -10 & -38 & -7 & 23-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{5}-15 \lambda^{4}+45 \lambda^{3}+135 \lambda^{2}-486 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =6 \\
\lambda_{3} & =9 \\
\lambda_{4} & =3 \\
\lambda_{5} & =-3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-3	1	real eigenvalue
3	1	real eigenvalue
6	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{gathered}
\left(\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-(-3)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] \\
\\
{\left[\begin{array}{ccccc}
142 & -14 & -52 & -14 & 28 \\
-22 & 8 & 7 & 8 & -7 \\
370 & -38 & -136 & -38 & 76 \\
152 & -16 & -59 & -10 & 35 \\
95 & -10 & -38 & -7 & 26
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
-22 & 8 & 7 & 8 & -7 & 0 \\
370 & -38 & -136 & -38 & 76 & 0 \\
152 & -16 & -59 & -10 & 35 & 0 \\
95 & -10 & -38 & -7 & 26 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+\frac{11 R_{1}}{71} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
370 & -38 & -136 & -38 & 76 & 0 \\
152 & -16 & -59 & -10 & 35 & 0 \\
95 & -10 & -38 & -7 & 26 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{185 R_{1}}{71} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & -\frac{108}{71} & -\frac{36}{71} & -\frac{108}{71} & \frac{216}{71} & 0 \\
152 & -16 & -59 & -10 & 35 & 0 \\
95 & -10 & -38 & -7 & 26 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{76 R_{1}}{71} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & -\frac{108}{71} & -\frac{36}{71} & -\frac{108}{71} & \frac{216}{71} & 0 \\
0 & -\frac{72}{71} & -\frac{237}{71} & \frac{354}{71} & \frac{357}{71} & 0 \\
95 & -10 & -38 & -7 & 26 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{95 R_{1}}{142} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & -\frac{108}{71} & -\frac{36}{71} & -\frac{108}{71} & \frac{216}{71} & 0 \\
0 & -\frac{72}{71} & -\frac{237}{71} & \frac{35}{71} & \frac{357}{71} & 0 \\
0 & -\frac{45}{71} & -\frac{228}{71} & \frac{168}{71} & \frac{516}{71} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{6 R_{2}}{23} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & -\frac{72}{71} & -\frac{237}{71} & \frac{354}{71} & \frac{357}{71} & 0 \\
0 & -\frac{45}{71} & -\frac{228}{71} & \frac{168}{71} & \frac{516}{71} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{4 R_{2}}{23} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & 0 & -\frac{81}{23} & 6 & \frac{105}{23} & 0 \\
0 & -\frac{45}{71} & -\frac{228}{71} & \frac{168}{71} & \frac{516}{71} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{5 R_{2}}{46} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & 0 & -\frac{81}{23} & 6 & \frac{105}{23} & 0 \\
0 & 0 & -\frac{153}{46} & 3 & \frac{321}{46} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{9 R_{3}}{2} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & 0 & 0 & 6 & -6 & 0 \\
0 & 0 & -\frac{153}{46} & 3 & \frac{321}{46} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{17 R_{3}}{4} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & 0 & 0 & 6 & -6 & 0 \\
0 & 0 & 0 & 3 & -3 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{R_{4}}{2} \Longrightarrow\left[\begin{array}{ccccc|c}
142 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} & 0 \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} & 0 \\
0 & 0 & 0 & 6 & -6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
142 & -14 & -52 & -14 & 28 \\
0 & \frac{414}{71} & -\frac{75}{71} & \frac{414}{71} & -\frac{189}{71} \\
0 & 0 & -\frac{18}{23} & 0 & \frac{54}{23} \\
0 & 0 & 0 & 6 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=0, v_{3}=3 t, v_{4}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
3 t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
0 \\
3 t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
3 t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
3 t \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=0$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left(\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-(0)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
-22 & 5 & 7 & 8 & -7 & 0 \\
370 & -38 & -139 & -38 & 76 & 0 \\
152 & -16 & -59 & -13 & 35 & 0 \\
95 & -10 & -38 & -7 & 23 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{22 R_{1}}{139} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{80}{139} & -\frac{357}{139} & 0 \\
370 & -38 & -139 & -38 & 76 & 0 \\
152 & -16 & -59 & -13 & 35 & 0 \\
95 & -10 & -38 & -7 & 23 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{370 R_{1}}{139} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & -\frac{102}{139} & -\frac{81}{139} & -\frac{102}{139} & \frac{204}{139} & 0 \\
152 & -16 & -59 & -13 & 35 & 0 \\
95 & -10 & -38 & -7 & 23 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{4}=R_{4}-\frac{152 R_{1}}{139} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & -\frac{102}{139} & -\frac{81}{139} & -\frac{102}{139} & \frac{204}{139} & 0 \\
0 & -\frac{96}{139} & -\frac{297}{139} & \frac{321}{139} & \frac{609}{139} & 0 \\
95 & -10 & -38 & -7 & 23 & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{95 R_{1}}{139} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & -\frac{102}{139} & -\frac{81}{139} & -\frac{102}{139} & \frac{204}{139} & 0 \\
0 & -\frac{96}{139} & -\frac{297}{139} & \frac{321}{139} & \frac{609}{139} & 0 \\
0 & -\frac{60}{139} & -\frac{342}{139} & \frac{357}{139} & \frac{537}{139} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{34 R_{2}}{129} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} & 0 \\
0 & -\frac{96}{139} & -\frac{297}{139} & \frac{321}{139} & \frac{609}{139} & 0 \\
0 & -\frac{60}{139} & -\frac{342}{139} & \frac{357}{139} & \frac{537}{139} & 0
\end{array}\right] \\
R_{5}=R_{4}+\frac{32 R_{2}}{129} \Longrightarrow\left[\begin{array}{ccccc|c}
129 & {\left[\begin{array}{ccccc|c}
\\
0 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} & 0 \\
0 & 0 & -\frac{105}{43} & \frac{161}{43} & \frac{161}{43} & 0 \\
0 & -\frac{60}{139} & -\frac{342}{139} & \frac{357}{139} & \frac{537}{139} & 0
\end{array}\right]} \\
0 & 0 & -\frac{387}{43} & \frac{149}{43} & \frac{149}{43} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{35 R_{3}}{13} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} & 0 \\
0 & 0 & 0 & \frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & -\frac{114}{43} & \frac{149}{43} & \frac{149}{43} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{38 R_{3}}{13} \Longrightarrow\left[\begin{array}{ccccc|c}
139 & -14 & -52 & -14 & 28 & 0 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} & 0 \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} & 0 \\
0 & 0 & 0 & \frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & 0 & \frac{15}{13} & \frac{15}{13} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{5 R_{4}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
& {\left[\begin{array}{ccccc|c}
\\
0 & -14 & -52 & -14 & 28 & 0 \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} & 0 \\
0 & 0 & 0 & \frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]}
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
0 & \frac{387}{139} & -\frac{171}{139} & \frac{804}{139} & -\frac{357}{139} \\
0 & 0 & -\frac{39}{43} & \frac{34}{43} & \frac{34}{43} \\
0 & 0 & 0 & \frac{21}{13} & \frac{21}{13} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=3 t, v_{3}=0, v_{4}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
3 t \\
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 t \\
0 \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
3 t \\
0 \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
3 t \\
0 \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{r}
\left.\left(\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-(3)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
-22 & 2 & 7 & 8 & -7 & 0 \\
370 & -38 & -142 & -38 & 76 & 0 \\
152 & -16 & -59 & -16 & 35 & 0 \\
95 & -10 & -38 & -7 & 20 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{11 R_{1}}{68} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
370 & -38 & -142 & -38 & 76 & 0 \\
152 & -16 & -59 & -16 & 35 & 0 \\
95 & -10 & -38 & -7 & 20 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{185 R_{1}}{68} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & \frac{3}{34} & -\frac{9}{17} & \frac{3}{34} & -\frac{3}{17} & 0 \\
152 & -16 & -59 & -16 & 35 & 0 \\
95 & -10 & -38 & -7 & 20 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{4}=R_{4}-\frac{19 R_{1}}{17} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & \frac{3}{34} & -\frac{9}{17} & \frac{3}{34} & -\frac{3}{17} & 0 \\
0 & -\frac{6}{17} & -\frac{15}{17} & -\frac{6}{17} & \frac{63}{17} & 0 \\
95 & -10 & -38 & -7 & 20 & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{95 R_{1}}{136} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & \frac{3}{34} & -\frac{9}{17} & \frac{3}{34} & -\frac{3}{17} & 0 \\
0 & -\frac{6}{17} & -\frac{15}{17} & -\frac{6}{17} & \frac{63}{17} & 0 \\
0 & -\frac{15}{68} & -\frac{57}{34} & \frac{189}{68} & \frac{15}{34} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & -\frac{6}{17} & -\frac{15}{17} & -\frac{6}{17} & \frac{63}{17} & 0 \\
0 & -\frac{15}{68} & -\frac{57}{34} & \frac{189}{68} & \frac{15}{34} & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{5 R_{2}}{6} \Longrightarrow\left[\begin{array}{ccccc|c}
& {\left[\begin{array}{ccccc|c}
\\
R_{4}
\end{array} \Longrightarrow\right.} \\
0 R_{2} \\
0 & 0 & -14 & -14 & 28 & 0 \\
0 & 0 & 1 & -8 & 7 & 0 \\
0 & 0 & -\frac{1}{2} & -2 & \frac{5}{2} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+R_{3} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -6 & 6 & 0 \\
0 & 0 & -\frac{1}{2} & -2 & \frac{5}{2} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{R_{3}}{2} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -6 & 6 & 0 \\
0 & 0 & 0 & -3 & 3 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{R_{4}}{2} \Longrightarrow\left[\begin{array}{ccccc|c}
136 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -6 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
136 & -14 & -52 & -14 & 28 \\
0 & -\frac{9}{34} & -\frac{24}{17} & \frac{195}{34} & -\frac{42}{17} \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -6 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=7 t, v_{3}=t, v_{4}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
7 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
7 t \\
t \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
7 t \\
t \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
7 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
7 t \\
t \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
7 \\
1 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=6$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{rc}
\left.\left(\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-(6)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
-22 & -1 & 7 & 8 & -7 & 0 \\
370 & -38 & -145 & -38 & 76 & 0 \\
152 & -16 & -59 & -19 & 35 & 0 \\
95 & -10 & -38 & -7 & 17 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{22 R_{1}}{133} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
370 & -38 & -145 & -38 & 76 & 0 \\
152 & -16 & -59 & -19 & 35 & 0 \\
95 & -10 & -38 & -7 & 17 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{370 R_{1}}{133} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & \frac{18}{19} & -\frac{45}{133} & \frac{18}{19} & -\frac{36}{19} & 0 \\
152 & -16 & -59 & -19 & 35 & 0 \\
95 & -10 & -38 & -7 & 17 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}-\frac{8 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & \frac{18}{19} & -\frac{45}{133} & \frac{18}{19} & -\frac{36}{19} & 0 \\
0 & 0 & \frac{3}{7} & -3 & 3 & 0 \\
95 & -10 & -38 & -7 & 17 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{5 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & \frac{18}{19} & -\frac{45}{133} & \frac{18}{19} & -\frac{36}{19} & 0 \\
0 & 0 & \frac{3}{7} & -3 & 3 & 0 \\
0 & 0 & -\frac{6}{7} & 3 & -3 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{2 R_{2}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & 0 & -\frac{39}{49} & \frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & \frac{3}{7} & -3 & 3 & 0 \\
0 & 0 & -\frac{6}{7} & 3 & -3 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{7 R_{3}}{13} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & 0 & -\frac{39}{49} & \frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & 0 & -\frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & -\frac{6}{7} & 3 & -3 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{14 R_{3}}{13} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & 0 & -\frac{39}{49} & \frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & 0 & -\frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & 0 & \frac{3}{13} & -\frac{3}{13} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{5}=R_{5}+\frac{R_{4}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
133 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} & 0 \\
0 & 0 & -\frac{39}{49} & \frac{18}{7} & -\frac{18}{7} & 0 \\
0 & 0 & 0 & -\frac{21}{13} & \frac{21}{13} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
133 & -14 & -52 & -14 & 28 \\
0 & -\frac{63}{19} & -\frac{213}{133} & \frac{108}{19} & -\frac{45}{19} \\
0 & 0 & -\frac{39}{49} & \frac{18}{7} & -\frac{18}{7} \\
0 & 0 & 0 & -\frac{21}{13} & \frac{21}{13} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=t, v_{3}=0, v_{4}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{5}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]-(9)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
-22 & -4 & 7 & 8 & -7 & 0 \\
370 & -38 & -148 & -38 & 76 & 0 \\
152 & -16 & -59 & -22 & 35 & 0 \\
95 & -10 & -38 & -7 & 14 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+\frac{11 R_{1}}{65} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
370 & -38 & -148 & -38 & 76 & 0 \\
152 & -16 & -59 & -22 & 35 & 0 \\
95 & -10 & -38 & -7 & 14 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{37 R_{1}}{13} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & \frac{24}{13} & 0 & \frac{24}{13} & -\frac{48}{13} & 0 \\
152 & -16 & -59 & -22 & 35 & 0 \\
95 & -10 & -38 & -7 & 14 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{76 R_{1}}{65} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & \frac{24}{13} & 0 & \frac{24}{13} & -\frac{48}{13} & 0 \\
0 & \frac{24}{65} & \frac{9}{5} & -\frac{366}{65} & \frac{147}{65} & 0 \\
95 & -10 & -38 & -7 & 14 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{19 R_{1}}{26} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & \frac{24}{13} & 0 & \frac{24}{13} & -\frac{48}{13} & 0 \\
0 & \frac{24}{65} & \frac{9}{5} & -\frac{366}{65} & \frac{147}{65} & 0 \\
0 & \frac{3}{13} & 0 & \frac{42}{13} & -\frac{84}{13} & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{20 R_{2}}{69} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & \frac{24}{65} & \frac{9}{5} & -\frac{366}{65} & \frac{147}{65} & 0 \\
0 & \frac{3}{13} & 0 & \frac{42}{13} & -\frac{84}{13} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{4 R_{2}}{69} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & 0 & \frac{39}{23} & -\frac{122}{23} & \frac{49}{23} & 0 \\
0 & \frac{3}{13} & 0 & \frac{42}{13} & -\frac{84}{13} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{5 R_{2}}{138} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & 0 & \frac{39}{23} & -\frac{122}{23} & \frac{49}{23} & 0 \\
0 & 0 & -\frac{3}{46} & \frac{79}{23} & -\frac{301}{46} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{13 R_{3}}{4} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & 0 & 0 & 6 & -12 & 0 \\
0 & 0 & -\frac{3}{46} & \frac{79}{23} & -\frac{301}{46} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{R_{3}}{8} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & 0 & 0 & 6 & -12 & 0 \\
0 & 0 & 0 & 3 & -6 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{R_{4}}{2} \Longrightarrow\left[\begin{array}{ccccc|c}
130 & -14 & -52 & -14 & 28 & 0 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} & 0 \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} & 0 \\
0 & 0 & 0 & 6 & -12 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
130 & -14 & -52 & -14 & 28 \\
0 & -\frac{414}{65} & -\frac{9}{5} & \frac{366}{65} & -\frac{147}{65} \\
0 & 0 & -\frac{12}{23} & \frac{80}{23} & -\frac{100}{23} \\
0 & 0 & 0 & 6 & -12 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=0, v_{3}=5 t, v_{4}=2 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
0 \\
5 t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
0 \\
5 t \\
2 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
0 \\
5 t \\
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
0 \\
5 t \\
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
0	1	1	No	$\left[\begin{array}{c}0 \\ 3 \\ 0 \\ -1 \\ 1\end{array}\right]$
6	1	1	No	$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right]$
9	1	1	No	$\left[\begin{array}{l}2 \\ 0 \\ 5 \\ 2 \\ 1\end{array}\right]$
3	1	1	No	$\left[\begin{array}{l}1 \\ 7 \\ 1 \\ 1 \\ 1\end{array}\right]$
-3	1	1	No	$\left[\begin{array}{l}1 \\ 0 \\ 3 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{0} \\
& =\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right] e^{0}
\end{aligned}
$$

Since eigenvalue 6 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{6 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right] e^{6 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{c}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{3 t} \\
& =\left[\begin{array}{l}
1 \\
7 \\
1 \\
1 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{5}(t) & =\vec{v}_{5} e^{-3 t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)+c_{5} \vec{x}_{5}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{6 t} \\
0 \\
\mathrm{e}^{6 t} \\
\mathrm{e}^{6 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
2 \mathrm{e}^{9 t} \\
0 \\
5 \mathrm{e}^{9 t} \\
2 \mathrm{e}^{9 t} \\
\mathrm{e}^{9 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
7 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{5}\left[\begin{array}{c}
\mathrm{e}^{-3 t} \\
0 \\
3 \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{3 t}+c_{5} \mathrm{e}^{-3 t} \\
3 c_{1}+c_{2} \mathrm{e}^{6 t}+7 c_{4} \mathrm{e}^{3 t} \\
5 c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{3 t}+3 c_{5} \mathrm{e}^{-3 t} \\
-c_{1}+c_{2} \mathrm{e}^{6 t}+2 c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{3 t}+c_{5} \mathrm{e}^{-3 t} \\
c_{1}+c_{2} \mathrm{e}^{6 t}+c_{3} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{3 t}+c_{5} \mathrm{e}^{-3 t}
\end{array}\right]
$$

4.38.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=139 x_{1}(t)-14 x_{2}(t)-52 x_{3}(t)-14 x_{4}(t)+28 x_{5}(t), x_{2}^{\prime}(t)=-22 x_{1}(t)+5 x_{2}(t)+7 x_{3}(t)+\right.
$$

- Define vector

$$
\underset{x^{\prime}}{ }(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right] \cdot x^{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right] \cdot x \rightarrow(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccccc}
139 & -14 & -52 & -14 & 28 \\
-22 & 5 & 7 & 8 & -7 \\
370 & -38 & -139 & -38 & 76 \\
152 & -16 & -59 & -13 & 35 \\
95 & -10 & -38 & -7 & 23
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-3,\left[\begin{array}{c}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
1 \\
7 \\
1 \\
1 \\
1
\end{array}\right]\right],\left[6,\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]\right],\left[9,\left[\begin{array}{l}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-3,\left[\begin{array}{c}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{l}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[0,\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{2}=\left[\begin{array}{c}
0 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{l}1 \\ 7 \\ 1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$x_{3}^{\rightarrow}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}1 \\ 7 \\ 1 \\ 1 \\ 1\end{array}\right]$
- Consider eigenpair
$\left[6,\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
\underline{x}_{4}=\mathrm{e}^{6 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[9,\left[\begin{array}{l}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{5}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x^{\rightarrow}+c_{2} x \underbrace{}_{2}+c_{3} x^{\rightarrow}+c_{4} x \longrightarrow_{4}+c_{5} x{ }_{5}^{\rightarrow}
$$

- Substitute solutions into the general solution

$$
\underline{x^{\rightarrow}}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
1 \\
0 \\
3 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
1 \\
7 \\
1 \\
1 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{6 t} \cdot\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
1
\end{array}\right]+c_{5} \mathrm{e}^{9 t} \cdot\left[\begin{array}{c}
2 \\
0 \\
5 \\
2 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
3 c_{2} \\
0 \\
-c_{2} \\
c_{2}
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+2 c_{5} \mathrm{e}^{9 t} \\
7 c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+3 c_{2} \\
3 c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+5 c_{5} \mathrm{e}^{9 t} \\
c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+2 c_{5} \mathrm{e}^{9 t}-c_{2} \\
c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+c_{5} \mathrm{e}^{9 t}+c_{2}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+2 c_{5} \mathrm{e}^{9 t}, x_{2}(t)=7 c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{6 t}+3 c_{2}, x_{3}(t)=3 c_{1} \mathrm{e}^{-3 t}+c_{3} \mathrm{e}^{3 t}+5 c_{5} \mathrm{e}^{9 t}, x_{4}(t)\right.
$$

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 132

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{9 t}+c_{5} \mathrm{e}^{-3 t} \\
& x_{2}(t)=\frac{\mathrm{e}^{6 t} c_{1}}{6}+7 c_{3} \mathrm{e}^{3 t}+c_{2} \\
& x_{3}(t)=c_{3} \mathrm{e}^{3 t}+\frac{5 c_{4} \mathrm{e}^{9 t}}{2}+3 c_{5} \mathrm{e}^{-3 t} \\
& x_{4}(t)=c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{9 t}+c_{5} \mathrm{e}^{-3 t}+\frac{\mathrm{e}^{6 t} c_{1}}{6}-\frac{c_{2}}{3} \\
& x_{5}(t)=c_{3} \mathrm{e}^{3 t}+\frac{\mathrm{e}^{6 t} c_{1}}{6}+\frac{c_{4} \mathrm{e}^{9 t}}{2}+c_{5} \mathrm{e}^{-3 t}+\frac{c_{2}}{3}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 2676
DSolve $\left[\left\{x 1^{\prime}[t]==139 * x 1[t]-14 * x 2[t]-52 * x 3[t]-14 * x 4[t]+28 * x 5[t], x 2{ }^{\prime}[t]==-22 * x 1[t]+5 * x 2[t]+7 * x 3\right.\right.$
Too large to display

4.39 problem problem 50

4.39.1 Solution using Matrix exponential method
 698

4.39.2 Solution using explicit Eigenvalue and Eigenvector method . . . 701
4.39.3 Maple step by step solution 739

Internal problem ID [353]
Internal file name [OUTPUT/353_Sunday_June_05_2022_01_39_28_AM_35276350/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.3, The eigenvalue method for linear systems. Page 395
Problem number: problem 50.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =9 x_{1}(t)+13 x_{2}(t)-13 x_{6}(t) \\
x_{2}^{\prime}(t) & =-14 x_{1}(t)+19 x_{2}(t)-10 x_{3}(t)-20 x_{4}(t)+10 x_{5}(t)+4 x_{6}(t) \\
x_{3}^{\prime}(t) & =-30 x_{1}(t)+12 x_{2}(t)-7 x_{3}(t)-30 x_{4}(t)+12 x_{5}(t)+18 x_{6}(t) \\
x_{4}^{\prime}(t) & =-12 x_{1}(t)+10 x_{2}(t)-10 x_{3}(t)-9 x_{4}(t)+10 x_{5}(t)+2 x_{6}(t) \\
x_{5}^{\prime}(t) & =6 x_{1}(t)+9 x_{2}(t)+6 x_{4}(t)+5 x_{5}(t)-15 x_{6}(t) \\
x_{6}^{\prime}(t) & =-14 x_{1}(t)+23 x_{2}(t)-10 x_{3}(t)-20 x_{4}(t)+10 x_{5}(t)
\end{aligned}
$$

4.39.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t) \\
x_{6}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccccc}
\mathrm{e}^{9 t} & \left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} & 0 & 0 \\
\left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{10}\right. \\
-\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{12 t}-1\right) \mathrm{e}^{-7 t} & \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{12}\right. \\
\left(\mathrm{e}^{18 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{18 t}-2 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{10}\right. \\
\mathrm{e}^{11 t}-\mathrm{e}^{5 t} & \left(\mathrm{e}^{9 t}-1\right) \mathrm{e}^{-4 t} & 0 & \mathrm{e}^{11 t}-\mathrm{e}^{5 t} & \\
\left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{10}\right.
\end{array}\right.
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\mathrm{e}^{9 t} & \left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} & 0 & 0 \\
\left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} \\
-\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{12 t}-1\right) \mathrm{e}^{-7 t} & \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} \\
\left(\mathrm{e}^{18 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{18 t}-2 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} \\
\mathrm{e}^{11 t}-\mathrm{e}^{5 t} & \left(\mathrm{e}^{9 t}-1\right) \mathrm{e}^{-4 t} & 0 & \mathrm{e}^{11 t}-\mathrm{e}^{5 t} \\
\left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} & \left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-7 t} & -\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} & -2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t}
\end{array}\right. \\
& =\left[\begin{array}{r}
\mathrm{e}^{9 t} c_{1}+\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} c_{2}-\left(\mathrm{e}^{13 t}-1\right) \mathrm{e}^{-4 t} c_{6} \\
\left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} c_{1}+\left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{2}-\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{3}-2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{4}+ \\
-\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} c_{1}+\left(\mathrm{e}^{12 t}-1\right) \mathrm{e}^{-7 t} c_{2}+\mathrm{e}^{-7 t} c_{3}-\left(\mathrm{e}^{18 t}+\mathrm{e}^{12 t}-2\right) \mathrm{e}^{-7 t} c_{4}+ \\
\left(\mathrm{e}^{18 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} c_{1}+\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{2}-\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{3}+\left(\mathrm{e}^{18 t}-2 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} c_{4}+
\end{array}\right. \\
& \left(\mathrm{e}^{11 t}-\mathrm{e}^{5 t}\right) c_{1}+\left(\mathrm{e}^{9 t}-1\right) \mathrm{e}^{-4 t} c_{2}+\left(\mathrm{e}^{11 t}-\mathrm{e}^{5 t}\right) c_{4}+\mathrm{e}^{5 t} c_{5}-(\\
& \left(\mathrm{e}^{16 t}-3 \mathrm{e}^{10 t}+2\right) \mathrm{e}^{-7 t} c_{1}+\left(\mathrm{e}^{16 t}+\mathrm{e}^{10 t}-\mathrm{e}^{3 t}-1\right) \mathrm{e}^{-7 t} c_{2}-\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{3}-2\left(\mathrm{e}^{10 t}-1\right) \mathrm{e}^{-7 t} c_{4}+ \\
& =\left[\begin{array}{c}
\left(\left(c_{1}+c_{2}-c_{6}\right) \mathrm{e}^{13 t}-c_{2}+c_{6}\right) \mathrm{e}^{-4 t} \\
\mathrm{e}^{-7 t}\left(\left(-3 c_{1}+c_{2}-c_{3}-2 c_{4}+c_{5}+2 c_{6}\right) \mathrm{e}^{10 t}+\left(c_{1}+c_{2}-c_{6}\right) \mathrm{e}^{16 t}+2 c_{1}-c_{2}+c_{3}+2 c_{4}-c_{5}\right. \\
-\left(\left(c_{1}-c_{2}+c_{4}-c_{5}\right) \mathrm{e}^{12 t}+\left(c_{1}+c_{4}-c_{6}\right) \mathrm{e}^{18 t}-2 c_{1}+c_{2}-c_{3}-2 c_{4}+c_{5}+c_{6}\right) \mathrm{e}^{-7 t} \\
\left(\left(-3 c_{1}+c_{2}-c_{3}-2 c_{4}+c_{5}+2 c_{6}\right) \mathrm{e}^{10 t}+\left(c_{1}+c_{4}-c_{6}\right) \mathrm{e}^{18 t}+2 c_{1}-c_{2}+c_{3}+2 c_{4}-c_{5}-c_{6}\right. \\
-\mathrm{e}^{-4 t}\left(\left(c_{1}-c_{2}+c_{4}-c_{5}\right) \mathrm{e}^{9 t}+\left(-c_{1}-c_{4}+c_{6}\right) \mathrm{e}^{15 t}+c_{2}-c_{6}\right) \\
-3 \mathrm{e}^{-7 t}\left(\left(c_{1}-\frac{c_{2}}{3}+\frac{c_{3}}{3}+\frac{2 c_{4}}{3}-\frac{c_{5}}{3}-\frac{2 c_{6}}{3}\right) \mathrm{e}^{10 t}+\frac{\left(-c_{1}-c_{2}+c_{6}\right) \mathrm{e}^{16 t}}{3}+\frac{\left(c_{2}-c_{6}\right) \mathrm{e}^{3 t}}{3}-\frac{2 c_{1}}{3}+\frac{c_{2}}{3}-\frac{c_{3}}{3}-\frac{2 c_{4}}{3}+\right.
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

4.39.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t) \\
x_{6}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-\lambda\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccccc}
9-\lambda & 13 & 0 & 0 & 0 & -13 \\
-14 & 19-\lambda & -10 & -20 & 10 & 4 \\
-30 & 12 & -7-\lambda & -30 & 12 & 18 \\
-12 & 10 & -10 & -9-\lambda & 10 & 2 \\
6 & 9 & 0 & 6 & 5-\lambda & -15 \\
-14 & 23 & -10 & -20 & 10 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{6}-17 \lambda^{5}-6 \lambda^{4}+1138 \lambda^{3}-2855 \lambda^{2}-14241 \lambda+41580=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
\lambda_{1} & =11 \\
\lambda_{2} & =9 \\
\lambda_{3} & =-4 \\
\lambda_{4} & =5 \\
\lambda_{5} & =3 \\
\lambda_{6} & =-7
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-4	1	real eigenvalue
3	1	real eigenvalue
5	1	real eigenvalue
-7	1	real eigenvalue
9	1	real eigenvalue
11	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-7$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{c}
\left(\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(-7)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 26 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & 0 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -2 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 12 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 7 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{7 R_{1}}{8} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
-30 & 12 & 0 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -2 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 12 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 7 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}+\frac{15 R_{1}}{8} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & \frac{291}{8} & 0 & -30 & 12 & -\frac{51}{8} & 0 \\
-12 & 10 & -10 & -2 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 12 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 7 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{3 R_{1}}{4} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & \frac{291}{8} & 0 & -30 & 12 & -\frac{51}{8} & 0 \\
0 & \frac{79}{4} & -10 & -2 & 10 & -\frac{31}{4} & 0 \\
6 & 9 & 0 & 6 & 12 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 7 & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{3 R_{1}}{8} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & \frac{291}{8} & 0 & -30 & 12 & -\frac{51}{8} & 0 \\
0 & \frac{79}{4} & -10 & -2 & 10 & -\frac{31}{4} & 0 \\
0 & \frac{33}{8} & 0 & 6 & 12 & -\frac{81}{8} & 0 \\
-14 & 23 & -10 & -20 & 10 & 7 & 0
\end{array}\right] \\
& R_{6}=R_{6}+\frac{7 R_{1}}{8} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & \frac{291}{8} & 0 & -30 & 12 & -\frac{51}{8} & 0 \\
0 & \frac{79}{4} & -10 & -2 & 10 & -\frac{31}{4} & 0 \\
0 & \frac{33}{8} & 0 & 6 & 12 & -\frac{81}{8} & 0 \\
0 & \frac{275}{8} & -10 & -20 & 10 & -\frac{35}{8} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{3}=R_{3}-\frac{291 R_{2}}{299} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & \frac{79}{4} & -10 & -2 & 10 & -\frac{31}{4} & 0 \\
0 & \frac{33}{8} & 0 & 6 & 12 & -\frac{81}{8} & 0 \\
0 & \frac{275}{8} & -10 & -20 & 10 & -\frac{35}{8} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{158 R_{2}}{299} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & -\frac{1410}{299} & \frac{2562}{299} & \frac{1410}{299} & -\frac{1152}{299} & 0 \\
0 & \frac{33}{8} & 0 & 6 & 12 & -\frac{81}{8} & 0 \\
0 & \frac{275}{8} & -10 & -20 & 10 & -\frac{35}{8} & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{33 R_{2}}{299} \Longrightarrow\left[\begin{array}{cccccc|c}
\\
R_{6}=R_{6}-\frac{275 R_{2}}{299} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & -\frac{1410}{299} & \frac{2562}{299} & \frac{1410}{299} & -\frac{1152}{299} & 0 \\
0 & 0 & \frac{330}{299} & \frac{2454}{299} & \frac{3258}{299} & -\frac{2784}{299} & 0 \\
0 & \frac{275}{8} & -10 & -20 & 10 & -\frac{35}{8} & 0
\end{array}\right] \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & -\frac{1410}{299} & \frac{2562}{299} & \frac{1410}{299} & -\frac{1152}{299} & 0 \\
0 & 0 & \frac{330}{299} & \frac{2454}{299} & \frac{3258}{299} & -\frac{2784}{299} & 0 \\
0 & 0 & -\frac{240}{299} & -\frac{480}{299} & \frac{240}{299} & \frac{720}{299} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{4}=R_{4}+\frac{47 R_{3}}{97} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & \frac{330}{299} & \frac{2454}{299} & \frac{3558}{299} & -\frac{2784}{299} & 0 \\
0 & 0 & -\frac{240}{299} & -\frac{480}{299} & \frac{240}{299} & \frac{720}{299} & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{11 R_{3}}{97} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & 0 & \frac{912}{97} & \frac{1032}{97} & -\frac{912}{97} & 0 \\
0 & 0 & -\frac{240}{299} & -\frac{480}{299} & \frac{240}{299} & \frac{720}{299} & 0
\end{array}\right] \\
R_{6}=R_{6}+\frac{8 R_{3}}{97} \Longrightarrow\left[\begin{array}{cccccc|c}
& {\left[\begin{array}{cccccc|c}
\\
R_{5}
\end{array} \Longrightarrow\left[\begin{array}{cccccc|c}
\\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & 0 & \frac{912}{97} & \frac{1032}{97} & -\frac{992}{97} & 0 \\
0 & 0 & 0 & -\frac{240}{97} & \frac{96}{97} & \frac{240}{97} & 0
\end{array}\right]\right.} \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & 0 & 0 & -\frac{36}{7} & 0 & 0 \\
0 & 0 & 0 & -\frac{240}{97} & \frac{96}{97} & \frac{240}{97} & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{6}=R_{6}+\frac{5 R_{4}}{7} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & 0 & 0 & -\frac{36}{7} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{36}{7} & 0 & 0
\end{array}\right] \\
R_{6}=R_{6}+R_{5} \Longrightarrow\left[\begin{array}{cccccc|c}
16 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} & 0 \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} & 0 \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} & 0 \\
0 & 0 & 0 & 0 & -\frac{36}{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
16 & 13 & 0 & 0 & 0 & -13 \\
0 & \frac{299}{8} & -10 & -20 & 10 & -\frac{59}{8} \\
0 & 0 & \frac{2910}{299} & -\frac{3150}{299} & \frac{678}{299} & \frac{240}{299} \\
0 & 0 & 0 & \frac{336}{97} & \frac{564}{97} & -\frac{336}{97} \\
0 & 0 & 0 & 0 & -\frac{36}{7} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{6}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $v_{6}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=t, v_{3}=t, v_{4}=t, v_{5}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
t \\
t \\
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
t \\
t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
t \\
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
t \\
t \\
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=-4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(-4)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & -3 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -5 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 9 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{14 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
-30 & 12 & -3 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -5 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 9 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{30 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 42 & -3 & -30 & 12 & -12 & 0 \\
-12 & 10 & -10 & -5 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 9 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{12 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 42 & -3 & -30 & 12 & -12 & 0 \\
0 & 22 & -10 & -5 & 10 & -10 & 0 \\
6 & 9 & 0 & 6 & 9 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{5}=R_{5}-\frac{6 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 42 & -3 & -30 & 12 & -12 & 0 \\
0 & 22 & -10 & -5 & 10 & -10 & 0 \\
0 & 3 & 0 & 6 & 9 & -9 & 0 \\
-14 & 23 & -10 & -20 & 10 & 4 & 0
\end{array}\right] \\
& R_{6}=R_{6}+\frac{14 R_{1}}{13} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 42 & -3 & -30 & 12 & -12 & 0 \\
0 & 22 & -10 & -5 & 10 & -10 & 0 \\
0 & 3 & 0 & 6 & 9 & -9 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{42 R_{2}}{37} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 22 & -10 & -5 & 10 & -10 & 0 \\
0 & 3 & 0 & 6 & 9 & -9 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{22 R_{2}}{37} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & -\frac{150}{37} & \frac{255}{37} & \frac{150}{37} & -\frac{150}{37} & 0 \\
0 & 3 & 0 & 6 & 9 & -9 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{5}=R_{5}-\frac{3 R_{2}}{37} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & -\frac{150}{37} & \frac{255}{37} & \frac{150}{37} & -\frac{150}{37} & 0 \\
0 & 0 & \frac{30}{37} & \frac{282}{37} & \frac{303}{37} & -\frac{303}{37} & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0
\end{array}\right] \\
R_{6}=R_{6}-R_{2} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & -\frac{150}{37} & \frac{255}{37} & \frac{150}{37} & -\frac{150}{37} & 0 \\
0 & 0 & \frac{30}{37} & \frac{282}{37} & \frac{303}{37} & -\frac{303}{37} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{50 R_{3}}{103} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & 0 & \frac{345}{103} & \frac{450}{103} & -\frac{450}{103} & 0 \\
0 & 0 & \frac{30}{37} & \frac{282}{37} & \frac{303}{37} & -\frac{303}{37} & 0 \\
R_{5}=R_{5}-\frac{10 R_{3}}{103} \Longrightarrow\left[\begin{array}{cccccc|c}
\\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & 0 & \frac{345}{103} & \frac{450}{103} & -\frac{450}{103} & 0 \\
0 & 0 & 0 & \frac{858}{103} & \frac{83}{103} & -\frac{837}{103} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{5}=R_{5}-\frac{286 R_{4}}{115} \Longrightarrow\left[\begin{array}{cccccc|c}
13 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 37 & -10 & -20 & 10 & -10 & 0 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} & 0 \\
0 & 0 & 0 & \frac{345}{103} & \frac{450}{103} & -\frac{450}{103} & 0 \\
0 & 0 & 0 & 0 & -\frac{63}{23} & \frac{63}{23} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
13 & 13 & 0 & 0 & 0 & -13 \\
0 & 37 & -10 & -20 & 10 & -10 \\
0 & 0 & \frac{309}{37} & -\frac{270}{37} & \frac{24}{37} & -\frac{24}{37} \\
0 & 0 & 0 & \frac{345}{103} & \frac{450}{103} & -\frac{450}{103} \\
0 & 0 & 0 & 0 & -\frac{63}{23} & \frac{63}{23} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{6}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $v_{6}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=0, v_{3}=0, v_{4}=0, v_{5}=t\right\}$ Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
0 \\
0 \\
0 \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0 \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{3}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(3)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 16 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & -10 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -12 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 2 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{7 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
-30 & 12 & -10 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -12 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 2 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -3 & 0
\end{array}\right] \\
R_{3}=R_{3}+5 R_{1} \Longrightarrow
\end{gathered}\left[\begin{array}{ccccc|c|c}
& {\left[\begin{array}{cccccc|c}
\\
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 77 & -10 & -30 & 12 & -47 & 0 \\
-12 & 10 & -10 & -12 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 2 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -3 & 0
\end{array}\right]}
\end{array}\right.
$$

$$
\begin{aligned}
& R_{5}=R_{5}-R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 77 & -10 & -30 & 12 & -47 & 0 \\
0 & 36 & -10 & -12 & 10 & -24 & 0 \\
0 & -4 & 0 & 6 & 2 & -2 & 0 \\
-14 & 23 & -10 & -20 & 10 & -3 & 0
\end{array}\right] \\
& R_{6}=R_{6}+\frac{7 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 77 & -10 & -30 & 12 & -47 & 0 \\
0 & 36 & -10 & -12 & 10 & -24 & 0 \\
0 & -4 & 0 & 6 & 2 & -2 & 0 \\
0 & \frac{160}{3} & -10 & -20 & 10 & -\frac{100}{3} & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{231 R_{2}}{139} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 36 & -10 & -12 & 10 & -24 & 0 \\
0 & -4 & 0 & 6 & 2 & -2 & 0 \\
0 & \frac{160}{3} & -10 & -20 & 10 & -\frac{100}{3} & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{108 R_{2}}{139} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & -\frac{310}{139} & \frac{492}{139} & \frac{310}{139} & -\frac{492}{139} & 0 \\
0 & -4 & 0 & 6 & 2 & -2 & 0 \\
0 & \frac{160}{3} & -10 & -20 & 10 & -\frac{100}{3} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{5}=R_{5}+\frac{12 R_{2}}{139} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & -\frac{310}{139} & \frac{492}{139} & \frac{310}{139} & -\frac{492}{139} & 0 \\
0 & 0 & -\frac{120}{139} & \frac{594}{139} & \frac{398}{139} & -\frac{594}{139} & 0 \\
0 & \frac{160}{3} & -10 & -20 & 10 & -\frac{100}{3} & 0
\end{array}\right] \\
& R_{6}=R_{6}-\frac{160 R_{2}}{139} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & -\frac{310}{139} & \frac{492}{139} & \frac{310}{139} & -\frac{492}{139} & 0 \\
0 & 0 & -\frac{120}{139} & \frac{59}{139} & \frac{398}{139} & -\frac{594}{139} & 0 \\
0 & 0 & \frac{210}{139} & \frac{420}{139} & -\frac{210}{139} & -\frac{420}{139} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{31 R_{3}}{92} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & -\frac{120}{139} & \frac{594}{139} & \frac{398}{139} & -\frac{594}{139} & 0 \\
0 & 0 & \frac{210}{139} & \frac{420}{139} & -\frac{210}{139} & -\frac{420}{139} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{3 R_{3}}{23} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & 0 & \frac{108}{23} & \frac{52}{23} & -\frac{108}{23} & 0 \\
0 & 0 & \frac{210}{139} & \frac{420}{139} & -\frac{210}{139} & -\frac{420}{139} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{6}=R_{6}-\frac{21 R_{3}}{92} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & 0 & \frac{108}{23} & \frac{52}{23} & -\frac{108}{23} & 0 \\
0 & 0 & 0 & \frac{105}{46} & -\frac{21}{46} & -\frac{105}{46} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{72 R_{4}}{71} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & 0 & 0 & \frac{112}{71} & 0 & 0 \\
0 & 0 & 0 & \frac{105}{46} & -\frac{21}{46} & -\frac{105}{46} & 0
\end{array}\right] \\
& R_{6}=R_{6}-\frac{35 R_{4}}{71} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & 0 & 0 & \frac{112}{71} & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{56}{71} & 0 & 0
\end{array}\right] \\
& R_{6}=R_{6}+\frac{R_{5}}{2} \Longrightarrow\left[\begin{array}{cccccc|c}
6 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} & 0 \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} & 0 \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} & 0 \\
0 & 0 & 0 & 0 & \frac{112}{71} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
6 & 13 & 0 & 0 & 0 & -13 \\
0 & \frac{139}{3} & -10 & -20 & 10 & -\frac{79}{3} \\
0 & 0 & \frac{920}{139} & \frac{450}{139} & -\frac{642}{139} & -\frac{450}{139} \\
0 & 0 & 0 & \frac{213}{46} & \frac{31}{46} & -\frac{213}{46} \\
0 & 0 & 0 & 0 & \frac{112}{71} & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{6}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $v_{6}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=t, v_{3}=0, v_{4}=t, v_{5}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
t \\
0 \\
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{4}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(5)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 14 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & -12 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -14 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 0 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -5 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{7 R_{1}}{2} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
-30 & 12 & -12 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -14 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 0 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -5 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{15 R_{1}}{2} \Longrightarrow\left[\begin{array}{cccccc|c}
& {\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & \frac{219}{2} & -12 & -30 & 12 & -\frac{159}{2} & 0 \\
-12 & 10 & -10 & -14 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & 0 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -5 & 0
\end{array}\right]} \\
R_{4}=R_{4}+3 R_{1} & \Longrightarrow\left[\begin{array}{cccccc|c}
\\
R_{5}=R_{5}-\frac{13}{2} \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 49 & -12 & -30 & 12 & -\frac{159}{2} & 0 \\
6 & 9 & 0 & 6 & 0 & -14 & 10 \\
-37 & 0 \\
-14 & 23 & -10 & -20 & 10 & -5 & 0
\end{array}\right] \\
0 & \frac{219}{2} & -12 & -30 & 12 & -\frac{159}{2} & 0 \\
0 & 49 & -10 & -14 & 10 & -37 & 0 \\
0 & -\frac{21}{2} & 0 & 6 & 0 & \frac{9}{2} & 0 \\
-14 & 23 & -10 & -20 & 10 & -5 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{6}=R_{6}+\frac{7 R_{1}}{2} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & \frac{219}{2} & -12 & -30 & 12 & -\frac{159}{2} & 0 \\
0 & 49 & -10 & -14 & 10 & -37 & 0 \\
0 & -\frac{21}{2} & 0 & 6 & 0 & \frac{9}{2} & 0 \\
0 & \frac{137}{2} & -10 & -20 & 10 & -\frac{101}{2} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{219 R_{2}}{119} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 49 & -10 & -14 & 10 & -37 & 0 \\
0 & -\frac{21}{2} & 0 & 6 & 0 & \frac{9}{2} & 0 \\
0 & \frac{137}{2} & -10 & -20 & 10 & -\frac{101}{2} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{14 R_{2}}{17} \Longrightarrow\left[\begin{array}{cccccc|c}
& {\left[\begin{array}{cccccc|c}
\\
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & -\frac{21}{2} & 0 & 6 & 0 & \frac{9}{2} & 0 \\
0 & \frac{137}{2} & -10 & -20 & 10 & -\frac{101}{2} & 0
\end{array}\right]} \\
R_{5}=R_{5}+\frac{3 R_{2}}{17} \Longrightarrow\left[\begin{array}{cccccc|c}
\\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & \frac{137}{2} & -10 & -20 & 10 & -\frac{101}{2} & 0
\end{array}\right]
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{6}=R_{6}-\frac{137 R_{2}}{119} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & 0 & \frac{180}{119} & \frac{360}{119} & -\frac{180}{119} & -\frac{324}{119} & 0
\end{array}\right] \\
& R_{4}=R_{4}+\frac{35 R_{3}}{127} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & -\frac{30}{17} & \frac{42}{17} & \frac{30}{17} & -\frac{48}{17} & 0 \\
0 & 0 & \frac{180}{119} & \frac{360}{119} & -\frac{180}{119} & -\frac{324}{119} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{35 R_{3}}{127} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & \frac{180}{119} & \frac{360}{119} & -\frac{180}{119} & -\frac{324}{119} & 0
\end{array}\right] \\
& R_{6}=R_{6}-\frac{30 R_{3}}{127} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{19} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & \frac{180}{127} & 0 & -\frac{252}{127} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{5}=R_{5}-R_{4} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{180}{127} & 0 & -\frac{252}{127} & 0
\end{array}\right] \\
R_{6}=R_{6}-\frac{15 R_{4}}{46} \Longrightarrow\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{18}{23} & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(5,6)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 5 and row 6 gives

$$
\left[\begin{array}{cccccc|c}
4 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} & 0 \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} & 0 \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{18}{23} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
4 & 13 & 0 & 0 & 0 & -13 \\
0 & \frac{119}{2} & -10 & -20 & 10 & -\frac{83}{2} \\
0 & 0 & \frac{762}{119} & \frac{810}{119} & -\frac{762}{119} & -\frac{372}{119} \\
0 & 0 & 0 & \frac{552}{127} & 0 & -\frac{468}{127} \\
0 & 0 & 0 & 0 & 0 & -\frac{18}{23} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=t, v_{4}=0, v_{6}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t \\
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
t \\
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{5}=9$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{cc}
{\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(9)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccccc|c}
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & -16 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -18 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -4 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -9 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
-30 & 12 & -16 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -18 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -4 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -9 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{3}=R_{3}-\frac{15 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -\frac{66}{7} & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & \frac{66}{7} & 0 \\
-12 & 10 & -10 & -18 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -4 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -9 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{6 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccccc|c}
{\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -\frac{66}{7} & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & \frac{66}{7} & 0 \\
0 & \frac{10}{7} & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & -\frac{10}{7} & 0 \\
6 & 9 & 0 & 6 & -4 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -9 & 0
\end{array}\right]} \\
R_{5}=R_{5}+\frac{3 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccccc|c}
& {\left[\begin{array}{cccccc|c}
\\
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -\frac{66}{7} & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & \frac{66}{7} & 0 \\
0 & \frac{10}{7} & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & -\frac{10}{7} & 0 \\
0 & \frac{93}{7} & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & -\frac{93}{7} & 0 \\
-14 & 23 & -10 & -20 & 10 & -9 & 0
\end{array}\right]} \\
R_{6}=R_{6}-R_{1} \\
0 & -\frac{66}{7} & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & \frac{66}{7}
\end{array} 0\right. \\
0 & \frac{10}{7} & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & -\frac{10}{7} & 0 \\
0 & \frac{93}{7} & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & -\frac{93}{7} & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{66 R_{2}}{91} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & \frac{10}{7} & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & -\frac{10}{7} & 0 \\
0 & \frac{93}{7} & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & -\frac{93}{7} & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{10 R_{2}}{91} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & 0 & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & 0 & 0 \\
0 & \frac{93}{7} & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & -\frac{93}{7} & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0
\end{array}\right] \\
R_{5}=R_{5}-\frac{93 R_{2}}{91} \Longrightarrow\left[\begin{array}{ccccc|c}
& {\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & 0 & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & 0 & 0 \\
0 & 0 & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & 0 & 0 \\
R_{6}=R_{6}-R_{2} \\
0 & 13 & 0 & 0 & 0 & -13 & 0
\end{array}\right]} \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 \\
0 & 0 & -\frac{10}{7} & -\frac{6}{7} & \frac{10}{7} & 0 \\
0 \\
0 & 0 & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & 0 \\
0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{5 R_{3}}{19} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & 0 & 0 & \frac{48}{19} & -\frac{20}{19} & 0 & 0 \\
0 & 0 & -\frac{30}{7} & -\frac{18}{7} & \frac{2}{7} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{15 R_{3}}{19} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & 0 & 0 & \frac{48}{19} & -\frac{20}{19} & 0 & 0 \\
0 & 0 & 0 & \frac{144}{19} & -\frac{136}{19} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& R_{5}=R_{5}-3 R_{4} \Longrightarrow\left[\begin{array}{cccccc|c}
-14 & 10 & -10 & -20 & 10 & 4 & 0 \\
0 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 & 0 \\
0 & 0 & 0 & \frac{48}{19} & -\frac{20}{19} & 0 & 0 \\
0 & 0 & 0 & 0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
-14 & 10 & -10 & -20 & 10 & 4 \\
0 & 13 & 0 & 0 & 0 & -13 \\
0 & 0 & \frac{38}{7} & \frac{90}{7} & -\frac{66}{7} & 0 \\
0 & 0 & 0 & \frac{48}{19} & -\frac{20}{19} & 0 \\
0 & 0 & 0 & 0 & -4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{6}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Let $v_{6}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=t, v_{3}=0, v_{4}=0, v_{5}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
0 \\
0 \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0 \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{6}=11$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]-(11)\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
-14 & 8 & -10 & -20 & 10 & 4 & 0 \\
-30 & 12 & -18 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -20 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -6 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -11 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-7 R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
-30 & 12 & -18 & -30 & 12 & 18 & 0 \\
-12 & 10 & -10 & -20 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -6 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -11 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-15 R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & -183 & -18 & -30 & 12 & 213 & 0 \\
-12 & 10 & -10 & -20 & 10 & 2 & 0 \\
6 & 9 & 0 & 6 & -6 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -11 & 0
\end{array}\right] \\
& R_{4}=R_{4}-6 R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & -183 & -18 & -30 & 12 & 213 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0 \\
6 & 9 & 0 & 6 & -6 & -15 & 0 \\
-14 & 23 & -10 & -20 & 10 & -11 & 0
\end{array}\right] \\
& R_{5}=R_{5}+3 R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & -183 & -18 & -30 & 12 & 213 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0 \\
0 & 48 & 0 & 6 & -6 & -54 & 0 \\
-14 & 23 & -10 & -20 & 10 & -11 & 0
\end{array}\right] \\
& R_{6}=R_{6}-7 R_{1} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & -183 & -18 & -30 & 12 & 213 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0 \\
0 & 48 & 0 & 6 & -6 & -54 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-\frac{183 R_{2}}{83} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0 \\
0 & 48 & 0 & 6 & -6 & -54 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{68 R_{2}}{83} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0 \\
0 & 48 & 0 & 6 & -6 & -54 & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{48 R_{2}}{83} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0 \\
0 & 0 & -\frac{480}{83} & -\frac{462}{83} & -\frac{18}{83} & \frac{78}{83} & 0 \\
0 & -68 & -10 & -20 & 10 & 80 & 0
\end{array}\right] \\
& R_{6}=R_{6}-\frac{68 R_{2}}{83} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0 \\
0 & 0 & -\frac{480}{83} & -\frac{462}{83} & -\frac{18}{83} & \frac{78}{83} & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4}=R_{4}+\frac{25 R_{3}}{56} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0 \\
0 & 0 & -\frac{480}{83} & -\frac{462}{83} & -\frac{18}{83} & \frac{78}{83} & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{10 R_{3}}{7} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0 \\
0 & 0 & 0 & \frac{102}{7} & -\frac{102}{7} & 6 & 0 \\
0 & 0 & -\frac{150}{83} & -\frac{300}{83} & \frac{150}{83} & \frac{180}{83} & 0
\end{array}\right] \\
& R_{6}=R_{6}+\frac{25 R_{3}}{56} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0 \\
0 & 0 & 0 & \frac{102}{7} & -\frac{102}{7} & 6 & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0
\end{array}\right] \\
& R_{5}=R_{5}-\frac{136 R_{4}}{25} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{72}{5} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{6}=R_{6}-R_{4} \Longrightarrow\left[\begin{array}{cccccc|c}
-2 & 13 & 0 & 0 & 0 & -13 & 0 \\
0 & -83 & -10 & -20 & 10 & 95 & 0 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} & 0 \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} & 0 \\
0 & 0 & 0 & 0 & 0 & -\frac{72}{5} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccccc}
-2 & 13 & 0 & 0 & 0 & -13 \\
0 & -83 & -10 & -20 & 10 & 95 \\
0 & 0 & \frac{336}{83} & \frac{1170}{83} & -\frac{834}{83} & \frac{294}{83} \\
0 & 0 & 0 & \frac{75}{28} & -\frac{75}{28} & \frac{15}{4} \\
0 & 0 & 0 & 0 & 0 & -\frac{72}{5} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5} \\
v_{6}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\right\}$. Let $v_{5}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0, v_{3}=-t, v_{4}=t, v_{6}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
0 \\
-t \\
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-t \\
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
0 \\
-t \\
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
0 \\
-t \\
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
11	1	1	No	$\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ 1 \\ 0\end{array}\right]$
9	1	1	No	$\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$
-4	1	1	No	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right]$
5	1	1	No	$\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]$
3	1	$\begin{gathered} 1 \\ 736 \end{gathered}$	No	$\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 11 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{11 t} \\
& =\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
1 \\
0
\end{array}\right] e^{11 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{9 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

Since eigenvalue -4 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-4 t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{5 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right] e^{5 t}
\end{aligned}
$$

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{5}(t) & =\vec{v}_{5} e^{3 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue -7 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{6}(t) & =\vec{v}_{6} e^{-7 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right] e^{-7 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)+c_{5} \vec{x}_{5}(t)+c_{6} \vec{x}_{6}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
-\mathrm{e}^{11 t} \\
\mathrm{e}^{11 t} \\
\mathrm{e}^{11 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{9 t} \\
\mathrm{e}^{9 t} \\
0 \\
0 \\
0 \\
\mathrm{e}^{9 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-4 t} \\
0 \\
0 \\
0 \\
\mathrm{e}^{-4 t} \\
\mathrm{e}^{-4 t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{5 t} \\
0 \\
\mathrm{e}^{5 t} \\
0
\end{array}\right]+c_{5}\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 t} \\
0 \\
\mathrm{e}^{3 t} \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{6}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-7 t} \\
\mathrm{e}^{-7 t} \\
\mathrm{e}^{-7 t} \\
0 \\
\mathrm{e}^{-7 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(c_{2} \mathrm{e}^{13 t}+c_{3}\right) \mathrm{e}^{-4 t} \\
\left(c_{2} \mathrm{e}^{16 t}+c_{5} \mathrm{e}^{10 t}+c_{6}\right) \mathrm{e}^{-7 t} \\
-\left(c_{1} \mathrm{e}^{18 t}-c_{4} \mathrm{e}^{12 t}-c_{6}\right) \mathrm{e}^{-7 t} \\
\left(c_{1} \mathrm{e}^{18 t}+c_{5} \mathrm{e}^{10 t}+c_{6}\right) \mathrm{e}^{-7 t} \\
\left(c_{1} \mathrm{e}^{15 t}+c_{4} \mathrm{e}^{9 t}+c_{3}\right) \mathrm{e}^{-4 t} \\
\left(c_{2} \mathrm{e}^{16 t}+c_{5} \mathrm{e}^{10 t}+c_{3} \mathrm{e}^{3 t}+c_{6}\right) \mathrm{e}^{-7 t}
\end{array}\right]
$$

4.39.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=9 x_{1}(t)+13 x_{2}(t)-13 x_{6}(t), x_{2}^{\prime}(t)=-14 x_{1}(t)+19 x_{2}(t)-10 x_{3}(t)-20 x_{4}(t)+10 x_{5}(t)+\right.$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccccc}
9 & 13 & 0 & 0 & 0 & -13 \\
-14 & 19 & -10 & -20 & 10 & 4 \\
-30 & 12 & -7 & -30 & 12 & 18 \\
-12 & 10 & -10 & -9 & 10 & 2 \\
6 & 9 & 0 & 6 & 5 & -15 \\
-14 & 23 & -10 & -20 & 10 & 0
\end{array}\right]
$$

- Rewrite the system as
$x_{\square}{ }^{\prime}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

- Consider eigenpair

$$
\left[-7,\left[\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{ }}_{\rightarrow}=\mathrm{e}^{-7 t} \cdot\left[\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair

$$
\left[-4,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{-}{2}}_{2}=\mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[3,\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
{\underset{-}{3}}^{\rightarrow}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[5,\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{4}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

- Consider eigenpair
$\left[9,\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]\right]$
- \quad Solution to homogeneous system from eigenpair

$$
{\underset{-}{x}}_{x^{2}}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[11,\left[\begin{array}{c}0 \\ 0 \\ -1 \\ 1 \\ 1 \\ 0\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
x_{6}=\mathrm{e}^{11 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1 \\
1 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{-7 t} \cdot\left[\begin{array}{c}
0 \\
1 \\
1 \\
1 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-4 t} \cdot\left[\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}\right]+c_{5} \mathrm{e}^{9 t} \cdot\left[\begin{array}{c}
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]+c_{6} \mathrm{e}^{11 t} .
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t) \\
x_{6}(t)
\end{array}\right]=\left[\begin{array}{c}
\left(c_{5} \mathrm{e}^{13 t}+c_{2}\right) \mathrm{e}^{-4 t} \\
\left(c_{5} \mathrm{e}^{16 t}+c_{3} \mathrm{e}^{10 t}+c_{1}\right) \mathrm{e}^{-7 t} \\
\left(-c_{6} \mathrm{e}^{18 t}+c_{4} \mathrm{e}^{12 t}+c_{1}\right) \mathrm{e}^{-7 t} \\
\left(c_{6} \mathrm{e}^{18 t}+c_{3} \mathrm{e}^{10 t}+c_{1}\right) \mathrm{e}^{-7 t} \\
\left(c_{6} \mathrm{e}^{15 t}+c_{4} \mathrm{e}^{9 t}+c_{2}\right) \mathrm{e}^{-4 t} \\
\left(c_{5} \mathrm{e}^{16 t}+c_{3} \mathrm{e}^{10 t}+c_{2} \mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-7 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\left(c_{5} \mathrm{e}^{13 t}+c_{2}\right) \mathrm{e}^{-4 t}, x_{2}(t)=\left(c_{5} \mathrm{e}^{16 t}+c_{3} \mathrm{e}^{10 t}+c_{1}\right) \mathrm{e}^{-7 t}, x_{3}(t)=\left(-c_{6} \mathrm{e}^{18 t}+c_{4} \mathrm{e}^{12 t}+c_{1}\right) \mathrm{e}^{-7 t}, x^{2}\right.
$$

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 135
dsolve ([diff $\left(x_{-} 1(t), t\right)=9 * x_{-} 1(t)+13 * x_{-} 2(t)+0 * x_{-} 3(t)+0 * x_{-} 4(t)+0 * x_{-} 5(t)-13 * x_{-} 6(t), \operatorname{diff}(x$

$$
\begin{aligned}
& x_{1}(t)=c_{5} \mathrm{e}^{-4 t}+c_{6} \mathrm{e}^{9 t} \\
& x_{2}(t)=c_{6} \mathrm{e}^{9 t}+c_{4} \mathrm{e}^{3 t}+\mathrm{e}^{-7 t} c_{3} \\
& x_{3}(t)=\mathrm{e}^{-7 t} c_{3}-\mathrm{e}^{11 t} c_{2}+\mathrm{e}^{5 t} c_{1} \\
& x_{4}(t)=\mathrm{e}^{11 t} c_{2}+c_{4} \mathrm{e}^{\mathrm{e} t}+\mathrm{e}^{-7 t} c_{3} \\
& x_{5}(t)=\mathrm{e}^{11 t} c_{2}+\mathrm{e}^{5 t} c_{1}+c_{5} \mathrm{e}^{-4 t} \\
& x_{6}(t)=c_{6} \mathrm{e}^{9 t}+c_{5} \mathrm{e}^{-4 t}+c_{4} \mathrm{e}^{3 t}+\mathrm{e}^{-7 t} c_{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 1882
DSolve $\left[\left\{x 1^{\prime}[t]==9 * x 1[t]+13 * x 2[t]-13 * x 6[t], x 2{ }^{\prime}[t]==-14 * x 1[t]+19 * x 2[t]-10 * x 3[t]-20 * x 4[t]+10 * x 5\right.\right.$
Too large to display
5 Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
5.1 problem Example 1 747
5.2 problem Example 3 759
5.3 problem Example 4 769
5.4 problem Example 6 778

5.1 problem Example 1

5.1.1 Solution using Matrix exponential method 747
5.1.2 Solution using explicit Eigenvalue and Eigenvector method 748
5.1.3 Maple step by step solution 755

Internal problem ID [354]
Internal file name [OUTPUT/354_Sunday_June_05_2022_01_39_32_AM_36099955/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
Problem number: Example 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =9 x_{1}(t)+4 x_{2}(t) \\
x_{2}^{\prime}(t) & =-6 x_{1}(t)-x_{2}(t) \\
x_{3}^{\prime}(t) & =6 x_{1}(t)+4 x_{2}(t)+3 x_{3}(t)
\end{aligned}
$$

5.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & 0 \\
-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t} & 0 \\
3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & 0 \\
-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t} & 0 \\
3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t} & -2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 \mathrm{e}^{3 t}+3 \mathrm{e}^{5 t}\right) c_{1}+\left(-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t}\right) c_{2} \\
\left(-3 \mathrm{e}^{5 t}+3 \mathrm{e}^{3 t}\right) c_{1}+\left(3 \mathrm{e}^{3 t}-2 \mathrm{e}^{5 t}\right) c_{2} \\
\left(3 \mathrm{e}^{5 t}-3 \mathrm{e}^{3 t}\right) c_{1}+\left(-2 \mathrm{e}^{3 t}+2 \mathrm{e}^{5 t}\right) c_{2}+\mathrm{e}^{3 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 c_{1}-2 c_{2}\right) \mathrm{e}^{3 t}+3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t} \\
\left(3 c_{1}+3 c_{2}\right) \mathrm{e}^{3 t}-3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t} \\
\left(-3 c_{1}-2 c_{2}+c_{3}\right) \mathrm{e}^{3 t}+3\left(c_{1}+\frac{2 c_{2}}{3}\right) \mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

5.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
9-\lambda & 4 & 0 \\
-6 & -1-\lambda & 0 \\
6 & 4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-11 \lambda^{2}+39 \lambda-45=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
6 & 4 & 0 \\
-6 & -4 & 0 \\
6 & 4 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
6 & 4 & 0 & 0 \\
-6 & -4 & 0 & 0 \\
6 & 4 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{lll|l}
6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 4 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{lll|l}
6 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
6 & 4 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-2 \\
3 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
-6 & -6 & 0 & 0 \\
6 & 4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 4 & -2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & -2 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
4 & 4 & 0 & 0 \\
0 & -2 & -2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
4 & 4 & 0 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	2	2	No	$\left[\begin{array}{cc}0 & -\frac{2}{3} \\ 0 & 1 \\ 1 & 0\end{array}\right]$
5	1	1	No	$\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 26: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Since eigenvalue 5 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{5 t} \\
& =\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{3 t}}{3} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{5 t} \\
-\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 c_{2} \mathrm{e}^{3 t}}{3}+c_{3} \mathrm{e}^{5 t} \\
c_{2} \mathrm{e}^{3 t}-c_{3} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

5.1.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=9 x_{1}(t)+4 x_{2}(t), x_{2}^{\prime}(t)=-6 x_{1}(t)-x_{2}(t), x_{3}^{\prime}(t)=6 x_{1}(t)+4 x_{2}(t)+3 x_{3}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]
$$

- Rewrite the system as
$x \rightarrow^{\prime}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[3,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-\frac{2}{3} \\
1 \\
0
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3

$$
{\left.\underset{-1}{ }(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], ~\right]}^{x_{1}}
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and $x^{\rightarrow} 2(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $x_{2}^{\rightarrow}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x{ }_{2}(t)$ to be a solution to the homogeneous system
$(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
9 & 4 & 0 \\
-6 & -1 & 0 \\
6 & 4 & 3
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3

$$
{\underset{\sim}{2}}^{\rightarrow}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[5,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{3}}_{3}=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs
$x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+c_{3} x \xrightarrow{\rightarrow}$
- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
c_{3} \mathrm{e}^{5 t} \\
-c_{3} \mathrm{e}^{5 t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}
\end{array}\right]
$$

- Solution to the system of ODEs
$\left\{x_{1}(t)=c_{3} \mathrm{e}^{5 t}, x_{2}(t)=-c_{3} \mathrm{e}^{5 t}, x_{3}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}\right\}$
\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 58
dsolve ([diff $\left(x_{-} 1(t), t\right)=9 * x_{-} 1(t)+4 * x_{--} 2(t)+0 * x_{--} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=-6 * x_{-} 1(t)-1 * x_{-} 2(t)+0$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t} \\
& x_{2}(t)=-\frac{3 c_{2} \mathrm{e}^{3 t}}{2}-c_{3} \mathrm{e}^{5 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{5 t}+c_{1} \mathrm{e}^{3 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 113
DSolve $\left[\left\{x 1^{\prime}[t]==9 * x 1[t]+4 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-6 * x 1[t]-1 * x 2[t]+0 * x 3[t], x 3 '[t]==6 * x 1[t]+4 * x\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow e^{3 t}\left(c_{1}\left(3 e^{2 t}-2\right)+2 c_{2}\left(e^{2 t}-1\right)\right) \\
\mathrm{x} 2(t) & \rightarrow-e^{3 t}\left(3 c_{1}\left(e^{2 t}-1\right)+c_{2}\left(2 e^{2 t}-3\right)\right) \\
\mathrm{x} 3(t) & \rightarrow \int_{1}^{t} 3 x(K[1]) d K[1]+\frac{6}{5} c_{1}\left(e^{5 t}-1\right)+\frac{4}{5} c_{2}\left(e^{5 t}-1\right)+c_{3}
\end{aligned}
$$

5.2 problem Example 3

5.2.1 Solution using Matrix exponential method
 759

5.2.2 Solution using explicit Eigenvalue and Eigenvector method 760
5.2.3 Maple step by step solution 765

Internal problem ID [355]
Internal file name [OUTPUT/355_Sunday_June_05_2022_01_39_33_AM_56987758/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
Problem number: Example 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-3 x_{2}(t) \\
x_{2}^{\prime}(t) & =3 x_{1}(t)+7 x_{2}(t)
\end{aligned}
$$

5.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-3 t) & -3 t \mathrm{e}^{4 t} \\
3 t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(1+3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-3 t) & -3 t \mathrm{e}^{4 t} \\
3 t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(1+3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t}(1-3 t) c_{1}-3 t \mathrm{e}^{4 t} c_{2} \\
3 t \mathrm{e}^{4 t} c_{1}+\mathrm{e}^{4 t}(1+3 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-3 t)-3 c_{2} t\right) \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}\left(3 t c_{1}+3 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

5.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -3 \\
3 & 7-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda+16=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=4
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & -3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & -3 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-3 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
4	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 27: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & -3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{2}{3} \\
1
\end{array}\right]\right) \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{4 t}(3 t+2)}{3} \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-t-\frac{2}{3}\right) \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t-\frac{2}{3} c_{2}\right) \\
\mathrm{e}^{4 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 28: Phase plot

5.2.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)-3 x_{2}(t), x_{2}^{\prime}(t)=3 x_{1}(t)+7 x_{2}(t)\right]$

- Define vector

$$
\overrightarrow{x^{\rightarrow}}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 4
$x_{\longrightarrow_{1}}(t)=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=4$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 4

$$
\left(\left[\begin{array}{cc}
1 & -3 \\
3 & 7
\end{array}\right]-4 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{3} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 4

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{3} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{3} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t+\frac{1}{3} c_{2}\right) \\
\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{4 t}\left(-c_{1}-c_{2} t+\frac{1}{3} c_{2}\right), x_{2}(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)\right\}
$$

Solution by Maple

Time used: 0.0 (sec). Leaf size: 33

```
dsolve([diff(x__1(t),t)=1*x__1(t)-3*x__2(t), diff(x__2(t),t)=3*x__1(t)+7*x__2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{4 t}\left(3 c_{2} t+3 c_{1}+c_{2}\right)}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-3 * x 2[t], x 2{ }^{\prime}[t]==3 * x 1[t]+7 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{4 t}\left(c_{1}(3 t-1)+3 c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{4 t}\left(3\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

5.3 problem Example 4

5.3.1 Solution using Matrix exponential method

5.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 770

Internal problem ID [356]
Internal file name [OUTPUT/356_Sunday_June_05_2022_01_39_34_AM_40841151/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
Problem number: Example 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{2}(t)+2 x_{3}(t) \\
x_{2}^{\prime}(t) & =-5 x_{1}(t)-3 x_{2}(t)-7 x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)
\end{aligned}
$$

5.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(-t^{2}+t+1\right) & -\frac{\mathrm{e}^{-t} t(t-2)}{2} & -\frac{\mathrm{e}^{-t} t(3 t-4)}{2} \\
-\mathrm{e}^{-t} t(t+5) & \mathrm{e}^{-t}\left(1-\frac{1}{2} t^{2}-2 t\right) & -\frac{\mathrm{e}^{-t} t(3 t+14)}{2} \\
\mathrm{e}^{-t} t(t+1) & \frac{t^{2} \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1+\frac{3}{2} t^{2}+t\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(-t^{2}+t+1\right) & -\frac{\mathrm{e}^{-t} t(t-2)}{2} & -\frac{\mathrm{e}^{-t} t(3 t-4)}{2} \\
-\mathrm{e}^{-t} t(t+5) & \mathrm{e}^{-t}\left(1-\frac{1}{2} t^{2}-2 t\right) & -\frac{\mathrm{e}^{-t} t(3 t+14)}{2} \\
\mathrm{e}^{-t} t(t+1) & \frac{t^{2} \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1+\frac{3}{2} t^{2}+t\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-t^{2}+t+1\right) c_{1}-\frac{\mathrm{e}^{-t} t(t-2) c_{2}}{2}-\frac{\mathrm{e}^{-t} t(3 t-4) c_{3}}{2} \\
-\mathrm{e}^{-t} t(t+5) c_{1}+\mathrm{e}^{-t}\left(1-\frac{1}{2} t^{2}-2 t\right) c_{2}-\frac{\mathrm{e}^{-t} t(3 t+14) c_{3}}{2} \\
\mathrm{e}^{-t} t(t+1) c_{1}+\frac{t^{2} \mathrm{e}^{-t} c_{2}}{2}+\mathrm{e}^{-t}\left(1+\frac{3}{2} t^{2}+t\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\left(\left(c_{1}+\frac{c_{2}}{2}+\frac{3 c_{3}}{2}\right) t^{2}+\left(-c_{1}-c_{2}-2 c_{3}\right) t-c_{1}\right) \mathrm{e}^{-t} \\
-\left(\left(c_{1}+\frac{c_{2}}{2}+\frac{3 c_{3}}{2}\right) t^{2}+\left(5 c_{1}+2 c_{2}+7 c_{3}\right) t-c_{2}\right) \mathrm{e}^{-t} \\
\left(\left(c_{1}+\frac{c_{2}}{2}+\frac{3 c_{3}}{2}\right) t^{2}+\left(c_{1}+c_{3}\right) t+c_{3}\right) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

5.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 1 & 2 \\
-5 & -3-\lambda & -7 \\
1 & 0 & -\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
-5 & -2 & -7 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+5 R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 3 & 3 & 0 \\
1 & 0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 1 & 2 & 0 \\
0 & 3 & 3 & 0 \\
0 & -1 & -1 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{lll|l}
1 & 1 & 2 & 0 \\
0 & 3 & 3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	3			

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 29: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 1 & 2 \\
-5 & -3 & -7 \\
1 & 0 & 0
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -1 . Therefore the three
basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-t}\left(\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-t \mathrm{e}^{-t} \\
-\mathrm{e}^{-t}(t+3) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
0 \\
-3 \\
1
\end{array}\right] t+\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{t^{2} e^{-t}}{2} \\
-\frac{\mathrm{e}^{-t}\left(t^{2}+6 t+4\right)}{2} \\
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+2\right)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-t \mathrm{e}^{-t} \\
\mathrm{e}^{-t}(-t-3) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\frac{t^{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}\left(-\frac{1}{2} t^{2}-3 t-2\right) \\
\mathrm{e}^{-t}\left(t+\frac{1}{2} t^{2}+1\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-c_{1}-t c_{2}-\frac{1}{2} t^{2} c_{3}\right) \\
-\frac{\mathrm{e}^{-t}\left(\left(t^{2}+6 t+4\right) c_{3}+2 t c_{2}+2 c_{1}+6 c_{2}\right)}{2} \\
\frac{\mathrm{e}^{-t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 t c_{2}+2 c_{1}+2 c_{2}\right)}{2}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 75

$$
\begin{aligned}
& x_{1}(t)=-\mathrm{e}^{-t}\left(c_{3} t^{2}+c_{2} t-2 c_{3} t+c_{1}-c_{2}\right) \\
& x_{2}(t)=-\mathrm{e}^{-t}\left(c_{3} t^{2}+c_{2} t+4 c_{3} t+c_{1}+2 c_{2}-2 c_{3}\right) \\
& x_{3}(t)=\mathrm{e}^{-t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 134
DSolve $\left[\left\{x 1^{\prime}[t]==0 * x 1[t]+1 * x 2[t]+2 * x 3[t], x 2{ }^{\prime}[t]==-5 * x 1[t]-3 * x 2[t]-7 * x 3[t], x 3 '[t]==1 * x 1[t]+0 * x\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(-2 t^{2}+2 t+2\right)-c_{2}(t-2) t+c_{3}(4-3 t) t\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{-t}\left(-\left(\left(2 c_{1}+c_{2}+3 c_{3}\right) t^{2}\right)-2\left(5 c_{1}+2 c_{2}+7 c_{3}\right) t+2 c_{2}\right) \\
\mathrm{x} 3(t) & \rightarrow \frac{1}{2} e^{-t}\left(\left(2 c_{1}+c_{2}+3 c_{3}\right) t^{2}+2\left(c_{1}+c_{3}\right) t+2 c_{3}\right)
\end{aligned}
$$

5.4 problem Example 6

5.4.1 Solution using Matrix exponential method 778
5.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 779

Internal problem ID [357]
Internal file name [OUTPUT/357_Sunday_June_05_2022_01_39_35_AM_28085054/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Examples. Page 437
Problem number: Example 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{4}(t) \\
x_{3}^{\prime}(t) & =-2 x_{1}(t)+2 x_{2}(t)-3 x_{3}(t)+x_{4}(t) \\
x_{4}^{\prime}(t) & =2 x_{1}(t)-2 x_{2}(t)+x_{3}(t)-3 x_{4}(t)
\end{aligned}
$$

5.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t} & \frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4} & \frac{1}{4}+\frac{(-2 t-1) \mathrm{e}^{-2 t}}{4} \\
\frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t} & \frac{1}{4}+\frac{(-2 t-1) \mathrm{e}^{-2 t}}{4} & \frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4} \\
-2 t \mathrm{e}^{-2 t} & 2 t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-t) & t \mathrm{e}^{-2 t} \\
2 t \mathrm{e}^{-2 t} & -2 t \mathrm{e}^{-2 t} & t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t} & \frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t} & \frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4} \\
\frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t} & \frac{1}{4}+\frac{(-2 t-1) \mathrm{e}^{-2 t}}{4} \\
-2 t \mathrm{e}^{-2 t} & 2 t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-t) \\
2 t \mathrm{e}^{-2 t} & -2 t \mathrm{e}^{-2 t} & \frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4} \\
& t \mathrm{e}^{-2 t} & \mathrm{e}^{-2 t}(1-t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t}\right) c_{1}+\left(\frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t}\right) c_{2}+\left(\frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4}\right) c_{3}+\left(\frac{1}{4}+\frac{(-2 t-1) \mathrm{e}^{-2 t}}{4}\right) c_{4} \\
\left(\frac{1}{2}-\frac{\mathrm{e}^{-2 t}}{2}-t \mathrm{e}^{-2 t}\right) c_{1}+\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{1}{2}+t \mathrm{e}^{-2 t}\right) c_{2}+\left(\frac{1}{4}+\frac{(-2 t-1) \mathrm{e}^{-2 t}}{4}\right) c_{3}+\left(\frac{1}{4}+\frac{(2 t-1) \mathrm{e}^{-2 t}}{4}\right) c_{4} \\
-2 t \mathrm{e}^{-2 t} c_{1}+2 t \mathrm{e}^{-2 t} c_{2}+\mathrm{e}^{-2 t}(1-t) c_{3}+t \mathrm{e}^{-2 t} c_{4} \\
2 t \mathrm{e}^{-2 t} c_{1}-2 t \mathrm{e}^{-2 t} c_{2}+t \mathrm{e}^{-2 t} c_{3}+\mathrm{e}^{-2 t}(1-t) c_{4} \\
-2\left(\left(c_{1}-c_{2}+\frac{c_{3}}{2}-\frac{c_{4}}{2}\right) t-\frac{c_{3}}{2}\right) \mathrm{e}^{-2 t} \\
2\left(\left(c_{1}-c_{2}+\frac{c_{3}}{2}-\frac{c_{4}}{2}\right) t+\frac{c_{4}}{2}\right) \mathrm{e}^{-2 t}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

5.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-\lambda & 0 & 1 & 0 \\
0 & -\lambda & 0 & 1 \\
-2 & 2 & -3-\lambda & 1 \\
2 & -2 & 1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}+6 \lambda^{3}+12 \lambda^{2}+8 \lambda=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=0
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
0	1	real eigenvalue
-2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]-(-2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
-2 & 2 & -1 & 1 & 0 \\
2 & -2 & 1 & -1 & 0
\end{array}\right]} \\
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 \\
2 & -2 & 1 & -1 & 0
\end{array}\right] \\
R_{4}=R_{4}-R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & -2 & 0 & -1 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}-R_{2} \Longrightarrow
\end{gathered}\left[\begin{array}{lllc|l}
2 & 0 & 1 & 0 & 0 \\
0 & 2 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & -1 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}, v_{2}=-\frac{s}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{t}{2} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{t}{2} \\
0 \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{s}{2} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-1 \\
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
2
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=0$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]\right. & -(0)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
-2 & 2 & -3 & 1 & 0 \\
2 & -2 & 1 & -3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-2 & 2 & -3 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
2 & -2 & 1 & -3 & 0
\end{array}\right]} \\
& R_{4}=R_{4}+R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 2 & -3 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & -2 & -2 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,3)$ is zero, then the current pivot row is replaced with a
row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left.\begin{array}{c}
{\left[\begin{array}{cccc|c}
-2 & 2 & -3 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & -2 & -2 & 0
\end{array}\right]} \\
R_{4}=R_{4}+2 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & 2 & -3 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & -2 & 0
\end{array}\right] \\
R_{4}=R_{4}+2 R_{3} \Longrightarrow
\end{array} \begin{array}{cccc|c}
-2 & 2 & -3 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2 & 2 & -3 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity					
		algebraic m	geometric k	defective?	eigenvectors	
:---:						
3						

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue -2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 30: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need
to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

$$
\begin{gathered}
\left(\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-2 & 2 & -3 & 1 \\
2 & -2 & 1 & -3
\end{array}\right]--2\left[\begin{array}{c}
\\
2
\end{array} \vec{v}_{3}=\overrightarrow{0}\right.\right. \\
\left.\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)^{2} \vec{v}_{3}=\overrightarrow{0} \\
{\left[\begin{array}{cccc}
2 & 2 & 1 & 1 \\
2 & 2 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \vec{v}_{3}=\overrightarrow{0}}
\end{gathered}
$$

Solving for \vec{v}_{3} from above gives

$$
\left[\begin{array}{c}
0 \\
1 \\
-4 \\
2
\end{array}\right]
$$

We need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
&(A-\lambda I)\left[\begin{array}{c}
0 \\
1 \\
-4 \\
2
\end{array}\right]=\alpha\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cccc}
2 & 0 & 1 & 0 \\
0 & 2 & 0 & 1 \\
-2 & 2 & -1 & 1 \\
2 & -2 & 1 & -1
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-4 \\
2
\end{array}\right]=\alpha\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{c}
-4 \\
4 \\
8 \\
-8
\end{array}\right]=\left[\begin{array}{c}
-\frac{\beta}{2} \\
-\frac{\alpha}{2} \\
\beta \\
\alpha
\end{array}\right] }
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
-4=-\frac{\beta}{2} \\
4=-\frac{\alpha}{2} \\
8=\beta \\
-8=\alpha
\end{array}
$$

solving for α, β from the above gives

$$
\begin{aligned}
-4 & =-\frac{\beta}{2} \\
4 & =-\frac{\alpha}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \alpha=-8 \\
& \beta=8
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =-8\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+(8)\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-4 \\
4 \\
8 \\
-8
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue -2 . Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{-2 t}}{2} \\
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{2} \\
0 \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-4 \\
4 \\
8 \\
-8
\end{array}\right] t+\left[\begin{array}{c}
0 \\
1 \\
-4 \\
2
\end{array}\right]\right) \mathrm{e}^{-2 t}
\end{aligned}
$$

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{0} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] e^{0}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{-2 t}}{2} \\
0 \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-2 t}}{2} \\
0 \\
\mathrm{e}^{-2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-4 t \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}(4 t+1) \\
\mathrm{e}^{-2 t}(-4+8 t) \\
\mathrm{e}^{-2 t}(2-8 t)
\end{array}\right]+c_{4}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-8 t c_{3}-c_{2}\right) \mathrm{e}^{-2 t}}{2}+c_{4} \\
\frac{\left((8 t+2) c_{3}-c_{1}\right) \mathrm{e}^{-2 t}}{2}+c_{4} \\
\left((-4+8 t) c_{3}+c_{2}\right) \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}\left(-8 t c_{3}+c_{1}+2 c_{3}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.046 (sec). Leaf size: 95

```
dsolve([diff(x__1 (t),t)=0*x__ 1(t)+0*x__ 2(t)+1*\mp@subsup{x}{__}{\prime}3(t)+0*\mp@subsup{x}{__}{\prime}4(t),\operatorname{diff}(\mp@subsup{x}{__}{\prime}2(t),t)=0*\mp@subsup{x}{_}{\prime}1(t)+0*
```

$$
\begin{aligned}
& x_{1}(t)=c_{2}+c_{3} \mathrm{e}^{-2 t}+c_{4} \mathrm{e}^{-2 t} t \\
& x_{2}(t)=-c_{3} \mathrm{e}^{-2 t}-c_{4} \mathrm{e}^{-2 t} t+c_{4} \mathrm{e}^{-2 t}+c_{2}+c_{1} \mathrm{e}^{-2 t} \\
& x_{3}(t)=-\mathrm{e}^{-2 t}\left(2 c_{4} t+2 c_{3}-c_{4}\right) \\
& x_{4}(t)=-\mathrm{e}^{-2 t}\left(-2 c_{4} t+2 c_{1}-2 c_{3}+3 c_{4}\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 210
DSolve $\left[\left\{x 1^{\prime}[t]==0 * x 1[t]+0 * x 2[t]+1 * x 3[t]+0 * x 4[t], x 2{ }^{\prime}[t]==0 * x 1[t]+0 * x 2[t]+0 * x 3[t]+1 * x 4[t], x 3{ }^{\prime}[\right.\right.$
$\mathrm{x} 1(t) \rightarrow \frac{1}{4} e^{-2 t}\left(2 c_{1}\left(2 t+e^{2 t}+1\right)+2 c_{2}\left(-2 t+e^{2 t}-1\right)+c_{3} e^{2 t}+2 c_{3} t+c_{4} e^{2 t}-2 c_{4} t-c_{3}-c_{4}\right)$
$\mathrm{x} 2(t) \rightarrow \frac{1}{4} e^{-2 t}\left(2 c_{1}\left(-2 t+e^{2 t}-1\right)+2 c_{2}\left(2 t+e^{2 t}+1\right)+c_{3} e^{2 t}-2 c_{3} t+c_{4} e^{2 t}+2 c_{4} t-c_{3}-c_{4}\right)$
$\mathrm{x} 3(t) \rightarrow e^{-2 t}\left(\left(-2 c_{1}+2 c_{2}-c_{3}+c_{4}\right) t+c_{3}\right)$
$\mathrm{x} 4(t) \rightarrow e^{-2 t}\left(\left(2 c_{1}-2 c_{2}+c_{3}-c_{4}\right) t+c_{4}\right)$
6 Section 7.6, Multiple Eigenvalue Solutions. Page451
6.1 problem problem 1 794
6.2 problem problem 2 804
6.3 problem problem 3 814
6.4 problem problem 4 824
6.5 problem problem 5 834
6.6 problem problem 6 844
6.7 problem problem 7 854
6.8 problem problem 8 863
6.9 problem problem 9 875
6.10 problem problem 10 887
6.11 problem problem 11 899
6.12 problem problem 12 908
6.13 problem problem 13 917
6.14 problem problem 14 926
6.15 problem problem 15 935
6.16 problem problem 16 945
6.17 problem problem 17 955
6.18 problem problem 18 965
6.19 problem problem 19 975
6.20 problem problem 20 991
6.21 problem problem 21 1002
6.22 problem problem 22 1010
6.23 problem problem 23 1018
6.24 problem problem 24 1030
6.25 problem problem 25 1043
6.26 problem problem 26 1052
6.27 problem problem 27 1061
6.28 problem problem 28 1071
6.29 problem problem 29 1080
6.30 problem problem 30 1094
6.31 problem problem 31 1108
6.32 problem problem 32 1117
6.33 problem problem 33 1134
6.34 problem problem 34 1143

6.1 problem problem 1

6.1.1 Solution using Matrix exponential method 794
6.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 795
6.1.3 Maple step by step solution . 800

Internal problem ID [358]
Internal file name [OUTPUT/358_Sunday_June_05_2022_01_39_38_AM_36062462/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-2 x_{1}(t)+x_{2}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)-4 x_{2}(t)
\end{aligned}
$$

6.1.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(t+1) & t \mathrm{e}^{-3 t} \\
-t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(t+1) & t \mathrm{e}^{-3 t} \\
-t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(1-t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(t+1) c_{1}+t \mathrm{e}^{-3 t} c_{2} \\
-t \mathrm{e}^{-3 t} c_{1}+\mathrm{e}^{-3 t}(1-t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(t c_{1}+c_{2} t+c_{1}\right) \\
-\left((-1+t) c_{2}+t c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.1.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
-1 & -4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}+6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & 1 & 0 \\
-1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-3	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 31: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-3 t}(2+t) \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-3 t}(-t-2) \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left((2+t) c_{2}+c_{1}\right) \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 32: Phase plot

6.1.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=-2 x_{1}(t)+x_{2}(t), x_{2}^{\prime}(t)=-x_{1}(t)-4 x_{2}(t)\right]$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right] \cdot \underline{x}^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\underline{\rightarrow}}{ }^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[-3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue -3
${\underset{\square}{\rightarrow}}^{\rightarrow}(t)=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-3$ is the eigenvalue, an
$x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x_{2}^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -3

$$
\left(\left[\begin{array}{cc}
-2 & 1 \\
-1 & -4
\end{array}\right]-(-3) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue - 3

$$
x_{2}(t)=\mathrm{e}^{-3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \longrightarrow_{1}(t)+c_{2} x{\underset{\beth}{2}}_{2}(t)
$$

- Substitute solutions into the general solution

$$
x_{-}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(-c_{2} t-c_{1}-c_{2}\right) \\
\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-3 t}\left(-c_{2} t-c_{1}-c_{2}\right), x_{2}(t)=\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 32
dsolve $\left[\operatorname{diff}\left(x_{--} 1(t), t\right)=-2 * x_{--} 1(t)+1 * x_{--} 2(t), \operatorname{diff}\left(x_{--} 2(t), t\right)=-1 * x_{--} 1(t)-4 * x_{--} 2(t)\right]$, singsol=a

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}-c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 42
DSolve $\left[\left\{x 1^{\prime}[t]==-2 * x 1[t]+1 * x 2[t], x 2{ }^{\prime}[t]==-1 * x 1[t]-4 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSo

$$
\begin{array}{r}
\mathrm{x} 1(t) \rightarrow e^{-3 t}\left(c_{1}(t+1)+c_{2} t\right) \\
\mathrm{x} 2(t) \rightarrow e^{-3 t}\left(c_{2}-\left(c_{1}+c_{2}\right) t\right)
\end{array}
$$

6.2 problem problem 2

6.2.1 Solution using Matrix exponential method 804
6.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 805
6.2.3 Maple step by step solution . 810

Internal problem ID [359]
Internal file name [OUTPUT/359_Sunday_June_05_2022_01_39_38_AM_79876116/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+x_{2}(t)
\end{aligned}
$$

6.2.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t}(t+1) & -\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t}(t+1) & -\mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1-t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+1) c_{1}-\mathrm{e}^{2 t} t c_{2} \\
\mathrm{e}^{2 t} t c_{1}+\mathrm{e}^{2 t}(1-t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{e}^{2 t}\left(t c_{1}-c_{2} t+c_{1}\right) \\
\mathrm{e}^{2 t}\left(t c_{1}-c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.2.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -1 \\
1 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-4 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
1 & -1 & 0 \\
1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	2	1	Yes	$\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 33: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{l}
\mathrm{e}^{2 t}(2+t) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t}(2+t) \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((2+t) c_{2}+c_{1}\right) \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 34: Phase plot

6.2.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=3 x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)+x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation
$x \overrightarrow{-}^{\prime}(t)=\left[\begin{array}{cc}3 & -1 \\ 1 & 1\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\rightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 2
$x^{\rightarrow{ }_{1}}(t)=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=2$ is the eigenvalue, and $x \xrightarrow{\rightarrow{ }_{2}}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 2

$$
\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 1
\end{array}\right]-2 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 2

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(c_{2} t+c_{1}+c_{2}\right) \\
\mathrm{e}^{2 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{2 t}\left(c_{2} t+c_{1}+c_{2}\right), x_{2}(t)=\mathrm{e}^{2 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 31

```
dsolve([diff(x__1(t),t)=3*x__1(t)-1*x__2(t), diff (x__2(t),t)=1*x__1(t)+1*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{2 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=\mathrm{e}^{2 t}\left(c_{2} t+c_{1}-c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 44
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-1 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]+1 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{gathered}
\mathrm{x} 1(t) \rightarrow e^{2 t}\left(c_{1}(t+1)-c_{2} t\right) \\
\mathrm{x} 2(t) \rightarrow e^{2 t}\left(\left(c_{1}-c_{2}\right) t+c_{2}\right)
\end{gathered}
$$

6.3 problem problem 3

6.3.1 Solution using Matrix exponential method 814
6.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 815
6.3.3 Maple step by step solution . 820

Internal problem ID [360]
Internal file name [OUTPUT/360_Sunday_June_05_2022_01_39_39_AM_72268151/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-2 x_{2}(t) \\
x_{2}^{\prime}(t) & =2 x_{1}(t)+5 x_{2}(t)
\end{aligned}
$$

6.3.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-2 t) & -2 \mathrm{e}^{3 t} t \\
2 \mathrm{e}^{3 t} t & \mathrm{e}^{3 t}(1+2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(1-2 t) & -2 \mathrm{e}^{3 t} t \\
2 \mathrm{e}^{3 t} t & \mathrm{e}^{3 t}(1+2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(1-2 t) c_{1}-2 \mathrm{e}^{3 t} t c_{2} \\
2 \mathrm{e}^{3 t} t c_{1}+\mathrm{e}^{3 t}(1+2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-2 t)-2 c_{2} t\right) \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}\left(2 t c_{1}+2 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.3.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
2 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-6 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-2 & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 35: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & -2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 3. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{3 t}(1+2 t)}{2} \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-t-\frac{1}{2}\right) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-c_{1}-c_{2} t-\frac{1}{2} c_{2}\right) \\
\mathrm{e}^{3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 36: Phase plot

6.3.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)-2 x_{2}(t), x_{2}^{\prime}(t)=2 x_{1}(t)+5 x_{2}(t)\right]$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3
$x_{\longrightarrow_{1}}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{cc}
1 & -2 \\
2 & 5
\end{array}\right]-3 \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3

$$
x_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-c_{1}-c_{2} t+\frac{1}{2} c_{2}\right) \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{3 t}\left(-c_{1}-c_{2} t+\frac{1}{2} c_{2}\right), x_{2}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve([diff(x__1(t),t)=1*x__1(t)-2*x__2(t), diff(x__2(t),t)=2*x__1(t)+5*x__2(t)], singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{3 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-2 * x 2[t], x 2{ }^{\prime}[t]==2 * x 1[t]+5 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{3 t}\left(c_{1}(2 t-1)+2 c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{3 t}\left(2\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

6.4 problem problem 4

6.4.1 Solution using Matrix exponential method 824
6.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 825
6.4.3 Maple step by step solution . 830

Internal problem ID [361]
Internal file name [OUTPUT/361_Sunday_June_05_2022_01_39_40_AM_44541264/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+5 x_{2}(t)
\end{aligned}
$$

6.4.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-t) & -t \mathrm{e}^{4 t} \\
t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(t+1)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{4 t}(1-t) & -t \mathrm{e}^{4 t} \\
t \mathrm{e}^{4 t} & \mathrm{e}^{4 t}(t+1)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{4 t}(1-t) c_{1}-t \mathrm{e}^{4 t} c_{2} \\
t \mathrm{e}^{4 t} c_{1}+\mathrm{e}^{4 t}(t+1) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\left(c_{1}(-1+t)+c_{2} t\right) \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}\left(t c_{1}+c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.4.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -1 \\
1 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-8 \lambda+16=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=4
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
4	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=4$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
4	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 4 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 37: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 4. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \mathrm{e}^{4 t} \\
& =\left[\begin{array}{c}
-t \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-t \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{4 t}\left(-t c_{2}-c_{1}\right) \\
\mathrm{e}^{4 t}\left(t c_{2}+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 38: Phase plot

6.4.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=3 x_{1}(t)-x_{2}(t), x_{2}^{\prime}(t)=x_{1}(t)+5 x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[4,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 4
$x_{\longrightarrow_{1}}(t)=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=4$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 4

$$
\left(\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right]-4 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 4

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\left((-1+t) c_{2}+c_{1}\right) \mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\left((-1+t) c_{2}+c_{1}\right) \mathrm{e}^{4 t}, x_{2}(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve([diff(x__1(t),t)=3*x__1(t)-1*x__2(t), diff (x__2(t),t)=1*x__1(t)+5*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{4 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\mathrm{e}^{4 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 42
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-1 * x 2[t], x 2{ }^{\prime}[t]==1 * x 1[t]+5 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{4 t}\left(c_{1}(t-1)+c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{4 t}\left(\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

6.5 problem problem 5

6.5.1 Solution using Matrix exponential method 834
6.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 835
6.5.3 Maple step by step solution . 840

Internal problem ID [362]
Internal file name [OUTPUT/362_Sunday_June_05_2022_01_39_41_AM_85394000/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=7 x_{1}(t)+x_{2}(t) \\
& x_{2}^{\prime}(t)=-4 x_{1}(t)+3 x_{2}(t)
\end{aligned}
$$

6.5.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{5 t}(1+2 t) & t \mathrm{e}^{5 t} \\
-4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{5 t}(1+2 t) & t \mathrm{e}^{5 t} \\
-4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{5 t}(1+2 t) c_{1}+t \mathrm{e}^{5 t} c_{2} \\
-4 t \mathrm{e}^{5 t} c_{1}+\mathrm{e}^{5 t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(2 t c_{1}+c_{2} t+c_{1}\right) \\
\left(c_{2}(1-2 t)-4 t c_{1}\right) \mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.5.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
7-\lambda & 1 \\
-4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-10 \lambda+25=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=5
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 1 & 0 \\
-4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
5	2	1	Yes	$\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 39: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 5 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\frac{e^{5 t}}{2} \\
\mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{5}{2}
\end{array}\right]\right) \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}(t-2)}{2} \\
\frac{\mathrm{e}^{5 t}(2 t-5)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(-\frac{t}{2}+1\right) \\
\mathrm{e}^{5 t}\left(t-\frac{5}{2}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left((t-2) c_{2}+c_{1}\right) \mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t}\left(c_{1}+c_{2} t-\frac{5}{2} c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 40: Phase plot

6.5.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=7 x_{1}(t)+x_{2}(t), x_{2}^{\prime}(t)=-4 x_{1}(t)+3 x_{2}(t)\right]$

- Define vector
$x \rightarrow(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$
- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right] \cdot x \rightarrow(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- \quad System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right] \cdot x_{\square}^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]
$$

- Rewrite the system as

$$
x_{\underline{\rightarrow}}{ }^{\prime}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[5,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[5,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 5
$x^{\rightarrow}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}-\frac{1}{2} \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=5$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x \xrightarrow{\rightarrow}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x_{2}^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 5

$$
\left(\left[\begin{array}{cc}
7 & 1 \\
-4 & 3
\end{array}\right]-5 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 5

$$
{\underset{2}{2}}_{2}(t)=\mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \longrightarrow_{1}(t)+c_{2} x{\underset{\beth}{2}}_{2}(t)
$$

- Substitute solutions into the general solution

$$
x_{\underline{\rightarrow}}=c_{1} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{e^{5 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4} \\
\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=-\frac{\mathrm{e}^{5 t}\left(2 c_{2} t+2 c_{1}+c_{2}\right)}{4}, x_{2}(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 35

```
dsolve([diff(x__1(t),t)=7*x__1(t)+1*\mp@subsup{x}{__-}{2(t), diff (x__ 2(t),t)=-4*x__1 (t)+3*x__ 2(t)], singsol=al}
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\mathrm{e}^{5 t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 45
DSolve $\left[\left\{x 1^{\prime}[t]==7 * x 1[t]+1 * x 2[t], x 2{ }^{\prime}[t]==-4 * x 1[t]+3 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSol

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{5 t}\left(2 c_{1} t+c_{2} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{5 t}\left(c_{2}-2\left(2 c_{1}+c_{2}\right) t\right)
\end{aligned}
$$

6.6 problem problem 6

6.6.1 Solution using Matrix exponential method 844
6.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 845
6.6.3 Maple step by step solution . 850

Internal problem ID [363]
Internal file name [OUTPUT/363_Sunday_June_05_2022_01_39_42_AM_53229074/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)+9 x_{2}(t)
\end{aligned}
$$

6.6.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{5 t}(1-4 t) & -4 t \mathrm{e}^{5 t} \\
4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(4 t+1)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{5 t}(1-4 t) & -4 t \mathrm{e}^{5 t} \\
4 t \mathrm{e}^{5 t} & \mathrm{e}^{5 t}(4 t+1)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{5 t}(1-4 t) c_{1}-4 t \mathrm{e}^{5 t} c_{2} \\
4 t \mathrm{e}^{5 t} c_{1}+\mathrm{e}^{5 t}(4 t+1) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-4 t)-4 c_{2} t\right) \mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}\left(4 t c_{1}+4 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.6.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -4 \\
4 & 9-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{2}-10 \lambda+25=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=5
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
5	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cc|c}
-4 & -4 & 0 \\
4 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-4 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cc}
-4 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
5	2	1	Yes	$\left[\begin{array}{c}-1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 5 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 41: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]-(5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
-4 & -4 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{3}{4} \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 5 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{3}{4} \\
1
\end{array}\right]\right) \mathrm{e}^{5 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{5 t}(4 t+3)}{4} \\
\mathrm{e}^{5 t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{5 t} \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(-t-\frac{3}{4}\right) \\
\mathrm{e}^{5 t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(-c_{1}-c_{2} t-\frac{3}{4} c_{2}\right) \\
\mathrm{e}^{5 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
$$

The following is the phase plot of the system.

Figure 42: Phase plot

6.6.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)-4 x_{2}(t), x_{2}^{\prime}(t)=4 x_{1}(t)+9 x_{2}(t)\right]$

- Define vector

$$
\underset{\longrightarrow}{\rightarrow}(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]
$$

- Rewrite the system as

$$
x \longrightarrow^{\prime}(t)=A \cdot x \xrightarrow{\longrightarrow}(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[5,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[5,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 5
$x_{\longrightarrow_{1}}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=5$ is the eigenvalue, and $x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x_{2}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 5

$$
\left(\left[\begin{array}{cc}
1 & -4 \\
4 & 9
\end{array}\right]-5 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 5

$$
x_{2}^{\rightarrow}(t)=\mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x_{\longrightarrow}^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x_{\square}^{\rightarrow}(t)
$$

- Substitute solutions into the general solution

$$
x^{\rightarrow}=c_{1} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{4} \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{5 t}\left(-c_{1}-c_{2} t+\frac{1}{4} c_{2}\right) \\
\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{5 t}\left(-c_{1}-c_{2} t+\frac{1}{4} c_{2}\right), x_{2}(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 33

```
dsolve([diff(x__1(t),t)=1*x__1(t)-4*x__2(t), diff(x__2(t),t)=4*x__1(t)+9*x__2(t)],singsol=all
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{5 t}\left(4 c_{2} t+4 c_{1}+c_{2}\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-4 * x 2[t], x 2{ }^{\prime}[t]==4 * x 1[t]+9 * x 2[t]\right\},\{x 1[t], x 2[t]\}, t\right.$, IncludeSingularSolu

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{5 t}\left(c_{1}(4 t-1)+4 c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{5 t}\left(4\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
$$

6.7 problem problem 7

6.7.1 Solution using Matrix exponential method 854
6.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 855

Internal problem ID [364]
Internal file name [OUTPUT/364_Sunday_June_05_2022_01_39_43_AM_17766894/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t) \\
x_{2}^{\prime}(t) & =-7 x_{1}(t)+9 x_{2}(t)+7 x_{3}(t) \\
x_{3}^{\prime}(t) & =2 x_{3}(t)
\end{aligned}
$$

6.7.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & 0 & 0 \\
-\mathrm{e}^{9 t}+\mathrm{e}^{2 t} & \mathrm{e}^{9 t} & \mathrm{e}^{9 t}-\mathrm{e}^{2 t} \\
0 & 0 & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & 0 & 0 \\
-\mathrm{e}^{9 t}+\mathrm{e}^{2 t} & \mathrm{e}^{9 t} & \mathrm{e}^{9 t}-\mathrm{e}^{2 t} \\
0 & 0 & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1} \\
\left(-\mathrm{e}^{9 t}+\mathrm{e}^{2 t}\right) c_{1}+\mathrm{e}^{9 t} c_{2}+\left(\mathrm{e}^{9 t}-\mathrm{e}^{2 t}\right) c_{3} \\
\mathrm{e}^{2 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1} \\
\left(-c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{9 t}+\mathrm{e}^{2 t}\left(c_{1}-c_{3}\right) \\
\mathrm{e}^{2 t} c_{3}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.7.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
2-\lambda & 0 & 0 \\
-7 & 9-\lambda & 7 \\
0 & 0 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-13 \lambda^{2}+40 \lambda-36=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=9
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
-7 & 7 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
-7 & 7 & 7 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-7 & 7 & 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t+s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
t+s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
t+s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t+s \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right]-(9)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-7 & 0 & 0 \\
-7 & 0 & 7 \\
0 & 0 & -7
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-7 & 0 & 0 & 0 \\
-7 & 0 & 7 & 0 \\
0 & 0 & -7 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-7 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & -7 & 0
\end{array}\right] \\
R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-7 & 0 & 0 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-7 & 0 & 0 \\
0 & 0 & 7 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	2	2	No	$\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
9	1	1	No	$\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 43: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{9 t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] e^{9 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
\mathrm{e}^{9 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(c_{1}+c_{2}\right) \\
c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{9 t} \\
c_{1} \mathrm{e}^{2 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 43
dsolve ([diff $\left(x_{--} 1(t), t\right)=2 * x_{-} 1(t)+0 * x_{--} 2(t)+0 * x_{--} 3(t), \operatorname{diff}\left(x_{-_} 2(t), t\right)=-7 * x_{-} 1(t)+9 * x_{-} 2(t)+7$

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{2 t} \\
& x_{2}(t)=-c_{2} \mathrm{e}^{2 t}+c_{3} \mathrm{e}^{2 t}+c_{1} \mathrm{e}^{9 t} \\
& x_{3}(t)=c_{2} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 60
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+0 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-7 * x 1[t]+9 * x 2[t]+7 * x 3[t], x 3 '[t]==0 * x 1[t]+0 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow c_{1} e^{2 t} \\
& \mathrm{x} 2(t) \rightarrow e^{2 t}\left(-\left(c_{1}\left(e^{7 t}-1\right)\right)+\left(c_{2}+c_{3}\right) e^{7 t}-c_{3}\right) \\
& \mathrm{x} 3(t) \rightarrow c_{3} e^{2 t}
\end{aligned}
$$

6.8 problem problem 8

6.8.1 Solution using Matrix exponential method 863
6.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 864
6.8.3 Maple step by step solution . 871

Internal problem ID [365]
Internal file name [OUTPUT/365_Sunday_June_05_2022_01_39_44_AM_77594711/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =25 x_{1}(t)+12 x_{2}(t) \\
x_{2}^{\prime}(t) & =-18 x_{1}(t)-5 x_{2}(t) \\
x_{3}^{\prime}(t) & =6 x_{1}(t)+6 x_{2}(t)+13 x_{3}(t)
\end{aligned}
$$

6.8.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
-2 \mathrm{e}^{7 t}+3 \mathrm{e}^{13 t} & 2 \mathrm{e}^{13 t}-2 \mathrm{e}^{7 t} & 0 \\
-3 \mathrm{e}^{13 t}+3 \mathrm{e}^{7 t} & 3 \mathrm{e}^{7 t}-2 \mathrm{e}^{13 t} & 0 \\
\mathrm{e}^{13 t}-\mathrm{e}^{7 t} & \mathrm{e}^{13 t}-\mathrm{e}^{7 t} & \mathrm{e}^{13 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
-2 \mathrm{e}^{7 t}+3 \mathrm{e}^{13 t} & 2 \mathrm{e}^{13 t}-2 \mathrm{e}^{7 t} & 0 \\
-3 \mathrm{e}^{13 t}+3 \mathrm{e}^{7 t} & 3 \mathrm{e}^{7 t}-2 \mathrm{e}^{13 t} & 0 \\
\mathrm{e}^{13 t}-\mathrm{e}^{7 t} & \mathrm{e}^{13 t}-\mathrm{e}^{7 t} & \mathrm{e}^{13 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 \mathrm{e}^{7 t}+3 \mathrm{e}^{13 t}\right) c_{1}+\left(2 \mathrm{e}^{13 t}-2 \mathrm{e}^{7 t}\right) c_{2} \\
\left(-3 \mathrm{e}^{13 t}+3 \mathrm{e}^{7 t}\right) c_{1}+\left(3 \mathrm{e}^{7 t}-2 \mathrm{e}^{13 t}\right) c_{2} \\
\left(\mathrm{e}^{13 t}-\mathrm{e}^{7 t}\right) c_{1}+\left(\mathrm{e}^{13 t}-\mathrm{e}^{7 t}\right) c_{2}+\mathrm{e}^{13 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{13 t}\left(3 c_{1}+2 c_{2}\right)-2 \mathrm{e}^{7 t}\left(c_{1}+c_{2}\right) \\
\left(-3 c_{1}-2 c_{2}\right) \mathrm{e}^{13 t}+3 \mathrm{e}^{7 t}\left(c_{1}+c_{2}\right) \\
\left(c_{1}+c_{2}+c_{3}\right) \mathrm{e}^{13 t}-\mathrm{e}^{7 t}\left(c_{1}+c_{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.8.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
25-\lambda & 12 & 0 \\
-18 & -5-\lambda & 0 \\
6 & 6 & 13-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-33 \lambda^{2}+351 \lambda-1183=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=13 \\
& \lambda_{2}=7
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
7	1	real eigenvalue
13	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=7$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]-(7)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
18 & 12 & 0 & 0 \\
-18 & -12 & 0 & 0 \\
6 & 6 & 6 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
18 & 12 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 6 & 6 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
18 & 12 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 2 & 6 & 0
\end{array}\right]
\end{aligned}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
18 & 12 & 0 & 0 \\
0 & 2 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
18 & 12 & 0 \\
0 & 2 & 6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{2}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
-3 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=13$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]-(13)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
12 & 12 & 0 & 0 \\
-18 & -18 & 0 & 0 \\
6 & 6 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
12 & 12 & 0 & 0 \\
0 & 0 & 0 & 0 \\
6 & 6 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
12 & 12 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
12 & 12 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-t \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
13	2	2	No	$\left[\begin{array}{cc}0 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
7	1	1	No	$\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 13 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 44: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric
multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{13 t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] e^{13 t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{13 t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{13 t}
\end{aligned}
$$

Since eigenvalue 7 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{7 t} \\
& =\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right] e^{7 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{13 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{13 t} \\
\mathrm{e}^{13 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
2 \mathrm{e}^{7 t} \\
-3 \mathrm{e}^{7 t} \\
\mathrm{e}^{7 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2} \mathrm{e}^{13 t}+2 c_{3} \mathrm{e}^{7 t} \\
c_{2} \mathrm{e}^{13 t}-3 c_{3} \mathrm{e}^{7 t} \\
c_{1} \mathrm{e}^{13 t}+c_{3} \mathrm{e}^{7 t}
\end{array}\right]
$$

6.8.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=25 x_{1}(t)+12 x_{2}(t), x_{2}^{\prime}(t)=-18 x_{1}(t)-5 x_{2}(t), x_{3}^{\prime}(t)=6 x_{1}(t)+6 x_{2}(t)+13 x_{3}(t)\right]
$$

- Define vector

$$
\underset{x^{\rightarrow}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]
$$

- Rewrite the system as
$x \rightarrow^{\prime}(t)=A \cdot x \rightarrow(t)$
- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[7,\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]\right],\left[13,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right],\left[13,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[7,\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair
$x \rightarrow 1=\mathrm{e}^{7 t} \cdot\left[\begin{array}{c}2 \\ -3 \\ 1\end{array}\right]$
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[13,\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 13

$$
{\underset{\longrightarrow}{2}}^{\rightarrow}(t)=\mathrm{e}^{13 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=13$ is the eigenvalue, and $x_{3}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtair
- Substitute $x \xrightarrow{\rightarrow}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 13

$$
\left(\left[\begin{array}{ccc}
25 & 12 & 0 \\
-18 & -5 & 0 \\
6 & 6 & 13
\end{array}\right]-13 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 13

$$
{\underset{\longrightarrow}{3}}_{3}(t)=\mathrm{e}^{13 t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
- Substitute solutions into the general solution

$$
x \xrightarrow{\overrightarrow{ }}=c_{1} \mathrm{e}^{7 t} \cdot\left[\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{13 t} \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{13 t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{7 t} \\
-3 c_{1} \mathrm{e}^{7 t} \\
\left(t c_{3}+c_{2}\right) \mathrm{e}^{13 t}+c_{1} \mathrm{e}^{7 t}
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=2 c_{1} \mathrm{e}^{7 t}, x_{2}(t)=-3 c_{1} \mathrm{e}^{7 t}, x_{3}(t)=\left(t c_{3}+c_{2}\right) \mathrm{e}^{13 t}+c_{1} \mathrm{e}^{7 t}\right\}
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 60
dsolve ([diff $\left(x_{-} 1(t), t\right)=25 * x_{-} 1(t)+12 * x_{-} 2(t)+0 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=-18 * x_{-} 1(t)-5 * x_{-} 2(t$

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{7 t}+c_{3} \mathrm{e}^{13 t} \\
& x_{2}(t)=-\frac{3 c_{2} \mathrm{e}^{7 t}}{2}-c_{3} \mathrm{e}^{13 t} \\
& x_{3}(t)=\frac{c_{2} \mathrm{e}^{7 t}}{2}+\frac{c_{3} \mathrm{e}^{13 t}}{2}+\mathrm{e}^{13 t} c_{1}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 107
DSolve $\left[\left\{x 1^{\prime}[t]==25 * x 1[t]+12 * x 2[t]+0 * x 3[t], x 2{ }^{\prime}[t]==-18 * x 1[t]-5 * x 2[t]+0 * x 3[t], x 3^{\prime}[t]==6 * x 1[t]+\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{7 t}\left(c_{1}\left(3 e^{6 t}-2\right)+2 c_{2}\left(e^{6 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow-e^{7 t}\left(3 c_{1}\left(e^{6 t}-1\right)+c_{2}\left(2 e^{6 t}-3\right)\right) \\
& \mathrm{x} 3(t) \rightarrow e^{7 t}\left(c_{1}\left(e^{6 t}-1\right)+c_{2}\left(e^{6 t}-1\right)+c_{3} e^{6 t}\right)
\end{aligned}
$$

6.9 problem problem 9

> 6.9.1 Solution using Matrix exponential method
6.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 876
6.9.3 Maple step by step solution 883

Internal problem ID [366]
Internal file name [OUTPUT/366_Sunday_June_05_2022_01_39_46_AM_72759233/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-19 x_{1}(t)+12 x_{2}(t)+84 x_{3}(t) \\
x_{2}^{\prime}(t) & =5 x_{2}(t) \\
x_{3}^{\prime}(t) & =-8 x_{1}(t)+4 x_{2}(t)+33 x_{3}(t)
\end{aligned}
$$

6.9.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
7 \mathrm{e}^{5 t}-6 \mathrm{e}^{9 t} & 3 \mathrm{e}^{9 t}-3 \mathrm{e}^{5 t} & 21 \mathrm{e}^{9 t}-21 \mathrm{e}^{5 t} \\
0 & \mathrm{e}^{5 t} & 0 \\
-2 \mathrm{e}^{9 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{9 t}-\mathrm{e}^{5 t} & -6 \mathrm{e}^{5 t}+7 \mathrm{e}^{9 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
7 \mathrm{e}^{5 t}-6 \mathrm{e}^{9 t} & 3 \mathrm{e}^{9 t}-3 \mathrm{e}^{5 t} & 21 \mathrm{e}^{9 t}-21 \mathrm{e}^{5 t} \\
0 & \mathrm{e}^{5 t} & 0 \\
-2 \mathrm{e}^{9 t}+2 \mathrm{e}^{5 t} & \mathrm{e}^{9 t}-\mathrm{e}^{5 t} & -6 \mathrm{e}^{5 t}+7 \mathrm{e}^{9 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(7 \mathrm{e}^{5 t}-6 \mathrm{e}^{9 t}\right) c_{1}+\left(3 \mathrm{e}^{9 t}-3 \mathrm{e}^{5 t}\right) c_{2}+\left(21 \mathrm{e}^{9 t}-21 \mathrm{e}^{5 t}\right) c_{3} \\
\mathrm{e}^{5 t} c_{2} \\
\left(-2 \mathrm{e}^{9 t}+2 \mathrm{e}^{5 t}\right) c_{1}+\left(\mathrm{e}^{9 t}-\mathrm{e}^{5 t}\right) c_{2}+\left(-6 \mathrm{e}^{5 t}+7 \mathrm{e}^{9 t}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(7 c_{1}-3 c_{2}-21 c_{3}\right) \mathrm{e}^{5 t}-6\left(c_{1}-\frac{c_{2}}{2}-\frac{7 c_{3}}{2}\right) \mathrm{e}^{9 t} \\
\mathrm{e}^{5 t} c_{2} \\
\left(2 c_{1}-c_{2}-6 c_{3}\right) \mathrm{e}^{5 t}-2\left(c_{1}-\frac{c_{2}}{2}-\frac{7 c_{3}}{2}\right) \mathrm{e}^{9 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.9.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-19-\lambda & 12 & 84 \\
0 & 5-\lambda & 0 \\
-8 & 4 & 33-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-19 \lambda^{2}+115 \lambda-225=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=9 \\
& \lambda_{2}=5
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
5	1	real eigenvalue
9	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=5$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]-(5)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-24 & 12 & 84 & 0 \\
0 & 0 & 0 & 0 \\
-8 & 4 & 28 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-24 & 12 & 84 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-24 & 12 & 84 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}+\frac{7 s}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2}+\frac{7 s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2}+\frac{7 s}{2} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
\frac{t}{2}+\frac{7 s}{2} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
\frac{t}{2} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{7 s}{2} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
\frac{t}{2}+\frac{7 s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
7 \\
0 \\
2
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=9$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]-(9)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-28 & 12 & 84 \\
0 & -4 & 0 \\
-8 & 4 & 24
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-28 & 12 & 84 & 0 \\
0 & -4 & 0 & 0 \\
-8 & 4 & 24 & 0
\end{array}\right]} \\
& R_{3}=R_{3}-\frac{2 R_{1}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-28 & 12 & 84 & 0 \\
0 & -4 & 0 & 0 \\
0 & \frac{4}{7} & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{R_{2}}{7} \Longrightarrow\left[\begin{array}{ccc|c}
-28 & 12 & 84 & 0 \\
0 & -4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-28 & 12 & 84 \\
0 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=3 t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
3 t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
3 t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
3 t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
3 t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
9	1	1	No	$\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
5	2	2	No	$\left[\begin{array}{cc}\frac{7}{2} & \frac{1}{2} \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 9 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{9 t} \\
& =\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right] e^{9 t}
\end{aligned}
$$

eigenvalue 5 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 45: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{5 t} \\
& =\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right] e^{5 t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{5 t} \\
& =\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] e^{5 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
3 \mathrm{e}^{9 t} \\
0 \\
\mathrm{e}^{9 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{7 \mathrm{e}^{5 t}}{2} \\
0 \\
\mathrm{e}^{5 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{\mathrm{e}^{5 t}}{2} \\
\mathrm{e}^{5 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(7 c_{2}+c_{3}\right) \mathrm{e}^{5 t}}{2}+3 c_{1} \mathrm{e}^{9 t} \\
c_{3} \mathrm{e}^{5 t} \\
c_{1} \mathrm{e}^{9 t}+c_{2} \mathrm{e}^{5 t}
\end{array}\right]
$$

6.9.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-19 x_{1}(t)+12 x_{2}(t)+84 x_{3}(t), x_{2}^{\prime}(t)=5 x_{2}(t), x_{3}^{\prime}(t)=-8 x_{1}(t)+4 x_{2}(t)+33 x_{3}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
{\underset{\sim}{ }}^{\prime}(t)=\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
{\underset{\sim}{A}}^{\prime}(t)=\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right] \cdot x_{\square}^{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[5,\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]\right],\left[5,\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right]\right],\left[9,\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[5,\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 5

$$
{\underset{-}{\rightarrow}}^{\rightarrow}(t)=\mathrm{e}^{5 t} \cdot\left[\begin{array}{l}
\frac{7}{2} \\
0 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=5$ is the eigenvalue, and $x^{\rightarrow} 2(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $x_{\xrightarrow{\rightarrow}}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for ${\underset{\underline{~}}{2}}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 5

$$
\left(\left[\begin{array}{ccc}
-19 & 12 & 84 \\
0 & 5 & 0 \\
-8 & 4 & 33
\end{array}\right]-5 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{7}{48} \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 5

$$
x_{2}(t)=\mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{l}
\frac{7}{2} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{7}{48} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[9,\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{x_{3}}^{\rightarrow}=\mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \vec{\longrightarrow}=c_{1} x \vec{\longrightarrow}_{1}(t)+c_{2} x \vec{\longrightarrow}_{2}(t)+c_{3} x \vec{\longrightarrow}_{3}
$$

- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{5 t} \cdot\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{5 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{7}{2} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{7}{48} \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{9 t} \cdot\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{7\left((-1+24 t) c_{2}+24 c_{1}\right) \mathrm{e}^{5 t}}{48}+3 c_{3} \mathrm{e}^{9 t} \\
0 \\
\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)+c_{3} \mathrm{e}^{9 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{7\left((-1+24 t) c_{2}+24 c_{1}\right) \mathrm{e}^{5 t}}{48}+3 c_{3} \mathrm{e}^{9 t}, x_{2}(t)=0, x_{3}(t)=\mathrm{e}^{5 t}\left(c_{2} t+c_{1}\right)+c_{3} \mathrm{e}^{9 t}\right\}
$$

Solution by Maple
Time used: 0.032 (sec). Leaf size: 52

```
dsolve([diff (x__1(t),t)=-19*x__1 (t)+12*x__ 2(t)+84*x__ 3 (t), diff (x__ 2(t),t)=0*x__ 1 (t)+5*x__ 2(t
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{9 t}+c_{2} \mathrm{e}^{5 t} \\
& x_{2}(t)=c_{3} \mathrm{e}^{5 t} \\
& x_{3}(t)=\frac{c_{1} \mathrm{e}^{9 t}}{3}+\frac{2 c_{2} \mathrm{e}^{5 t}}{7}-\frac{c_{3} \mathrm{e}^{5 t}}{7}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 94

```
DSolve[{x1'[t]==-19*x1[t]+12*x2[t]+84*x3[t],x2'[t]==0*x1[t]+5*x2[t]+0*x3[t],x3'[t]==-8*x1[t]
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{5 t}\left(c_{1}\left(7-6 e^{4 t}\right)+3\left(c_{2}+7 c_{3}\right)\left(e^{4 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow c_{2} e^{5 t} \\
& \mathrm{x} 3(t) \rightarrow e^{5 t}\left(-2 c_{1}\left(e^{4 t}-1\right)+c_{2}\left(e^{4 t}-1\right)+c_{3}\left(7 e^{4 t}-6\right)\right)
\end{aligned}
$$

6.10 problem problem 10

6.10.1 Solution using Matrix exponential method 887
6.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 888
6.10.3 Maple step by step solution . 895

Internal problem ID [367]
Internal file name [OUTPUT/367_Sunday_June_05_2022_01_39_47_AM_31168890/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-13 x_{1}(t)+40 x_{2}(t)-48 x_{3}(t) \\
x_{2}^{\prime}(t) & =-8 x_{1}(t)+23 x_{2}(t)-24 x_{3}(t) \\
x_{3}^{\prime}(t) & =3 x_{3}(t)
\end{aligned}
$$

6.10.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
5 \mathrm{e}^{3 t}-4 \mathrm{e}^{7 t} & 10 \mathrm{e}^{7 t}-10 \mathrm{e}^{3 t} & 12 \mathrm{e}^{3 t}-12 \mathrm{e}^{7 t} \\
-2 \mathrm{e}^{7 t}+2 \mathrm{e}^{3 t} & -4 \mathrm{e}^{3 t}+5 \mathrm{e}^{7 t} & 6 \mathrm{e}^{3 t}-6 \mathrm{e}^{7 t} \\
0 & 0 & \mathrm{e}^{3 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
5 \mathrm{e}^{3 t}-4 \mathrm{e}^{7 t} & 10 \mathrm{e}^{7 t}-10 \mathrm{e}^{3 t} & 12 \mathrm{e}^{3 t}-12 \mathrm{e}^{7 t} \\
-2 \mathrm{e}^{7 t}+2 \mathrm{e}^{3 t} & -4 \mathrm{e}^{3 t}+5 \mathrm{e}^{7 t} & 6 \mathrm{e}^{3 t}-6 \mathrm{e}^{7 t} \\
0 & 0 & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(5 \mathrm{e}^{3 t}-4 \mathrm{e}^{7 t}\right) c_{1}+\left(10 \mathrm{e}^{7 t}-10 \mathrm{e}^{3 t}\right) c_{2}+\left(12 \mathrm{e}^{3 t}-12 \mathrm{e}^{7 t}\right) c_{3} \\
\left(-2 \mathrm{e}^{7 t}+2 \mathrm{e}^{3 t}\right) c_{1}+\left(-4 \mathrm{e}^{3 t}+5 \mathrm{e}^{7 t}\right) c_{2}+\left(6 \mathrm{e}^{3 t}-6 \mathrm{e}^{7 t}\right) c_{3} \\
\mathrm{e}^{3 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(5 c_{1}-10 c_{2}+12 c_{3}\right) \mathrm{e}^{3 t}-4\left(c_{1}-\frac{5 c_{2}}{2}+3 c_{3}\right) \mathrm{e}^{7 t} \\
\left(2 c_{1}-4 c_{2}+6 c_{3}\right) \mathrm{e}^{3 t}-2\left(c_{1}-\frac{5 c_{2}}{2}+3 c_{3}\right) \mathrm{e}^{7 t} \\
\mathrm{e}^{3 t} c_{3}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.10.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-13-\lambda & 40 & -48 \\
-8 & 23-\lambda & -24 \\
0 & 0 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-13 \lambda^{2}+51 \lambda-63=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=7 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue
7	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-16 & 40 & -48 \\
-8 & 20 & -24 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
-16 & 40 & -48 & 0 \\
-8 & 20 & -24 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

$$
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-16 & 40 & -48 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-16 & 40 & -48 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{5 t}{2}-3 s\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{5 t}{2}-3 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{5 t}{2}-3 s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
\frac{5 t}{2}-3 s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
\frac{5 t}{2} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
\frac{5}{2} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
\frac{5 t}{2}-3 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{2} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
\frac{5}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{l}
5 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=7$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]-(7)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
-20 & 40 & -48 \\
-8 & 16 & -24 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
-20 & 40 & -48 & 0 \\
-8 & 16 & -24 & 0 \\
0 & 0 & -4 & 0
\end{array}\right]} \\
& R_{2}=R_{2}-\frac{2 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-20 & 40 & -48 & 0 \\
0 & 0 & -\frac{24}{5} & 0 \\
0 & 0 & -4 & 0
\end{array}\right] \\
& R_{3}=R_{3}-\frac{5 R_{2}}{6} \Longrightarrow\left[\begin{array}{ccc|c}
-20 & 40 & -48 & 0 \\
0 & 0 & -\frac{24}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-20 & 40 & -48 \\
0 & 0 & -\frac{24}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=2 t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
2 t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
7	1	1	No	$\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$
3	2	2	No	$\left[\begin{array}{cc}-3 & \frac{5}{2} \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 7 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{7 t} \\
& =\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] e^{7 t}
\end{aligned}
$$

eigenvalue 3 is real and repated eigenvalue of multiplicity 2 .There are two possible cases that can happen. This is illustrated in this diagram

Figure 46: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{l}
\frac{5}{2} \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{7 t} \\
\mathrm{e}^{7 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-3 \mathrm{e}^{3 t} \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{5 \mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(-6 c_{2}+5 c_{3}\right) \mathrm{e}^{3 t}}{2}+2 c_{1} \mathrm{e}^{7 t} \\
c_{1} \mathrm{e}^{7 t}+c_{3} \mathrm{e}^{3 t} \\
c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

6.10.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=-13 x_{1}(t)+40 x_{2}(t)-48 x_{3}(t), x_{2}^{\prime}(t)=-8 x_{1}(t)+23 x_{2}(t)-24 x_{3}(t), x_{3}^{\prime}(t)=3 x_{3}(t)\right]
$$

- Define vector

$$
x^{\rightarrow}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right] \cdot \underline{\longrightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right] \cdot x^{\rightarrow}(t)
$$

- Define the coefficient matrix
$A=\left[\begin{array}{ccc}-13 & 40 & -48 \\ -8 & 23 & -24 \\ 0 & 0 & 3\end{array}\right]$
- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \longrightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[3,\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{5}{2} \\
1 \\
0
\end{array}\right]\right],\left[7,\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 3

$$
{\underset{-}{\rightarrow}}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and $x^{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1st solution obtai
- Substitute $x \xrightarrow{\rightarrow}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A $\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for ${\underset{\underline{~}}{2}}(t)$ to be a solution to the homogeneous system

$$
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
$$

- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
-13 & 40 & -48 \\
-8 & 23 & -24 \\
0 & 0 & 3
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{3}{16} \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 3

$$
x_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{3}{16} \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair

$$
\left[7,\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\underline{-}_{3}=\mathrm{e}^{7 t} \cdot\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \rightarrow \longrightarrow_{1}(t)+c_{2} x \xrightarrow{\rightarrow}(t)+c_{3} x \xrightarrow{\rightarrow}_{3}
$$

- Substitute solutions into the general solution

$$
\xrightarrow{\rightarrow}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{3}{16} \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{7 t} \cdot\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left((-48 t+3) c_{2}-48 c_{1}\right) \mathrm{e}^{3 t}}{16}+2 c_{3} \mathrm{e}^{7 t} \\
c_{3} \mathrm{e}^{7 t} \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left((-48 t+3) c_{2}-48 c_{1}\right) \mathrm{e}^{3 t}}{16}+2 c_{3} \mathrm{e}^{7 t}, x_{2}(t)=c_{3} \mathrm{e}^{7 t}, x_{3}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{3 t}\right\}
$$

Solution by Maple
Time used: 0.032 (sec). Leaf size: 52

```
dsolve([diff(x__1(t),t)=-13*x__1(t)+40*x__ 2(t) -48*x__ 3(t), diff (x__ 2(t),t)=-8*x__ 1 (t) +23*x___ 2
```

$$
\begin{aligned}
& x_{1}(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{7 t} \\
& x_{2}(t)=\frac{2 c_{1} \mathrm{e}^{3 t}}{5}+\frac{c_{2} \mathrm{e}^{7 t}}{2}+\frac{6 c_{3} \mathrm{e}^{3 t}}{5} \\
& x_{3}(t)=c_{3} \mathrm{e}^{3 t}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 98
DSolve $\left[\left\{x 1^{\prime}[t]==-13 * x 1[t]+40 * x 2[t]-48 * x 3[t], x 2{ }^{\prime}[t]==-8 * x 1[t]+23 * x 2[t]-24 * x 3[t], x 3{ }^{\prime}[t]==0 * x 1[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{3 t}\left(c_{1}\left(5-4 e^{4 t}\right)+2\left(5 c_{2}-6 c_{3}\right)\left(e^{4 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow-e^{3 t}\left(2 c_{1}\left(e^{4 t}-1\right)+c_{2}\left(4-5 e^{4 t}\right)+6 c_{3}\left(e^{4 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow c_{3} e^{3 t}
\end{aligned}
$$

6.11 problem problem 11

6.11.1 Solution using Matrix exponential method 899
6.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 900

Internal problem ID [368]
Internal file name [OUTPUT/368_Sunday_June_05_2022_01_39_49_AM_70097848/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-3 x_{1}(t)-4 x_{3}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)-x_{2}(t)-x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+x_{3}(t)
\end{aligned}
$$

6.11.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-t}(1-2 t) & 0 & -4 t \mathrm{e}^{-t} \\
\frac{\mathrm{e}^{-t} t(t-2)}{2} & \mathrm{e}^{-t} & \mathrm{e}^{-t} t(-1+t) \\
t \mathrm{e}^{-t} & 0 & \mathrm{e}^{-t}(1+2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t}(1-2 t) & 0 & -4 t \mathrm{e}^{-t} \\
\frac{\mathrm{e}^{-t} t(t-2)}{2} & \mathrm{e}^{-t} & \mathrm{e}^{-t} t(-1+t) \\
t \mathrm{e}^{-t} & 0 & \mathrm{e}^{-t}(1+2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(1-2 t) c_{1}-4 t \mathrm{e}^{-t} c_{3} \\
\frac{\mathrm{e}^{-t} t(t-2) c_{1}}{2}+\mathrm{e}^{-t} c_{2}+\mathrm{e}^{-t} t(-1+t) c_{3} \\
t \mathrm{e}^{-t} c_{1}+\mathrm{e}^{-t}(1+2 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-2 t)-4 c_{3} t\right) \mathrm{e}^{-t} \\
\frac{\left(\left(c_{1}+2 c_{3}\right) t^{2}+\left(-2 c_{1}-2 c_{3}\right) t+2 c_{2}\right) \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}\left(t c_{1}+2 c_{3} t+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.11.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3-\lambda & 0 & -4 \\
-1 & -1-\lambda & -1 \\
1 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & 0 & -4 & 0 \\
-1 & 0 & -1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 0 & -4 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 2 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & 0 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & 0 & -4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	3			$\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 47: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 0 & -4 \\
-1 & -1 & -1 \\
1 & 0 & 1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -1 . Therefore the three
basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-t}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-3 \\
1 \\
2
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(-2 t-3) \\
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+2\right)}{2} \\
\mathrm{e}^{-t}(2+t)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t}(-2 t-3) \\
\mathrm{e}^{-t}\left(t+\frac{1}{2} t^{2}+1\right) \\
\mathrm{e}^{-t}(2+t)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-2 c_{3} t-2 c_{2}-3 c_{3}\right) \\
\frac{\mathrm{e}^{-t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2} \\
\left((2+t) c_{3}+c_{2}\right) \mathrm{e}^{-t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 59
dsolve([diff $\left(x_{--} 1(t), t\right)=-3 * x_{-} 1(t)+0 * x_{-} 2(t)-4 * x_{-} 3(t), \operatorname{diff}\left(x_{--} 2(t), t\right)=-1 * x_{-} 1(t)-1 * x_{-} 2(t)-$

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{3} t+c_{2}\right) \\
& x_{2}(t)=\frac{\left(-c_{3} t^{2}-2 c_{2} t+c_{3} t+4 c_{1}\right) \mathrm{e}^{-t}}{4} \\
& x_{3}(t)=-\frac{\mathrm{e}^{-t}\left(2 c_{3} t+2 c_{2}+c_{3}\right)}{4}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 81
DSolve $\left[\left\{x 1^{\prime}[t]==-3 * x 1[t]+0 * x 2[t]-4 * x 3[t], x 2^{\prime}[t]==-1 * x 1[t]-1 * x 2[t]-1 * x 3[t], x 3^{\prime}[t]==1 * x 1[t]+0 *\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(-2 c_{1} t-4 c_{3} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(\left(c_{1}+2 c_{3}\right) t^{2}-2\left(c_{1}+c_{3}\right) t+2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(\left(c_{1}+2 c_{3}\right) t+c_{3}\right)
\end{aligned}
$$

6.12 problem problem 12

6.12.1 Solution using Matrix exponential method 908
6.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 909

Internal problem ID [369]
Internal file name [OUTPUT/369_Sunday_June_05_2022_01_39_50_AM_49271009/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 12.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =-x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)-x_{2}(t)-x_{3}(t)
\end{aligned}
$$

6.12.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(1+\frac{t^{2}}{2}\right) & -\frac{t^{2} \mathrm{e}^{-t}}{2} & t \mathrm{e}^{-t} \\
\frac{t^{2} \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1-\frac{t^{2}}{2}\right) & t \mathrm{e}^{-t} \\
t \mathrm{e}^{-t} & -t \mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(1+\frac{t^{2}}{2}\right) & -\frac{t^{2} \mathrm{e}^{-t}}{2} & t \mathrm{e}^{-t} \\
\frac{t^{2} \mathrm{e}^{-t}}{2} & \mathrm{e}^{-t}\left(1-\frac{t^{2}}{2}\right) & t \mathrm{e}^{-t} \\
t \mathrm{e}^{-t} & -t \mathrm{e}^{-t} & \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{e}^{-t}\left(1+\frac{t^{2}}{2}\right) c_{1}-\frac{t^{2} \mathrm{e}^{-t} c_{2}}{2}+t \mathrm{e}^{-t} c_{3} \\
\frac{t^{2} \mathrm{e}^{-t} c_{1}}{2}+\mathrm{e}^{-t}\left(1-\frac{t^{2}}{2}\right) c_{2}+t \mathrm{e}^{-t} c_{3} \\
t \mathrm{e}^{-t} c_{1}-t \mathrm{e}^{-t} c_{2}+\mathrm{e}^{-t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(\left(-c_{2}+c_{1}\right) t^{2}+2 c_{3} t+2 c_{1}\right) \mathrm{e}^{-t}}{2} \\
\frac{\left(\left(-c_{2}+c_{1}\right) t^{2}+2 c_{3} t+2 c_{2}\right) \mathrm{e}^{-t}}{2} \\
\left(\left(-c_{2}+c_{1}\right) t+c_{3}\right) \mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.12.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 0 & 1 \\
0 & -1-\lambda & 1 \\
1 & -1 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	3			$\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 48: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank 3. \vec{v}_{2} is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & -1 & -1
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -1 . Therefore the three
basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-t}\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+4\right)}{2} \\
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+2\right)}{2} \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
\mathrm{e}^{-t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}(t+1) \\
\mathrm{e}^{-t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t}\left(\frac{1}{2} t^{2}+t+2\right) \\
\mathrm{e}^{-t}\left(t+\frac{1}{2} t^{2}+1\right) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(t^{2}+2 t+4\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2} \\
\mathrm{e}^{-t}\left(c_{3} t+c_{2}+c_{3}\right)
\end{array}\right]
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 62

$$
\begin{aligned}
& \operatorname{dsolve}\left(\left[\operatorname{diff}\left(x_{-_} 1(t), t\right)=-1 * x_{_-1} 1(t)+0 * x_{_} 2(t)+1 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=0 * x_{--} 1(t)-1 * x_{-} 2(t)+1\right.\right. \\
& x_{1}(t)=\frac{\left(c_{3} t^{2}+2 c_{2} t+2 c_{1}\right) \mathrm{e}^{-t}}{2} \\
& x_{2}(t)=\frac{\mathrm{e}^{-t}\left(c_{3} t^{2}+2 c_{2} t+2 c_{1}-2 c_{3}\right)}{2} \\
& x_{3}(t)=\mathrm{e}^{-t}\left(c_{3} t+c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 89

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(t^{2}+2\right)+t\left(2 c_{3}-c_{2} t\right)\right) \\
\mathrm{x} 2(t) & \rightarrow \frac{1}{2} e^{-t}\left(\left(c_{1}-c_{2}\right) t^{2}+2 c_{3} t+2 c_{2}\right) \\
\mathrm{x} 3(t) & \rightarrow e^{-t}\left(\left(c_{1}-c_{2}\right) t+c_{3}\right)
\end{aligned}
$$

6.13 problem problem 13

6.13.1 Solution using Matrix exponential method 917
6.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 918

Internal problem ID [370]
Internal file name [OUTPUT/370_Sunday_June_05_2022_01_39_51_AM_96807373/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{2}(t)-4 x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{2}(t)-3 x_{3}(t)
\end{aligned}
$$

6.13.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-t} & \frac{t^{2} \mathrm{e}^{-t}}{2} & -\mathrm{e}^{-t} t(-1+t) \\
0 & \mathrm{e}^{-t}(1+2 t) & -4 t \mathrm{e}^{-t} \\
0 & t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t} & \frac{t^{2} \mathrm{e}^{-t}}{2} & -\mathrm{e}^{-t} t(-1+t) \\
0 & \mathrm{e}^{-t}(1+2 t) & -4 t \mathrm{e}^{-t} \\
0 & t \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} c_{1}+\frac{t^{2} \mathrm{e}^{-t} c_{2}}{2}-\mathrm{e}^{-t} t(-1+t) c_{3} \\
\mathrm{e}^{-t}(1+2 t) c_{2}-4 t \mathrm{e}^{-t} c_{3} \\
t \mathrm{e}^{-t} c_{2}+\mathrm{e}^{-t}(1-2 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}\left(\left(c_{2}-2 c_{3}\right) t^{2}+2 t c_{3}+2 c_{1}\right)}{2} \\
\mathrm{e}^{-t}\left(2 t c_{2}-4 t c_{3}+c_{2}\right) \\
\mathrm{e}^{-t}\left(t c_{2}-2 t c_{3}+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.13.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 0 & 1 \\
0 & 1-\lambda & -4 \\
0 & 1 & -3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 1 & 0 \\
0 & 2 & -4 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
0 & 2 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & -2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
0 & 2 & -4 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
0 & 2 & -4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1				
	3	1	Yes	$\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 49: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 2 & -4 \\
0 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & -4 \\
0 & 1 & -3
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -1 . Therefore the three
basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-t}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}(t+1) \\
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+2\right)}{2} \\
\mathrm{e}^{-t}(2 t+3) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(t+1) \\
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t}\left(t+\frac{1}{2} t^{2}+1\right) \\
\mathrm{e}^{-t}(2 t+3) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2} \\
\left((2 t+3) c_{3}+2 c_{2}\right) \mathrm{e}^{-t} \\
\mathrm{e}^{-t}\left(c_{3} t+c_{2}+c_{3}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 54

$$
\begin{aligned}
& x_{1}(t)=\frac{\left(c_{3} t^{2}+2 c_{2} t+2 c_{1}\right) \mathrm{e}^{-t}}{2} \\
& x_{2}(t)=\mathrm{e}^{-t}\left(2 c_{3} t+2 c_{2}+c_{3}\right) \\
& x_{3}(t)=\mathrm{e}^{-t}\left(c_{3} t+c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 78
DSolve $\left[\left\{x 1^{\prime}[t]==-1 * x 1[t]+0 * x 2[t]+1 * x 3[t], x 2{ }^{\prime}[t]==0 * x 1[t]+1 * x 2[t]-4 * x 3[t], x 3 '[t]==0 * x 1[t]+1 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{-t}\left(t\left(\left(c_{2}-2 c_{3}\right) t+2 c_{3}\right)+2 c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(2 c_{2} t-4 c_{3} t+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(\left(c_{2}-2 c_{3}\right) t+c_{3}\right)
\end{aligned}
$$

6.14 problem problem 14

6.14.1 Solution using Matrix exponential method 926
6.14.2 Solution using explicit Eigenvalue and Eigenvector method . . . 927

Internal problem ID [371]
Internal file name [OUTPUT/371_Sunday_June_05_2022_01_39_52_AM_79064891/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{3}(t) \\
& x_{2}^{\prime}(t)=-5 x_{1}(t)-x_{2}(t)-5 x_{3}(t) \\
& x_{3}^{\prime}(t)=4 x_{1}(t)+x_{2}(t)-2 x_{3}(t)
\end{aligned}
$$

6.14.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(1+\frac{5}{2} t^{2}+t\right) & \frac{t^{2} \mathrm{e}^{-t}}{2} & t \mathrm{e}^{-t} \\
-\frac{5 \mathrm{e}^{-t} t(5 t+2)}{2} & \mathrm{e}^{-t}\left(1-\frac{5 t^{2}}{2}\right) & -5 t \mathrm{e}^{-t} \\
-\frac{\mathrm{e}^{-t} t(5 t-8)}{2} & -\frac{\mathrm{e}^{-t} t(t-2)}{2} & \mathrm{e}^{-t}(1-t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t}\left(1+\frac{5}{2} t^{2}+t\right) & \frac{t^{2} \mathrm{e}^{-t}}{2} & t \mathrm{e}^{-t} \\
-\frac{5 \mathrm{e}^{-t} t(5 t+2)}{2} & \mathrm{e}^{-t}\left(1-\frac{5 t^{2}}{2}\right) & -5 t \mathrm{e}^{-t} \\
-\frac{\mathrm{e}^{-t} t(5 t-8)}{2} & -\frac{\mathrm{e}^{-t} t(t-2)}{2} & \mathrm{e}^{-t}(1-t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}\left(1+\frac{5}{2} t^{2}+t\right) c_{1}+\frac{t^{2} \mathrm{e}^{-t} c_{2}}{2}+t \mathrm{e}^{-t} c_{3} \\
-\frac{5 \mathrm{e}^{-t} t(5 t+2) c_{1}}{2}+\mathrm{e}^{-t}\left(1-\frac{5 t^{2}}{2}\right) c_{2}-5 t \mathrm{e}^{-t} c_{3} \\
-\frac{\mathrm{e}^{-t} t(5 t-8) c_{1}}{2}-\frac{\mathrm{e}^{-t} t(t-2) c_{2}}{2}+\mathrm{e}^{-t}(1-t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{5 \mathrm{e}^{-t}\left(\left(c_{1}+\frac{c_{2}}{5}\right) t^{2}+\frac{2\left(c_{1}+c_{3}\right) t}{5}+\frac{2 c_{1}}{5}\right)}{2} \\
-\frac{25\left(\left(c_{1}+\frac{c_{2}}{5}\right) t^{2}+\frac{2\left(c_{1}+c_{3}\right) t}{5}-\frac{2 c_{2}}{25}\right) \mathrm{e}^{-t}}{2} \\
-\frac{5\left(\left(c_{1}+\frac{\left.\left.c_{2}\right) t^{2}+\frac{2\left(-4 c_{1}-c_{2}+c_{3}\right) t}{5}-\frac{2 c_{3}}{5}\right) \mathrm{e}^{-t}}{2}\right.\right.}{}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.14.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 0 & 1 \\
-5 & -1-\lambda & -5 \\
4 & 1 & -2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=-1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
-5 & 0 & -5 & 0 \\
4 & 1 & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+5 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
4 & 1 & -1 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}-4 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & -5 & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{ccc|c}
1 & 0 & 1 & 0 \\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-t, v_{2}=5 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-t \\
5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
5 t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-t \\
5 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-t \\
5 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-1	3			Yes

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 50: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank 3. \vec{v}_{2} is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-2 \\
10 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
0 & 0 & 1 \\
-5 & -1 & -5 \\
4 & 1 & -2
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-2 \\
10 \\
1
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{c}
-3 \\
14 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue -1 . Therefore the three
basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
5 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{-t}\left(\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-2 \\
10 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-t}(2+t) \\
5 \mathrm{e}^{-t}(2+t) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
5 \\
1
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
-2 \\
10 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-3 \\
14 \\
1
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}\left(t^{2}+4 t+6\right)}{2} \\
\frac{\mathrm{e}^{-t}\left(5 t^{2}+20 t+28\right)}{2} \\
\frac{\mathrm{e}^{-t}\left(t^{2}+2 t+2\right)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
5 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}(-t-2) \\
\mathrm{e}^{-t}(5 t+10) \\
\mathrm{e}^{-t}(t+1)
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-\frac{1}{2} t^{2}-2 t-3\right) \\
\mathrm{e}^{-t}\left(\frac{5}{2} t^{2}+10 t+14\right) \\
\mathrm{e}^{-t}\left(t+\frac{1}{2} t^{2}+1\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(\left(t^{2}+4 t+6\right) c_{3}+2 c_{2} t+2 c_{1}+4 c_{2}\right) \mathrm{e}^{-t}}{2} \\
\frac{5\left(\left(t^{2}+4 t+\frac{28}{5}\right) c_{3}+2 c_{2} t+2 c_{1}+4 c_{2}\right) \mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2}
\end{array}\right]
$$

Solution by Maple

Time used: 0.015 (sec). Leaf size: 72

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\mathrm{e}^{-t}\left(5 c_{3} t^{2}+5 c_{2} t+5 c_{1}-2 c_{3}\right) \\
& x_{3}(t)=-\mathrm{e}^{-t}\left(c_{3} t^{2}+c_{2} t-2 c_{3} t+c_{1}-c_{2}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 119
DSolve $\left[\left\{x 1^{\prime}[t]==0 * x 1[t]+0 * x 2[t]+1 * x 3[t], x 2{ }^{\prime}[t]==-5 * x 1[t]-1 * x 2[t]-5 * x 3[t], x 3 '[t]==4 * x 1[t]+1 * x\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{-t}\left(c_{1}\left(5 t^{2}+2 t+2\right)+t\left(c_{2} t+2 c_{3}\right)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{-t}\left(-5\left(5 c_{1}+c_{2}\right) t^{2}-10\left(c_{1}+c_{3}\right) t+2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{-t}\left(-\left(\left(5 c_{1}+c_{2}\right) t^{2}\right)+2\left(4 c_{1}+c_{2}-c_{3}\right) t+2 c_{3}\right)
\end{aligned}
$$

6.15 problem problem 15

6.15.1 Solution using Matrix exponential method 935
6.15.2 Solution using explicit Eigenvalue and Eigenvector method . . . 936

Internal problem ID [372]
Internal file name [OUTPUT/372_Sunday_June_05_2022_01_39_54_AM_26166692/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-2 x_{1}(t)-9 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+4 x_{2}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t)+x_{3}(t)
\end{aligned}
$$

6.15.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t}(1-3 t) & -9 t \mathrm{e}^{t} & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+3 t) & 0 \\
t \mathrm{e}^{t} & 3 t \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t}(1-3 t) & -9 t \mathrm{e}^{t} & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+3 t) & 0 \\
t \mathrm{e}^{t} & 3 t \mathrm{e}^{t} & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(1-3 t) c_{1}-9 t \mathrm{e}^{t} c_{2} \\
t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1+3 t) c_{2} \\
t \mathrm{e}^{t} c_{1}+3 t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-3 t)-9 c_{2} t\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(t c_{1}+3 c_{2} t+c_{2}\right) \\
\left(\left(c_{1}+3 c_{2}\right) t+c_{3}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.15.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & -9 & 0 \\
1 & 4-\lambda & 0 \\
1 & 3 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+3 \lambda-1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-3 & -9 & 0 \\
1 & 3 & 0 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-3 & -9 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 3 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & -9 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 3 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-3 & -9 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-3 & -9 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-3 t \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-3 t \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-3 t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-3 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	3			

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 51: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{ccc}
-2 & -9 & 0 \\
1 & 4 & 0 \\
1 & 3 & 1
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore \vec{v}_{3} could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual \vec{v}_{3} we need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{ccc}
-3 & -9 & 0 \\
1 & 3 & 0 \\
1 & 3 & 0
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
{\left[\begin{array}{c}
-3 \eta_{1}-9 \eta_{2} \\
\eta_{1}+3 \eta_{2} \\
\eta_{1}+3 \eta_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-3 \alpha \\
\alpha \\
\beta
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
-3 \eta_{1}-9 \eta_{2}=-3 \alpha \\
\eta_{1}+3 \eta_{2}=\alpha \\
\eta_{1}+3 \eta_{2}=\beta
\end{array}
$$

solving for α, β from the above gives

$$
\begin{array}{r}
-3 \eta_{1}-9 \eta_{2}=-3 \alpha \\
\eta_{1}+3 \eta_{2}=\alpha
\end{array}
$$

Since α, β are not both zero, then we just need to determine η_{i} values, not all zero, which satisfy the above equations for α, β not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{1}=-1, \eta_{2}=0\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
& \alpha=-1 \\
& \beta=-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =-1\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-3 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \mathrm{e}^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-3 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{t}(-1+3 t) \\
-t \mathrm{e}^{t} \\
-t \mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((-1+3 t) c_{3}-3 c_{1}\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(-c_{3} t+c_{1}\right) \\
\mathrm{e}^{t}\left(-c_{3} t+c_{2}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 47
dsolve([diff $\left(x_{-} 1(t), t\right)=-2 * x_{--} 1(t)-9 * x_{-} 2(t)-0 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=1 * x_{-} 1(t)+4 * x_{-} 2(t)-0$

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{t}\left(c_{3} t+c_{2}\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{t}\left(3 c_{3} t+3 c_{2}+c_{3}\right)}{9} \\
& x_{3}(t)=\frac{\mathrm{e}^{t}\left(-c_{3} t+3 c_{1}-c_{2}\right)}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 62
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-2 * \mathrm{x} 1[\mathrm{t}]-9 * \mathrm{x} 2[\mathrm{t}]-0 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2 \mathrm{I}^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+4 * \mathrm{x} 2[\mathrm{t}]-0 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3{ }^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+3 * \mathrm{x}\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{t}\left(c_{1}(3 t-1)+9 c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(\left(c_{1}+3 c_{2}\right) t+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{t}\left(\left(c_{1}+3 c_{2}\right) t+c_{3}\right)
\end{aligned}
$$

6.16 problem problem 16

6.16.1 Solution using Matrix exponential method 945
6.16.2 Solution using explicit Eigenvalue and Eigenvector method . . . 946

Internal problem ID [373]
Internal file name [OUTPUT/373_Sunday_June_05_2022_01_39_55_AM_98654921/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
& x_{1}^{\prime}(t)=x_{1}(t) \\
& x_{2}^{\prime}(t)=-2 x_{1}(t)-2 x_{2}(t)-3 x_{3}(t) \\
& x_{3}^{\prime}(t)=2 x_{1}(t)+3 x_{2}(t)+4 x_{3}(t)
\end{aligned}
$$

6.16.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-3 t) & -3 t \mathrm{e}^{t} \\
2 t \mathrm{e}^{t} & 3 t \mathrm{e}^{t} & \mathrm{e}^{t}(1+3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-3 t) & -3 t \mathrm{e}^{t} \\
2 t \mathrm{e}^{t} & 3 t \mathrm{e}^{t} & \mathrm{e}^{t}(1+3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
-2 t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1-3 t) c_{2}-3 t \mathrm{e}^{t} c_{3} \\
2 t \mathrm{e}^{t} c_{1}+3 t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t}(1+3 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
-2 \mathrm{e}^{t}\left(\left(c_{1}+\frac{3 c_{2}}{2}+\frac{3 c_{3}}{2}\right) t-\frac{c_{2}}{2}\right) \\
\mathrm{e}^{t}\left(2 c_{1} t+3 t c_{2}+3 c_{3} t+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.16.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
-2 & -2-\lambda & -3 \\
2 & 3 & 4-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+3 \lambda-1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
-2 & -3 & -3 & 0 \\
2 & 3 & 3 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
-2 & -3 & -3 & 0 \\
0 & 0 & 0 & 0 \\
2 & 3 & 3 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -3 & -3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-2 & -3 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{3 t}{2}-\frac{3 s}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{3 t}{2}-\frac{3 s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{2}-\frac{3 s}{2} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{3 t}{2}-\frac{3 s}{2} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{3 t}{2} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{3 s}{2} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{3 t}{2}-\frac{3 s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
0 \\
2
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	3			
			Yes	$\left[\begin{array}{cc}-\frac{3}{2} & -\frac{3}{2} \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 52: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & -2 & -3 \\
2 & 3 & 4
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore \vec{v}_{3} could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual \vec{v}_{3} we need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
-2 & -3 & -3 \\
2 & 3 & 3
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
0 \\
-2 \eta_{1}-3 \eta_{2}-3 \eta_{3} \\
2 \eta_{1}+3 \eta_{2}+3 \eta_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{3 \alpha}{2}-\frac{3 \beta}{2} \\
\beta \\
\alpha
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
0=-\frac{3 \alpha}{2}-\frac{3 \beta}{2} \\
-2 \eta_{1}-3 \eta_{2}-3 \eta_{3}=\beta \\
2 \eta_{1}+3 \eta_{2}+3 \eta_{3}=\alpha
\end{array}
$$

solving for α, β from the above gives

$$
\begin{array}{r}
0=-\frac{3 \alpha}{2}-\frac{3 \beta}{2} \\
-2 \eta_{1}-3 \eta_{2}-3 \eta_{3}=\beta
\end{array}
$$

Since α, β are not both zero, then we just need to determine η_{i} values, not all zero, which satisfy the above equations for α, β not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{1}=0, \eta_{2}=-1, \eta_{3}=0\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
& \alpha=-3 \\
& \beta=3
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =-3\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right]+(3)\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{3}{2} \\
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\frac{3 e^{t}}{2} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{3}{2} \\
1 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{t}}{2} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
3 \\
-3
\end{array}\right] t+\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]\right) \mathrm{e}^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{t}}{2} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{t}}{2} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}(-1+3 t) \\
-3 t \mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{t}\left(c_{1}+c_{2}\right)}{2} \\
\left((-1+3 t) c_{3}+c_{2}\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(-3 c_{3} t+c_{1}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 39

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& x_{3}(t)=-\frac{\mathrm{e}^{t}\left(3 c_{2} t+3 c_{1}+c_{2}+2 c_{3}\right)}{3}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 57
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+0 * x 2[t]-0 * x 3[t], x 2{ }^{\prime}[t]==-2 * x 1[t]-2 * x 2[t]-3 * x 3[t], x 3 '[t]==2 * x 1[t]+3 * x\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow c_{1} e^{t} \\
\mathrm{x} 2(t) & \rightarrow e^{t}\left(-2 c_{1} t-3\left(c_{2}+c_{3}\right) t+c_{2}\right) \\
\mathrm{x} 3(t) & \rightarrow e^{t}\left(2 c_{1} t+3\left(c_{2}+c_{3}\right) t+c_{3}\right)
\end{aligned}
$$

6.17 problem problem 17

6.17.1 Solution using Matrix exponential method 955
6.17.2 Solution using explicit Eigenvalue and Eigenvector method . . . 956

Internal problem ID [374]
Internal file name [OUTPUT/374_Sunday_June_05_2022_01_39_56_AM_59265710/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) \\
x_{2}^{\prime}(t) & =18 x_{1}(t)+7 x_{2}(t)+4 x_{3}(t) \\
x_{3}^{\prime}(t) & =-27 x_{1}(t)-9 x_{2}(t)-5 x_{3}(t)
\end{aligned}
$$

6.17.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
18 & 7 & 4 \\
-27 & -9 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
18 t \mathrm{e}^{t} & \mathrm{e}^{t}(1+6 t) & 4 t \mathrm{e}^{t} \\
-27 t \mathrm{e}^{t} & -9 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-6 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
18 t \mathrm{e}^{t} & \mathrm{e}^{t}(1+6 t) & 4 t \mathrm{e}^{t} \\
-27 t \mathrm{e}^{t} & -9 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-6 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
18 t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1+6 t) c_{2}+4 t \mathrm{e}^{t} c_{3} \\
-27 t \mathrm{e}^{t} c_{1}-9 t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t}(1-6 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\mathrm{e}^{t}\left(18 c_{1} t+6 t c_{2}+4 c_{3} t+c_{2}\right) \\
-27\left(\left(c_{1}+\frac{c_{2}}{3}+\frac{2 c_{3}}{9}\right) t-\frac{c_{3}}{27}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.17.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
18 & 7 & 4 \\
-27 & -9 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
18 & 7 & 4 \\
-27 & -9 & -5
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
18 & 7-\lambda & 4 \\
-27 & -9 & -5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+3 \lambda-1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
18 & 7 & 4 \\
-27 & -9 & -5
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
18 & 6 & 4 \\
-27 & -9 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
18 & 6 & 4 & 0 \\
-27 & -9 & -6 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
18 & 6 & 4 & 0 \\
0 & 0 & 0 & 0 \\
-27 & -9 & -6 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
18 & 6 & 4 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
18 & 6 & 4 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{3}-\frac{2 s}{9}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{3}-\frac{2 s}{9} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{3}-\frac{2 s}{9} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{t}{3}-\frac{2 s}{9} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{t}{3} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{2 s}{9} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{t}{3}-\frac{2 s}{9} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
9
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
1	3	2	Yes	$\left[\begin{array}{cc}-\frac{2}{9} & -\frac{1}{3} \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 53: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
18 & 7 & 4 \\
-27 & -9 & -5
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore \vec{v}_{3} could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual \vec{v}_{3} we need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
18 & 6 & 4 \\
-27 & -9 & -6
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
0 \\
18 \eta_{1}+6 \eta_{2}+4 \eta_{3} \\
-27 \eta_{1}-9 \eta_{2}-6 \eta_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 \alpha}{9}-\frac{\beta}{3} \\
\beta \\
\alpha
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
0=-\frac{2 \alpha}{9}-\frac{\beta}{3} \\
18 \eta_{1}+6 \eta_{2}+4 \eta_{3}=\beta \\
-27 \eta_{1}-9 \eta_{2}-6 \eta_{3}=\alpha
\end{array}
$$

solving for α, β from the above gives

$$
\begin{array}{r}
0=-\frac{2 \alpha}{9}-\frac{\beta}{3} \\
18 \eta_{1}+6 \eta_{2}+4 \eta_{3}=\beta
\end{array}
$$

Since α, β are not both zero, then we just need to determine η_{i} values, not all zero, which satisfy the above equations for α, β not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{1}=-1, \eta_{2}=0, \eta_{3}=0\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
\alpha & =27 \\
\beta & =-18
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =27\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right]+(-18)\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
-18 \\
27
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{2}{9} \\
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{t}}{9} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{3} \\
1 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}}{3} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-18 \\
27
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \mathrm{e}^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{t}}{9} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}}{3} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
-18 t \mathrm{e}^{t} \\
27 t \mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}\left(2 c_{1}+3 c_{2}+9 c_{3}\right)}{9} \\
\mathrm{e}^{t}\left(-18 t c_{3}+c_{2}\right) \\
\mathrm{e}^{t}\left(27 t c_{3}+c_{1}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.109 (sec). Leaf size: 41
dsolve ([diff $\left(x_{_-} 1(t), t\right)=1 * x_{_-} 1(t)+0 * x_{_-} 2(t)-0 * x_{x_{-}} 3(t), \operatorname{diff}\left(x_{\neq-} 2(t), t\right)=18 * x_{-} 1(t)+7 * x_{-} 2(t)+4$

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& x_{3}(t)=-\frac{\mathrm{e}^{t}\left(6 c_{2} t+6 c_{1}-c_{2}+18 c_{3}\right)}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 63
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]+0 * x 2[t]-0 * x 3[t], x 2{ }^{\prime}[t]==18 * x 1[t]+7 * x 2[t]+4 * x 3[t], x 3 '[t]==-27 * x 1[t]-9\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow c_{1} e^{t} \\
\mathrm{x} 2(t) & \rightarrow e^{t}\left(2\left(9 c_{1}+3 c_{2}+2 c_{3}\right) t+c_{2}\right) \\
\mathrm{x} 3(t) & \rightarrow e^{t}\left(c_{3}-3\left(9 c_{1}+3 c_{2}+2 c_{3}\right) t\right)
\end{aligned}
$$

6.18 problem problem 18

6.18.1 Solution using Matrix exponential method 965
6.18.2 Solution using explicit Eigenvalue and Eigenvector method . . . 966

Internal problem ID [375]
Internal file name [OUTPUT/375_Sunday_June_05_2022_01_39_58_AM_71350364/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =-2 x_{1}(t)-4 x_{2}(t)-x_{3}(t)
\end{aligned}
$$

6.18.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 1 \\
-2 & -4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & -4 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & 0 & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & -4 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1+2 t) c_{2}+t \mathrm{e}^{t} c_{3} \\
-2 t \mathrm{e}^{t} c_{1}-4 t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t}(1-2 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1} \\
\left(\left(c_{1}+2 c_{2}+c_{3}\right) t+c_{2}\right) \mathrm{e}^{t} \\
-2 \mathrm{e}^{t}\left(\left(c_{1}+2 c_{2}+c_{3}\right) t-\frac{c_{3}}{2}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.18.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 1 \\
-2 & -4 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 1 \\
-2 & -4 & -1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
1 & 3-\lambda & 1 \\
-2 & -4 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-3 \lambda^{2}+3 \lambda-1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 1 \\
-2 & -4 & -1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
&\left(\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
0 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 \\
-2 & -4 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\left[\begin{array}{ccc|c}
1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-2 & -4 & -2 & 0
\end{array}\right]
$$

$$
R_{3}=R_{3}+2 R_{1} \Longrightarrow\left[\begin{array}{lll|l}
1 & 2 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-2 t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-2 t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-2 t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-2 t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	3	2		Yes

0 \& 1

1 \& 0\end{array}\right]\)

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 54: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 1 \\
-2 & -4 & -1
\end{array}\right]-1\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore \vec{v}_{3} could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual \vec{v}_{3} we need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 0 & 0 \\
1 & 2 & 1 \\
-2 & -4 & -2
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
0 \\
\eta_{1}+2 \eta_{2}+\eta_{3} \\
-2 \eta_{1}-4 \eta_{2}-2 \eta_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-\alpha-2 \beta \\
\beta \\
\alpha
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
0=-\alpha-2 \beta \\
\eta_{1}+2 \eta_{2}+\eta_{3}=\beta \\
-2 \eta_{1}-4 \eta_{2}-2 \eta_{3}=\alpha
\end{array}
$$

solving for α, β from the above gives

$$
\begin{array}{r}
0=-\alpha-2 \beta \\
\eta_{1}+2 \eta_{2}+\eta_{3}=\beta
\end{array}
$$

Since α, β are not both zero, then we just need to determine η_{i} values, not all zero, which satisfy the above equations for α, β not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{1}=-1, \eta_{2}=0, \eta_{3}=0\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
& \alpha=2 \\
& \beta=-1
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =2\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+(-1)\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 1. Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{t} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-2 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-1 \\
2
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \mathrm{e}^{t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
-t \mathrm{e}^{t} \\
2 t \mathrm{e}^{t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(-c_{1}-2 c_{2}-c_{3}\right) \\
\mathrm{e}^{t}\left(-t c_{3}+c_{2}\right) \\
\mathrm{e}^{t}\left(2 t c_{3}+c_{1}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 39
dsolve([diff $\left(x_{-} 1(t), t\right)=1 * x_{-} 1(t)+0 * x_{_} 2(t)-0 * x_{_} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=1 * x_{-} 1(t)+3 * x_{-} 2(t)+1 *$

$$
\begin{aligned}
& x_{1}(t)=c_{3} \mathrm{e}^{t} \\
& x_{2}(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& x_{3}(t)=-\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}-c_{2}+c_{3}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 54
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+0 * \mathrm{x} 2[\mathrm{t}]-0 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2 \mathrm{I}^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+3 * \mathrm{x} 2[\mathrm{t}]+1 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3{ }^{\prime}[\mathrm{t}]==-2 * \mathrm{x} 1[\mathrm{t}]-4 * \mathrm{x}\right.\right.$

$$
\begin{aligned}
\mathrm{x} 1(t) & \rightarrow c_{1} e^{t} \\
\mathrm{x} 2(t) & \rightarrow e^{t}\left(\left(c_{1}+2 c_{2}+c_{3}\right) t+c_{2}\right) \\
\mathrm{x} 3(t) & \rightarrow e^{t}\left(c_{3}-2\left(c_{1}+2 c_{2}+c_{3}\right) t\right)
\end{aligned}
$$

6.19 problem problem 19

6.19.1 Solution using Matrix exponential method 975
6.19.2 Solution using explicit Eigenvalue and Eigenvector method . . . 976
6.19.3 Maple step by step solution . 986

Internal problem ID [376]
Internal file name [OUTPUT/376_Sunday_June_05_2022_01_39_59_AM_35326549/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 19.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)-4 x_{2}(t)-2 x_{4}(t) \\
x_{2}^{\prime}(t) & =x_{2}(t) \\
x_{3}^{\prime}(t) & =6 x_{1}(t)-12 x_{2}(t)-x_{3}(t)-6 x_{4}(t) \\
x_{4}^{\prime}(t) & =-4 x_{2}(t)-x_{4}(t)
\end{aligned}
$$

6.19.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{t} & -2 \mathrm{e}^{t}+2 \mathrm{e}^{-t} & 0 & -\mathrm{e}^{t}+\mathrm{e}^{-t} \\
0 & \mathrm{e}^{t} & 0 & 0 \\
3 \mathrm{e}^{t}-3 \mathrm{e}^{-t} & -6 \mathrm{e}^{t}+6 \mathrm{e}^{-t} & \mathrm{e}^{-t} & -3 \mathrm{e}^{t}+3 \mathrm{e}^{-t} \\
0 & -2 \mathrm{e}^{t}+2 \mathrm{e}^{-t} & 0 & \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\left.\begin{array}{rl}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t} & -2 \mathrm{e}^{t}+2 \mathrm{e}^{-t} & 0 \\
0 & \mathrm{e}^{t} & 0 \\
0 \mathrm{e}^{t}+\mathrm{e}^{-t} \\
3 \mathrm{e}^{t}-3 \mathrm{e}^{-t} & -6 \mathrm{e}^{t}+6 \mathrm{e}^{-t} & \mathrm{e}^{-t} \\
0 & -2 \mathrm{e}^{t}+2 \mathrm{e}^{-t} & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
0 \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-t}
\end{array}\right] \\
\left(3 \mathrm{e}^{t} c_{1}+3 \mathrm{e}^{-t}\right) c_{1}+\left(-2 \mathrm{e}^{t}+2 \mathrm{e}^{-t}\right) c_{2}+\left(-\mathrm{e}^{t}+\mathrm{e}^{-t}\right) c_{4} \\
\mathrm{e}^{t} c_{2} \\
\left(-2 \mathrm{e}^{t}+2 \mathrm{e}^{-t}\right) c_{2}+\mathrm{e}^{-t} c_{3}+\left(-3 \mathrm{e}^{t}+3 \mathrm{e}^{-t} \mathrm{e}^{-t}\right) c_{4}
\end{array}\right] .
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.19.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1-\lambda & -4 & 0 & -2 \\
0 & 1-\lambda & 0 & 0 \\
6 & -12 & -1-\lambda & -6 \\
0 & -4 & 0 & -1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-2 \lambda^{2}+1=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-1
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array} \begin{array}{l}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=}
\end{array} \begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
2 & -4 & 0 & -2 & 0 \\
0 & 2 & 0 & 0 & 0 \\
6 & -12 & 0 & -6 & 0 \\
0 & -4 & 0 & 0 & 0
\end{array}\right]} \\
R_{3}=R_{3}-3 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
2 & -4 & 0 & -2 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+2 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
2 & -4 & 0 & -2 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
2 & -4 & 0 & -2 \\
0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=s, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
s \\
0 \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
s \\
0 \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
s \\
0 \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
s \\
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{l}
s \\
0 \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]\right. & -(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
0 & -4 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
6 & -12 & -2 & -6 & 0 \\
0 & -4 & 0 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 3 gives

$$
\left[\begin{array}{cccc|c}
6 & -12 & -2 & -6 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & -2 & 0 \\
0 & -4 & 0 & -2 & 0
\end{array}\right]
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\left[\begin{array}{cccc|c}
6 & -12 & -2 & -6 & 0 \\
0 & -4 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -4 & 0 & -2 & 0
\end{array}\right]
$$

$$
R_{4}=R_{4}-R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
6 & -12 & -2 & -6 & 0 \\
0 & -4 & 0 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
6 & -12 & -2 & -6 \\
0 & -4 & 0 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{3}, v_{2}=-\frac{s}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
\frac{t}{3} \\
0 \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{s}{2} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
\frac{t}{3} \\
-\frac{s}{2} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{l}
1 \\
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1 \\
0 \\
2
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	2			$\left[\begin{array}{cc}0 & \frac{1}{3} \\ -\frac{1}{2} & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$
-1	2	2	No	
			No	$\left[\begin{array}{cc}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 55: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right] e^{t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
$$

eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

The two possible cases for repeated eigenvalue of multiplicity 2

Figure 56: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{-t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] e^{-t} \\
\vec{x}_{4}(t) & =\vec{v}_{4} e^{-t} \\
& =\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] e^{-t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{t}}{2} \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{t}}{3} \\
0 \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{-t} \\
0 \\
0 \\
\mathrm{e}^{-t}
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{-t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2} \mathrm{e}^{t}}{3}+c_{3} \mathrm{e}^{-t} \\
-\frac{c_{1} \mathrm{e}^{t}}{2} \\
c_{2} \mathrm{e}^{t}+c_{4} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{t}+c_{3} \mathrm{e}^{-t}
\end{array}\right]
$$

6.19.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=x_{1}(t)-4 x_{2}(t)-2 x_{4}(t), x_{2}^{\prime}(t)=x_{2}(t), x_{3}^{\prime}(t)=6 x_{1}(t)-12 x_{2}(t)-x_{3}(t)-6 x_{4}(t), x_{4}^{\prime}(t)=\right.$

- Define vector

$$
\underset{x^{\prime}}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
\underline{د}^{\prime}(t)=\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right] \cdot \underline{x^{\rightarrow}}(t)+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x \rightarrow^{\prime}(t)=\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \rightarrow(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-1,\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[-1,\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue - 1

$$
x_{1}(t)=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=-1$ is the eigenvalue, an $x^{\rightarrow} 2(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})$
- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{2}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x_{-}^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue -1

$$
\left(\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]-(-1) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue - 1

$$
\underset{2}{\rightarrow}(t)=\mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[1,\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]\right]
$$

- First solution from eigenvalue 1

$$
x_{3}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=1$ is the eigenvalue, and

$$
x_{4}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtai
- Substitute $x{ }_{4}(t)$ into the homogeneous system
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})$
- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I

$$
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Condition \vec{p} must meet for $x{ }_{4}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 1

$$
\left(\left[\begin{array}{cccc}
1 & -4 & 0 & -2 \\
0 & 1 & 0 & 0 \\
6 & -12 & -1 & -6 \\
0 & -4 & 0 & -1
\end{array}\right]-1 \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 1

$$
{\underset{\sim}{4}}_{4}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x \xrightarrow{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}(t)+c_{2} x \xrightarrow{\rightarrow}_{2}(t)+c_{3} x \longrightarrow_{3}(t)+c_{4} x \xrightarrow{4}_{4}(t)
$$

- Substitute solutions into the general solution

$$
x \longrightarrow=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left(t \cdot\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
0 \\
0
\end{array}\right]\right)+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{t} \cdot\left[t \cdot\left[\begin{array}{c}
0 \\
-\frac{1}{2} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right.\right.
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-t}\left(c_{1}+c_{2} t+\frac{1}{2} c_{2}\right) \\
-\frac{\mathrm{e}^{t}\left(t c_{4}+c_{3}\right)}{2} \\
0 \\
\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\mathrm{e}^{t}\left(t c_{4}+c_{3}\right)
\end{array}\right]
$$

- Solution to the system of ODEs

$$
\left\{x_{1}(t)=\mathrm{e}^{-t}\left(c_{1}+c_{2} t+\frac{1}{2} c_{2}\right), x_{2}(t)=-\frac{\mathrm{e}^{t}\left(t c_{4}+c_{3}\right)}{2}, x_{3}(t)=0, x_{4}(t)=\left(c_{2} t+c_{1}\right) \mathrm{e}^{-t}+\mathrm{e}^{t}\left(t c_{4}+c_{3}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 53

```
dsolve([diff(x__1(t),t)=1*x__1(t)-4*x__2(t)+0*x___ 3(t)-2*x__ 4(t), diff (x__ 2(t),t)=0*x__1(t)+1*
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{t}+c_{3} \mathrm{e}^{-t} \\
& x_{2}(t)=c_{4} \mathrm{e}^{t} \\
& x_{3}(t)=3 c_{2} \mathrm{e}^{t}+\mathrm{e}^{-t} c_{1} \\
& x_{4}(t)=-2 c_{4} \mathrm{e}^{t}+c_{3} \mathrm{e}^{-t}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 114
DSolve $\left[\left\{x 1^{\prime}[t]==1 * x 1[t]-4 * x 2[t]+0 * x 3[t]-2 * x 4[t], x 2{ }^{\prime}[t]==0 * x 1[t]+1 * x 2[t]+0 * x 3[t]+0 * x 4[t], x 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(\left(c_{1}-2 c_{2}-c_{4}\right) e^{2 t}+2 c_{2}+c_{4}\right) \\
& \mathrm{x} 2(t) \rightarrow c_{2} e^{t} \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(3 c_{1}\left(e^{2 t}-1\right)-6 c_{2}\left(e^{2 t}-1\right)-3 c_{4} e^{2 t}+c_{3}+3 c_{4}\right) \\
& \mathrm{x} 4(t) \rightarrow e^{-t}\left(c_{4}-2 c_{2}\left(e^{2 t}-1\right)\right)
\end{aligned}
$$

6.20 problem problem 20

6.20.1 Solution using Matrix exponential method 991
6.20.2 Solution using explicit Eigenvalue and Eigenvector method . . . 992

Internal problem ID [377]
Internal file name [DUTPUT/377_Sunday_June_05_2022_01_40_01_AM_9212484/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)+x_{4}(t) \\
x_{2}^{\prime}(t) & =2 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =2 x_{3}(t)+x_{4}(t) \\
x_{4}^{\prime}(t) & =2 x_{4}(t)
\end{aligned}
$$

6.20.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{2 t} & \mathrm{e}^{2 t} t & \frac{\mathrm{e}^{2 t} t^{2}}{2} & \mathrm{e}^{2 t}\left(\frac{1}{6} t^{3}+t\right) \\
0 & \mathrm{e}^{2 t} & \mathrm{e}^{2 t} t & \frac{\mathrm{e}^{2 t} t^{2}}{2} \\
0 & 0 & \mathrm{e}^{2 t} & \mathrm{e}^{2 t} t \\
0 & 0 & 0 & \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & \mathrm{e}^{2 t} t & \frac{\mathrm{e}^{2 t} t^{2}}{2} \\
0 & \mathrm{e}^{2 t}\left(\frac{1}{6} t^{3}+t\right) \\
0 & \mathrm{e}^{2 t} t & \frac{\mathrm{e}^{2 t} t^{2}}{2} \\
0 & 0 & \mathrm{e}^{2 t} \\
0 & \mathrm{e}^{2 t} t \\
\mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1}+\mathrm{e}^{2 t} t c_{2}+\frac{\mathrm{e}^{2 t} t^{2} c_{3}}{2}+\mathrm{e}^{2 t}\left(\frac{1}{6} t^{3}+t\right) c_{4} \\
\mathrm{e}^{2 t} c_{2}+\mathrm{e}^{2 t} t c_{3}+\frac{\mathrm{e}^{2 t} t^{2} c_{4}}{2} \\
\mathrm{e}^{2 t} c_{3}+\mathrm{e}^{2 t} t c_{4} \\
\mathrm{e}^{2 t} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(c_{4} t^{3}+3 c_{3} t^{2}+\left(6 c_{2}+6 c_{4}\right) t+6 c_{1}\right) \mathrm{e}^{2 t}}{6} \\
\mathrm{e}^{2 t}\left(c_{2}+c_{3} t+\frac{1}{2} c_{4} t^{2}\right) \\
\mathrm{e}^{2 t}\left(t c_{4}+c_{3}\right) \\
\mathrm{e}^{2 t} c_{4}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.20.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2-\lambda & 1 & 0 & 1 \\
0 & 2-\lambda & 1 & 0 \\
0 & 0 & 2-\lambda & 1 \\
0 & 0 & 0 & 2-\lambda
\end{array}\right]\right)=0
$$

Since the matrix A is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes

$$
(2-\lambda)(2-\lambda)(2-\lambda)(2-\lambda)=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{llll|l}
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}, v_{4}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
t \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	4	1	Yes	$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 4.There are four possible cases that can happen. This is illustrated in this diagram

Figure 57: Possible case for repeated λ of multiplicity 4

This eigenvalue has algebraic multiplicity of 4 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 3 . This falls into case 4 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector
\vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found earlier. Hence

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
$$

Now \vec{v}_{4} is found by solving

$$
(A-\lambda I) \vec{v}_{4}=\vec{v}_{3}
$$

Where \vec{v}_{3} is the (rank 3) generalized eigenvector found above. Hence

$$
\left.\begin{array}{rl}
{\left[\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]-(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{4} gives

$$
\vec{v}_{4}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{2 t}\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}\left(t^{2}+2 t+2\right)}{2} \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{4}(t) & =\left(\vec{v}_{1} \frac{t^{3}}{6}+\vec{v}_{2} \frac{t^{2}}{2}+\vec{v}_{3} t+\vec{v}_{4}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \frac{t^{3}}{6}+\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}\left(t^{3}+3 t^{2}+6 t+6\right)}{6} \\
\frac{\mathrm{e}^{2 t} t(2+t)}{2} \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as
$\left[\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t) \\ x_{4}(t)\end{array}\right]=c_{1}\left[\begin{array}{c}\mathrm{e}^{2 t} \\ 0 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{c}\mathrm{e}^{2 t}(t+1) \\ \mathrm{e}^{2 t} \\ 0 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{c}\mathrm{e}^{2 t}\left(t+\frac{1}{2} t^{2}+1\right) \\ \mathrm{e}^{2 t}(t+1) \\ \mathrm{e}^{2 t} \\ 0\end{array}\right]+c_{4}\left[\begin{array}{c}\mathrm{e}^{2 t}\left(\frac{1}{6} t^{3}+\frac{1}{2} t^{2}+t+1\right) \\ \mathrm{e}^{2 t}\left(\frac{1}{2} t^{2}+t\right) \\ \mathrm{e}^{2 t}(t+1) \\ \mathrm{e}^{2 t}\end{array}\right]$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{4} t^{3}+\left(3 c_{3}+3 c_{4}\right) t^{2}+\left(6 c_{2}+6 c_{3}+6 c_{4}\right) t+6 c_{1}+6 c_{2}+6 c_{3}+6 c_{4}\right) \mathrm{e}^{2 t}}{6} \\
\frac{\left(c_{4} t^{2}+\left(2 c_{3}+2 c_{4}\right) t+2 c_{2}+2 c_{3}\right) \mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}\left(c_{4} t+c_{3}+c_{4}\right) \\
c_{4} \mathrm{e}^{2 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 78

```
dsolve([diff(x__1 (t),t)=2*x__1(t)+1*x__ 2(t)+0*\mp@subsup{x}{___}{\prime}3(t)+1*\mp@subsup{x}{___}{\prime}4(t),\operatorname{diff}(\mp@subsup{x}{___}{\prime}2(t),t)=0*\mp@subsup{x}{_}{\prime}1(t)+2*
```

$$
\begin{aligned}
& x_{1}(t)=\frac{\left(c_{4} t^{3}+3 c_{3} t^{2}+6 c_{2} t+6 c_{4} t+6 c_{1}\right) \mathrm{e}^{2 t}}{6} \\
& x_{2}(t)=\frac{\left(c_{4} t^{2}+2 c_{3} t+2 c_{2}\right) \mathrm{e}^{2 t}}{2} \\
& x_{3}(t)=\left(c_{4} t+c_{3}\right) \mathrm{e}^{2 t} \\
& x_{4}(t)=c_{4} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 96
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+1 * x 2[t]+0 * x 3[t]+1 * x 4[t], x 2{ }^{\prime}[t]==0 * x 1[t]+2 * x 2[t]+1 * x 3[t]+0 * x 4[t], x 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{6} e^{2 t}\left(t\left(c_{4} t^{2}+3 c_{3} t+6 c_{2}+6 c_{4}\right)+6 c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{2 t}\left(t\left(c_{4} t+2 c_{3}\right)+2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{2 t}\left(c_{4} t+c_{3}\right) \\
& \mathrm{x} 4(t) \rightarrow c_{4} e^{2 t}
\end{aligned}
$$

6.21 problem problem 21

6.21.1 Solution using Matrix exponential method 1002
6.21.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1003

Internal problem ID [378]
Internal file name [OUTPUT/378_Sunday_June_05_2022_01_40_03_AM_15647572/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)-4 x_{2}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t) \\
x_{3}^{\prime}(t) & =x_{1}(t)+2 x_{2}(t)+x_{3}(t) \\
x_{4}^{\prime}(t) & =x_{2}(t)+x_{4}(t)
\end{aligned}
$$

6.21.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{t}(1-2 t) & -4 t \mathrm{e}^{t} & 0 & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & 0 & 0 \\
t \mathrm{e}^{t} & 2 t \mathrm{e}^{t} & \mathrm{e}^{t} & 0 \\
\frac{t^{2} \mathrm{e}^{t}}{2} & \mathrm{e}^{t} t(t+1) & 0 & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\mathrm{e}^{t}(1-2 t) & -4 t \mathrm{e}^{t} & 0 & 0 \\
t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & 0 & 0 \\
t \mathrm{e}^{t} & 2 t \mathrm{e}^{t} & \mathrm{e}^{t} & 0 \\
\frac{t^{2} \mathrm{e}^{t}}{2} & \mathrm{e}^{t} t(t+1) & 0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(1-2 t) c_{1}-4 t \mathrm{e}^{t} c_{2} \\
t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1+2 t) c_{2} \\
t \mathrm{e}^{t} c_{1}+2 t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t} c_{3} \\
\frac{t^{2} \mathrm{e}^{t} c_{1}}{2}+\mathrm{e}^{t} t(t+1) c_{2}+\mathrm{e}^{t} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(c_{1}(1-2 t)-4 c_{2} t\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(t c_{1}+2 c_{2} t+c_{2}\right) \\
\left(\left(c_{1}+2 c_{2}\right) t+c_{3}\right) \mathrm{e}^{t} \\
\frac{\mathrm{e}^{t}\left(\left(c_{1}+2 c_{2}\right) t^{2}+2 c_{2} t+2 c_{4}\right)}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.21.2 Solution using explicit Eigenvalue and Eigenvector method

 This is a system of linear ODE's given as$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-1-\lambda & -4 & 0 & 0 \\
1 & 3-\lambda & 0 & 0 \\
1 & 2 & 1-\lambda & 0 \\
0 & 1 & 0 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-4 \lambda^{3}+6 \lambda^{2}-4 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-2 & -4 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
-2 & -4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 4 gives

$$
\left[\begin{array}{cccc|c}
-2 & -4 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-2 & -4 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0 \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{l}
0 \\
0 \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	4			
		2	Yes	$\left[\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$

This case will be solved using the Jordan form of the matrix A. The Jordan form diagonalization is

$$
A=P J P^{-1}
$$

Which can be found to be

$$
\left[\begin{array}{cccc}
-1 & -4 & 0 & 0 \\
1 & 3 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
0 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]^{-1}
$$

Looking at the P matrix above, we see there are 2 chains. Therefore, we now construct
the basis solution by following these chains as follows.

$$
\begin{aligned}
& \vec{x}_{1}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{2}=\left[\begin{array}{c}
-2 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
t \mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{3}=\left[\begin{array}{c}
-2 t \mathrm{e}^{t}+\mathrm{e}^{t} \\
t \mathrm{e}^{t} \\
t \mathrm{e}^{t}+\mathrm{e}^{t} \\
\frac{t^{2} \mathrm{e}^{t}}{2}
\end{array}\right] \\
& \vec{x}_{4}=\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-2 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
t \mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-2 t \mathrm{e}^{t}+\mathrm{e}^{t} \\
t \mathrm{e}^{t} \\
t \mathrm{e}^{t}+\mathrm{e}^{t} \\
\frac{t^{2} \mathrm{e}^{t}}{2}
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
0 \\
\mathrm{e}^{t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(-2 c_{3} t-2 c_{2}+c_{3}\right) \\
\mathrm{e}^{t}\left(c_{3} t+c_{2}\right) \\
\mathrm{e}^{t}\left(c_{3} t+c_{2}+c_{3}+c_{4}\right) \\
\mathrm{e}^{t}\left(c_{1}+t c_{2}+\frac{1}{2} t^{2} c_{3}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 63
dsolve ([diff $\left(x_{-} 1(t), t\right)=-1 * x_{-} 1(t)-4 * x_{-} 2(t)+0 * x_{-} 3(t)+0 * x_{-} 4(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=1 * x_{-} 1(t)+3$

$$
\begin{aligned}
& x_{1}(t)=-\mathrm{e}^{t}\left(2 c_{4} t+2 c_{3}-c_{4}\right) \\
& x_{2}(t)=\mathrm{e}^{t}\left(c_{4} t+c_{3}\right) \\
& x_{3}(t)=\mathrm{e}^{t}\left(c_{4} t+c_{1}+c_{3}\right) \\
& x_{4}(t)=\frac{\left(c_{4} t^{2}+2 c_{3} t+2 c_{2}\right) \mathrm{e}^{t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 91
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-1 * \mathrm{x} 1[\mathrm{t}]-4 * \mathrm{x} 2[\mathrm{t}]+0 * \mathrm{x} 3[\mathrm{t}]+0 * \mathrm{x} 4[\mathrm{t}], \mathrm{x} 2 \mathrm{I}^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+3 * \mathrm{x} 2[\mathrm{t}]+0 * \mathrm{x} 3[\mathrm{t}]+0 * \mathrm{x} 4[\mathrm{t}], \mathrm{x} 3{ }^{\prime}\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow-e^{t}\left(c_{1}(2 t-1)+4 c_{2} t\right) \\
& \mathrm{x} 2(t) \rightarrow e^{t}\left(\left(c_{1}+2 c_{2}\right) t+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{t}\left(\left(c_{1}+2 c_{2}\right) t+c_{3}\right) \\
& \mathrm{x} 4(t) \rightarrow \frac{1}{2} e^{t}\left(c_{1} t^{2}+2 c_{2}(t+1) t+2 c_{4}\right)
\end{aligned}
$$

6.22 problem problem 22

6.22.1 Solution using Matrix exponential method 1010
6.22.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1011

Internal problem ID [379]
Internal file name [OUTPUT/379_Sunday_June_05_2022_01_40_04_AM_84937060/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 22.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t)+7 x_{3}(t) \\
x_{2}^{\prime}(t) & =-x_{2}(t)-4 x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{2}(t)+3 x_{3}(t) \\
x_{4}^{\prime}(t) & =-6 x_{2}(t)-14 x_{3}(t)+x_{4}(t)
\end{aligned}
$$

6.22.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & 7 & 0 \\
0 & -1 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & -6 & -14 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{t} t(t+6)}{2} & \mathrm{e}^{t} t(t+7) & 0 \\
0 & \mathrm{e}^{t}(1-2 t) & -4 t \mathrm{e}^{t} & 0 \\
0 & t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & 0 \\
0 & -\mathrm{e}^{t} t(t+6) & -2 \mathrm{e}^{t} t(t+7) & \mathrm{e}^{t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\mathrm{e}^{t} & \frac{\mathrm{e}^{t} t(t+6)}{2} & \mathrm{e}^{t} t(t+7) & 0 \\
0 & \mathrm{e}^{t}(1-2 t) & -4 t \mathrm{e}^{t} & 0 \\
0 & t \mathrm{e}^{t} & \mathrm{e}^{t}(1+2 t) & 0 \\
0 & -\mathrm{e}^{t} t(t+6) & -2 \mathrm{e}^{t} t(t+7) & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1}+\frac{\mathrm{e}^{t} t(t+6) c_{2}}{2}+\mathrm{e}^{t} t(t+7) c_{3} \\
\mathrm{e}^{t}(1-2 t) c_{2}-4 t \mathrm{e}^{t} c_{3} \\
t \mathrm{e}^{t} c_{2}+\mathrm{e}^{t}(1+2 t) c_{3} \\
-\mathrm{e}^{t} t(t+6) c_{2}-2 \mathrm{e}^{t} t(t+7) c_{3}+\mathrm{e}^{t} c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(c_{2}+2 c_{3}\right) t^{2}+\left(6 c_{2}+14 c_{3}\right) t+2 c_{1}\right) \mathrm{e}^{t}}{2} \\
\left(c_{2}(1-2 t)-4 t c_{3}\right) \mathrm{e}^{t} \\
\mathrm{e}^{t}\left(t c_{2}+2 t c_{3}+c_{3}\right) \\
-\left(\left(c_{2}+2 c_{3}\right) t^{2}+\left(6 c_{2}+14 c_{3}\right) t-c_{4}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.22.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & 7 & 0 \\
0 & -1 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & -6 & -14 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & 3 & 7 & 0 \\
0 & -1 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & -6 & -14 & 1
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1-\lambda & 3 & 7 & 0 \\
0 & -1-\lambda & -4 & 0 \\
0 & 1 & 3-\lambda & 0 \\
0 & -6 & -14 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-4 \lambda^{3}+6 \lambda^{2}-4 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
1 & 3 & 7 & 0 \\
0 & -1 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & -6 & -14 & 1
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
0 & 3 & 7 & 0 & 0 \\
0 & -2 & -4 & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & -6 & -14 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{llll|l}
0 & 3 & 7 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 \\
0 & 1 & 2 & 0 & 0 \\
0 & -6 & -14 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
0 & 3 & 7 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & 0 \\
0 & -6 & -14 & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
0 & 3 & 7 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 \\
0 & 0 & -\frac{1}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{llll|l}
0 & 3 & 7 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
0 & 3 & 7 & 0 \\
0 & 0 & \frac{2}{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}, v_{4}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}\right\}$. Let $v_{1}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
s
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
0 \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{l}
t \\
0 \\
0 \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	4			
		2	Yes	$\left[\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 1 & 0\end{array}\right]$

This case will be solved using the Jordan form of the matrix A. The Jordan form diagonalization is

$$
A=P J P^{-1}
$$

Which can be found to be

$$
\left[\begin{array}{cccc}
1 & 3 & 7 & 0 \\
0 & -1 & -4 & 0 \\
0 & 1 & 3 & 0 \\
0 & -6 & -14 & 1
\end{array}\right]=\left[\begin{array}{cccc}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -6 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 3 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 1 & 0 & 0 \\
-2 & -6 & 1 & 1
\end{array}\right]^{-1}
$$

Looking at the P matrix above, we see there are 2 chains. Therefore, we now construct the basis solution by following these chains as follows.

$$
\begin{aligned}
& \vec{x}_{1}=\left[\begin{array}{c}
\mathrm{e}^{t} \\
0 \\
0 \\
-2 \mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{2}=\left[\begin{array}{c}
t \mathrm{e}^{t}+3 \mathrm{e}^{t} \\
-2 \mathrm{e}^{t} \\
\mathrm{e}^{t} \\
-2 t \mathrm{e}^{t}-6 \mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{3}=\left[\begin{array}{c}
\frac{t^{2} \mathrm{e}^{t}}{2}+3 t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t}+\mathrm{e}^{t} \\
t \mathrm{e}^{t} \\
-t^{2} \mathrm{e}^{t}-6 t \mathrm{e}^{t}+\mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{3} t^{2}+\left(2 c_{2}+6 c_{3}\right) t+2 c_{1}+6 c_{2}\right) \mathrm{e}^{t}}{2} \\
\mathrm{e}^{t}\left(-2 c_{3} t-2 c_{2}+c_{3}\right) \\
\mathrm{e}^{t}\left(c_{3} t+c_{2}\right) \\
-\mathrm{e}^{t}\left(\left(t^{2}+6 t-1\right) c_{3}+2 t c_{2}+2 c_{1}+6 c_{2}-c_{4}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 78

```
dsolve([diff (x__ 1(t),t)=1*x__1 (t)+3*x__2(t)+7*x__ 3(t)+0*x__ 4 (t), diff (x__ 2(t),t)=0*x__ 1(t)-1*
```

$$
\begin{aligned}
& x_{1}(t)=\frac{\left(-c_{4} t^{2}-2 c_{3} t-7 c_{4} t+4 c_{2}\right) \mathrm{e}^{t}}{4} \\
& x_{2}(t)=\mathrm{e}^{t}\left(c_{4} t+c_{3}\right) \\
& x_{3}(t)=-\frac{\mathrm{e}^{t}\left(2 c_{4} t+2 c_{3}+c_{4}\right)}{4} \\
& x_{4}(t)=\frac{\left(c_{4} t^{2}+2 c_{3} t+7 c_{4} t+2 c_{1}\right) \mathrm{e}^{t}}{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 99

```
DSolve[{x1'[t]==1*x1[t]+3*x2[t]+7*x3[t]+0*x4[t],x2'[t]==0*x1[t]-1*x2[t]-4*x3[t]+0*x4[t],x3'[
```

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{t}\left(c_{2} t(t+6)+2 c_{3} t(t+7)+2 c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow-e^{t}\left(c_{2}(2 t-1)+4 c_{3} t\right) \\
& \mathrm{x} 3(t) \rightarrow e^{t}\left(\left(c_{2}+2 c_{3}\right) t+c_{3}\right) \\
& \mathrm{x} 4(t) \rightarrow e^{t}\left(c_{2}(-t)(t+6)-2 c_{3} t(t+7)+c_{4}\right)
\end{aligned}
$$

6.23 problem problem 23

6.23.1 Solution using Matrix exponential method 1018
6.23.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1019
6.23.3 Maple step by step solution . 1026

Internal problem ID [380]
Internal file name [OUTPUT/380_Sunday_June_05_2022_01_40_06_AM_22289725/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 23.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =39 x_{1}(t)+8 x_{2}(t)-16 x_{3}(t) \\
x_{2}^{\prime}(t) & =-36 x_{1}(t)-5 x_{2}(t)+16 x_{3}(t) \\
x_{3}^{\prime}(t) & =72 x_{1}(t)+16 x_{2}(t)-29 x_{3}(t)
\end{aligned}
$$

6.23.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
10 \mathrm{e}^{3 t}-9 \mathrm{e}^{-t} & 2 \mathrm{e}^{3 t}-2 \mathrm{e}^{-t} & -4 \mathrm{e}^{3 t}+4 \mathrm{e}^{-t} \\
-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{-t} & -\mathrm{e}^{3 t}+2 \mathrm{e}^{-t} & 4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t} \\
18 \mathrm{e}^{3 t}-18 \mathrm{e}^{-t} & 4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t} & -7 \mathrm{e}^{3 t}+8 \mathrm{e}^{-t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
10 \mathrm{e}^{3 t}-9 \mathrm{e}^{-t} & 2 \mathrm{e}^{3 t}-2 \mathrm{e}^{-t} & -4 \mathrm{e}^{3 t}+4 \mathrm{e}^{-t} \\
-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{-t} & -\mathrm{e}^{3 t}+2 \mathrm{e}^{-t} & 4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t} \\
18 \mathrm{e}^{3 t}-18 \mathrm{e}^{-t} & 4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t} & -7 \mathrm{e}^{3 t}+8 \mathrm{e}^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(10 \mathrm{e}^{3 t}-9 \mathrm{e}^{-t}\right) c_{1}+\left(2 \mathrm{e}^{3 t}-2 \mathrm{e}^{-t}\right) c_{2}+\left(-4 \mathrm{e}^{3 t}+4 \mathrm{e}^{-t}\right) c_{3} \\
\left(-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{-t}\right) c_{1}+\left(-\mathrm{e}^{3 t}+2 \mathrm{e}^{-t}\right) c_{2}+\left(4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t}\right) c_{3} \\
\left(18 \mathrm{e}^{3 t}-18 \mathrm{e}^{-t}\right) c_{1}+\left(4 \mathrm{e}^{3 t}-4 \mathrm{e}^{-t}\right) c_{2}+\left(-7 \mathrm{e}^{3 t}+8 \mathrm{e}^{-t}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-9 c_{1}-2 c_{2}+4 c_{3}\right) \mathrm{e}^{-t}+10\left(c_{1}+\frac{c_{2}}{5}-\frac{2 c_{3}}{5}\right) \mathrm{e}^{3 t} \\
\left(9 c_{1}+2 c_{2}-4 c_{3}\right) \mathrm{e}^{-t}-9\left(c_{1}+\frac{c_{2}}{9}-\frac{4 c_{3}}{9}\right) \mathrm{e}^{3 t} \\
\left(-18 c_{1}-4 c_{2}+8 c_{3}\right) \mathrm{e}^{-t}+18\left(c_{1}+\frac{2 c_{2}}{9}-\frac{7 c_{3}}{18}\right) \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.23.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
39-\lambda & 8 & -16 \\
-36 & -5-\lambda & 16 \\
72 & 16 & -29-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-5 \lambda^{2}+3 \lambda+9=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]-(-1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\begin{array}{ccc}
40 & 8 & -16 \\
-36 & -4 & 16 \\
72 & 16 & -28
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
40 & 8 & -16 & 0 \\
-36 & -4 & 16 & 0 \\
72 & 16 & -28 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}+\frac{9 R_{1}}{10} \Longrightarrow\left[\begin{array}{ccc|c}
40 & 8 & -16 & 0 \\
0 & \frac{16}{5} & \frac{8}{5} & 0 \\
72 & 16 & -28 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{9 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
40 & 8 & -16 & 0 \\
0 & \frac{16}{5} & \frac{8}{5} & 0 \\
0 & \frac{8}{5} & \frac{4}{5} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
40 & 8 & -16 & 0 \\
0 & \frac{16}{5} & \frac{8}{5} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
40 & 8 & -16 \\
0 & \frac{16}{5} & \frac{8}{5} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=\frac{t}{2}, v_{2}=-\frac{t}{2}\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
\frac{t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\begin{array}{ccc}
36 & 8 & -16 \\
-36 & -8 & 16 \\
72 & 16 & -32
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
36 & 8 & -16 & 0 \\
-36 & -8 & 16 & 0 \\
72 & 16 & -32 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
36 & 8 & -16 & 0 \\
0 & 0 & 0 & 0 \\
72 & 16 & -32 & 0
\end{array}\right] \\
R_{3}=R_{3}-2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
36 & 8 & -16 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
36 & 8 & -16 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{2 t}{9}+\frac{4 s}{9}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{2 t}{9}+\frac{4 s}{9} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{9}+\frac{4 s}{9} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-\frac{2 t}{9}+\frac{4 s}{9} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{2 t}{9} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4 s}{9} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-\frac{2}{9} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-\frac{2 t}{9}+\frac{4 s}{9} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{9} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-\frac{2}{9} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-2 \\
9 \\
0
\end{array}\right],\left[\begin{array}{l}
4 \\
0 \\
9
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	1	algebraic m	geometric k	defective?
eigenvectors				
				No

-\frac{1}{2}

1\end{array}\right]\).

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
$$

eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 58: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{2}{9} \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-t}}{2} \\
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{4 \mathrm{e}^{3 t}}{9} \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{3 t}}{9} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2\left(2 c_{2}-c_{3}\right) \mathrm{e}^{3 t}}{9}+\frac{c_{1} \mathrm{e}^{-t}}{2} \\
-\frac{c_{1} \mathrm{e}^{-t}}{2}+c_{3} \mathrm{e}^{3 t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
$$

6.23.3 Maple step by step solution

Let's solve
$\left[x_{1}^{\prime}(t)=39 x_{1}(t)+8 x_{2}(t)-16 x_{3}(t), x_{2}^{\prime}(t)=-36 x_{1}(t)-5 x_{2}(t)+16 x_{3}(t), x_{3}^{\prime}(t)=72 x_{1}(t)+16 x_{2}(\right.$

- Define vector

$$
x \rightarrow(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A

$$
\left[\left[\left[-1,\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
\frac{4}{9} \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-\frac{2}{9} \\
1 \\
0
\end{array}\right]\right]\right]\right.
$$

- Consider eigenpair

$$
\left[-1,\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
x_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 3
$x \xrightarrow{\rightarrow}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}\frac{4}{9} \\ 0 \\ 1\end{array}\right]$
- Form of the 2nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and

$$
x_{3}^{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{3}(t)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation

$$
\lambda \vec{p}+\vec{v}=A \cdot \vec{p}
$$

- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x^{\rightarrow}{ }_{3}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
39 & 8 & -16 \\
-36 & -5 & 16 \\
72 & 16 & -29
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]
$$

- Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
\frac{1}{81} \\
0 \\
0
\end{array}\right]
$$

- Second solution from eigenvalue 3

$$
{\underset{3}{3}}^{\rightarrow_{3}}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{l}
\frac{4}{9} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{81} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs

$$
x^{\rightarrow}=c_{1} x \xrightarrow{\rightarrow}+c_{2} x^{\rightarrow}(t)+c_{3} x \xrightarrow{3}_{3}(t)
$$

- Substitute solutions into the general solution

$$
x \rightarrow=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
\frac{4}{9} \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{81} \\
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left((36 t+1) c_{3}+36 c_{2}\right) \mathrm{e}^{3 t}}{81}+\frac{c_{1} \mathrm{e}^{-t}}{2} \\
-\frac{c_{1} \mathrm{e}^{-t}}{2} \\
\left(c_{3} t+c_{2}\right) \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{-t}
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=\frac{\left((36 t+1) c_{3}+36 c_{2}\right) \mathrm{e}^{3 t}}{81}+\frac{c_{1} \mathrm{e}^{-t}}{2}, x_{2}(t)=-\frac{c_{1} \mathrm{e}^{-t}}{2}, x_{3}(t)=\left(c_{3} t+c_{2}\right) \mathrm{e}^{3 t}+c_{1} \mathrm{e}^{-t}\right\}
$$

Solution by Maple
Time used: 0.032 (sec). Leaf size: 67

```
dsolve([diff(x__1 (t),t)=39*x__1(t)+8*x__2(t)-16*x__ 3(t), diff (x__ 2(t),t)=-36*x__1(t) -5*x__ 2(t
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{-t} \\
& x_{2}(t)=-c_{2} \mathrm{e}^{3 t}-c_{3} \mathrm{e}^{-t}+c_{1} \mathrm{e}^{3 t} \\
& x_{3}(t)=\frac{7 c_{2} \mathrm{e}^{3 t}}{4}+2 c_{3} \mathrm{e}^{-t}+\frac{c_{1} \mathrm{e}^{3 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 127
DSolve $\left[\left\{x 1^{\prime}[t]==39 * x 1[t]+8 * x 2[t]-16 * x 3[t], x 2{ }^{\prime}[t]==-36 * x 1[t]-5 * x 2[t]+16 * x 3[t], x 3^{\prime}[t]==72 * x 1[t\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{-t}\left(c_{1}\left(10 e^{4 t}-9\right)+2\left(c_{2}-2 c_{3}\right)\left(e^{4 t}-1\right)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(-9 c_{1}\left(e^{4 t}-1\right)-c_{2}\left(e^{4 t}-2\right)+4 c_{3}\left(e^{4 t}-1\right)\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(18 c_{1}\left(e^{4 t}-1\right)+4 c_{2}\left(e^{4 t}-1\right)+c_{3}\left(8-7 e^{4 t}\right)\right)
\end{aligned}
$$

6.24 problem problem 24

6.24.1 Solution using Matrix exponential method 1030
6.24.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1031
6.24.3 Maple step by step solution . 1038

Internal problem ID [381]
Internal file name [OUTPUT/381_Sunday_June_05_2022_01_40_07_AM_40772406/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 24.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =28 x_{1}(t)+50 x_{2}(t)+100 x_{3}(t) \\
x_{2}^{\prime}(t) & =15 x_{1}(t)+33 x_{2}(t)+60 x_{3}(t) \\
x_{3}^{\prime}(t) & =-15 x_{1}(t)-30 x_{2}(t)-57 x_{3}(t)
\end{aligned}
$$

6.24.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\left(6 \mathrm{e}^{5 t}-5\right) \mathrm{e}^{-2 t} & 10\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & 20\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} \\
3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(7 \mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t} & 12\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} \\
-3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & -6\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-11 \mathrm{e}^{5 t}+12\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\left(6 \mathrm{e}^{5 t}-5\right) \mathrm{e}^{-2 t} & 10\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & 20\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} \\
3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(7 \mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t} & 12\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} \\
-3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & -6\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} & \left(-11 \mathrm{e}^{5 t}+12\right) \mathrm{e}^{-2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(6 \mathrm{e}^{5 t}-5\right) \mathrm{e}^{-2 t} c_{1}+10\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}+20\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{3} \\
3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}+\left(7 \mathrm{e}^{5 t}-6\right) \mathrm{e}^{-2 t} c_{2}+12\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{3} \\
-3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{1}-6\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t} c_{2}+\left(-11 \mathrm{e}^{5 t}+12\right) \mathrm{e}^{-2 t} c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
6\left(\left(c_{1}+\frac{5 c_{2}}{3}+\frac{10 c_{3}}{3}\right) \mathrm{e}^{5 t}-\frac{5 c_{1}}{6}-\frac{5 c_{2}}{3}-\frac{10 c_{3}}{3}\right) \mathrm{e}^{-2 t} \\
3\left(\left(c_{1}+\frac{7 c_{2}}{3}+4 c_{3}\right) \mathrm{e}^{5 t}-c_{1}-2 c_{2}-4 c_{3}\right) \mathrm{e}^{-2 t} \\
-3 \mathrm{e}^{-2 t}\left(\left(c_{1}+2 c_{2}+\frac{11 c_{3}}{3}\right) \mathrm{e}^{5 t}-c_{1}-2 c_{2}-4 c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.24.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
28-\lambda & 50 & 100 \\
15 & 33-\lambda & 60 \\
-15 & -30 & -57-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-4 \lambda^{2}-3 \lambda+18=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=3
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]-(-2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
30 & 50 & 100 \\
15 & 35 & 60 \\
-15 & -30 & -55
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccc|c}
30 & 50 & 100 & 0 \\
15 & 35 & 60 & 0 \\
-15 & -30 & -55 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
30 & 50 & 100 & 0 \\
0 & 10 & 10 & 0 \\
-15 & -30 & -55 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
30 & 50 & 100 & 0 \\
0 & 10 & 10 & 0 \\
0 & -5 & -5 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
30 & 50 & 100 & 0 \\
0 & 10 & 10 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
30 & 50 & 100 \\
0 & 10 & 10 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{5 t}{3}, v_{2}=-t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5 t}{3} \\
-t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{5 t}{3} \\
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-3 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]-(3)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
25 & 50 & 100 \\
15 & 30 & 60 \\
-15 & -30 & -60
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
25 & 50 & 100 & 0 \\
15 & 30 & 60 & 0 \\
-15 & -30 & -60 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
25 & 50 & 100 & 0 \\
0 & 0 & 0 & 0 \\
-15 & -30 & -60 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
25 & 50 & 100 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
25 & 50 & 100 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-2 t-4 s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-2 t-4 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-2 t-4 s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-2 t-4 s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
-2 t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-4 s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-2 t-4 s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
-2	1	1	No	$\left[\begin{array}{c}-\frac{5}{3} \\ -1 \\ 1\end{array}\right]$
3	2	2	No	$\left[\begin{array}{cc}-4 & -2 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
$$

eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 59: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{-2 t}}{3} \\
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-4 \mathrm{e}^{3 t} \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
-2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{5\left(\frac{6\left(2 c_{2}+c_{3}\right) \mathrm{e}^{5 t}}{5}+c_{1}\right) \mathrm{e}^{-2 t}}{3} \\
-\left(-c_{3} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t} \\
\left(c_{2} \mathrm{e}^{5 t}+c_{1}\right) \mathrm{e}^{-2 t}
\end{array}\right]
$$

6.24.3 Maple step by step solution

Let's solve

$$
\left[x_{1}^{\prime}(t)=28 x_{1}(t)+50 x_{2}(t)+100 x_{3}(t), x_{2}^{\prime}(t)=15 x_{1}(t)+33 x_{2}(t)+60 x_{3}(t), x_{3}^{\prime}(t)=-15 x_{1}(t)-3(\right.
$$

- Define vector

$$
\underset{\longrightarrow}{ }(t)=\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

- Convert system into a vector equation

$$
x^{\prime}(t)=\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

- System to solve

$$
x^{\rightarrow^{\prime}}(t)=\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right] \cdot x \xrightarrow{\rightarrow}(t)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]
$$

- Rewrite the system as

$$
x^{\rightarrow^{\prime}}(t)=A \cdot x \text { 碞 }(t)
$$

- To solve the system, find the eigenvalues and eigenvectors of A
- Eigenpairs of A

$$
\left[\left[-2,\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]\right]\right]
$$

- Consider eigenpair

$$
\left[-2,\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
{\underset{\sim}{1}}^{\rightarrow}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]
$$

- Consider eigenpair, with eigenvalue of algebraic multiplicity 2

$$
\left[3,\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]\right]
$$

- \quad First solution from eigenvalue 3

$$
{\underset{\sim}{\rightarrow}}_{2}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]
$$

- Form of the 2 nd homogeneous solution where \vec{p} is to be solved for, $\lambda=3$ is the eigenvalue, and

$$
x_{3}^{\rightarrow}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})
$$

- \quad Note that the t multiplying \vec{v} makes this solution linearly independent to the 1 st solution obtair
- Substitute $x{ }_{3}(t)$ into the homogeneous system

$$
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
$$

- Use the fact that \vec{v} is an eigenvector of A
$\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})$
- Simplify equation
$\lambda \vec{p}+\vec{v}=A \cdot \vec{p}$
- Make use of the identity matrix I
$(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}$
- Condition \vec{p} must meet for $x^{\rightarrow}(t)$ to be a solution to the homogeneous system $(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}$
- Choose \vec{p} to use in the second solution to the homogeneous system from eigenvalue 3

$$
\left(\left[\begin{array}{ccc}
28 & 50 & 100 \\
15 & 33 & 60 \\
-15 & -30 & -57
\end{array}\right]-3 \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]
$$

- \quad Choice of \vec{p}

$$
\vec{p}=\left[\begin{array}{c}
-\frac{4}{25} \\
0 \\
0
\end{array}\right]
$$

- \quad Second solution from eigenvalue 3

$$
{\underset{3}{3}}^{\rightarrow}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{4}{25} \\
0 \\
0
\end{array}\right]\right)
$$

- General solution to the system of ODEs
$x^{\rightarrow}=c_{1} x^{\rightarrow} 1+c_{2} x \xrightarrow{\rightarrow}(t)+c_{3} x^{\rightarrow}(t)$
- Substitute solutions into the general solution

$$
\underset{\longrightarrow}{\rightarrow}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-\frac{5}{3} \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-4 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{4}{25} \\
0 \\
0
\end{array}\right]\right)
$$

- Substitute in vector of dependent variables

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-4\left(\left(\left(t+\frac{1}{25}\right) c_{3}+c_{2}\right) \mathrm{e}^{5 t}+\frac{5 c_{1}}{12}\right) \mathrm{e}^{-2 t} \\
-c_{1} \mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}\left(\left(c_{3} t+c_{2}\right) \mathrm{e}^{5 t}+c_{1}\right)
\end{array}\right]
$$

- \quad Solution to the system of ODEs

$$
\left\{x_{1}(t)=-4\left(\left(\left(t+\frac{1}{25}\right) c_{3}+c_{2}\right) \mathrm{e}^{5 t}+\frac{5 c_{1}}{12}\right) \mathrm{e}^{-2 t}, x_{2}(t)=-c_{1} \mathrm{e}^{-2 t}, x_{3}(t)=\mathrm{e}^{-2 t}\left(\left(c_{3} t+c_{2}\right) \mathrm{e}^{5 t}+c_{1}\right)\right\}
$$

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 67

```
dsolve([diff (x__1(t),t)=28*x__1(t)+50*\mp@subsup{x}{_-_}{}2(t)+100*\mp@subsup{x}{_-_}{}3(t),\operatorname{diff}(\mp@subsup{x}{__-}{\prime}2(t),t)=15*x___1(t)+33*x__2
```

$$
\begin{aligned}
& x_{1}(t)=c_{2} \mathrm{e}^{3 t}+c_{3} \mathrm{e}^{-2 t} \\
& x_{2}(t)=\frac{3 c_{2} \mathrm{e}^{3 t}}{5}+\frac{3 c_{3} \mathrm{e}^{-2 t}}{5}+c_{1} \mathrm{e}^{3 t} \\
& x_{3}(t)=-\frac{11 c_{2} \mathrm{e}^{3 t}}{20}-\frac{3 c_{3} \mathrm{e}^{-2 t}}{5}-\frac{c_{1} \mathrm{e}^{3 t}}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 229
DSolve $\left[\left\{x 1^{\prime}[t]==28 * x 1[t]+50 * x 2[t]+100 * x 3[t], x 2{ }^{\prime}[t]==15 * x 1[t]+33 * x 2[t]+60 * x 3[t], x 3 '[t]==-15 * x\right.\right.$
$\mathrm{x} 1(t) \rightarrow \frac{1}{57} e^{t / 2}\left(19\left(3 c_{1}-5 c_{2}\right) e^{5 t / 2}\right.$
$\left.+95 c_{2} \cos \left(\frac{5 \sqrt{95} t}{2}\right)+\sqrt{95}\left(6 c_{1}+13 c_{2}+24 c_{3}\right) \sin \left(\frac{5 \sqrt{95} t}{2}\right)\right)$
$\mathrm{x} 2(t) \rightarrow \frac{1}{95} e^{t / 2}\left(95 c_{2} \cos \left(\frac{5 \sqrt{95} t}{2}\right)+\sqrt{95}\left(6 c_{1}+13 c_{2}+24 c_{3}\right) \sin \left(\frac{5 \sqrt{95} t}{2}\right)\right)$
$\mathrm{x} 3(t) \rightarrow$
$-\frac{e^{t / 2}\left(95\left(3 c_{1}-5 c_{2}\right) e^{5 t / 2}-95\left(3 c_{1}-5 c_{2}+12 c_{3}\right) \cos \left(\frac{5 \sqrt{95 t}}{2}\right)+\sqrt{95}\left(69 c_{1}+197 c_{2}+276 c_{3}\right) \sin \left(\frac{5 \sqrt{955}}{2}\right)\right)}{1140}$

6.25 problem problem 25

6.25.1 Solution using Matrix exponential method 1043
6.25.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1044

Internal problem ID [382]
Internal file name [OUTPUT/382_Sunday_June_05_2022_01_40_09_AM_77665157/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 25.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-2 x_{1}(t)+17 x_{2}(t)+4 x_{3}(t) \\
x_{2}^{\prime}(t) & =-x_{1}(t)+6 x_{2}(t)+x_{3}(t) \\
x_{3}^{\prime}(t) & =x_{2}(t)+2 x_{3}(t)
\end{aligned}
$$

6.25.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-4 t\right) & \mathrm{e}^{2 t} t(2 t+17) & \frac{\mathrm{e}^{2 t} t(t+8)}{2} \\
-\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(4 t+1) & \mathrm{e}^{2 t} t \\
-\frac{\mathrm{e}^{2 t} t^{2}}{2} & \mathrm{e}^{2 t}\left(2 t^{2}+t\right) & \mathrm{e}^{2 t}\left(1+\frac{t^{2}}{2}\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-4 t\right) & \mathrm{e}^{2 t} t(2 t+17) & \frac{\mathrm{e}^{2 t} t(t+8)}{2} \\
-\mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(4 t+1) & \mathrm{e}^{2 t} t \\
-\frac{\mathrm{e}^{2 t} t^{2}}{2} & \mathrm{e}^{2 t}\left(2 t^{2}+t\right) & \mathrm{e}^{2 t}\left(1+\frac{t^{2}}{2}\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(1-\frac{1}{2} t^{2}-4 t\right) c_{1}+\mathrm{e}^{2 t} t(2 t+17) c_{2}+\frac{\mathrm{e}^{2 t} t(t+8) c_{3}}{2} \\
-\mathrm{e}^{2 t} t c_{1}+\mathrm{e}^{2 t}(4 t+1) c_{2}+\mathrm{e}^{2 t} t c_{3} \\
-\frac{\mathrm{e}^{2 t} t^{2} c_{1}}{2}+\mathrm{e}^{2 t}\left(2 t^{2}+t\right) c_{2}+\mathrm{e}^{2 t}\left(1+\frac{t^{2}}{2}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\left(c_{1}-4 c_{2}-c_{3}\right) t^{2}+\left(8 c_{1}-34 c_{2}-8 c_{3}\right) t-2 c_{1}\right) \mathrm{e}^{2 t}}{2} \\
-\left(\left(c_{1}-4 c_{2}-c_{3}\right) t-c_{2}\right) \mathrm{e}^{2 t} \\
-\frac{\left(\left(c_{1}-4 c_{2}-c_{3}\right) t^{2}-2 t c_{2}-2 c_{3}\right) \mathrm{e}^{2 t}}{2}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.25.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-2-\lambda & 17 & 4 \\
-1 & 6-\lambda & 1 \\
0 & 1 & 2-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-4 & 17 & 4 \\
-1 & 4 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-4 & 17 & 4 & 0 \\
-1 & 4 & 1 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 17 & 4 & 0 \\
0 & -\frac{1}{4} & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+4 R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
-4 & 17 & 4 & 0 \\
0 & -\frac{1}{4} & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-4 & 17 & 4 \\
0 & -\frac{1}{4} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t, v_{2}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2				$\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 60: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank 3. \vec{v}_{2} is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-4 & 17 & 4 \\
-1 & 4 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-2 & 17 & 4 \\
-1 & 6 & 1 \\
0 & 1 & 2
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
-4 & 17 & 4 \\
-1 & 4 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 2 . Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
1 \\
0 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{2 t}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] t+\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+5) \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
5 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}\left(t^{2}+10 t+8\right)}{2} \\
\mathrm{e}^{2 t}(t+1) \\
\frac{\mathrm{e}^{2 t}\left(t^{2}+2 t+2\right)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+5) \\
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}(t+1)
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(\frac{1}{2} t^{2}+5 t+4\right) \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}\left(t+\frac{1}{2} t^{2}+1\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}\left(\left(t^{2}+10 t+8\right) c_{3}+2 c_{2} t+2 c_{1}+10 c_{2}\right)}{2} \\
\mathrm{e}^{2 t}\left(c_{3} t+c_{2}+c_{3}\right) \\
\frac{\mathrm{e}^{2 t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2}
\end{array}\right]
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 62

$$
\begin{aligned}
& \text { dsolve }\left(\left[\operatorname{diff}\left(\mathrm{x}_{-_} 1(\mathrm{t}), \mathrm{t}\right)=-2 * \mathrm{x}_{-_} 1(\mathrm{t})+17 * \mathrm{x}_{-_} 2(\mathrm{t})+4 * \mathrm{x}_{-_} 3(\mathrm{t}), \operatorname{diff}\left(\mathrm{x}_{-_} 2(\mathrm{t}), \mathrm{t}\right)=-1 * \mathrm{x}_{_} 1(\mathrm{t})+6 * \mathrm{x}_{_}{ }^{2} 2(\mathrm{t})\right.\right. \\
& \qquad \begin{aligned}
x_{1}(t) & =\mathrm{e}^{2 t}\left(c_{3} t^{2}+c_{2} t+8 c_{3} t+c_{1}+4 c_{2}-2 c_{3}\right) \\
x_{2}(t) & =\mathrm{e}^{2 t}\left(2 c_{3} t+c_{2}\right) \\
x_{3}(t) & =\mathrm{e}^{2 t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right)
\end{aligned}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 105
DSolve $\left[\left\{x 1^{\prime}[t]==-2 * x 1[t]+17 * x 2[t]+4 * x 3[t], x 2{ }^{\prime}[t]==-1 * x 1[t]+6 * x 2[t]+1 * x 3[t], x 3\right]^{\prime}[t]==0 * x 1[t]+1\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{2 t}\left(-\left(c_{1}\left(t^{2}+8 t-2\right)\right)+c_{2} t(4 t+34)+c_{3} t(t+8)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{2 t}\left(\left(-c_{1}+4 c_{2}+c_{3}\right) t+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{2 t}\left(\left(-c_{1}+4 c_{2}+c_{3}\right) t^{2}+2 c_{2} t+2 c_{3}\right)
\end{aligned}
$$

6.26 problem problem 26

6.26.1 Solution using Matrix exponential method 1052
6.26.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1053

Internal problem ID [383]
Internal file name [OUTPUT/383_Sunday_June_05_2022_01_40_10_AM_15558559/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 26.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =5 x_{1}(t)-x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =x_{1}(t)+3 x_{2}(t) \\
x_{3}^{\prime}(t) & =-3 x_{1}(t)+2 x_{2}(t)+x_{3}(t)
\end{aligned}
$$

6.26.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{3 t}(1+2 t) & -\mathrm{e}^{3 t} t & \mathrm{e}^{3 t} t \\
\mathrm{e}^{3 t} t(t+1) & \mathrm{e}^{3 t}\left(1-\frac{t^{2}}{2}\right) & \frac{\mathrm{e}^{3 t} t^{2}}{2} \\
\mathrm{e}^{3 t} t(t-3) & -\frac{\mathrm{e}^{33} t(t-4)}{2} & \mathrm{e}^{3 t}\left(1+\frac{1}{2} t^{2}-2 t\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{3 t}(1+2 t) & -\mathrm{e}^{3 t} t & \mathrm{e}^{3 t} t \\
\mathrm{e}^{3 t} t(t+1) & \mathrm{e}^{3 t}\left(1-\frac{t^{2}}{2}\right) & \frac{\mathrm{e}^{3 t} t^{2}}{2} \\
\mathrm{e}^{3 t} t(t-3) & -\frac{\mathrm{e}^{3 t} t(t-4)}{2} & \mathrm{e}^{3 t}\left(1+\frac{1}{2} t^{2}-2 t\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(1+2 t) c_{1}-\mathrm{e}^{3 t} t c_{2}+\mathrm{e}^{3 t} t c_{3} \\
\mathrm{e}^{3 t} t(t+1) c_{1}+\mathrm{e}^{3 t}\left(1-\frac{t^{2}}{2}\right) c_{2}+\frac{\mathrm{e}^{3 t} t^{2} c_{3}}{2} \\
\mathrm{e}^{3 t} t(t-3) c_{1}-\frac{e^{3 t} t(t-4) c_{2}}{2}+\mathrm{e}^{3 t}\left(1+\frac{1}{2} t^{2}-2 t\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(2 c_{1} t-c_{2} t+c_{3} t+c_{1}\right) \\
\left(\left(c_{1}-\frac{c_{2}}{2}+\frac{c_{3}}{2}\right) t^{2}+c_{1} t+c_{2}\right) \mathrm{e}^{3 t} \\
\left(\left(c_{1}-\frac{c_{2}}{2}+\frac{c_{3}}{2}\right) t^{2}+\left(-3 c_{1}+2 c_{2}-2 c_{3}\right) t+c_{3}\right) \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.26.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
5-\lambda & -1 & 1 \\
1 & 3-\lambda & 0 \\
-3 & 2 & 1-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-9 \lambda^{2}+27 \lambda-27=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=3
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 0 \\
-3 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
-3 & 2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
-3 & 2 & -2 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0
\end{array}\right] \\
R_{3}=R_{3}-R_{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & -1 & 1 & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
2 & -1 & 1 \\
0 & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=t\right\}$

Hence the solution is

$$
\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
0 \\
t \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated
with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
3	3			$\left.\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 61: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 0 \\
-3 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
5 & -1 & 1 \\
1 & 3 & 0 \\
-3 & 2 & 1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
2 & -1 & 1 \\
1 & 0 & 0 \\
-3 & 2 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{l}
3 \\
6 \\
1
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 3 . Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{3 t}\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(t+3) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] t+\left[\begin{array}{l}
3 \\
6 \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}(t+3)}{\frac{\mathrm{e}^{3 t}\left(t^{2}+6 t+12\right)}{2}} \\
\frac{\mathrm{e}^{3 t}\left(t^{2}+2 t+2\right)}{2}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}(t+3) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{3 t}(t+3) \\
\mathrm{e}^{3 t}\left(\frac{1}{2} t^{2}+3 t+6\right) \\
\mathrm{e}^{3 t}\left(t+\frac{1}{2} t^{2}+1\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((t+3) c_{3}+c_{2}\right) \mathrm{e}^{3 t} \\
\frac{\left(\left(t^{2}+6 t+12\right) c_{3}+2 c_{2} t+2 c_{1}+6 c_{2}\right) \mathrm{e}^{3 t}}{2} \\
\frac{\mathrm{e}^{3 t}\left(\left(t^{2}+2 t+2\right) c_{3}+2 c_{2} t+2 c_{1}+2 c_{2}\right)}{2}
\end{array}\right]
$$

Solution by Maple
Time used: 0.015 (sec). Leaf size: 62

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{3 t}\left(2 c_{3} t+c_{2}\right) \\
& x_{2}(t)=\mathrm{e}^{3 t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right) \\
& x_{3}(t)=\mathrm{e}^{3 t}\left(c_{3} t^{2}+c_{2} t-4 c_{3} t+c_{1}-2 c_{2}+2 c_{3}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 105
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==5 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]+1 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2 \mathrm{I}^{\prime}[\mathrm{t}]==1 * \mathrm{x} 1[\mathrm{t}]+3 * \mathrm{x} 2[\mathrm{t}]+0 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3^{\prime}[\mathrm{t}]==-3 * \mathrm{x} 1[\mathrm{t}]+2 * \mathrm{x}\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{3 t}\left(2 c_{1} t-c_{2} t+c_{3} t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{3 t}\left(\left(2 c_{1}-c_{2}+c_{3}\right) t^{2}+2 c_{1} t+2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{3 t}\left(c_{3}\left(t^{2}-4 t+2\right)+2 c_{1}(t-3) t-c_{2}(t-4) t\right)
\end{aligned}
$$

6.27 problem problem 27

6.27.1 Solution using Matrix exponential method 1061
6.27.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1062

Internal problem ID [384]
Internal file name [OUTPUT/384_Sunday_June_05_2022_01_40_11_AM_49369200/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 27.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-3 x_{1}(t)+5 x_{2}(t)-5 x_{3}(t) \\
x_{2}^{\prime}(t) & =3 x_{1}(t)-x_{2}(t)+3 x_{3}(t) \\
x_{3}^{\prime}(t) & =8 x_{1}(t)-8 x_{2}(t)+10 x_{3}(t)
\end{aligned}
$$

6.27.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 5 & -5 \\
3 & -1 & 3 \\
8 & -8 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{2 t}(1-5 t) & 5 \mathrm{e}^{2 t} t & -5 \mathrm{e}^{2 t} t \\
3 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1-3 t) & 3 \mathrm{e}^{2 t} t \\
8 \mathrm{e}^{2 t} t & -8 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+8 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t}(1-5 t) & 5 \mathrm{e}^{2 t} t & -5 \mathrm{e}^{2 t} t \\
3 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1-3 t) & 3 \mathrm{e}^{2 t} t \\
8 \mathrm{e}^{2 t} t & -8 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+8 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(1-5 t) c_{1}+5 \mathrm{e}^{2 t} t c_{2}-5 \mathrm{e}^{2 t} t c_{3} \\
3 \mathrm{e}^{2 t} t c_{1}+\mathrm{e}^{2 t}(1-3 t) c_{2}+3 \mathrm{e}^{2 t} t c_{3} \\
8 \mathrm{e}^{2 t} t c_{1}-8 \mathrm{e}^{2 t} t c_{2}+\mathrm{e}^{2 t}(1+8 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
-5\left(\left(c_{1}-c_{2}+c_{3}\right) t-\frac{c_{1}}{5}\right) \mathrm{e}^{2 t} \\
3\left(\left(c_{1}-c_{2}+c_{3}\right) t+\frac{c_{2}}{3}\right) \mathrm{e}^{2 t} \\
8 \mathrm{e}^{2 t}\left(\left(c_{1}-c_{2}+c_{3}\right) t+\frac{c_{3}}{8}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.27.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 5 & -5 \\
3 & -1 & 3 \\
8 & -8 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3 & 5 & -5 \\
3 & -1 & 3 \\
8 & -8 & 10
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-3-\lambda & 5 & -5 \\
3 & -1-\lambda & 3 \\
8 & -8 & 10-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-3 & 5 & -5 \\
3 & -1 & 3 \\
8 & -8 & 10
\end{array}\right]-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-5 & 5 & -5 & 0 \\
3 & -3 & 3 & 0 \\
8 & -8 & 8 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{3 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 5 & -5 & 0 \\
0 & 0 & 0 & 0 \\
8 & -8 & 8 & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{3}=R_{3}+\frac{8 R_{1}}{5} \Longrightarrow\left[\begin{array}{ccc|c}
-5 & 5 & -5 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-5 & 5 & -5 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}, v_{3}\right\}$ and the leading variables are $\left\{v_{1}\right\}$. Let $v_{2}=t$. Let $v_{3}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=t-s\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
t-s \\
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	3			

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 62: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 2 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to find rank-2 eigenvector \vec{v}_{3}. This eigenvector must therefore satisfy $(A-\lambda I)^{2} \vec{v}_{3}=\overrightarrow{0}$.

But

$$
\begin{aligned}
(A-\lambda I)^{2} & =\left(\left[\begin{array}{ccc}
-3 & 5 & -5 \\
3 & -1 & 3 \\
8 & -8 & 10
\end{array}\right]-2\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)^{2} \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore \vec{v}_{3} could be any eigenvector vector we want (but not the zero vector). Let

$$
\vec{v}_{3}=\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

To determine the actual \vec{v}_{3} we need now to enforce the condition that \vec{v}_{3} satisfies

$$
\begin{equation*}
(A-\lambda I) \vec{v}_{3}=\vec{u} \tag{1}
\end{equation*}
$$

Where \vec{u} is linear combination of \vec{v}_{1}, \vec{v}_{2}. Hence

$$
\vec{u}=\alpha \vec{v}_{1}+\beta \vec{v}_{2}
$$

Where α, β are arbitrary constants (not both zero). Eq. (1) becomes

$$
\begin{aligned}
(A-\lambda I)\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] & =\alpha\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
-5 & 5 & -5 \\
3 & -3 & 3 \\
8 & -8 & 8
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right] } & =\alpha\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{c}
-5 \eta_{1}+5 \eta_{2}-5 \eta_{3} \\
3 \eta_{1}-3 \eta_{2}+3 \eta_{3} \\
8 \eta_{1}-8 \eta_{2}+8 \eta_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-\alpha+\beta \\
\beta \\
\alpha
\end{array}\right]
\end{aligned}
$$

Expanding the above gives the following equations equations

$$
\begin{array}{r}
-5 \eta_{1}+5 \eta_{2}-5 \eta_{3}=-\alpha+\beta \\
3 \eta_{1}-3 \eta_{2}+3 \eta_{3}=\beta \\
8 \eta_{1}-8 \eta_{2}+8 \eta_{3}=\alpha
\end{array}
$$

solving for α, β from the above gives

$$
\begin{array}{r}
-5 \eta_{1}+5 \eta_{2}-5 \eta_{3}=-\alpha+\beta \\
3 \eta_{1}-3 \eta_{2}+3 \eta_{3}=\beta
\end{array}
$$

Since α, β are not both zero, then we just need to determine η_{i} values, not all zero, which satisfy the above equations for α, β not both zero. By inspection we see that the following values satisfy this condition

$$
\left[\eta_{1}=-1, \eta_{2}=0, \eta_{3}=0\right]
$$

Hence we found the missing generalized eigenvector

$$
\vec{v}_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]
$$

Which implies that

$$
\begin{aligned}
& \alpha=-8 \\
& \beta=-3
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\vec{u} & =\alpha \vec{v}_{1}+\beta \vec{v}_{2} \\
& =-8\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+(-3)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
5 \\
-3 \\
-8
\end{array}\right]
\end{aligned}
$$

Therefore the missing generalized eigenvector is now found. We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{u} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
5 \\
-3 \\
-8
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]\right) \mathrm{e}^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t}(-1+5 t) \\
-3 \mathrm{e}^{2 t} t \\
-8 \mathrm{e}^{2 t} t
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
\left((-1+5 t) c_{3}-c_{1}+c_{2}\right) \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}\left(-3 c_{3} t+c_{2}\right) \\
\mathrm{e}^{2 t}\left(-8 c_{3} t+c_{1}\right)
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 58

```
dsolve([diff (x__1(t),t)=-3*x__1(t)+5*x__ 2(t)-5*x__ 3(t), diff(x__ 2(t),t)=3*x__1(t)-1*x__ 2(t)+3
```

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{2 t}\left(c_{3} t+c_{2}\right) \\
& x_{2}(t)=\frac{\mathrm{e}^{2 t}\left(-3 c_{3} t+5 c_{1}-3 c_{2}\right)}{5} \\
& x_{3}(t)=\frac{\mathrm{e}^{2 t}\left(-8 c_{3} t+5 c_{1}-8 c_{2}-c_{3}\right)}{5}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 174
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==-3 * \mathrm{x} 1[\mathrm{t}]+5 * \mathrm{x} 2[\mathrm{t}]-5 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==4 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]+4 * \mathrm{x} 3[\mathrm{t}], \mathrm{x} 3{ }^{\prime}[\mathrm{t}]==8 * \mathrm{x} 1[\mathrm{t}]-8 * \mathrm{x}\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{3} e^{2 t}\left(-5\left(c_{1}+c_{3}\right) \cos (\sqrt{3} t)-5 \sqrt{3}\left(c_{1}-c_{2}+c_{3}\right) \sin (\sqrt{3} t)+8 c_{1}+5 c_{3}\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{3} e^{2 t}\left(3 c_{2} \cos (\sqrt{3} t)+\sqrt{3}\left(4 c_{1}-3 c_{2}+4 c_{3}\right) \sin (\sqrt{3} t)\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{3} e^{2 t}\left(8\left(c_{1}+c_{3}\right) \cos (\sqrt{3} t)+8 \sqrt{3}\left(c_{1}-c_{2}+c_{3}\right) \sin (\sqrt{3} t)-8 c_{1}-5 c_{3}\right)
\end{aligned}
$$

6.28 problem problem 28

6.28.1 Solution using Matrix exponential method 1071
6.28.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1072

Internal problem ID [385]
Internal file name [OUTPUT/385_Sunday_June_05_2022_01_40_13_AM_90500381/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 28.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-15 x_{1}(t)-7 x_{2}(t)+4 x_{3}(t) \\
x_{2}^{\prime}(t) & =34 x_{1}(t)+16 x_{2}(t)-11 x_{3}(t) \\
x_{3}^{\prime}(t) & =17 x_{1}(t)+7 x_{2}(t)+5 x_{3}(t)
\end{aligned}
$$

6.28.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccc}
\mathrm{e}^{2 t}\left(1+\frac{119}{2} t^{2}-17 t\right) & \frac{7 \mathrm{e}^{2 t} t(7 t-2)}{2} & \frac{\mathrm{e}^{2 t} t(21 t+8)}{2} \\
-\frac{17 \mathrm{e}^{2 t} t(17 t-4)}{2} & \mathrm{e}^{2 t}\left(1-\frac{119}{2} t^{2}+14 t\right) & -\frac{\mathrm{e}^{2 t} t(51 t+22)}{2} \\
17 \mathrm{e}^{2 t} t & 7 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+3 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t}\left(1+\frac{119}{2} t^{2}-17 t\right) & \frac{7 \mathrm{e}^{2 t} t(7 t-2)}{2} & \frac{\mathrm{e}^{2 t} t(21 t+8)}{2} \\
-\frac{17 \mathrm{e}^{2 t} t(17 t-4)}{2} & \mathrm{e}^{2 t}\left(1-\frac{119}{2} t^{2}+14 t\right) & -\frac{\mathrm{e}^{2 t} t(51 t+22)}{2} \\
17 \mathrm{e}^{2 t} t & 7 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t}(1+3 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t\left(1+\frac{119}{2} t^{2}-17 t\right) c_{1}+\frac{7 \mathrm{e}^{2 t} t(7 t-2) c_{2}}{2}+\frac{\mathrm{e}^{2 t} t(21 t+8) c_{3}}{2}} \\
-\frac{17 \mathrm{e}^{2 t} t(17 t-4) c_{1}}{2}+\mathrm{e}^{2 t}\left(1-\frac{119}{2} t^{2}+14 t\right) c_{2}-\frac{\mathrm{e}^{2 t} t(51 t+22) c_{3}}{2} \\
17 \mathrm{e}^{2 t} t c_{1}+7 \mathrm{e}^{2 t} t c_{2}+\mathrm{e}^{2 t}(1+3 t) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{119\left(\left(c_{1}+\frac{7 c_{2}}{17}+\frac{3 c_{3}}{17}\right) t^{2}+\left(-\frac{2 c_{1}}{7}-\frac{2 c_{2}}{17}+\frac{8 c_{3}}{119}\right) t+\frac{2 c_{1}}{119}\right) \mathrm{e}^{2 t}}{2} \\
-\frac{289\left(\left(c_{1}+\frac{7 c_{2}}{17}+\frac{3 c_{3}}{17}\right) t^{2}+\left(-\frac{4 c_{1}}{17}-\frac{28 c_{2}}{289}+\frac{22 c_{3}}{289}\right) t-\frac{2 c_{2}}{289}\right) \mathrm{e}^{2 t}}{2} \\
\mathrm{e}^{2 t}\left(17 t c_{1}+7 t c_{2}+3 t c_{3}+c_{3}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.28.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccc}
-15-\lambda & -7 & 4 \\
34 & 16-\lambda & -11 \\
17 & 7 & 5-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=2
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\begin{array}{ccc}
-17 & -7 & 4 \\
34 & 14 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
-17 & -7 & 4 & 0 \\
34 & 14 & -11 & 0 \\
17 & 7 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-17 & -7 & 4 & 0 \\
0 & 0 & -3 & 0 \\
17 & 7 & 3 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccc|c}
-17 & -7 & 4 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 7 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{7 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccc|c}
-17 & -7 & 4 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccc}
-17 & -7 & 4 \\
0 & 0 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{7 t}{17}, v_{3}=0\right\}$
Hence the solution is

$$
\left[\begin{array}{c}
-\frac{7 t}{17} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 t}{17} \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{7 t}{17} \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{7 t}{17} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{7 t}{17} \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-7 \\
17 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
2	3			$\left[\begin{array}{c}-\frac{7}{17} \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 2 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 63 : Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 2 . This falls into case 3 shown above. First we find generalized eigenvector \vec{v}_{2} of rank 2 and then use this to find generalized eigenvector \vec{v}_{3} of rank $3 . \vec{v}_{2}$ is found by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence

$$
\begin{aligned}
&\left(\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]-(2)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right] } \\
&\left(\begin{array}{ccc}
-17 & -7 & 4 \\
34 & 14 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
-\frac{286}{119} \\
-\frac{1}{17}
\end{array}\right]
$$

Now \vec{v}_{3} is found by solving

$$
(A-\lambda I) \vec{v}_{3}=\vec{v}_{2}
$$

Where \vec{v}_{2} is the (rank 2) generalized eigenvector found above. Hence

$$
\begin{aligned}
\left(\left[\begin{array}{ccc}
-15 & -7 & 4 \\
34 & 16 & -11 \\
17 & 7 & 5
\end{array}\right]\right. & \left.-(2)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
\end{aligned} \begin{aligned}
& {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{286}{119} \\
-\frac{1}{17}
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
-17 & -7 & 4 \\
34 & 14 & -11 \\
17 & 7 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\frac{286}{119} \\
-\frac{1}{17}
\end{array}\right]}
\end{aligned}
$$

Solving for \vec{v}_{3} gives

$$
\vec{v}_{3}=\left[\begin{array}{c}
1 \\
-\frac{2078}{833} \\
\frac{16}{119}
\end{array}\right]
$$

We have found three generalized eigenvectors for eigenvalue 2. Therefore the three basis
solutions associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{2 t}}{17} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =e^{\lambda t}\left(\vec{v}_{1} t+\vec{v}_{2}\right) \\
& =\mathrm{e}^{2 t}\left(\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{286}{119} \\
-\frac{1}{17}
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}(7 t-17)}{17} \\
\frac{\mathrm{e}^{2 t}(119 t-286)}{119} \\
-\frac{\mathrm{e}^{2 t}}{17}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{3}(t) & =\left(\vec{v}_{1} \frac{t^{2}}{2}+\vec{v}_{2} t+\vec{v}_{3}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{7}{17} \\
1 \\
0
\end{array}\right] \frac{t^{2}}{2}+\left[\begin{array}{c}
1 \\
-\frac{286}{119} \\
-\frac{1}{17}
\end{array}\right] t+\left[\begin{array}{c}
1 \\
-\frac{2078}{833} \\
\frac{16}{119}
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{2 t}\left(7 t^{2}-34 t-34\right)}{34} \\
\frac{\mathrm{e}^{2 t}\left(833 t^{2}-4004 t-4156\right)}{1666} \\
-\frac{\mathrm{e}^{2 t}(7 t-16)}{119}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{2 t}}{17} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(-\frac{7 t}{17}+1\right) \\
\mathrm{e}^{2 t}\left(t-\frac{286}{119}\right) \\
-\frac{\mathrm{e}^{2 t}}{17}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(-\frac{7}{34} t^{2}+t+1\right) \\
\mathrm{e}^{2 t}\left(\frac{1}{2} t^{2}-\frac{286}{119} t-\frac{2078}{833}\right) \\
\mathrm{e}^{2 t}\left(-\frac{t}{17}+\frac{16}{119}\right)
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{7 \mathrm{e}^{2 t}\left(\left(t^{2}-\frac{34}{7} t-\frac{34}{7}\right) c_{3}+2 c_{2} t+2 c_{1}-\frac{34 c_{2}}{7}\right)}{34} \\
\frac{\left(\left(833 t^{2}-4004 t-4156\right) c_{3}+1666 c_{2} t+1666 c_{1}-4004 c_{2}\right) \mathrm{e}^{2 t}}{1666} \\
\frac{\left((-7 t+16) c_{3}-7 c_{2}\right) \mathrm{e}^{2 t}}{119}
\end{array}\right]
$$

Solution by Maple
Time used: 0.031 (sec). Leaf size: 73
dsolve ([diff $\left(x_{--} 1(t), t\right)=-15 * x_{-} 1(t)-7 * x_{-} 2(t)+4 * x_{-} 3(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=34 x_{x_{-}} 1(t)+16 * x_{-} 2(t$

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{2 t}\left(c_{3} t^{2}+c_{2} t+c_{1}\right) \\
& x_{2}(t)=-\frac{\mathrm{e}^{2 t}\left(833 c_{3} t^{2}+833 c_{2} t+42 c_{3} t+833 c_{1}+21 c_{2}-8 c_{3}\right)}{343} \\
& x_{3}(t)=\frac{\mathrm{e}^{2 t}\left(14 c_{3} t+7 c_{2}+2 c_{3}\right)}{49}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 124
DSolve $\left[\left\{x 1^{\prime}[t]==-15 * x 1[t]-7 * x 2[t]+4 * x 3[t], x 2{ }^{\prime}[t]==34 * x 1[t]+16 * x 2[t]-11 * x 3[t], x 3^{\prime}[t]==17 * x 1[t\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{2 t}\left(c_{1}\left(119 t^{2}-34 t+2\right)+7 c_{2} t(7 t-2)+c_{3} t(21 t+8)\right) \\
& \mathrm{x} 2(t) \rightarrow-\frac{1}{2} e^{2 t}\left(17\left(17 c_{1}+7 c_{2}+3 c_{3}\right) t^{2}+\left(-68 c_{1}-28 c_{2}+22 c_{3}\right) t-2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{2 t}\left(\left(17 c_{1}+7 c_{2}+3 c_{3}\right) t+c_{3}\right)
\end{aligned}
$$

6.29 problem problem 29

6.29.1 Solution using Matrix exponential method 1080
6.29.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1081

Internal problem ID [386]
Internal file name [DUTPUT/386_Sunday_June_05_2022_01_40_14_AM_3084983/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 29.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =-x_{1}(t)+x_{2}(t)+x_{3}(t)-2 x_{4}(t) \\
x_{2}^{\prime}(t) & =7 x_{1}(t)-4 x_{2}(t)-6 x_{3}(t)+11 x_{4}(t) \\
x_{3}^{\prime}(t) & =5 x_{1}(t)-x_{2}(t)+x_{3}(t)+3 x_{4}(t) \\
x_{4}^{\prime}(t) & =6 x_{1}(t)-2 x_{2}(t)-2 x_{3}(t)+6 x_{4}(t)
\end{aligned}
$$

6.29.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} & t \mathrm{e}^{-t} & -2 t \mathrm{e}^{-t} \\
(-2 t+3) \mathrm{e}^{2 t}-3 \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-3 t) & -3 t \mathrm{e}^{-t}-\mathrm{e}^{2 t}+\mathrm{e}^{-t} & (6 t-2) \mathrm{e}^{-t}-\mathrm{e}^{2 t}(t-2) \\
2 \mathrm{e}^{2 t} t+\mathrm{e}^{2 t}-\mathrm{e}^{-t} & -t \mathrm{e}^{-t} & -t \mathrm{e}^{-t}+\mathrm{e}^{2 t} & t\left(\mathrm{e}^{2 t}+2 \mathrm{e}^{-t}\right) \\
-2 \mathrm{e}^{-t}+2 \mathrm{e}^{2 t} & -2 t \mathrm{e}^{-t} & -2 t \mathrm{e}^{-t} & 4 t \mathrm{e}^{-t}+\mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{-t} & t \mathrm{e}^{-t} & t \mathrm{e}^{-t} \\
(-2 t+3) \mathrm{e}^{2 t}-3 \mathrm{e}^{-t} & \mathrm{e}^{-t}(1-3 t) & -3 t \mathrm{e}^{-t}-\mathrm{e}^{2 t}+\mathrm{e}^{-t} \\
2 \mathrm{e}^{2 t} t+\mathrm{e}^{2 t}-\mathrm{e}^{-t} & -t \mathrm{e}^{-t} & -t \mathrm{e}^{-t}+\mathrm{e}^{2 t} \\
-2 \mathrm{e}^{-t}+2 \mathrm{e}^{2 t} & -2 t \mathrm{e}^{-t}-\mathrm{e}^{-t} & t\left(\mathrm{e}^{2 t}(t-2)\right. \\
-2 t \mathrm{e}^{-t} & \left.4 t \mathrm{e}^{-t}\right) \\
& \mathrm{e}^{-t}+\mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left((-2 t+3) \mathrm{e}^{2 t}-3 \mathrm{e}^{-t}\right) c_{1}+\mathrm{e}^{-t}(1-3 t) c_{2}+\left(-3 t \mathrm{e}^{-t}-\mathrm{e}^{2 t}+\mathrm{e}^{-t}\right) c_{3}+\left((6 t-2) \mathrm{e}^{-t}-\mathrm{e}^{2 t}(t-2)\right. \\
\left(2 \mathrm{e}^{2 t} t+\mathrm{e}^{2 t}-\mathrm{e}^{-t}\right) c_{1}-t \mathrm{e}^{-t} c_{2}+\left(-t \mathrm{e}^{-t}+\mathrm{e}^{2 t}\right) c_{3}+t\left(\mathrm{e}^{2 t}+2 \mathrm{e}^{-t}\right) c_{4} \\
\left(-2 \mathrm{e}^{-t}+2 \mathrm{e}^{2 t}\right) c_{1}-2 t \mathrm{e}^{-t} c_{2}-2 t \mathrm{e}^{-t} c_{3}+\left(4 t \mathrm{e}^{-t}+\mathrm{e}^{2 t}\right) c_{4} \\
\left(\left(c_{2}+c_{3}-2 c_{4}\right) t+c_{1}\right) \mathrm{e}^{-t}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-3 c_{2}-3 c_{3}+6 c_{4}\right) t-3 c_{1}+c_{2}+c_{3}-2 c_{4}\right) \mathrm{e}^{-t}-2 \mathrm{e}^{2 t}\left(\left(c_{1}+\frac{c_{4}}{2}\right) t-\frac{3 c_{1}}{2}+\frac{c_{3}}{2}-c_{4}\right) \\
\left(\left(-c_{2}-c_{3}+2 c_{4}\right) t-c_{1}\right) \mathrm{e}^{-t}+2\left(\left(c_{1}+\frac{c_{4}}{2}\right) t+\frac{c_{1}}{2}+\frac{c_{3}}{2}\right) \mathrm{e}^{2 t} \\
\left(\left(-2 c_{2}-2 c_{3}+4 c_{4}\right) t-2 c_{1}\right) \mathrm{e}^{-t}+2\left(c_{1}+\frac{c_{4}}{2}\right) \mathrm{e}^{2 t}
\end{array}\right.
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.29.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{l}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-1-\lambda & 1 & 1 & -2 \\
7 & -4-\lambda & -6 & 11 \\
5 & -1 & 1-\lambda & 3 \\
6 & -2 & -2 & 6-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-2 \lambda^{3}-3 \lambda^{2}+4 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{cccc|c}
0 & 1 & 1 & -2 & 0 \\
7 & -3 & -6 & 11 & 0 \\
5 & -1 & 2 & 3 & 0 \\
6 & -2 & -2 & 7 & 0
\end{array}\right]
$$

Since the current pivot $A(1,1)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
5 & -1 & 2 & 3 & 0 \\
6 & -2 & -2 & 7 & 0
\end{array}\right]} \\
& R_{3}=R_{3}-\frac{5 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & \frac{8}{7} & \frac{44}{7} & -\frac{34}{7} & 0 \\
6 & -2 & -2 & 7 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{6 R_{1}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & \frac{8}{7} & \frac{44}{7} & -\frac{34}{7} & 0 \\
0 & \frac{4}{7} & \frac{22}{7} & -\frac{17}{7} & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{3}=R_{3}-\frac{8 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & \frac{36}{7} & -\frac{18}{7} & 0 \\
0 & \frac{4}{7} & \frac{22}{7} & -\frac{17}{7} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{4 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & \frac{36}{7} & -\frac{18}{7} & 0 \\
0 & 0 & \frac{18}{7} & -\frac{9}{7} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{R_{3}}{2} \Longrightarrow\left[\begin{array}{cccc|c}
7 & -3 & -6 & 11 & 0 \\
0 & 1 & 1 & -2 & 0 \\
0 & 0 & \frac{36}{7} & -\frac{18}{7} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
7 & -3 & -6 & 11 \\
0 & 1 & 1 & -2 \\
0 & 0 & \frac{36}{7} & -\frac{18}{7} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-\frac{t}{2}, v_{2}=\frac{3 t}{2}, v_{3}=\frac{t}{2}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
-\frac{t}{2} \\
\frac{3 t}{2} \\
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
3 \\
1 \\
2
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]\right. & -(2)\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented
matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-3 & 1 & 1 & -2 & 0 \\
7 & -6 & -6 & 11 & 0 \\
5 & -1 & -1 & 3 & 0 \\
6 & -2 & -2 & 4 & 0
\end{array}\right]} \\
& R_{2}=R_{2}+\frac{7 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & -2 & 0 \\
0 & -\frac{11}{3} & -\frac{11}{3} & \frac{19}{3} & 0 \\
5 & -1 & -1 & 3 & 0 \\
6 & -2 & -2 & 4 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{5 R_{1}}{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & -2 & 0 \\
0 & -\frac{11}{3} & -\frac{11}{3} & \frac{19}{3} & 0 \\
0 & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & 0 \\
6 & -2 & -2 & 4 & 0
\end{array}\right] \\
& R_{4}=R_{4}+2 R_{1} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & -2 & 0 \\
0 & -\frac{11}{3} & -\frac{11}{3} & \frac{19}{3} & 0 \\
0 & \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}+\frac{2 R_{2}}{11} \Longrightarrow\left[\begin{array}{cccc|c}
-3 & 1 & 1 & -2 & 0 \\
0 & -\frac{11}{3} & -\frac{11}{3} & \frac{19}{3} & 0 \\
0 & 0 & 0 & \frac{9}{11} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 & 1 & 1 & -2 \\
0 & -\frac{11}{3} & -\frac{11}{3} & \frac{19}{3} \\
0 & 0 & 0 & \frac{9}{11} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{4}\right\}$. Let $v_{3}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-t, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
		algebraic m	geometric k	defective?
eigenvectors				
	2			
		1	Yes	$\left[\begin{array}{c}-\frac{1}{2} \\ \frac{3}{2} \\ \frac{1}{2} \\ 1\end{array}\right]$
2	2	1	Yes	$\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 64: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{ccc}
-\frac{1}{2} \\
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right] .
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
-1 \\
\frac{5}{2} \\
1 \\
2
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-\frac{1}{2} \\
\frac{3}{2} \\
\frac{1}{2} \\
1
\end{array}\right] t+\left[\begin{array}{c}
-1 \\
\frac{5}{2} \\
1 \\
2
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}(2+t)}{2} \\
\frac{(3 t+5) \mathrm{e}^{-t}}{-2} \\
\frac{\mathrm{e}^{-t}(2+t)}{2} \\
\mathrm{e}^{-t}(2+t)
\end{array}\right]
\end{aligned}
$$

eigenvalue 2 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 65: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
-1 & 1 & 1 & -2 \\
7 & -4 & -6 & 11 \\
5 & -1 & 1 & 3 \\
6 & -2 & -2 & 6
\end{array}\right]\right. & \left.-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned} \begin{aligned}
& {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]}
\end{aligned}=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{4}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 t}(-1+t) \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\frac{3 \mathrm{e}^{-t}}{2} \\
\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{-t}\left(-\frac{t}{2}-1\right) \\
\mathrm{e}^{-t}\left(\frac{3 t}{2}+\frac{5}{2}\right) \\
\mathrm{e}^{-t}\left(\frac{t}{2}+1\right) \\
\mathrm{e}^{-t}(2+t)
\end{array}\right]+c_{3}\left[\begin{array}{c}
0 \\
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
0 \\
\mathrm{e}^{2 t}(1-t) \\
\mathrm{e}^{2 t}(t+1) \\
\mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(c_{2}(2+t)+c_{1}\right) \mathrm{e}^{-t}}{2} \\
\frac{\left(c_{2}(3 t+5)+3 c_{1}\right) \mathrm{e}^{-t}}{2}-\mathrm{e}^{2 t}\left((-1+t) c_{4}+c_{3}\right) \\
\frac{\left(c_{2}(2+t)+c_{1}\right) \mathrm{e}^{-t}}{2}+\left((t+1) c_{4}+c_{3}\right) \mathrm{e}^{2 t} \\
\left(c_{2}(2+t)+c_{1}\right) \mathrm{e}^{-t}+c_{4} \mathrm{e}^{2 t}
\end{array}\right]
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 120

$$
\begin{aligned}
& x_{1}(t)=\mathrm{e}^{-t}\left(c_{4} t+c_{3}\right) \\
& x_{2}(t)=-3 c_{4} \mathrm{e}^{-t} t-3 c_{3} \mathrm{e}^{-t}+c_{4} \mathrm{e}^{-t}+\mathrm{e}^{2 t} t c_{1}+c_{2} \mathrm{e}^{2 t} \\
& x_{3}(t)=-c_{4} \mathrm{e}^{-t} t-c_{3} \mathrm{e}^{-t}-\mathrm{e}^{2 t} t c_{1}-2 c_{1} \mathrm{e}^{2 t}-c_{2} \mathrm{e}^{2 t} \\
& x_{4}(t)=-2 c_{4} \mathrm{e}^{-t} t-2 c_{3} \mathrm{e}^{-t}-c_{1} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 196

```
DSolve[{x1'[t]==-1*x1[t]+1*x2[t]+1*x3[t]-2*x4[t],x2'[t]==7*x1[t]-4*x2[t]-6*x3[t]+11*x4[t],x3
```

```
\(\mathrm{x} 1(t) \rightarrow e^{-t}\left(\left(c_{2}+c_{3}-2 c_{4}\right) t+c_{1}\right)\)
\(\mathrm{x} 2(t) \rightarrow e^{-t}\left(c_{1}\left(e^{3 t}(3-2 t)-3\right)-3 c_{2} t-c_{3} e^{3 t}-3 c_{3} t+2 c_{4} e^{3 t}-c_{4} e^{3 t} t+6 c_{4} t+c_{2}+c_{3}-2 c_{4}\right)\)
\(\mathrm{x} 3(t) \rightarrow e^{-t}\left(c_{1}\left(e^{3 t}(2 t+1)-1\right)+c_{3} e^{3 t}-t\left(-c_{4}\left(e^{3 t}+2\right)+c_{2}+c_{3}\right)\right)\)
\(\mathrm{x} 4(t) \rightarrow e^{-t}\left(2 c_{1}\left(e^{3 t}-1\right)-2\left(c_{2}+c_{3}-2 c_{4}\right) t+c_{4} e^{3 t}\right)\)
```


6.30 problem problem 30

6.30.1 Solution using Matrix exponential method 1094
6.30.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1095

Internal problem ID [387]
Internal file name [OUTPUT/387_Sunday_June_05_2022_01_40_16_AM_81676938/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 30.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)+x_{2}(t)-2 x_{3}(t)+x_{4}(t) \\
x_{2}^{\prime}(t) & =3 x_{2}(t)-5 x_{3}(t)+3 x_{4}(t) \\
x_{3}^{\prime}(t) & =-13 x_{2}(t)+22 x_{3}(t)-12 x_{4}(t) \\
x_{4}^{\prime}(t) & =-27 x_{2}(t)+45 x_{3}(t)-25 x_{4}(t)
\end{aligned}
$$

6.30.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{2 t} & \mathrm{e}^{2 t} t & -2 \mathrm{e}^{2 t} t & \mathrm{e}^{2 t} t \\
0 & (4 t+1) \mathrm{e}^{-t} & -5 t \mathrm{e}^{-t} & 3 t \mathrm{e}^{-t} \\
0 & (-4 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t} & (5 t-5) \mathrm{e}^{-t}+6 \mathrm{e}^{2 t} & (-3 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t} \\
0 & (-12 t+5) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t} & (15 t-10) \mathrm{e}^{-t}+10 \mathrm{e}^{2 t} & (-9 t+6) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{2 t} & \mathrm{e}^{2 t} t & -2 \mathrm{e}^{2 t} t \\
0 & (4 t+1) \mathrm{e}^{-t} & -5 t \mathrm{e}^{-t} \\
0 & (-4 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t} & (5 t-5) \mathrm{e}^{-t}+6 \mathrm{e}^{2 t} \\
0 & (-12 t+5) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t} & (-3 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t} \\
0 & (15 t-10) \mathrm{e}^{-t}+10 \mathrm{e}^{2 t} & (-9 t+6) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} c_{1}+\mathrm{e}^{2 t} t c_{2}-2 \mathrm{e}^{2 t} t c_{3}+\mathrm{e}^{2 t} t c_{4} \\
(4 t+1) \mathrm{e}^{-t} c_{2}-5 t \mathrm{e}^{-t} c_{3}+3 t \mathrm{e}^{-t} c_{4} \\
\left((-4 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t}\right) c_{2}+\left((5 t-5) \mathrm{e}^{-t}+6 \mathrm{e}^{2 t}\right) c_{3}+\left((-3 t+3) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t}\right) c_{4} \\
\left((-12 t+5) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t}\right) c_{2}+\left((15 t-10) \mathrm{e}^{-t}+10 \mathrm{e}^{2 t}\right) c_{3}+\left((-9 t+6) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t}\right) c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(c_{2}-2 c_{3}+c_{4}\right) t+c_{1}\right) \mathrm{e}^{2 t} \\
\mathrm{e}^{-t}\left(4 c_{2} t-5 c_{3} t+3 c_{4} t+c_{2}\right) \\
\left((-4 t+3) c_{2}+5(-1+t)\left(c_{3}-\frac{3 c_{4}}{5}\right)\right) \mathrm{e}^{-t}-3 \mathrm{e}^{2 t}\left(c_{2}-2 c_{3}+c_{4}\right) \\
\left((-12 t+5) c_{2}+15\left(c_{3}-\frac{3 c_{4}}{5}\right)\left(-\frac{2}{3}+t\right)\right) \mathrm{e}^{-t}-5 \mathrm{e}^{2 t}\left(c_{2}-2 c_{3}+c_{4}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.30.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2-\lambda & 1 & -2 & 1 \\
0 & 3-\lambda & -5 & 3 \\
0 & -13 & 22-\lambda & -12 \\
0 & -27 & 45 & -25-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-2 \lambda^{3}-3 \lambda^{2}+4 \lambda+4=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
-1	1	real eigenvalue
2	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=-1$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
\left(\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
3 & 1 & -2 & 1 & 0 \\
0 & 4 & -5 & 3 & 0 \\
0 & -13 & 23 & -12 & 0 \\
0 & -27 & 45 & -24 & 0
\end{array}\right]} \\
R_{3}=R_{3}+\frac{13 R_{2}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
3 & 1 & -2 & 1 & 0 \\
0 & 4 & -5 & 3 & 0 \\
0 & 0 & \frac{27}{4} & -\frac{9}{4} & 0 \\
0 & -27 & 45 & -24 & 0
\end{array}\right] \\
R_{4}=R_{4}+\frac{27 R_{2}}{4} \Longrightarrow\left[\begin{array}{cccc|c}
3 & 1 & -2 & 1 & 0 \\
0 & 4 & -5 & 3 & 0 \\
0 & 0 & \frac{27}{4} & -\frac{9}{4} & 0 \\
0 & 0 & \frac{45}{4} & -\frac{15}{4} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{5 R_{3}}{3} \Longrightarrow\left[\begin{array}{lllc|l}
3 & 1 & -2 & 1 & 0 \\
0 & 4 & -5 & 3 & 0 \\
0 & 0 & \frac{27}{4} & -\frac{9}{4} & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
3 & 1 & -2 & 1 \\
0 & 4 & -5 & 3 \\
0 & 0 & \frac{27}{4} & -\frac{9}{4} \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=0, v_{2}=-\frac{t}{3}, v_{3}=\frac{t}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Which is normalized to

$$
\left[\begin{array}{c}
0 \\
-\frac{t}{3} \\
\frac{t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
1 \\
3
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
0 & 1 & -2 & 1 & 0 \\
0 & 1 & -5 & 3 & 0 \\
0 & -13 & 20 & -12 & 0 \\
0 & -27 & 45 & -27 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{llll|l}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & -13 & 20 & -12 & 0 \\
0 & -27 & 45 & -27 & 0
\end{array}\right] \\
R_{3}=R_{3}+13 R_{1} \Longrightarrow\left[\begin{array}{llll|l}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & -6 & 1 & 0 \\
0 & -27 & 45 & -27 & 0
\end{array}\right] \\
R_{4}=R_{4}+27 R_{1} \Longrightarrow\left[\begin{array}{llll|l}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & -6 & 1 & 0 \\
0 & 0 & -9 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& R_{3}=R_{3}-2 R_{2} \Longrightarrow\left[\begin{array}{llcc|c}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & -9 & 0 & 0
\end{array}\right] \\
& R_{4}=R_{4}-3 R_{2} \Longrightarrow\left[\begin{array}{llcc|c}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & -6 & 0
\end{array}\right] \\
& R_{4}=R_{4}-2 R_{3} \Longrightarrow\left[\begin{array}{llcc|c}
0 & 1 & -2 & 1 & 0 \\
0 & 0 & -3 & 2 & 0 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
0 & 1 & -2 & 1 \\
0 & 0 & -3 & 2 \\
0 & 0 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{1}\right\}$ and the leading variables are $\left\{v_{2}, v_{3}, v_{4}\right\}$. Let $v_{1}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{2}=0, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
t \\
0 \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
t \\
0 \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{l}
t \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is
if the eigenvalue is defective. eigenvalue -1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 66: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]-(-1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) & {\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{ccc}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] } \\
& {\left[\begin{array}{cccc}
3 & 1 & -2 & 1 \\
0 & 4 & -5 & 3 \\
0 & -13 & 23 & -12 \\
0 & -27 & 45 & -24
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] }
\end{aligned}
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
0 \\
-\frac{4}{3} \\
1 \\
\frac{10}{3}
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue -1 . Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
0 \\
-\frac{1}{3} \\
\frac{1}{3} \\
1
\end{array}\right] t+\left[\begin{array}{c}
0 \\
-\frac{4}{3} \\
1 \\
\frac{10}{3}
\end{array}\right]\right) \mathrm{e}^{-t} \\
& =\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{-t}(t+4)}{3} \\
\frac{\mathrm{e}^{-t}(t+3)}{3} \\
\frac{\mathrm{e}^{-t}(3 t+10)}{3}
\end{array}\right]
\end{aligned}
$$

eigenvalue 2 is real and repated eigenvalue of multiplicity 2 . There are two possible cases that can happen. This is illustrated in this diagram

Figure 67: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need
to generate the missing additonal generalized eigevector \vec{v}_{2} by solving

$$
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
$$

Where \vec{v}_{1} is the normal (rank 1) eigenvector found above. Hence we need to solve

$$
\left.\begin{array}{rc}
{\left[\begin{array}{cccc}
2 & 1 & -2 & 1 \\
0 & 3 & -5 & 3 \\
0 & -13 & 22 & -12 \\
0 & -27 & 45 & -25
\end{array}\right]-(2)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solving for \vec{v}_{2} gives

$$
\vec{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-5
\end{array}\right]
$$

We have found two generalized eigenvectors for eigenvalue 2. Therefore the two basis solution associated with this eigenvalue are

$$
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
\vec{x}_{4}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] t+\left[\begin{array}{c}
1 \\
0 \\
-3 \\
-5
\end{array}\right]\right) \mathrm{e}^{2 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+1) \\
0 \\
-3 \mathrm{e}^{2 t} \\
-5 \mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
-\frac{\mathrm{e}^{-t}}{3} \\
\frac{\mathrm{e}^{-t}}{3} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{-t}\left(-\frac{t}{3}-\frac{4}{3}\right) \\
\mathrm{e}^{-t}\left(\frac{t}{3}+1\right) \\
\mathrm{e}^{-t}\left(t+\frac{10}{3}\right)
\end{array}\right]+c_{3}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0 \\
0 \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
\mathrm{e}^{2 t}(t+1) \\
0 \\
-3 \mathrm{e}^{2 t} \\
-5 \mathrm{e}^{2 t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{2 t}\left(c_{4} t+c_{3}+c_{4}\right) \\
-\frac{\left((t+4) c_{2}+c_{1}\right) \mathrm{e}^{-t}}{3} \\
\frac{\left(c_{2}(t+3)+c_{1}\right) \mathrm{e}^{-t}}{3}-3 c_{4} \mathrm{e}^{2 t} \\
\frac{\left(c_{2}(3 t+10)+3 c_{1}\right) \mathrm{e}^{-t}}{3}-5 c_{4} \mathrm{e}^{2 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 89
dsolve ([diff $\left(x_{\neq-} 1(t), t\right)=2 * x_{-} 1(t)+1 * x_{-} 2(t)-2 * x_{-} 3(t)+1 * x_{-} 4(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=0 * x_{-} 1(t)+3 *$

$$
\begin{aligned}
& x_{1}(t)=\frac{\left(-c_{2} t+3 c_{1}\right) \mathrm{e}^{2 t}}{3} \\
& x_{2}(t)=\mathrm{e}^{-t}\left(c_{4} t+c_{3}\right) \\
& x_{3}(t)=\left(-\mathrm{e}^{-3 t}\left(c_{4} t+c_{3}-c_{4}\right)+c_{2}\right) \mathrm{e}^{2 t} \\
& x_{4}(t)=-3 c_{3} \mathrm{e}^{-t}-3 c_{4} \mathrm{e}^{-t} t+2 c_{4} \mathrm{e}^{-t}+\frac{5 c_{2} \mathrm{e}^{2 t}}{3}
\end{aligned}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 161
DSolve $\left[\left\{x 1^{\prime}[t]==2 * x 1[t]+1 * x 2[t]-2 * x 3[t]+1 * x 4[t], x 2{ }^{\prime}[t]==0 * x 1[t]+3 * x 2[t]-5 * x 3[t]+3 * x 4[t], x 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{2 t}\left(\left(c_{2}-2 c_{3}+c_{4}\right) t+c_{1}\right) \\
& \mathrm{x} 2(t) \rightarrow e^{-t}\left(4 c_{2} t-5 c_{3} t+3 c_{4} t+c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow e^{-t}\left(c_{2}\left(-4 t-3 e^{3 t}+3\right)+c_{3}\left(5 t+6 e^{3 t}-5\right)-3 c_{4}\left(t+e^{3 t}-1\right)\right) \\
& \mathrm{x} 4(t) \rightarrow e^{-t}\left(c_{2}\left(-12 t-5 e^{3 t}+5\right)+5 c_{3}\left(3 t+2 e^{3 t}-2\right)-c_{4}\left(9 t+5 e^{3 t}-6\right)\right)
\end{aligned}
$$

6.31 problem problem 31

6.31.1 Solution using Matrix exponential method 1108
6.31.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1110

Internal problem ID [388]
Internal file name [OUTPUT/388_Sunday_June_05_2022_01_40_19_AM_72207861/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 31.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =35 x_{1}(t)-12 x_{2}(t)+4 x_{3}(t)+30 x_{4}(t) \\
x_{2}^{\prime}(t) & =22 x_{1}(t)-8 x_{2}(t)+3 x_{3}(t)+19 x_{4}(t) \\
x_{3}^{\prime}(t) & =-10 x_{1}(t)+3 x_{2}(t)-9 x_{4}(t) \\
x_{4}^{\prime}(t) & =-27 x_{1}(t)+9 x_{2}(t)-3 x_{3}(t)-23 x_{4}(t)
\end{aligned}
$$

6.31.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{t}\left(21 t^{2}+34 t+1\right) & \left(-9 t^{2}-12 t\right) \mathrm{e}^{t} & \mathrm{e}^{t} t(3 t+4) & \left(18 t^{2}+30 t\right) \mathrm{e}^{t} \\
\frac{\mathrm{e}^{t} t(7 t+44)}{2} & -\frac{3\left(t^{2}+6 t-\frac{2}{3}\right) \mathrm{e}^{t}}{2} & \frac{\mathrm{e}^{t} t(t+6)}{2} & \mathrm{e}^{t} t(3 t+19) \\
-\frac{\mathrm{e}^{t} t(21 t+20)}{2} & \frac{3 \mathrm{e}^{t} t(3 t+2)}{2} & \mathrm{e}^{t}\left(1-t-\frac{3}{2} t^{2}\right) & -9 \mathrm{e}^{t} t(t+1) \\
\left(-21 t^{2}-27 t\right) \mathrm{e}^{t} & 9 \mathrm{e}^{t} t(t+1) & -3 \mathrm{e}^{t} t(t+1) & \mathrm{e}^{t}\left(-18 t^{2}-24 t+1\right)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\mathrm{e}^{t}\left(21 t^{2}+34 t+1\right) & \left(-9 t^{2}-12 t\right) \mathrm{e}^{t} & \mathrm{e}^{t} t(3 t+4) \\
\frac{\mathrm{e}^{t} t(7 t+44)}{2} & -\frac{3\left(t^{2}+6 t-\frac{2}{3}\right) \mathrm{e}^{t}}{2} & \left(18 t^{2}+30 t\right) \mathrm{e}^{t} \\
-\frac{\mathrm{e}^{t} t(t+6)}{2} & \mathrm{e}^{t} t(3 t+20) \\
\left(-21 t^{2}-27 t\right) \mathrm{e}^{t} & 9 \mathrm{e}^{t} t(t+1) & -3 \mathrm{e}^{t} t(t+1) \\
2 & \mathrm{e}^{t}\left(-18 t^{2}-24 t+1\right)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
\mathrm{e}_{2} \\
\mathrm{e}^{t}(3 t+2) \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(21 t^{2}+34 t+1\right) c_{1}+\left(-9 t^{2}-12 t\right) \mathrm{e}^{t} c_{2}+\mathrm{e}^{t} t(3 t+4) c_{3}+\left(18 t^{2}+30 t\right) \mathrm{e}^{t} c_{4} \\
\frac{\mathrm{e}^{t} t(7 t+44) c_{1}}{2}-\frac{3\left(t^{2}+6 t-\frac{2}{3}\right) \mathrm{e}^{t} c_{2}}{2}+\frac{\mathrm{e}^{t} t(t+6) c_{3}}{2}+\mathrm{e}^{t} t(3 t+19) c_{4} \\
-\frac{\mathrm{e}^{t} t(21 t+20) c_{1}}{2}+\frac{3 \mathrm{e}^{t} t(3 t+2) c_{2}}{2}+\mathrm{e}^{t}\left(1-t-\frac{3}{2} t^{2}\right) c_{3}-9 \mathrm{e}^{t} t(t+1) c_{4} \\
\left(-21 t^{2}-27 t\right) \mathrm{e}^{t} c_{1}+9 \mathrm{e}^{t} t(t+1) c_{2}-3 \mathrm{e}^{t} t(t+1) c_{3}+\mathrm{e}^{t}\left(-18 t^{2}-24 t+1\right) c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
21\left(\left(c_{1}-\frac{3 c_{2}}{7}+\frac{c_{3}}{7}+\frac{6 c_{4}}{7}\right) t^{2}+\frac{2\left(\frac{17 c_{1}}{3}-2 c_{2}+\frac{2 c_{3}}{3}+5 c_{4}\right) t}{7}+\frac{c_{1}}{21}\right) \mathrm{e}^{t} \\
\frac{7\left(\left(c_{1}-\frac{3 c_{2}}{7}+\frac{c_{3}}{7}+\frac{6 c_{4}}{7}\right) t^{2}+\frac{2\left(22 c_{1}-9 c_{2}+3 c_{3}+19 c_{4}\right) t}{7}+\frac{2 c_{2}}{7}\right) \mathrm{e}^{t}}{2} \\
21\left(\left(c_{1}-\frac{3 c_{2}}{7}+\frac{c_{3}}{7}+\frac{6 c_{4}}{7}\right) t^{2}+\frac{2\left(\frac{10 c_{1}}{3}-c_{2}+\frac{\left.c_{3}+3 c_{4}\right) t}{7}\right.}{7}-\frac{2 c_{3}}{21}\right) \mathrm{e}^{t} \\
-\frac{2}{7} \\
-21\left(\left(c_{1}-\frac{3 c_{2}}{7}+\frac{c_{3}}{7}+\frac{6 c_{4}}{7}\right) t^{2}+\frac{\left(9 c_{1}-3 c_{2}+c_{3}+8 c_{4}\right) t}{7}-\frac{c_{4}}{21}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.31.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
35-\lambda & -12 & 4 & 30 \\
22 & -8-\lambda & 3 & 19 \\
-10 & 3 & -\lambda & -9 \\
-27 & 9 & -3 & -23-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-4 \lambda^{3}+6 \lambda^{2}-4 \lambda+1=0
$$

The roots of the above are the eigenvalues.

$$
\lambda_{1}=1
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
1	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=1$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{array}{r}
\left(\left[\begin{array}{cccc}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{array}\right]-(1)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{array}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
22 & -9 & 3 & 19 & 0 \\
-10 & 3 & -1 & -9 & 0 \\
-27 & 9 & -3 & -24 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{11 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} & 0 \\
-10 & 3 & -1 & -9 & 0 \\
-27 & 9 & -3 & -24 & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{5 R_{1}}{17} \Longrightarrow\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} & 0 \\
0 & -\frac{9}{17} & \frac{3}{17} & -\frac{3}{17} & 0 \\
-27 & 9 & -3 & -24 & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{4}=R_{4}+\frac{27 R_{1}}{34} \Longrightarrow\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} & 0 \\
0 & -\frac{9}{17} & \frac{3}{17} & -\frac{3}{17} & 0 \\
0 & -\frac{9}{17} & \frac{3}{17} & -\frac{3}{17} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{3 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & -\frac{9}{17} & \frac{3}{17} & -\frac{3}{17} & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{3 R_{2}}{7} \Longrightarrow\left[\begin{array}{cccc|c}
34 & -12 & 4 & 30 & 0 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
34 & -12 & 4 & 30 \\
0 & -\frac{21}{17} & \frac{7}{17} & -\frac{7}{17} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-s, v_{2}=\frac{t}{3}-\frac{s}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-s \\
\frac{t}{3}-\frac{s}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
-s \\
\frac{t}{3}-\frac{s}{3} \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this
eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-s \\
\frac{t}{3}-\frac{s}{3} \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
\frac{t}{3} \\
t \\
0
\end{array}\right]+\left[\begin{array}{c}
-s \\
-\frac{s}{3} \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
0 \\
\frac{1}{3} \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
-\frac{1}{3} \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
-s \\
\frac{t}{3}-\frac{s}{3} \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{3} \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
-1 \\
-\frac{1}{3} \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{l}
0 \\
\frac{1}{3} \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
-\frac{1}{3} \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{l}
0 \\
1 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
-3 \\
-1 \\
0 \\
3
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
		algebraic m	geometric k	defective?
1	4			
		2	Yes	$\left[\begin{array}{cc}-1 & 0 \\ -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 \\ 1 & 0\end{array}\right]$

This case will be solved using the Jordan form of the matrix A. The Jordan form diagonalization is

$$
A=P J P^{-1}
$$

Which can be found to be

$$
\left[\begin{array}{cccc}
35 & -12 & 4 & 30 \\
22 & -8 & 3 & 19 \\
-10 & 3 & 0 & -9 \\
-27 & 9 & -3 & -23
\end{array}\right]=\left[\begin{array}{cccc}
42 & 34 & -\frac{27}{49} & -\frac{76}{49} \\
7 & 22 & -\frac{22}{49} & -\frac{22}{49} \\
-21 & -10 & \frac{10}{49} & \frac{10}{49} \\
-42 & -27 & \frac{76}{49} & \frac{76}{49}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
42 & 34 & -\frac{27}{49} & -\frac{76}{49} \\
7 & 22 & -\frac{22}{49} & -\frac{22}{49} \\
-21 & -10 & \frac{10}{49} & \frac{10}{49} \\
-42 & -27 & \frac{76}{49} & \frac{76}{49}
\end{array}\right]^{-1}
$$

Looking at the P matrix above, we see there are 2 chains. Therefore, we now construct
the basis solution by following these chains as follows.

$$
\begin{aligned}
& \vec{x}_{1}=\left[\begin{array}{c}
42 \mathrm{e}^{t} \\
7 \mathrm{e}^{t} \\
-21 \mathrm{e}^{t} \\
-42 \mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{2}=\left[\begin{array}{c}
42 t \mathrm{e}^{t}+34 \mathrm{e}^{t} \\
7 t \mathrm{e}^{t}+22 \mathrm{e}^{t} \\
-21 t \mathrm{e}^{t}-10 \mathrm{e}^{t} \\
-42 t \mathrm{e}^{t}-27 \mathrm{e}^{t}
\end{array}\right] \\
& \vec{x}_{3}=\left[\begin{array}{c}
21 t^{2} \mathrm{e}^{t}+34 t \mathrm{e}^{t}-\frac{27 \mathrm{e}^{t}}{49} \\
\frac{7 t^{2} \mathrm{e}^{t}}{2}+22 t \mathrm{e}^{t}-\frac{22 \mathrm{e}^{t}}{49} \\
-\frac{21 t^{2} \mathrm{e}^{t}}{2}-10 t \mathrm{e}^{t}+\frac{10 \mathrm{e}^{t}}{49} \\
-21 t^{2} \mathrm{e}^{t}-27 t \mathrm{e} \mathrm{e}^{t}+\frac{76 \mathrm{e}^{t}}{49}
\end{array}\right] \\
& \vec{x}_{4}=\left[\begin{array}{c}
-\frac{76 \mathrm{e}^{t}}{49} \\
-\frac{22 \mathrm{e}^{t}}{49} \\
\frac{10 \mathrm{e}^{t}}{49} \\
\frac{76 \mathrm{e}^{t}}{49}
\end{array}\right]
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
42 \mathrm{e}^{t} \\
7 \mathrm{e}^{t} \\
-21 \mathrm{e}^{t} \\
-42 \mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
42 t \mathrm{e}^{t}+34 \mathrm{e}^{t} \\
7 t \mathrm{e}^{t}+22 \mathrm{e}^{t} \\
-21 t \mathrm{e}^{t}-10 \mathrm{e}^{t} \\
-42 t \mathrm{e}^{t}-27 \mathrm{e}^{t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
21 t^{2} \mathrm{e}^{t}+34 t \mathrm{e}^{t}-\frac{27 \mathrm{e}^{t}}{49} \\
\frac{7 t^{2} \mathrm{e}^{t}}{2}+22 t \mathrm{e}^{t}-\frac{22 \mathrm{e}^{t}}{49} \\
-\frac{21 t^{2} \mathrm{e}^{t}}{2}-10 t \mathrm{e}^{t}+\frac{10 \mathrm{e}^{t}}{49} \\
-21 t^{2} \mathrm{e}^{t}-27 t \mathrm{e}^{t}+\frac{76 \mathrm{e}^{t}}{49}
\end{array}\right]+c_{4}\left[\begin{array}{c}
-\frac{76 \mathrm{e}^{t}}{49} \\
-\frac{22 \mathrm{e}^{t}}{49} \\
\frac{10 \mathrm{e}^{t}}{49} \\
\frac{76 \mathrm{e}^{t}}{49}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(42 c_{1}+42 t c_{2}+34 c_{2}+21 c_{3} t^{2}+34 c_{3} t-\frac{27}{49} c_{3}-\frac{76}{49} c_{4}\right) \\
\frac{\left(\left(343 t^{2}+2156 t-44\right) c_{3}+686 t c_{2}+686 c_{1}+2156 c_{2}-44 c_{4}\right) \mathrm{e}^{t}}{98} \\
\frac{\left(\left(-1029 t^{2}-980 t+20\right) c_{3}-2058 t c_{2}-2058 c_{1}-980 c_{2}+20 c_{4}\right) \mathrm{e}^{t}}{98} \\
\mathrm{e}^{t}\left(-42 c_{1}-42 t c_{2}-27 c_{2}-21 c_{3} t^{2}-27 c_{3} t+\frac{76}{49} c_{3}+\frac{76}{49} c_{4}\right)
\end{array}\right]
$$

Solution by Maple
Time used: 0.047 (sec). Leaf size: 117

```
dsolve([diff (x__1(t),t)=35*x__1(t)-12*x__2(t)+4*x__ 3(t)+30*x__ 4(t), diff (x__ 2(t),t)=22*x__1 (t)
```

$$
\begin{aligned}
& x_{1}(t)=\frac{\mathrm{e}^{t}\left(-6 c_{4} t^{2}-6 c_{3} t-4 c_{4} t+3 c_{1}-6 c_{2}-2 c_{3}\right)}{3} \\
& x_{2}(t)=\frac{\mathrm{e}^{t}\left(-3 c_{4} t^{2}-3 c_{3} t-16 c_{4} t+3 c_{1}-3 c_{2}-8 c_{3}+6 c_{4}\right)}{9} \\
& x_{3}(t)=\mathrm{e}^{t}\left(c_{4} t^{2}+c_{3} t+c_{2}\right) \\
& x_{4}(t)=-\frac{\mathrm{e}^{t}\left(-18 c_{4} t^{2}-18 c_{3} t-6 c_{4} t+9 c_{1}-18 c_{2}-3 c_{3}-2 c_{4}\right)}{9}
\end{aligned}
$$

Solution by Mathematica

Time used: 0.005 (sec). Leaf size: 207
DSolve $\left[\left\{x 1^{\prime}[t]==35 * x 1[t]-12 * x 2[t]+4 * x 3[t]+30 * x 4[t], x 2{ }^{\prime}[t]==22 * x 1[t]-8 * x 2[t]+3 * x 3[t]+19 * x 4[t]\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{t}\left(c_{1}\left(21 t^{2}+34 t+1\right)-3 c_{2} t(3 t+4)+c_{3} t(3 t+4)+6 c_{4} t(3 t+5)\right) \\
& \mathrm{x} 2(t) \rightarrow \frac{1}{2} e^{t}\left(\left(7 c_{1}-3 c_{2}+c_{3}+6 c_{4}\right) t^{2}+2\left(22 c_{1}-9 c_{2}+3 c_{3}+19 c_{4}\right) t+2 c_{2}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{t}\left(-3\left(7 c_{1}-3 c_{2}+c_{3}+6 c_{4}\right) t^{2}-2\left(10 c_{1}-3 c_{2}+c_{3}+9 c_{4}\right) t+2 c_{3}\right) \\
& \mathrm{x} 4(t) \rightarrow e^{t}\left(-3\left(7 c_{1}-3 c_{2}+c_{3}+6 c_{4}\right) t^{2}-3\left(9 c_{1}-3 c_{2}+c_{3}+8 c_{4}\right) t+c_{4}\right)
\end{aligned}
$$

6.32 problem problem 32

6.32.1 Solution using Matrix exponential method 1117
6.32.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1119

Internal problem ID [389]
Internal file name [OUTPUT/389_Sunday_June_05_2022_01_40_21_AM_25067120/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 32.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =11 x_{1}(t)-x_{2}(t)+26 x_{3}(t)+6 x_{4}(t)-3 x_{5}(t) \\
x_{2}^{\prime}(t) & =3 x_{2}(t) \\
x_{3}^{\prime}(t) & =-9 x_{1}(t)-24 x_{3}(t)-6 x_{4}(t)+3 x_{5}(t) \\
x_{4}^{\prime}(t) & =3 x_{1}(t)+9 x_{3}(t)+5 x_{4}(t)-x_{5}(t) \\
x_{5}^{\prime}(t) & =-48 x_{1}(t)-3 x_{2}(t)-138 x_{3}(t)-30 x_{4}(t)+18 x_{5}(t)
\end{aligned}
$$

6.32.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccccc}
11 & -1 & 26 & 6 & -3 \\
0 & 3 & 0 & 0 & 0 \\
-9 & 0 & -24 & -6 & 3 \\
3 & 0 & 9 & 5 & -1 \\
-48 & -3 & -138 & -30 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{ccccc}
9 \mathrm{e}^{3 t}-8 \mathrm{e}^{2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} & 26 \mathrm{e}^{3 t}-26 \mathrm{e}^{2 t} & 6 \mathrm{e}^{3 t}-6 \mathrm{e}^{2 t} & -3 \mathrm{e}^{3 t}+3 \mathrm{e}^{2 t} \\
0 & \mathrm{e}^{3 t} & 0 & 0 & 0 \\
-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{2 t} & 0 & -26 \mathrm{e}^{3 t}+27 \mathrm{e}^{2 t} & -6 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t} & -3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} & 0 & 9 \mathrm{e}^{3 t}-9 \mathrm{e}^{2 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} \\
-48 \mathrm{e}^{3 t}+48 \mathrm{e}^{2 t} & -3 \mathrm{e}^{3 t}+3 \mathrm{e}^{2 t} & -138 \mathrm{e}^{3 t}+138 \mathrm{e}^{2 t} & -30 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} & 16 \mathrm{e}^{3 t}-15 \mathrm{e}^{2 t}
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& =\left[\begin{array}{ccccc}
9 \mathrm{e}^{3 t}-8 \mathrm{e}^{2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} & 26 \mathrm{e}^{3 t}-26 \mathrm{e}^{2 t} & 6 \mathrm{e}^{3 t}-6 \mathrm{e}^{2 t} & -3 \mathrm{e}^{3 t}+3 \mathrm{e}^{2 t} \\
0 & \mathrm{e}^{3 t} & 0 & 0 & 0 \\
-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{2 t} & 0 & -26 \mathrm{e}^{3 t}+27 \mathrm{e}^{2 t} & -6 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t} & -3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} \\
-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t} & 0 & 9 \mathrm{e}^{3 t}-9 \mathrm{e}^{2 t} & 3 \mathrm{e}^{3 t}-2 \mathrm{e}^{2 t} & -\mathrm{e}^{3 t}+\mathrm{e}^{2 t} \\
-48 \mathrm{e}^{3 t}+48 \mathrm{e}^{2 t} & -3 \mathrm{e}^{3 t}+3 \mathrm{e}^{2 t} & -138 \mathrm{e}^{3 t}+138 \mathrm{e}^{2 t} & -30 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t} & 16 \mathrm{e}^{3 t}-15 \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5}
\end{array}\right] \\
& {\left[\left(9 \mathrm{e}^{3 t}-8 \mathrm{e}^{2 t}\right) c_{1}+\left(-\mathrm{e}^{3 t}+\mathrm{e}^{2 t}\right) c_{2}+\left(26 \mathrm{e}^{3 t}-26 \mathrm{e}^{2 t}\right) c_{3}+\left(6 \mathrm{e}^{3 t}-6 \mathrm{e}^{2 t}\right) c_{4}+\left(-3 \mathrm{e}^{3 t}+3 \epsilon\right.\right.} \\
& \mathrm{e}^{3 t} c_{2} \\
& =\quad\left(-9 \mathrm{e}^{3 t}+9 \mathrm{e}^{2 t}\right) c_{1}+\left(-26 \mathrm{e}^{3 t}+27 \mathrm{e}^{2 t}\right) c_{3}+\left(-6 \mathrm{e}^{3 t}+6 \mathrm{e}^{2 t}\right) c_{4}+\left(-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t}\right) c_{5} \\
& \left(-3 \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t}\right) c_{1}+\left(9 \mathrm{e}^{3 t}-9 \mathrm{e}^{2 t}\right) c_{3}+\left(3 \mathrm{e}^{3 t}-2 \mathrm{e}^{2 t}\right) c_{4}+\left(-\mathrm{e}^{3 t}+\mathrm{e}^{2 t}\right) c_{5} \\
& {\left[\left(-48 \mathrm{e}^{3 t}+48 \mathrm{e}^{2 t}\right) c_{1}+\left(-3 \mathrm{e}^{3 t}+3 \mathrm{e}^{2 t}\right) c_{2}+\left(-138 \mathrm{e}^{3 t}+138 \mathrm{e}^{2 t}\right) c_{3}+\left(-30 \mathrm{e}^{3 t}+30 \mathrm{e}^{2 t}\right) c_{4}+(16 \mathrm{e}\right.} \\
& =\left[\begin{array}{c}
\left(-8 c_{1}+c_{2}-26 c_{3}-6 c_{4}+3 c_{5}\right) \mathrm{e}^{2 t}+9\left(c_{1}-\frac{c_{2}}{9}+\frac{26 c_{3}}{9}+\frac{2 c_{4}}{3}-\frac{c_{5}}{3}\right) \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} c_{2} \\
\left(9 c_{1}+27 c_{3}+6 c_{4}-3 c_{5}\right) \mathrm{e}^{2 t}-9\left(c_{1}+\frac{26 c_{3}}{9}+\frac{2 c_{4}}{3}-\frac{c_{5}}{3}\right) \mathrm{e}^{3 t} \\
\left(-3 c_{1}-9 c_{3}-2 c_{4}+c_{5}\right) \mathrm{e}^{2 t}+3 \mathrm{e}^{3 t}\left(c_{1}+3 c_{3}+c_{4}-\frac{c_{5}}{3}\right) \\
3\left(16 c_{1}+c_{2}+46 c_{3}+10 c_{4}-5 c_{5}\right) \mathrm{e}^{2 t}-48\left(c_{1}+\frac{c_{2}}{16}+\frac{23 c_{3}}{8}+\frac{5 c_{4}}{8}-\frac{c_{5}}{3}\right) \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.32.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t) \\
x_{5}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccccc}
11 & -1 & 26 & 6 & -3 \\
0 & 3 & 0 & 0 & 0 \\
-9 & 0 & -24 & -6 & 3 \\
3 & 0 & 9 & 5 & -1 \\
-48 & -3 & -138 & -30 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
11 & -1 & 26 & 6 & -3 \\
0 & 3 & 0 & 0 & 0 \\
-9 & 0 & -24 & -6 & 3 \\
3 & 0 & 9 & 5 & -1 \\
-48 & -3 & -138 & -30 & 18
\end{array}\right]-\lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{ccccc}
11-\lambda & -1 & 26 & 6 & -3 \\
0 & 3-\lambda & 0 & 0 & 0 \\
-9 & 0 & -24-\lambda & -6 & 3 \\
3 & 0 & 9 & 5-\lambda & -1 \\
-48 & -3 & -138 & -30 & 18-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{5}-13 \lambda^{4}+67 \lambda^{3}-171 \lambda^{2}+216 \lambda-108=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
2	1	real eigenvalue
3	1	real eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rl}
{\left[\begin{array}{ccccc}
11 & -1 & 26 & 6 & -3 \\
0 & 3 & 0 & 0 & 0 \\
-9 & 0 & -24 & -6 & 3 \\
3 & 0 & 9 & 5 & -1 \\
-48 & -3 & -138 & -30 & 18
\end{array}\right]-(2)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
-9 & 0 & -26 & -6 & 3 & 0 \\
3 & 0 & 9 & 3 & -1 & 0 \\
-48 & -3 & -138 & -30 & 16 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& R_{3}=R_{3}+R_{1} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
3 & 0 & 9 & 3 & -1 & 0 \\
-48 & -3 & -138 & -30 & 16 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{R_{1}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 1 & 0 & 0 \\
-48 & -3 & -138 & -30 & 16 & 0
\end{array}\right] \\
& R_{5}=R_{5}+\frac{16 R_{1}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 1 & 0 & 0 \\
0 & -\frac{25}{3} & \frac{2}{3} & 2 & 0 & 0
\end{array}\right] \\
& R_{3}=R_{3}+R_{2} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{3} & \frac{1}{3} & 1 & 0 & 0 \\
0 & -\frac{25}{3} & \frac{2}{3} & 2 & 0 & 0
\end{array}\right] \\
& R_{4}=R_{4}-\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 1 & 0 & 0 \\
0 & -\frac{25}{3} & \frac{2}{3} & 2 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{5}=R_{5}+\frac{25 R_{2}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 1 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 2 & 0 & 0
\end{array}\right]
$$

Since the current pivot $A(3,3)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 3 and row 4 gives

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{2}{3} & 2 & 0 & 0
\end{array}\right]} \\
& R_{5}=R_{5}-2 R_{3} \Longrightarrow\left[\begin{array}{ccccc|c}
9 & -1 & 26 & 6 & -3 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
9 & -1 & 26 & 6 & -3 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{3} & 1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}, v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Let $v_{5}=s$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=8 t+\frac{s}{3}, v_{2}=0, v_{3}=-3 t\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
8 t+\frac{s}{3} \\
0 \\
-3 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
8 t+\frac{s}{3} \\
0 \\
-3 t \\
t \\
s
\end{array}\right]
$$

Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
8 t+\frac{s}{3} \\
0 \\
-3 t \\
t \\
s
\end{array}\right] } & =\left[\begin{array}{c}
8 t \\
0 \\
-3 t \\
t \\
0
\end{array}\right]+\left[\begin{array}{l}
\frac{s}{3} \\
0 \\
0 \\
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{c}
8 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
\frac{1}{3} \\
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ then the above becomes

$$
\left[\begin{array}{c}
8 t+\frac{s}{3} \\
0 \\
-3 t \\
t \\
s
\end{array}\right]=\left[\begin{array}{c}
8 \\
0 \\
-3 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the two eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
8 \\
0 \\
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
8 \\
0 \\
-3 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
3
\end{array}\right]\right)
$$

Considering the eigenvalue $\lambda_{2}=3$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{rc}
{\left[\begin{array}{ccccc}
11 & -1 & 26 & 6 & -3 \\
0 & 3 & 0 & 0 & 0 \\
-9 & 0 & -24 & -6 & 3 \\
3 & 0 & 9 & 5 & -1 \\
-48 & -3 & -138 & -30 & 18
\end{array}\right]-(3)\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-9 & 0 & -27 & -6 & 3 & 0 \\
3 & 0 & 9 & 2 & -1 & 0 \\
-48 & -3 & -138 & -30 & 15 & 0
\end{array}\right]
$$

$$
\begin{gathered}
R_{3}=R_{3}+\frac{9 R_{1}}{8} \Longrightarrow\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
3 & 0 & 9 & 2 & -1 & 0 \\
-48 & -3 & -138 & -30 & 15 & 0
\end{array}\right] \\
R_{4}=R_{4}-\frac{3 R_{1}}{8} \Longrightarrow\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
0 & \frac{3}{8} & -\frac{3}{4} & -\frac{1}{4} & \frac{1}{8} & 0 \\
-48 & -3 & -138 & -30 & 15 & 0
\end{array}\right] \\
R_{5}=R_{5}+6 R_{1} \Longrightarrow\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
0 & \frac{3}{8} & -\frac{3}{4} & -\frac{1}{4} & \frac{1}{8} & 0 \\
0 & -9 & 18 & 6 & -3 & 0
\end{array}\right]
\end{gathered}
$$

Since the current pivot $A(2,2)$ is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 2 and row 3 gives

$$
\begin{aligned}
& {\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{3}{8} & -\frac{3}{4} & -\frac{1}{4} & \frac{1}{8} & 0 \\
0 & -9 & 18 & 6 & -3 & 0
\end{array}\right]} \\
& R_{4}=R_{4}+\frac{R_{2}}{3} \Longrightarrow\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -9 & 18 & 6 & -3 & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{5}=R_{5}-8 R_{2} \Longrightarrow\left[\begin{array}{ccccc|c}
8 & -1 & 26 & 6 & -3 & 0 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{ccccc}
8 & -1 & 26 & 6 & -3 \\
0 & -\frac{9}{8} & \frac{9}{4} & \frac{3}{4} & -\frac{3}{8} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{3}, v_{4}, v_{5}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}\right\}$. Let $v_{3}=t$. Let $v_{4}=s$. Let $v_{5}=r$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-3 t-\frac{2 s}{3}+\frac{r}{3}, v_{2}=2 t+\frac{2 s}{3}-\frac{r}{3}\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-3 t-\frac{2 s}{3}+\frac{r}{3} \\
2 t+\frac{2 s}{3}-\frac{r}{3} \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-3 t-\frac{2 s}{3}+\frac{r}{3} \\
2 t+\frac{2 s}{3}-\frac{r}{3} \\
t \\
s \\
r
\end{array}\right]
$$

Since there are three free Variable, we have found three eigenvectors associated with
this eigenvalue. The above can be written as

$$
\begin{aligned}
{\left[\begin{array}{c}
-3 t-\frac{2 s}{3}+\frac{r}{3} \\
2 t+\frac{2 s}{3}-\frac{r}{3} \\
t \\
s \\
r
\end{array}\right] } & =\left[\begin{array}{c}
-3 t \\
2 t \\
t \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{2 s}{3} \\
\frac{2 s}{3} \\
0 \\
s \\
0
\end{array}\right] \\
& =t\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
0 \\
1 \\
0
\end{array}\right]+r\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

By letting $t=1$ and $s=1$ and $r=1$ then the above becomes

$$
\left[\begin{array}{c}
-3 t-\frac{2 s}{3}+\frac{r}{3} \\
2 t+\frac{2 s}{3}-\frac{r}{3} \\
t \\
s \\
r
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
0 \\
1 \\
0
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
0 \\
0 \\
1
\end{array}\right]
$$

Hence the three eigenvectors associated with this eigenvalue are

$$
\left(\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
0 \\
0 \\
1
\end{array}\right]\right)
$$

Which are normalized to

$$
\left(\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
2 \\
0 \\
3 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0 \\
3
\end{array}\right]\right)
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity		defective?	eigenvectors
	algebraic m	geometric k		
3	3	3	No	$\left[\begin{array}{ccc}\frac{1}{3} & -\frac{2}{3} & -3 \\ -\frac{1}{3} & \frac{2}{3} & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
2	2	2	No	$\left[\begin{array}{cc}\frac{1}{3} & 8 \\ 0 & 0 \\ 0 & -3 \\ 0 & 1 \\ 1 & 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 3.There are three possible cases that can happen. This is illustrated in this diagram

Figure 68: Possible case for repeated λ of multiplicity 3

This eigenvalue has algebraic multiplicity of 3 which is the same as its geometric multiplicity 3 , then it is complete eigenvalue and this falls into case 1 shown above.

Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
-\frac{1}{3} \\
0 \\
0 \\
1
\end{array}\right] e^{3 t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{2}{3} \\
\frac{2}{3} \\
0 \\
1 \\
0
\end{array}\right] e^{3 t} \\
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
-3 \\
2 \\
1 \\
0 \\
0
\end{array}\right] e^{3 t}
\end{aligned}
$$

eigenvalue 2 is real and repated eigenvalue of multiplicity 2 . There are two possible cases that can happen. This is illustrated in this diagram

Figure 69: Possible case for repeated λ of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are

$$
\begin{aligned}
\vec{x}_{4}(t) & =\vec{v}_{4} e^{2 t} \\
& =\left[\begin{array}{c}
\frac{1}{3} \\
0 \\
0 \\
0 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
$$

$$
\begin{aligned}
\vec{x}_{5}(t) & =\vec{v}_{5} e^{2 t} \\
& =\left[\begin{array}{c}
8 \\
0 \\
-3 \\
1 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
$$

Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)+c_{4} \vec{x}_{4}(t)+c_{5} \vec{x}_{5}(t)
$$

Which is written as

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{3 t} \\
-\frac{\mathrm{e}^{3 t}}{3} \\
0 \\
0 \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{2 \mathrm{e}^{3 t}}{3} \\
\frac{2 \mathrm{e}^{3 t}}{3} \\
0 \\
\mathrm{e}^{3 t} \\
0
\end{array}\right]+c_{3}\left[\begin{array}{c}
-3 \mathrm{e}^{3 t} \\
2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t} \\
0 \\
0
\end{array}\right]+c_{4}\left[\begin{array}{c}
\frac{\mathrm{e}^{2 t}}{3} \\
0 \\
0 \\
0 \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{5}\left[\begin{array}{c}
8 \mathrm{e}^{2 t} \\
0 \\
-3 \mathrm{e}^{2 t} \\
\mathrm{e}^{2 t} \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t) \\
x_{5}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(c_{1}-2 c_{2}-9 c_{3}\right) \mathrm{e}^{3 t}}{3}+\frac{\mathrm{e}^{2 t}\left(c_{4}+24 c_{5}\right)}{3} \\
-\frac{\mathrm{e}^{3 t}\left(c_{1}-2 c_{2}-6 c_{3}\right)}{3} \\
c_{3} \mathrm{e}^{3 t}-3 c_{5} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{3 t}+c_{5} \mathrm{e}^{2 t} \\
c_{1} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{2 t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 107
dsolve ([diff $\left(x_{-} 1(t), t\right)=11 * x_{-} 1(t)-1 * x_{-} 2(t)+26 * x_{-} 3(t)+6 * x_{-} 4(t)-3 * x_{-} 5(t), \operatorname{diff}\left(x_{-} 2(t), t\right)=$

$$
\begin{aligned}
& x_{1}(t)=\left(-\left(c_{3}+c_{5}\right) \mathrm{e}^{t}+c_{1}\right) \mathrm{e}^{2 t} \\
& x_{2}(t)=c_{5} \mathrm{e}^{3 t} \\
& x_{3}(t)=c_{3} \mathrm{e}^{3 t}+c_{4} \mathrm{e}^{2 t} \\
& x_{4}(t)=-\frac{c_{3} \mathrm{e}^{3 t}}{3}-\frac{c_{4} \mathrm{e}^{2 t}}{3}+c_{2} \mathrm{e}^{3 t} \\
& x_{5}(t)=\frac{16 c_{3} \mathrm{e}^{3 t}}{3}+8 c_{4} \mathrm{e}^{2 t}+2 c_{2} \mathrm{e}^{3 t}-3 c_{5} \mathrm{e}^{3 t}+3 c_{1} \mathrm{e}^{2 t}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 211
DSolve $\left[\left\{\mathrm{x} 1^{\prime}[\mathrm{t}]==11 * \mathrm{x} 1[\mathrm{t}]-1 * \mathrm{x} 2[\mathrm{t}]+26 * \mathrm{x} 3[\mathrm{t}]+6 * \mathrm{x} 4[\mathrm{t}]-3 * \mathrm{x} 5[\mathrm{t}], \mathrm{x} 2{ }^{\prime}[\mathrm{t}]==0 * \mathrm{x} 1[\mathrm{t}]+3 * \mathrm{x} 2[\mathrm{t}], \mathrm{x} 3^{\prime}[\mathrm{t}]==-9\right.\right.$
$\mathrm{x} 1(t) \rightarrow e^{2 t}\left(c_{1}\left(9 e^{t}-8\right)-\left(c_{2}-26 c_{3}-6 c_{4}+3 c_{5}\right)\left(e^{t}-1\right)\right)$
$\mathrm{x} 2(t) \rightarrow c_{2} e^{3 t}$
$\mathrm{x} 3(t) \rightarrow-e^{2 t}\left(9 c_{1}\left(e^{t}-1\right)+c_{3}\left(26 e^{t}-27\right)+3\left(2 c_{4}-c_{5}\right)\left(e^{t}-1\right)\right)$
$\mathrm{x} 4(t) \rightarrow e^{2 t}\left(3 c_{1}\left(e^{t}-1\right)+9 c_{3}\left(e^{t}-1\right)+3 c_{4} e^{t}-c_{5} e^{t}-2 c_{4}+c_{5}\right)$
$\mathrm{x} 5(t) \rightarrow-e^{2 t}\left(48 c_{1}\left(e^{t}-1\right)+3 c_{2}\left(e^{t}-1\right)+138 c_{3} e^{t}+30 c_{4} e^{t}-16 c_{5} e^{t}-138 c_{3}-30 c_{4}+15 c_{5}\right)$

6.33 problem problem 33

6.33.1 Solution using Matrix exponential method 1134
6.33.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1135

Internal problem ID [390]
Internal file name [OUTPUT/390_Sunday_June_05_2022_01_40_23_AM_25426689/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 33.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =3 x_{1}(t)-4 x_{2}(t)+x_{3}(t) \\
x_{2}^{\prime}(t) & =4 x_{1}(t)+3 x_{2}(t)+x_{4}(t) \\
x_{3}^{\prime}(t) & =3 x_{3}(t)-4 x_{4}(t) \\
x_{4}^{\prime}(t) & =4 x_{3}(t)+3 x_{4}(t)
\end{aligned}
$$

6.33.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
e^{A t}=\left[\begin{array}{cccc}
\mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) & t \mathrm{e}^{3 t} \cos (4 t) & -t \mathrm{e}^{3 t} \sin (4 t) \\
\mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t) & t \mathrm{e}^{3 t} \sin (4 t) & t \mathrm{e}^{3 t} \cos (4 t) \\
0 & 0 & \mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) \\
0 & 0 & \mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t)
\end{array}\right]
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cccc}
\mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) & t \mathrm{e}^{3 t} \cos (4 t) & -t \mathrm{e}^{3 t} \sin (4 t) \\
\mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t) & t \mathrm{e}^{3 t} \sin (4 t) & t \mathrm{e}^{3 t} \cos (4 t) \\
0 & 0 & \mathrm{e}^{3 t} \cos (4 t) & -\mathrm{e}^{3 t} \sin (4 t) \\
0 & 0 & \mathrm{e}^{3 t} \sin (4 t) & \mathrm{e}^{3 t} \cos (4 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t} \cos (4 t) c_{1}-\mathrm{e}^{3 t} \sin (4 t) c_{2}+t \mathrm{e}^{3 t} \cos (4 t) c_{3}-t \mathrm{e}^{3 t} \sin (4 t) c_{4} \\
\mathrm{e}^{3 t} \sin (4 t) c_{1}+\mathrm{e}^{3 t} \cos (4 t) c_{2}+t \mathrm{e}^{3 t} \sin (4 t) c_{3}+t \mathrm{e}^{3 t} \cos (4 t) c_{4} \\
\mathrm{e}^{3 t} \cos (4 t) c_{3}-\mathrm{e}^{3 t} \sin (4 t) c_{4} \\
\mathrm{e}^{3 t} \sin (4 t) c_{3}+\mathrm{e}^{3 t} \cos (4 t) c_{4}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(t c_{3}+c_{1}\right) \cos (4 t)-\sin (4 t)\left(t c_{4}+c_{2}\right)\right) \mathrm{e}^{3 t} \\
\left(\left(t c_{4}+c_{2}\right) \cos (4 t)+\sin (4 t)\left(t c_{3}+c_{1}\right)\right) \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}\left(\cos (4 t) c_{3}-\sin (4 t) c_{4}\right) \\
\mathrm{e}^{3 t}\left(\sin (4 t) c_{3}+\cos (4 t) c_{4}\right)
\end{array}\right]
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.33.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
3-\lambda & -4 & 1 & 0 \\
4 & 3-\lambda & 0 & 1 \\
0 & 0 & 3-\lambda & -4 \\
0 & 0 & 4 & 3-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-12 \lambda^{3}+86 \lambda^{2}-300 \lambda+625=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$3+4 i$	1	complex eigenvalue
$3-4 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=3-4 i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]-(3-4 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned}\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
4 i & -4 & 1 & 0 & 0 \\
4 & 4 i & 0 & 1 & 0 \\
0 & 0 & 4 i & -4 & 0 \\
0 & 0 & 4 & 4 i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
4 i & -4 & 1 & 0 & 0 \\
0 & 0 & i & 1 & 0 \\
0 & 0 & 4 i & -4 & 0 \\
0 & 0 & 4 & 4 i & 0
\end{array}\right] \\
R_{3}=R_{3}-4 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
4 i & -4 & 1 & 0 & 0 \\
0 & 0 & i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 4 & 4 i & 0
\end{array}\right] \\
R_{4}=4 i R_{2}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
4 i & -4 & 1 & 0 & 0 \\
0 & 0 & i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 0 & 8 i & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{4}=i R_{3}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
4 i & -4 & 1 & 0 & 0 \\
0 & 0 & i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
4 i & -4 & 1 & 0 \\
0 & 0 & i & 1 \\
0 & 0 & 0 & -8 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
-i \\
1 \\
0 \\
0
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=3+4 i$

We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\begin{aligned}
\left(\left[\begin{array}{cccc}
3 & -4 & 1 & 0 \\
4 & 3 & 0 & 1 \\
0 & 0 & 3 & -4 \\
0 & 0 & 4 & 3
\end{array}\right]\right. & \left.-(3+4 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)
\end{aligned} \begin{aligned}
& {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]}
\end{aligned}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
-4 i & -4 & 1 & 0 & 0 \\
4 & -4 i & 0 & 1 & 0 \\
0 & 0 & -4 i & -4 & 0 \\
0 & 0 & 4 & -4 i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-4 i & -4 & 1 & 0 & 0 \\
0 & 0 & -i & 1 & 0 \\
0 & 0 & -4 i & -4 & 0 \\
0 & 0 & 4 & -4 i & 0
\end{array}\right] \\
R_{3}=R_{3}-4 R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-4 i & -4 & 1 & 0 & 0 \\
0 & 0 & -i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 4 & -4 i & 0
\end{array}\right] \\
R_{4}=-4 i R_{2}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
-4 i & -4 & 1 & 0 & 0 \\
0 & 0 & -i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 0 & -8 i & 0
\end{array}\right]
\end{gathered}
$$

$$
R_{4}=-i R_{3}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
-4 i & -4 & 1 & 0 & 0 \\
0 & 0 & -i & 1 & 0 \\
0 & 0 & 0 & -8 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-4 i & -4 & 1 & 0 \\
0 & 0 & -i & 1 \\
0 & 0 & 0 & -8 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{2}\right\}$ and the leading variables are $\left\{v_{1}, v_{3}, v_{4}\right\}$. Let $v_{2}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{3}=0, v_{4}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i t \\
t \\
0 \\
0
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=t\left[\begin{array}{l}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
t \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
i \\
1 \\
0 \\
0
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
	2			i 1 $3-4 i$
	2	1	Yes	
			Yes	$\left[\begin{array}{c}-i \\ 1 \\ 0 \\ 0\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(3+4 i) t} \\
\mathrm{e}^{(3+4 i) t} \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(3-4 i) t} \\
\mathrm{e}^{(3-4 i) t} \\
0 \\
0
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1} \mathrm{e}^{(3+4 i) t}-c_{2} \mathrm{e}^{(3-4 i) t}\right) \\
c_{1} \mathrm{e}^{(3+4 i) t}+c_{2} \mathrm{e}^{(3-4 i) t} \\
0 \\
0
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.453 (sec). Leaf size: 140

```
dsolve([diff(x__1(t),t)=3*x__1(t)-4*x__2(t)+1*x__ 3(t)+0*x__ 4(t), diff (x__2(t),t)=4*x__1(t)+3*
```

$$
\begin{aligned}
& x_{1}(t)=\frac{\mathrm{e}^{3 t}\left(4 \cos (4 t) c_{4} t+4 \sin (4 t) c_{3} t+4 c_{1} \cos (4 t)+4 c_{2} \sin (4 t)-\sin (4 t) c_{4}\right)}{4} \\
& x_{2}(t)=-\frac{\mathrm{e}^{3 t}\left(4 \cos (4 t) c_{3} t-4 \sin (4 t) c_{4} t+4 c_{2} \cos (4 t)-c_{4} \cos (4 t)-4 c_{1} \sin (4 t)\right)}{4} \\
& x_{3}(t)=\mathrm{e}^{3 t}\left(c_{4} \cos (4 t)+c_{3} \sin (4 t)\right) \\
& x_{4}(t)=-\mathrm{e}^{3 t}\left(\cos (4 t) c_{3}-\sin (4 t) c_{4}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.1 (sec). Leaf size: 120
DSolve $\left[\left\{x 1^{\prime}[t]==3 * x 1[t]-4 * x 2[t]+1 * x 3[t]+0 * x 4[t], x 2{ }^{\prime}[t]==4 * x 1[t]+3 * x 2[t]+0 * x 3[t]+1 * x 4[t], x 3{ }^{\prime}[\right.\right.$

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow e^{3 t}\left(\left(c_{3} t+c_{1}\right) \cos (4 t)-\left(c_{4} t+c_{2}\right) \sin (4 t)\right) \\
& \mathrm{x} 2(t) \rightarrow e^{3 t}\left(\left(c_{4} t+c_{2}\right) \cos (4 t)+\left(c_{3} t+c_{1}\right) \sin (4 t)\right) \\
& \mathrm{x} 3(t) \rightarrow e^{3 t}\left(c_{3} \cos (4 t)-c_{4} \sin (4 t)\right) \\
& \mathrm{x} 4(t) \rightarrow e^{3 t}\left(c_{4} \cos (4 t)+c_{3} \sin (4 t)\right)
\end{aligned}
$$

6.34 problem problem 34

6.34.1 Solution using Matrix exponential method 1143
6.34.2 Solution using explicit Eigenvalue and Eigenvector method . . . 1145

Internal problem ID [391]
Internal file name [OUTPUT/391_Sunday_June_05_2022_01_40_26_AM_22487972/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Section 7.6, Multiple Eigenvalue Solutions. Page 451
Problem number: problem 34.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve

$$
\begin{aligned}
x_{1}^{\prime}(t) & =2 x_{1}(t)-8 x_{3}(t)-3 x_{4}(t) \\
x_{2}^{\prime}(t) & =-18 x_{1}(t)-x_{2}(t) \\
x_{3}^{\prime}(t) & =-9 x_{1}(t)-3 x_{2}(t)-25 x_{3}(t)-9 x_{4}(t) \\
x_{4}^{\prime}(t) & =33 x_{1}(t)+10 x_{2}(t)+90 x_{3}(t)+32 x_{4}(t)
\end{aligned}
$$

6.34.1 Solution using Matrix exponential method

In this method, we will assume we have found the matrix exponential $e^{A t}$ allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 0 & -8 & -3 \\
-18 & -1 & 0 & 0 \\
-9 & -3 & -25 & -9 \\
33 & 10 & 90 & 32
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

For the above matrix A, the matrix exponential can be found to be

$$
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{2 t} \cos (3 t)-3 t \mathrm{e}^{2 t} \sin (3 t) \\
-9 \cos (3 t) t \mathrm{e}^{2 t}+\left(-\frac{3}{2}+\frac{9 t}{2}\right) \mathrm{e}^{2 t} \sin (3 t)+\frac{9 \mathrm{e}^{2 t} \sin (3 t)\left(-\frac{1}{3}+t\right)}{2}+i\left(\left(-\frac{3}{2}+\frac{9 t}{2}\right) \mathrm{e}^{2 t} \cos (3 t)-\frac{9 \mathrm{e}^{2 t} \cos (3 t)(-}{2}\right. \\
-3 \mathrm{e}^{2 t} \sin (3 t)
\end{array}\right. \\
& =\left[\begin{array}{ccc}
(-3+9 t) \mathrm{e}^{2 t} \sin (3 t)-9 \cos (3 t) t \mathrm{e}^{2 t} & (1-3 t) \mathrm{e}^{2 t} \cos (3 t)+3 t \mathrm{e}^{2 t} \sin (3 t) \mathrm{e}^{2 t} \sin (3 t) & (24 t+10) \mathrm{e}^{2 t} \sin (3 t) \\
-3 \mathrm{e}^{2 t} \sin (3 t) & -t \mathrm{e}^{2 t} \sin (3 t) & ((-3-9 t) \sin (3 t)- \\
\mathrm{e}^{2 t}(\cos (3 t)-3 \sin (3 t) t) & \mathrm{e}^{2 t} \sin (3 t) & (27+t) \mathrm{e}^{2 t} \sin (3 t)+
\end{array}\right.
\end{aligned}
$$

Therefore the homogeneous solution is

$$
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
&=\left[\begin{array}{cc}
\mathrm{e}^{2 t}(\cos (3 t)-3 \sin (3 t) t) & -t \mathrm{e}^{2 t} \sin (3 t) \\
(-3+9 t) \mathrm{e}^{2 t} \sin (3 t)-9 \cos (3 t) t \mathrm{e}^{2 t} & (1-3 t) \mathrm{e}^{2 t} \cos (3 t)+3 t \mathrm{e}^{2 t} \sin (3 t) \\
-3 \mathrm{e}^{2 t} \sin (3 t) & (24 t+10) \mathrm{e}^{2 t} \sin (3 t \\
-\mathrm{e}^{2 t} \sin (3 t) & \mathrm{e}^{2 t}(\cos (3 t)- \\
\mathrm{e}^{2 t}(3 \cos (3 t) t+10 \sin (3 t)) & \mathrm{e}^{2 t}(\cos (3 t) t+3 \sin (3 t))
\end{array} \quad(27+t) \mathrm{e}^{2 t} \sin (3 t)\right. \\
& \mathrm{e}^{2 t}(\cos (3 t)-3 \sin (3 t) t) c_{1}-t \mathrm{e}^{2 t} \sin (3 t) c_{2}+((-3-9 t) \sin (3 t) \\
&=\left[\begin{array}{c}
\left.\left((-3+9 t) \mathrm{e}^{2 t} \sin (3 t)-9 \cos (3 t) t \mathrm{e}^{2 t}\right) c_{1}+(1-3 t) \mathrm{e}^{2 t} \cos (3 t)+3 t \mathrm{e}^{2 t} \sin (3 t)\right) c_{2}+((24 t+10 \\
-3 \mathrm{e}^{2 t} \sin (3 t) c_{1}-\mathrm{e}^{2 t} \sin (3 t) c_{2}+\mathrm{e}^{2 t}(\cos (3 t)-
\end{array}\right. \\
& \mathrm{e}^{2 t}(3 \cos (3 t) t+10 \sin (3 t)) c_{1}+\mathrm{e}^{2 t}(\cos (3 t) t+3 \sin (3 t)) c_{2}+\left((27+t) \mathrm{e}^{2 t} \sin (3 t)\right. \\
&-3\left(\left(\left(c_{1}+\frac{c_{2}}{3}+3 c_{3}+c_{4}\right) t+c_{3}+\frac{c_{4}}{3}\right) \sin (3 t)-\frac{\left(t c_{3}+c_{1}\right) \cos (3 t)}{3}\right) \mathrm{e}^{2 t} \\
&\left.-9\left(\left(-c_{1}-\frac{c_{2}}{3}-\frac{8 c_{3}}{3}-c_{4}\right) t+\frac{c_{1}}{3}-\frac{10 c_{3}}{9}-\frac{c_{4}}{3}\right) \sin (3 t)+\cos (3 t)\left(\left(c_{1}+\frac{c_{2}}{3}+\frac{10 c_{3}}{3}+c_{4}\right) t-\frac{c_{2}}{9}\right)\right) \\
&-3\left(\left(c_{1}+\frac{c_{2}}{3}+3 c_{3}+c_{4}\right) \sin (3 t)-\frac{c_{3} \cos (3 t)}{3}\right) \mathrm{e}^{2 t} \\
&\left.3\left(\left(c_{1}+\frac{c_{2}}{3}+3 c_{3}+c_{4}\right) t+\frac{c_{4}}{3}\right) \cos (3 t)+\frac{\sin (3 t)\left(t c_{3}+10 c_{1}+3 c_{2}+27 c_{3}+9 c_{4}\right)}{3}\right) \mathrm{e}^{2 t}
\end{aligned}
$$

Since no forcing function is given, then the final solution is $\vec{x}_{h}(t)$ above.

6.34.2 Solution using explicit Eigenvalue and Eigenvector method

This is a system of linear ODE's given as

$$
\vec{x}^{\prime}(t)=A \vec{x}(t)
$$

Or

$$
\left[\begin{array}{c}
x_{1}^{\prime}(t) \\
x_{2}^{\prime}(t) \\
x_{3}^{\prime}(t) \\
x_{4}^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cccc}
2 & 0 & -8 & -3 \\
-18 & -1 & 0 & 0 \\
-9 & -3 & -25 & -9 \\
33 & 10 & 90 & 32
\end{array}\right]\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]
$$

The first step is find the homogeneous solution. We start by finding the eigenvalues of A. This is done by solving the following equation for the eigenvalues λ

$$
\operatorname{det}(A-\lambda I)=0
$$

Expanding gives

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2 & 0 & -8 & -3 \\
-18 & -1 & 0 & 0 \\
-9 & -3 & -25 & -9 \\
33 & 10 & 90 & 32
\end{array}\right]-\lambda\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right)=0
$$

Therefore

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
2-\lambda & 0 & -8 & -3 \\
-18 & -1-\lambda & 0 & 0 \\
-9 & -3 & -25-\lambda & -9 \\
33 & 10 & 90 & 32-\lambda
\end{array}\right]\right)=0
$$

Which gives the characteristic equation

$$
\lambda^{4}-8 \lambda^{3}+42 \lambda^{2}-104 \lambda+169=0
$$

The roots of the above are the eigenvalues.

$$
\begin{aligned}
& \lambda_{1}=2+3 i \\
& \lambda_{2}=2-3 i
\end{aligned}
$$

This table summarises the above result

eigenvalue	algebraic multiplicity	type of eigenvalue
$2+3 i$	1	complex eigenvalue
$2-3 i$	1	complex eigenvalue

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue $\lambda_{1}=2-3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{r}
\left(\left[\begin{array}{cccc}
2 & 0 & -8 & -3 \\
-18 & -1 & 0 & 0 \\
-9 & -3 & -25 & -9 \\
33 & 10 & 90 & 32
\end{array}\right]-(2-3 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right.
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{gathered}
{\left[\begin{array}{cccc|c}
3 i & 0 & -8 & -3 & 0 \\
-18 & -3+3 i & 0 & 0 & 0 \\
-9 & -3 & -27+3 i & -9 & 0 \\
33 & 10 & 90 & 30+3 i & 0
\end{array}\right]} \\
R_{2}=-6 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
-9 & -3 & -27+3 i & -9 & 0 \\
33 & 10 & 90 & 30+3 i & 0
\end{array}\right] \\
R_{3}=-3 i R_{1}+R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
0 & -3 & -27+27 i & -9+9 i & 0 \\
33 & 10 & 90 & 30+3 i & 0
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
R_{4}=11 i R_{1}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
0 & -3 & -27+27 i & -9+9 i & 0 \\
0 & 10 & 90-88 i & 30-30 i & 0
\end{array}\right] \\
R_{3}=R_{3}+\left(-\frac{1}{2}-\frac{i}{2}\right) R_{2} \Longrightarrow\left[\begin{array}{cccc|l}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
0 & 0 & -3+3 i & 0 & 0 \\
0 & 10 & 90-88 i & 30-30 i & 0
\end{array}\right] \\
R_{4}=R_{4}+\left(\frac{5}{3}+\frac{5 i}{3}\right) R_{2} \Longrightarrow\left[\begin{array}{cccc|l|l}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
0 & 0 & -3+3 i & 0 & 0 \\
0 & 0 & 10-8 i & 0 & 0
\end{array}\right] \\
R_{4}=R_{4}+\left(3+\frac{i}{3}\right) R_{3} \Longrightarrow\left[\begin{array}{cccc|l}
3 i & 0 & -8 & -3 & 0 \\
0 & -3+3 i & 48 i & 18 i & 0 \\
0 & 0 & -3+3 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
3 i & 0 & -8 & -3 \\
0 & -3+3 i & 48 i & 18 i \\
0 & 0 & -3+3 i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=-i t, v_{2}=(-3+3 i) t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
(-3+3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
(-3+3 i) t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
(-3+3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
-3+3 i \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
-\mathrm{I} t \\
(-3+3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
-3+3 i \\
0 \\
1
\end{array}\right]
$$

Considering the eigenvalue $\lambda_{2}=2+3 i$
We need to solve $A \vec{v}=\lambda \vec{v}$ or $(A-\lambda I) \vec{v}=\overrightarrow{0}$ which becomes

$$
\left.\begin{array}{r}
{\left[\begin{array}{cccc}
2 & 0 & -8 & -3 \\
-18 & -1 & 0 & 0 \\
-9 & -3 & -25 & -9 \\
33 & 10 & 90 & 32
\end{array}\right]-(2+3 i)\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Now forward elimination is applied to solve for the eigenvector \vec{v}. The augmented matrix is

$$
\begin{aligned}
& {\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
-18 & -3-3 i & 0 & 0 & 0 \\
-9 & -3 & -27-3 i & -9 & 0 \\
33 & 10 & 90 & 30-3 i & 0
\end{array}\right]} \\
& R_{2}=6 i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
-9 & -3 & -27-3 i & -9 & 0 \\
33 & 10 & 90 & 30-3 i & 0
\end{array}\right] \\
& R_{3}=3 i R_{1}+R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
0 & -3 & -27-27 i & -9-9 i & 0 \\
33 & 10 & 90 & 30-3 i & 0
\end{array}\right] \\
& R_{4}=-11 i R_{1}+R_{4} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
0 & -3 & -27-27 i & -9-9 i & 0 \\
0 & 10 & 90+88 i & 30+30 i & 0
\end{array}\right] \\
& R_{3}=R_{3}+\left(-\frac{1}{2}+\frac{i}{2}\right) R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
0 & 0 & -3-3 i & 0 & 0 \\
0 & 10 & 90+88 i & 30+30 i & 0
\end{array}\right] \\
& R_{4}=R_{4}+\left(\frac{5}{3}-\frac{5 i}{3}\right) R_{2} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
0 & 0 & -3-3 i & 0 & 0 \\
0 & 0 & 10+8 i & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
R_{4}=R_{4}+\left(3-\frac{i}{3}\right) R_{3} \Longrightarrow\left[\begin{array}{cccc|c}
-3 i & 0 & -8 & -3 & 0 \\
0 & -3-3 i & -48 i & -18 i & 0 \\
0 & 0 & -3-3 i & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore the system in Echelon form is

$$
\left[\begin{array}{cccc}
-3 i & 0 & -8 & -3 \\
0 & -3-3 i & -48 i & -18 i \\
0 & 0 & -3-3 i & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The free variables are $\left\{v_{4}\right\}$ and the leading variables are $\left\{v_{1}, v_{2}, v_{3}\right\}$. Let $v_{4}=t$. Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation $\left\{v_{1}=i t, v_{2}=(-3-3 i) t, v_{3}=0\right\}$

Hence the solution is

$$
\left[\begin{array}{c}
\mathrm{I} t \\
(-3-3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
(-3-3 i) t \\
0 \\
t
\end{array}\right]
$$

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as

$$
\left[\begin{array}{c}
\mathrm{I} t \\
(-3-3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
i \\
-3-3 i \\
0 \\
1
\end{array}\right]
$$

Let $t=1$ the eigenvector becomes

$$
\left[\begin{array}{c}
\mathrm{I} t \\
(-3-3 \mathrm{I}) t \\
0 \\
t
\end{array}\right]=\left[\begin{array}{c}
i \\
-3-3 i \\
0 \\
1
\end{array}\right]
$$

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity m, and its geometric multiplicity k and the eigenvectors associated with the eigenvalue. If $m>k$ then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity k) does not equal the algebraic multiplicity m, and we need to determine an additional $m-k$ generalized eigenvectors for this eigenvalue.

eigenvalue	multiplicity			
	algebraic m	geometric k	defective?	eigenvectors
				Yes
$2-3 i$	2	1	$\left[\begin{array}{c}i \\ -3-3 i \\ 0 \\ 1\end{array}\right]$	
2			Yes	$\left[\begin{array}{c}-i \\ -3+3 i \\ 0 \\ 1\end{array}\right]$

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is

$$
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
$$

Which is written as

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
i \mathrm{e}^{(2+3 i) t} \\
(-3-3 i) \mathrm{e}^{(2+3 i) t} \\
0 \\
\mathrm{e}^{(2+3 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-i \mathrm{e}^{(2-3 i) t} \\
(-3+3 i) \mathrm{e}^{(2-3 i) t} \\
0 \\
\mathrm{e}^{(2-3 i) t}
\end{array}\right]
$$

Which becomes

$$
\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
x_{3}(t) \\
x_{4}(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{1} \mathrm{e}^{(2+3 i) t}-c_{2} \mathrm{e}^{(2-3 i) t}\right) \\
(-3-3 i) c_{1} \mathrm{e}^{(2+3 i) t}+(-3+3 i) c_{2} \mathrm{e}^{(2-3 i) t} \\
0 \\
c_{1} \mathrm{e}^{(2+3 i) t}+c_{2} \mathrm{e}^{(2-3 i) t}
\end{array}\right]
$$

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 252

```
dsolve([diff (x__ 1(t),t)=2*x__1(t)+0*x__ 2(t) -8*x__ 3(t)-3*x__ 4 (t), diff (x__ 2(t),t)=-18*x__1 (t)-
```

$x_{1}(t)=$
$-\frac{\mathrm{e}^{2 t}\left(3 \cos (3 t) c_{3} t+3 \cos (3 t) c_{4} t+3 \sin (3 t) c_{3} t-3 \sin (3 t) c_{4} t+3 c_{1} \cos (3 t)+3 c_{2} \cos (3 t)+\cos (3 t) c_{4}\right.}{18}$
$x_{2}(t)=\mathrm{e}^{2 t}\left(\cos (3 t) c_{4} t+\sin (3 t) c_{3} t+c_{2} \cos (3 t)+c_{1} \sin (3 t)\right)$
$x_{3}(t)=-\frac{\mathrm{e}^{2 t}\left(\cos (3 t) c_{3}+\cos (3 t) c_{4}+\sin (3 t) c_{3}-\sin (3 t) c_{4}\right)}{6}$
$x_{4}(t)$
$=\frac{\mathrm{e}^{2 t}\left(3 \cos (3 t) c_{3} t-3 \cos (3 t) c_{4} t-3 \sin (3 t) c_{3} t-3 \sin (3 t) c_{4} t+3 c_{1} \cos (3 t)-3 c_{2} \cos (3 t)+10 \cos (3 t) c^{2}\right.}{18}$

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 482

$$
\begin{aligned}
& \mathrm{x} 1(t) \rightarrow \frac{1}{2} e^{(2-3 i) t}\left(c_{1}\left(e^{6 i t}(1+3 i t)-3 i t+1\right)+i\left(3 c_{3}+c_{4}\right)\left(-1+e^{6 i t}\right)\right. \\
& \left.+t\left(i c_{2}\left(-1+e^{6 i t}\right)+c_{3}\left((1+9 i) e^{6 i t}+(1-9 i)\right)+3 i c_{4}\left(-1+e^{6 i t}\right)\right)\right) \\
& \mathrm{x} 2(t) \rightarrow-\frac{1}{2} e^{(2-3 i) t}\left(c_{1}\left((9-9 i) t+e^{6 i t}((9+9 i) t-3 i)+3 i\right)\right. \\
& +c_{2}\left((3-3 i) t+e^{6 i t}(-1+(3+3 i) t)-1\right)+10 i c_{3} e^{6 i t}+(30+24 i) c_{3} e^{6 i t} t \\
& \left.+(30-24 i) c_{3} t+3 i c_{4} e^{6 i t}+(9+9 i) c_{4} e^{6 i t} t+(9-9 i) c_{4} t-10 i c_{3}-3 i c_{4}\right) \\
& \mathrm{x} 3(t) \rightarrow \frac{1}{2} e^{(2-3 i) t}\left(3 i c_{1}\left(-1+e^{6 i t}\right)+i c_{2}\left(-1+e^{6 i t}\right)+(1+9 i) c_{3} e^{6 i t}+3 i c_{4} e^{6 i t}+(1-9 i) c_{3}\right. \\
& \left.-3 i c_{4}\right) \\
& \mathrm{x} 4(t) \rightarrow \frac{1}{2} e^{(2-3 i) t}\left(c_{1}\left(3 t+e^{6 i t}(3 t-10 i)+10 i\right)+c_{2}\left(t+e^{6 i t}(t-3 i)+3 i\right)-27 i c_{3} e^{6 i t}\right. \\
& \left.+(9-i) c_{3} e^{6 i t} t+(9+i) c_{3} t+(1-9 i) c_{4} e^{6 i t}+3 c_{4} e^{6 i t} t+3 c_{4} t+27 i c_{3}+(1+9 i) c_{4}\right)
\end{aligned}
$$

7 Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
7.1 problem problem 1 1154
7.2 problem problem 2 1163
7.3 problem problem 3 1172
7.4 problem problem 4 1181
7.5 problem problem 5 1190
7.6 problem problem 6 1198
7.7 problem problem 7 1207
7.8 problem problem 8 1215
7.9 problem problem 9 1224
7.10 problem problem 10 1233
7.11 problem problem 11 1242
7.12 problem problem 12 1252
7.13 problem problem 13 1262
7.14 problem problem 14 1272
7.15 problem problem 15 1283
7.16 problem problem 16 1289
7.17 problem problem 17 1295
7.18 problem problem 18 1298
7.19 problem problem 19 1301
7.20 problem problem 20 1312
7.21 problem problem 21 1323
7.22 problem problem 22 1334
7.23 problem problem 23 1345
7.24 problem problem 26(a) 1357

7.1 problem problem 1

7.1.1 Solving as series ode . 1154
7.1.2 Maple step by step solution . 1161

Internal problem ID [392]
Internal file name [DUTPUT/392_Sunday_June_05_2022_01_40_28_AM_3647982/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.

7.1.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y(0) \\
& F_{2}=y(0) \\
& F_{3}=y(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-1 \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
a_{1}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{1}=a_{0}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{120}
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}-a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{0} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 70: Slope field plot
Verification of solutions

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x)=y(x),y(x),type='series',x=0);
```

$$
y(x)=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 37
AsymptoticDSolveValue[y'[x]==y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)
$$

7.2 problem problem 2

7.2.1 Solving as series ode . 1163
7.2.2 Maple step by step solution . 1170

Internal problem ID [393]
Internal file name [OUTPUT/393_Sunday_June_05_2022_01_40_29_AM_3185101/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
y^{\prime}-4 y=0
$$

With the expansion point for the power series method at $x=0$.

7.2.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =16 y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =64 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =256 y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =1024 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=4 y(0) \\
& F_{1}=16 y(0) \\
& F_{2}=64 y(0) \\
& F_{3}=256 y(0) \\
& F_{4}=1024 y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-4 y & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-4 \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{4 a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
a_{1}-4 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{1}=4 a_{0}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=8 a_{0}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{32 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{32 a_{0}}{3}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{128 a_{0}}{15}
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}-4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{256 a_{0}}{45}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+4 a_{0} x+8 a_{0} x^{2}+\frac{32}{3} a_{0} x^{3}+\frac{32}{3} a_{0} x^{4}+\frac{128}{15} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 71: Slope field plot
Verification of solutions

$$
y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}-4 y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=4
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 4 d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=4 x+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{4 x+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve(diff(y(x),x)=4*y(x),y(x),type='series',x=0);
```

$$
y(x)=\left(1+4 x+8 x^{2}+\frac{32}{3} x^{3}+\frac{32}{3} x^{4}+\frac{128}{15} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 37
AsymptoticDSolveValue[y'[x]==4*y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{128 x^{5}}{15}+\frac{32 x^{4}}{3}+\frac{32 x^{3}}{3}+8 x^{2}+4 x+1\right)
$$

7.3 problem problem 3

7.3.1 Solving as series ode . 1172
7.3.2 Maple step by step solution . 1179

Internal problem ID [394]
Internal file name [OUTPUT/394_Sunday_June_05_2022_01_40_30_AM_85759581/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_quadrature]
```

$$
2 y^{\prime}+3 y=0
$$

With the expansion point for the power series method at $x=0$.

7.3.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-\frac{3 y}{2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{9 y}{4} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{27 y}{8} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{81 y}{16} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{243 y}{32}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{3 y(0)}{2} \\
& F_{1}=\frac{9 y(0)}{4} \\
& F_{2}=-\frac{27 y(0)}{8} \\
& F_{3}=\frac{81 y(0)}{16} \\
& F_{4}=-\frac{243 y(0)}{32}
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{3 y}{2} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{3}{2} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\frac{3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)}{2}=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} \frac{3 a_{n} x^{n}}{2}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} \frac{3 a_{n} x^{n}}{2}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1}+\frac{3 a_{n}}{2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=-\frac{3 a_{n}}{2(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
a_{1}+\frac{3 a_{0}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{1}=-\frac{3 a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}+\frac{3 a_{1}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{9 a_{0}}{8}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}+\frac{3 a_{2}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{9 a_{0}}{16}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}+\frac{3 a_{3}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{27 a_{0}}{128}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}+\frac{3 a_{4}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{81 a_{0}}{1280}
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}+\frac{3 a_{5}}{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{81 a_{0}}{5120}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}-\frac{3}{2} a_{0} x+\frac{9}{8} a_{0} x^{2}-\frac{9}{16} a_{0} x^{3}+\frac{27}{128} a_{0} x^{4}-\frac{81}{1280} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
y & =\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.3.2 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{3 y}{2}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-\frac{3}{2}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int-\frac{3}{2} d x+c_{1}$
- Evaluate integral

$$
\ln (y)=-\frac{3 x}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\frac{3 x}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve(2*diff (y (x),x)+3*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{3}{2} x+\frac{9}{8} x^{2}-\frac{9}{16} x^{3}+\frac{27}{128} x^{4}-\frac{81}{1280} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41
AsymptoticDSolveValue[2*y' $[\mathrm{x}]+3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(-\frac{81 x^{5}}{1280}+\frac{27 x^{4}}{128}-\frac{9 x^{3}}{16}+\frac{9 x^{2}}{8}-\frac{3 x}{2}+1\right)
$$

7.4 problem problem 4

7.4.1 Solving as series ode . 1181
7.4.2 Maple step by step solution . 1188

Internal problem ID [395]
Internal file name [OUTPUT/395_Sunday_June_05_2022_01_40_31_AM_59354872/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
2 y x+y^{\prime}=0
$$

With the expansion point for the power series method at $x=0$.

7.4.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-2 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\left(4 x^{2}-2\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =\left(-8 x^{3}+12 x\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =4 y\left(4 x^{4}-12 x^{2}+3\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-32 x y\left(x^{4}-5 x^{2}+\frac{15}{4}\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y(0) \\
& F_{2}=0 \\
& F_{3}=12 y(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
2 y x+y^{\prime} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=2 x \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
& \sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
& \sum_{n=0}^{\infty} 2 x^{1+n} a_{n}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(1+n) a_{1+n}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{1+n}, gives

$$
\begin{equation*}
a_{1+n}=-\frac{2 a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
2 a_{2}+2 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-a_{0}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=0
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{2}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{6}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}-a_{0} x^{2}+\frac{1}{2} a_{0} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-x^{2}+\frac{1}{2} x^{4}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.4.2 Maple step by step solution

Let's solve

$$
2 y x+y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-2 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-x^{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 21

```
Order:=6;
dsolve(diff(y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-x^{2}+\frac{1}{2} x^{4}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 20
AsymptoticDSolveValue $[y$ ' $[x]+2 * x * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{4}}{2}-x^{2}+1\right)
$$

7.5 problem problem 5

7.5.1 Solving as series ode . 1190
7.5.2 Maple step by step solution . 1196

Internal problem ID [396]
Internal file name [OUTPUT/396_Sunday_June_05_2022_01_40_32_AM_23390871/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.

7.5.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =x y\left(x^{3}+2\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =y\left(x^{6}+6 x^{3}+2\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =x^{2} y\left(x^{6}+12 x^{3}+20\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =y\left(x^{9}+20 x^{6}+80 x^{3}+40\right) x
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=2 y(0) \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+\frac{x^{3}}{3}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-x^{2} y & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-x^{2} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+1) a_{n+1}-a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n-2}}{n+1} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
3 a_{3}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
4 a_{4}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=4$ the recurrence equation gives

$$
5 a_{5}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=5$ the recurrence equation gives

$$
6 a_{6}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{18}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+\frac{1}{3} a_{0} x^{3}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{3}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{x^{3}}{3}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{3}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 74: Slope field plot
Verification of solutions

$$
y=\left(1+\frac{x^{3}}{3}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{3}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.5.2 Maple step by step solution

Let's solve

$$
y^{\prime}-x^{2} y=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Separate variables

$$
\frac{y^{\prime}}{y}=x^{2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{x^{3}}{3}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{3}}{3}+c_{1}}$

Maple trace
`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
Order:=6;
dsolve(diff(y(x),x)=x^2*y(x),y(x),type='series',x=0);
```

$$
y(x)=\left(1+\frac{x^{3}}{3}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 15
AsymptoticDSolveValue[y'[x]==x^2*y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{x^{3}}{3}+1\right)
$$

7.6 problem problem 6

7.6.1 Solving as series ode . 1198
7.6.2 Maple step by step solution . 1205

Internal problem ID [397]
Internal file name [OUTPUT/397_Sunday_June_05_2022_01_40_33_AM_28716630/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
(-2+x) y^{\prime}+y=0
$$

With the expansion point for the power series method at $x=0$.

7.6.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-\frac{y}{-2+x} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{2 y}{(-2+x)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{6 y}{(-2+x)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{24 y}{(-2+x)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{120 y}{(-2+x)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=\frac{y(0)}{2} \\
& F_{1}=\frac{y(0)}{2} \\
& F_{2}=\frac{3 y(0)}{4} \\
& F_{3}=\frac{3 y(0)}{2} \\
& F_{4}=\frac{15 y(0)}{4}
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{y}{-2+x} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{1}{-2+x} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(-2+x) y^{\prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(-2+x)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right)=\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
-2 a_{1}+a_{0} & =0 \\
a_{1} & =\frac{a_{0}}{2}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
-2(n+1) a_{n+1}+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}}{2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
-4 a_{2}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{4}
$$

For $n=2$ the recurrence equation gives

$$
-6 a_{3}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
-8 a_{4}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{16}
$$

For $n=4$ the recurrence equation gives

$$
-10 a_{5}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{32}
$$

For $n=5$ the recurrence equation gives

$$
-12 a_{6}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{64}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+\frac{1}{2} a_{0} x+\frac{1}{4} a_{0} x^{2}+\frac{1}{8} a_{0} x^{3}+\frac{1}{16} a_{0} x^{4}+\frac{1}{32} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.6.2 Maple step by step solution

Let's solve

$$
(-2+x) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Integrate both sides with respect to x

$$
\int\left((-2+x) y^{\prime}+y\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
(-2+x) y=c_{1}
$$

- \quad Solve for y

$$
y=\frac{c_{1}}{-2+x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve((x-2)*diff (y(x),x)+y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(1+\frac{1}{2} x+\frac{1}{4} x^{2}+\frac{1}{8} x^{3}+\frac{1}{16} x^{4}+\frac{1}{32} x^{5}\right) y(0)+O\left(x^{6}\right)
\]
```

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41
AsymptoticDSolveValue $[(x-2) * y '[x]+y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{32}+\frac{x^{4}}{16}+\frac{x^{3}}{8}+\frac{x^{2}}{4}+\frac{x}{2}+1\right)
$$

7.7 problem problem 7

7.7.1 Solving as series ode . 1207
7.7.2 Maple step by step solution . 1214

Internal problem ID [398]
Internal file name [OUTPUT/398_Sunday_June_05_2022_01_40_34_AM_60817607/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
(2 x-1) y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.

7.7.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-\frac{2 y}{2 x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{8 y}{(2 x-1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{48 y}{(2 x-1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{384 y}{(2 x-1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{3840 y}{(2 x-1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=8 y(0) \\
& F_{2}=48 y(0) \\
& F_{3}=384 y(0) \\
& F_{4}=3840 y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{2 y}{2 x-1} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{2}{2 x-1} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(2 x-1) y^{\prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(2 x-1)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)=\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
-a_{1}+2 a_{0} & =0 \\
a_{1} & =2 a_{0}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
2 n a_{n}-(n+1) a_{n+1}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=2 a_{n} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
4 a_{1}-2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=4 a_{0}
$$

For $n=2$ the recurrence equation gives

$$
6 a_{2}-3 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=8 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
8 a_{3}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=16 a_{0}
$$

For $n=4$ the recurrence equation gives

$$
10 a_{4}-5 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=32 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
12 a_{5}-6 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=64 a_{0}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=32 a_{0} x^{5}+16 a_{0} x^{4}+8 a_{0} x^{3}+4 a_{0} x^{2}+2 a_{0} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.7.2 Maple step by step solution

Let's solve

$$
(2 x-1) y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left((2 x-1) y^{\prime}+2 y\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
y(2 x-1)=c_{1}
$$

- \quad Solve for y

$$
y=\frac{c_{1}}{2 x-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve((2*x-1)*diff (y (x),x)+2*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 31

```
AsymptoticDSolveValue[(2*x-1)*y'[x]+2*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{1}\left(32 x^{5}+16 x^{4}+8 x^{3}+4 x^{2}+2 x+1\right)
$$

7.8 problem problem 8

7.8.1 Solving as series ode . 1215
7.8.2 Maple step by step solution . 1222

Internal problem ID [399]
Internal file name [DUTPUT/399_Sunday_June_05_2022_01_40_35_AM_1587067/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

$$
2(x+1) y^{\prime}-y=0
$$

With the expansion point for the power series method at $x=0$.

7.8.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =\frac{y}{2+2 x} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =-\frac{y}{4(x+1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =\frac{3 y}{8(x+1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =-\frac{15 y}{16(x+1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =\frac{105 y}{32(x+1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=\frac{y(0)}{2} \\
& F_{1}=-\frac{y(0)}{4} \\
& F_{2}=\frac{3 y(0)}{8} \\
& F_{3}=-\frac{15 y(0)}{16} \\
& F_{4}=\frac{105 y(0)}{32}
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{y}{2+2 x} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-\frac{1}{2+2 x} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(2+2 x) y^{\prime}-y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(2+2 x)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty} 2 n a_{n} x^{n-1}=\sum_{n=0}^{\infty} 2(n+1) a_{n+1} x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
2 a_{1}-a_{0} & =0 \\
a_{1} & =\frac{a_{0}}{2}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
2(n+1) a_{n+1}+2 n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=-\frac{a_{n}(2 n-1)}{2(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
4 a_{2}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-\frac{a_{0}}{8}
$$

For $n=2$ the recurrence equation gives

$$
6 a_{3}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{16}
$$

For $n=3$ the recurrence equation gives

$$
8 a_{4}+5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5 a_{0}}{128}
$$

For $n=4$ the recurrence equation gives

$$
10 a_{5}+7 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{0}}{256}
$$

For $n=5$ the recurrence equation gives

$$
12 a_{6}+9 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{21 a_{0}}{1024}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+\frac{1}{2} a_{0} x-\frac{1}{8} a_{0} x^{2}+\frac{1}{16} a_{0} x^{3}-\frac{5}{128} a_{0} x^{4}+\frac{7}{256} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.8.2 Maple step by step solution

Let's solve

$$
(2+2 x) y^{\prime}-y=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{2+2 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{2+2 x} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{\ln (x+1)}{2}+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{\frac{\ln (x+1)}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 36

```
Order:=6;
dsolve(2*(x+1)*diff (y(x), x)=y(x),y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}+\frac{7}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41
AsymptoticDSolveValue[2*(x+1)*y'[x]==y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{7 x^{5}}{256}-\frac{5 x^{4}}{128}+\frac{x^{3}}{16}-\frac{x^{2}}{8}+\frac{x}{2}+1\right)
$$

7.9 problem problem 9

7.9.1 Solving as series ode . 1224
7.9.2 Maple step by step solution . 1231

Internal problem ID [400]
Internal file name [OUTPUT/400_Sunday_June_05_2022_01_40_36_AM_15613461/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]

$$
(x-1) y^{\prime}+2 y=0
$$

With the expansion point for the power series method at $x=0$.

7.9.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =-\frac{2 y}{x-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{6 y}{(x-1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{24 y}{(x-1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{120 y}{(x-1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{720 y}{(x-1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=6 y(0) \\
& F_{2}=24 y(0) \\
& F_{3}=120 y(0) \\
& F_{4}=720 y(0)
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{2 y}{x-1} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{2}{x-1} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(x-1) y^{\prime}+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(x-1)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)=\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
-a_{1}+2 a_{0} & =0 \\
a_{1} & =2 a_{0}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}-(n+1) a_{n+1}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}(n+2)}{n+1} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
3 a_{1}-2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=3 a_{0}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}-3 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=4 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
5 a_{3}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=5 a_{0}
$$

For $n=4$ the recurrence equation gives

$$
6 a_{4}-5 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=6 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
7 a_{5}-6 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=7 a_{0}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=6 a_{0} x^{5}+5 a_{0} x^{4}+4 a_{0} x^{3}+3 a_{0} x^{2}+2 a_{0} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 78: Slope field plot

Verification of solutions

$$
y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.9.2 Maple step by step solution

Let's solve

$$
(x-1) y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-\frac{2}{x-1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-\frac{2}{x-1} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-2 \ln (x-1)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{c_{1}}}{(x-1)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve((x-1)*diff (y ( }\textrm{x}),\textrm{x})+2*y(x)=0,y(x),type='series', x=0)
```

$$
y(x)=\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right) y(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 31
AsymptoticDSolveValue $[(x-1) * y '[x]+2 * y[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(6 x^{5}+5 x^{4}+4 x^{3}+3 x^{2}+2 x+1\right)
$$

7.10 problem problem 10

7.10.1 Solving as series ode . 1233
7.10.2 Maple step by step solution . 1240

Internal problem ID [401]
Internal file name [OUTPUT/401_Sunday_June_05_2022_01_40_36_AM_2674200/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type

```
[_separable]
```

$$
2(x-1) y^{\prime}-3 y=0
$$

With the expansion point for the power series method at $x=0$.

7.10.1 Solving as series ode

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let

$$
y^{\prime}=f(x, y)
$$

Where $f(x, y)$ is analytic at expansion point x_{0}. We can always shift to $x_{0}=0$ if x_{0} is not zero. So from now we assume $x_{0}=0$. Assume also that $y\left(x_{0}\right)=y_{0}$. Using Taylor series

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f(x, y)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
$$

For example, for $n=1$ we see that

$$
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
$$

Which is (1). And when $n=2$

$$
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
$$

Which is (2) and so on. Therefore $(4,5)$ can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
$$

Hence

$$
\begin{aligned}
F_{0} & =\frac{3 y}{2(x-1)} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{3 y}{4(x-1)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =-\frac{3 y}{8(x-1)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{9 y}{16(x-1)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =-\frac{45 y}{32(x-1)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x(0)=0$ and $y(0)=y(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{3 y(0)}{2} \\
& F_{1}=\frac{3 y(0)}{4} \\
& F_{2}=\frac{3 y(0)}{8} \\
& F_{3}=\frac{9 y(0)}{16} \\
& F_{4}=\frac{45 y(0)}{32}
\end{aligned}
$$

Substituting all the above in (6) and simplifying gives the solution as

$$
y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Since $x=0$ is also an ordinary point, then standard power series can also be used. Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{3 y}{2 x-2} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-\frac{3}{2 x-2} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as

$$
(2 x-2) y^{\prime}-3 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
(2 x-2)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right)=\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{aligned}
-2 a_{1}-3 a_{0} & =0 \\
a_{1} & =-\frac{3 a_{0}}{2}
\end{aligned}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
2 n a_{n}-2(n+1) a_{n+1}-3 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+1}, gives

$$
\begin{equation*}
a_{n+1}=\frac{a_{n}(2 n-3)}{2 n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
-a_{1}-4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{3 a_{0}}{8}
$$

For $n=2$ the recurrence equation gives

$$
a_{2}-6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{16}
$$

For $n=3$ the recurrence equation gives

$$
3 a_{3}-8 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{3 a_{0}}{128}
$$

For $n=4$ the recurrence equation gives

$$
5 a_{4}-10 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{3 a_{0}}{256}
$$

For $n=5$ the recurrence equation gives

$$
7 a_{5}-12 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{7 a_{0}}{1024}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}-\frac{3}{2} a_{0} x+\frac{3}{8} a_{0} x^{2}+\frac{1}{16} a_{0} x^{3}+\frac{3}{128} a_{0} x^{4}+\frac{3}{256} a_{0} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) y(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 79: Slope field plot

Verification of solutions

$$
y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) c_{1}+O\left(x^{6}\right)
$$

Verified OK.

7.10.2 Maple step by step solution

Let's solve

$$
(2 x-2) y^{\prime}-3 y=0
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{3}{2 x-2}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{3}{2 x-2} d x+c_{1}
$$

- Evaluate integral
$\ln (y)=\frac{3 \ln (x-1)}{2}+c_{1}$
- \quad Solve for y

$$
y=\mathrm{e}^{\frac{3 \ln (x-1)}{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 36

```
Order:=6;
dsolve(2*(x-1)*diff (y (x), x)=3*y(x),y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{3}{2} x+\frac{3}{8} x^{2}+\frac{1}{16} x^{3}+\frac{3}{128} x^{4}+\frac{3}{256} x^{5}\right) y(0)+O\left(x^{6}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 41
AsymptoticDSolveValue[2*(x-1)*y'[x]==3*y[x],y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1}\left(\frac{3 x^{5}}{256}+\frac{3 x^{4}}{128}+\frac{x^{3}}{16}+\frac{3 x^{2}}{8}-\frac{3 x}{2}+1\right)
$$

7.11 problem problem 11

7.11.1 Maple step by step solution . 1249

Internal problem ID [402]
Internal file name [OUTPUT/402_Sunday_June_05_2022_01_40_37_AM_74838344/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{46}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{47}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y^{\prime}(0) \\
& F_{2}=y(0) \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} a_{n} x^{n} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
y & =\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 80: Slope field plot

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}+\frac{1}{720} x^{6}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

7.11.1 Maple step by step solution

Let's solve
$y^{\prime \prime}=y$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y=0$
- Characteristic polynomial of ODE

$$
r^{2}-1=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r+1)=0
$$

- Roots of the characteristic polynomial $r=(-1,1)$
- 1 st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-x}
$$

- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x), x$2)=y(x),y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue [y' ' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{24}+\frac{x^{2}}{2}+1\right)
$$

7.12 problem problem 12

7.12.1 Maple step by step solution . 1259

Internal problem ID [403]
Internal file name [OUTPUT/403_Sunday_June_05_2022_01_40_38_AM_64020814/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{49}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{50}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =16 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =16 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =64 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=4 y(0) \\
& F_{1}=4 y^{\prime}(0) \\
& F_{2}=16 y(0) \\
& F_{3}=16 y^{\prime}(0) \\
& F_{4}=64 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}+\frac{4}{45} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{4 a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-4 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=2 a_{0}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{2 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{2 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{4 a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{4 a_{1}}{315}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+2 a_{0} x^{2}+\frac{2}{3} a_{1} x^{3}+\frac{2}{3} a_{0} x^{4}+\frac{2}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) a_{0}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+2 x^{2}+\frac{2}{3} x^{4}+\frac{4}{45} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 81: Slope field plot

Verification of solutions

$$
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}+\frac{4}{45} x^{6}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

7.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=4 y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-4 y=0$
- Characteristic polynomial of ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial $r=(-2,2)$
- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- 2nd solution of the ODE
$y_{2}(x)=\mathrm{e}^{2 x}$
- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x) , x$2)=4*y(x),y(x),type='series', x=0);
\[
y(x)=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) y(0)+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40
AsymptoticDSolveValue $\left[\mathrm{y}^{\prime}\right.$ ' $\left.[\mathrm{x}]==4 * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{2 x^{5}}{15}+\frac{2 x^{3}}{3}+x\right)+c_{1}\left(\frac{2 x^{4}}{3}+2 x^{2}+1\right)
$$

7.13 problem problem 13

7.13.1 Maple step by step solution . 1269

Internal problem ID [404]
Internal file name [OUTPUT/404_Sunday_June_05_2022_01_40_39_AM_89349105/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second__order_ode_can__be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}+9 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{52}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{53}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-9 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-9 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =81 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =81 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-729 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-9 y(0) \\
& F_{1}=-9 y^{\prime}(0) \\
& F_{2}=81 y(0) \\
& F_{3}=81 y^{\prime}(0) \\
& F_{4}=-729 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}-\frac{81}{80} x^{6}\right) y(0)+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-9\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 9 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} 9 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+9 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{9 a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}+9 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-\frac{9 a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+9 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{3 a_{1}}{2}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+9 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{27 a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+9 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{27 a_{1}}{40}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+9 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{81 a_{0}}{80}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+9 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{81 a_{1}}{560}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{9}{2} a_{0} x^{2}-\frac{3}{2} a_{1} x^{3}+\frac{27}{8} a_{0} x^{4}+\frac{27}{40} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}\right) a_{0}+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}\right) c_{1}+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}-\frac{81}{80} x^{6}\right) y(0)+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}\right) c_{1}+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 82: Slope field plot

Verification of solutions

$$
y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}-\frac{81}{80} x^{6}\right) y(0)+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}\right) c_{1}+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

7.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-9 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+9 y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+9=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-36})}{2}$
- Roots of the characteristic polynomial
$r=(-3 \mathrm{I}, 3 \mathrm{I})$
- 1st solution of the ODE
$y_{1}(x)=\cos (3 x)$
- $\quad 2$ nd solution of the ODE
$y_{2}(x)=\sin (3 x)$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \cos (3 x)+c_{2} \sin (3 x)$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff(y(x),x$2)+9*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{9}{2} x^{2}+\frac{27}{8} x^{4}\right) y(0)+\left(x-\frac{3}{2} x^{3}+\frac{27}{40} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+9 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{27 x^{5}}{40}-\frac{3 x^{3}}{2}+x\right)+c_{1}\left(\frac{27 x^{4}}{8}-\frac{9 x^{2}}{2}+1\right)
$$

7.14 problem problem 14

7.14.1 Maple step by step solution . 1280

Internal problem ID [405]
Internal file name [OUTPUT/405_Sunday_June_05_2022_01_40_40_AM_87187974/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+y=x
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{55}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{56}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =1-y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x+y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =-1+y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =x-y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=1-y^{\prime}(0) \\
& F_{2}=y(0) \\
& F_{3}=y^{\prime}(0)-1 \\
& F_{4}=-y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as $y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Expanding x as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
x & =x+\ldots \\
& =x
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
\left((n+2) a_{n+2}(n+1)+a_{n}\right) x^{n}=x \tag{4}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
\begin{array}{r}
\left(2 a_{2}+a_{0}\right) 1=0 \\
2 a_{2}+a_{0}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
\begin{array}{r}
\left(6 a_{3}+a_{1}\right) x=x \\
6 a_{3}+a_{1}=1
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{1}{6}-\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
\begin{array}{r}
\left(12 a_{4}+a_{2}\right) x^{2}=0 \\
12 a_{4}+a_{2}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
\begin{array}{r}
\left(20 a_{5}+a_{3}\right) x^{3}=0 \\
20 a_{5}+a_{3}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{1}{120}+\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
\begin{array}{r}
\left(30 a_{6}+a_{4}\right) x^{4}=0 \\
30 a_{6}+a_{4}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
\begin{array}{r}
\left(42 a_{7}+a_{5}\right) x^{5}=0 \\
42 a_{7}+a_{5}=0
\end{array}
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{1}{5040}-\frac{a_{1}}{5040}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}+\left(\frac{1}{6}-\frac{a_{1}}{6}\right) x^{3}+\frac{a_{0} x^{4}}{24}+\left(-\frac{1}{120}+\frac{a_{1}}{120}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O \\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Figure 83: Slope field plot

Verification of solutions

$y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)$
Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)
$$

Verified OK.

7.14.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=x-y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y=x$
- Characteristic polynomial of homogeneous ODE
$r^{2}+1=0$
- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-4})}{2}$
- Roots of the characteristic polynomial

$$
r=(-\mathrm{I}, \mathrm{I})
$$

- \quad 1st solution of the homogeneous ODE

$$
y_{1}(x)=\cos (x)
$$

- \quad 2nd solution of the homogeneous ODE

$$
y_{2}(x)=\sin (x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

- \quad Substitute in solutions of the homogeneous ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+y_{p}(x)
$$

Find a particular solution $y_{p}(x)$ of the ODE

- Use variation of parameters to find y_{p} here $f(x)$ is the forcing function

$$
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x\right]
$$

- Wronskian of solutions of the homogeneous equation

$$
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
$$

- Compute Wronskian

$$
W\left(y_{1}(x), y_{2}(x)\right)=1
$$

- Substitute functions into equation for $y_{p}(x)$

$$
y_{p}(x)=-\cos (x)\left(\int \sin (x) x d x\right)+\sin (x)\left(\int x \cos (x) d x\right)
$$

- Compute integrals

$$
y_{p}(x)=x
$$

- Substitute particular solution into general solution to ODE

$$
y=c_{1} \cos (x)+c_{2} \sin (x)+x
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
    checking if the LODE has constant coefficients
    <- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 38

```
Order:=6;
dsolve(diff(y(x),x$2)+y(x)=x,y(x),type='series', x=0);
```

$y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+\frac{x^{3}}{6}-\frac{x^{5}}{120}+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 56
AsymptoticDSolveValue [y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow-\frac{x^{5}}{120}+\frac{x^{3}}{6}+c_{2}\left(\frac{x^{5}}{120}-\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)
$$

7.15 problem problem 15

7.15.1 Solving as series ode . 1283
7.15.2 Maple step by step solution . 1287

Internal problem ID [406]
Internal file name [OUTPUT/406_Sunday_June_05_2022_01_40_41_AM_98177842/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Regular singular point"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=0$.

7.15.1 Solving as series ode

Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{y}{x} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{1}{x} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When
$x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not.

Since $x=0$ is not an ordinary point, we now check to see if it is a regular singular point. $x q(x)=1$ has a Taylor series around $x=0$. Since $x=0$ is regular singular point, then Frobenius power series is used. Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
$$

Expanding the second term in (1) gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)-1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2) this gives

$$
(n+r) a_{n} x^{n+r-1}+x^{n+r-1} a_{n}=0
$$

When $n=0$ the above becomes

$$
r a_{0} x^{-1+r}+x^{-1+r} a_{0}=0
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
(r+1) x^{-1+r}=0
$$

Since the above is true for all x then the indicial equation simplifies to

$$
r+1=0
$$

Solving for r gives the root of the indicial equation as

$$
r=-1
$$

We start by finding y_{h}. Replacing $r=-1$ found above results in

$$
\left(\sum_{n=0}^{\infty}(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n-2} a_{n}\right)=0
$$

From the above we see that there is no recurrence relation since there is only one summation term. Therefore all a_{n} terms are zero except for a_{0}. Hence

$$
y_{h}=a_{0} x^{r}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=a_{0}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
$$

At $x=0$ the solution above becomes

$$
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot

Verification of solutions

$$
y=c_{1}\left(\frac{1}{x}+O\left(x^{6}\right)\right)
$$

Verified OK.

7.15.2 Maple step by step solution

Let's solve

$$
y^{\prime}+\frac{y}{x}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=-\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-\frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{c_{1}}}{x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15

```
Order:=6;
dsolve(x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\frac{c_{1}}{x}+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 9
AsymptoticDSolveValue[x*y'[x]+y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow \frac{c_{1}}{x}
$$

7.16 problem problem 16

7.16.1 Solving as series ode . 1289
7.16.2 Maple step by step solution . 1293

Internal problem ID [407]
Internal file name [OUTPUT/407_Sunday_June_05_2022_01_40_42_AM_95030683/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Regular singular point"

Maple gives the following as the ode type
[_separable]

$$
2 y^{\prime} x-y=0
$$

With the expansion point for the power series method at $x=0$.

7.16.1 Solving as series ode

Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{y}{2 x} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-\frac{1}{2 x} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When
$x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not.

Since $x=0$ is not an ordinary point, we now check to see if it is a regular singular point. $x q(x)=-\frac{1}{2}$ has a Taylor series around $x=0$. Since $x=0$ is regular singular point, then Frobenius power series is used. Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{2 x}=0 \tag{1}
\end{equation*}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{2 x}=0 \tag{1}
\end{equation*}
$$

Expanding the second term in (1) gives

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+-\frac{1}{2} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\frac{1}{x} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r-1} a_{n}}{2}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r-1$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r-1} and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of x are the same and equal to $n+r-1$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r-1} a_{n}}{2}\right)=0 \tag{2~B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2) this gives

$$
(n+r) a_{n} x^{n+r-1}-\frac{x^{n+r-1} a_{n}}{2}=0
$$

When $n=0$ the above becomes

$$
r a_{0} x^{-1+r}-\frac{x^{-1+r} a_{0}}{2}=0
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r-\frac{1}{2}\right) x^{-1+r}=0
$$

Since the above is true for all x then the indicial equation simplifies to

$$
r-\frac{1}{2}=0
$$

Solving for r gives the root of the indicial equation as

$$
r=\frac{1}{2}
$$

We start by finding y_{h}. Replacing $r=\frac{1}{2}$ found above results in

$$
\left(\sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right) a_{n} x^{n-\frac{1}{2}}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n-\frac{1}{2}} a_{n}}{2}\right)=0
$$

From the above we see that there is no recurrence relation since there is only one summation term. Therefore all a_{n} terms are zero except for a_{0}. Hence

$$
y_{h}=a_{0} x^{r}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=a_{0}\left(\sqrt{x}+O\left(x^{6}\right)\right)
$$

At $x=0$ the solution above becomes

$$
y=c_{1}\left(\sqrt{x}+O\left(x^{6}\right)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1}\left(\sqrt{x}+O\left(x^{6}\right)\right) \tag{1}
\end{equation*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
y=c_{1}\left(\sqrt{x}+O\left(x^{6}\right)\right)
$$

Verified OK.

7.16.2 Maple step by step solution

Let's solve

$$
y^{\prime}-\frac{y}{2 x}=0
$$

- Highest derivative means the order of the ODE is 1

```
y
```

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{2 x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{2 x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{\ln (x)}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{\mathrm{e}^{-2 c_{1}}}}{\mathrm{e}^{-2 c_{1}}}, y=-\frac{\sqrt{\mathrm{e}^{-2 c_{1}}}}{\mathrm{e}^{-2 c_{1}}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15

```
Order:=6;
dsolve(2*x*diff (y (x),x)=y(x),y(x),type='series',x=0);
```

$$
y(x)=c_{1} \sqrt{x}+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 11
AsymptoticDSolveValue [2*x*y' $[\mathrm{x}]==\mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1} \sqrt{x}
$$

7.17 problem problem 17

7.17.1 Solving as series ode . 1295
7.17.2 Maple step by step solution . 1296

Internal problem ID [408]
Internal file name [OUTPUT/408_Sunday_June_05_2022_01_40_43_AM_15302160/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 17.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "first order ode series method. Irregular singular point"

Maple gives the following as the ode type

```
[_separable]
```

Unable to solve or complete the solution.

$$
y^{\prime} x^{2}+y=0
$$

With the expansion point for the power series method at $x=0$.

7.17.1 Solving as series ode

Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}+\frac{y}{x^{2}} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=\frac{1}{x^{2}} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not.
Since $x=0$ is not an ordinary point, we now check to see if it is a regular singular point.

$$
x q(x)=\frac{1}{x}
$$

does not have a Taylor series around $x=0$.
Unable to solve since $x=0$ is not regular singular point. Terminating.
Verification of solutions N/A

7.17.2 Maple step by step solution

Let's solve
$y^{\prime} x^{2}+y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=-\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int-\frac{1}{x^{2}} d x+c_{1}$
- Evaluate integral
$\ln (y)=\frac{1}{x}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{c_{1} x+1}{x}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

X Solution by Maple

```
Order:=6;
dsolve(x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 11
AsymptoticDSolveValue[x^2*y'[x]+y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{1} e^{\frac{1}{x}}
$$

7.18 problem problem 18

7.18.1 Solving as series ode . 1298
7.18.2 Maple step by step solution . 1299

Internal problem ID [409]
Internal file name [OUTPUT/409_Sunday_June_05_2022_01_40_44_AM_31609085/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Irregular singular point"

Maple gives the following as the ode type

```
[_separable]
```

Unable to solve or complete the solution.

$$
x^{3} y^{\prime}-2 y=0
$$

With the expansion point for the power series method at $x=0$.

7.18.1 Solving as series ode

Writing the ODE as

$$
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{2 y}{x^{3}} & =0
\end{aligned}
$$

Where

$$
\begin{aligned}
& q(x)=-\frac{2}{x^{3}} \\
& p(x)=0
\end{aligned}
$$

Next, the type of the expansion point $x=0$ is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When $x=0$ is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. $x=0$ is called an ordinary point $q(x)$ has a Taylor series expansion around the point $x=0 . x=0$ is called a regular singular point if $q(x)$ is not not analytic at $x=0$ but $x q(x)$ has Taylor series expansion. And finally, $x=0$ is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point $x=0$ is checked to see if it is an ordinary point or not.
Since $x=0$ is not an ordinary point, we now check to see if it is a regular singular point.

$$
x q(x)=-\frac{2}{x^{2}}
$$

does not have a Taylor series around $x=0$.
Unable to solve since $x=0$ is not regular singular point. Terminating.
Verification of solutions N/A

7.18.2 Maple step by step solution

Let's solve
$x^{3} y^{\prime}-2 y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=\frac{2}{x^{3}}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{2}{x^{3}} d x+c_{1}$
- Evaluate integral
$\ln (y)=-\frac{1}{x^{2}}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{c_{1} x^{2}-1}{x^{2}}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

X Solution by Maple

```
Order:=6;
dsolve(x^3*diff(y(x), x)=2*y(x),y(x),type='series',x=0);
```

No solution found
\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 13
AsymptoticDSolveValue $\left[x^{\wedge} 3 * y '[x]==2 * y[x], y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1} e^{-\frac{1}{x^{2}}}
$$

7.19 problem problem 19

7.19.1 Existence and uniqueness analysis 1301
7.19.2 Maple step by step solution . 1309

Internal problem ID [410]
Internal file name [OUTPUT/410_Sunday_June_05_2022_01_40_45_AM_82679318/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second__order_ode_can_be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=3\right]
$$

With the expansion point for the power series method at $x=0$.

7.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+4 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{60}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{61}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =16 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =16 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-64 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=3$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-12 \\
& F_{2}=0 \\
& F_{3}=48 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right) \\
& y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{4 a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}+4 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-2 a_{0}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{2 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{2 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{4 a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{4 a_{1}}{315}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-2 a_{0} x^{2}-\frac{2}{3} a_{1} x^{3}+\frac{2}{3} a_{0} x^{4}+\frac{2}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-2 x^{2}+\frac{2}{3} x^{4}\right) a_{0}+\left(x-\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-2 x^{2}+\frac{2}{3} x^{4}\right) c_{1}+\left(x-\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right) \tag{1}\\
& y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=-2 x^{3}+3 x+\frac{2 x^{5}}{5}+O\left(x^{6}\right)
$$

Verified OK.

7.19.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-4 y, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=3\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+4 y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r

$$
r=\frac{0 \pm(\sqrt{-16})}{2}
$$

- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- 1st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2$ nd solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

\square
Check validity of solution $y=c_{1} \cos (2 x)+c_{2} \sin (2 x)$

- Use initial condition $y(0)=0$
$0=c_{1}$
- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=3$

$$
3=2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=0, c_{2}=\frac{3}{2}\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\frac{3 \sin (2 x)}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{3 \sin (2 x)}{2}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)+4*y(x)=0,y(0) = 0, D(y)(0) = 3],y(x),type='series',x=0);
\[
y(x)=3 x-2 x^{3}+\frac{2}{5} x^{5}+\mathrm{O}\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{y' ' $[\mathrm{x}]+4 * y[\mathrm{x}]==0,\{y[0]==0, \mathrm{y}$ ' $[0]==3\}\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow \frac{2 x^{5}}{5}-2 x^{3}+3 x
$$

7.20 problem problem 20

7.20.1 Existence and uniqueness analysis 1312
7.20.2 Maple step by step solution . 1320

Internal problem ID [411]
Internal file name [OUTPUT/411_Sunday_June_05_2022_01_40_47_AM_38293236/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second_order_ode_can_be_made_integrable", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y=0
$$

With initial conditions

$$
\left[y(0)=2, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

7.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-4 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-4 y=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{63}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{64}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =4 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =16 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =16 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =64 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=2$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=8 \\
& F_{1}=0 \\
& F_{2}=32 \\
& F_{3}=0 \\
& F_{4}=128
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=4 x^{2}+2+\frac{4 x^{4}}{3}+\frac{8 x^{6}}{45}+O\left(x^{6}\right) \\
& y=4 x^{2}+2+\frac{4 x^{4}}{3}+\frac{8 x^{6}}{45}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{4 a_{n}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-4 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=2 a_{0}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{2 a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{2 a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{2 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-4 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{4 a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-4 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{4 a_{1}}{315}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+2 a_{0} x^{2}+\frac{2}{3} a_{1} x^{3}+\frac{2}{3} a_{0} x^{4}+\frac{2}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) a_{0}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+2 x^{2}+\frac{2}{3} x^{4}\right) c_{1}+\left(x+\frac{2}{3} x^{3}+\frac{2}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=4 x^{2}+2+\frac{4 x^{4}}{3}+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=4 x^{2}+2+\frac{4 x^{4}}{3}+\frac{8 x^{6}}{45}+O\left(x^{6}\right) \tag{1}\\
& y=4 x^{2}+2+\frac{4 x^{4}}{3}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=4 x^{2}+2+\frac{4 x^{4}}{3}+\frac{8 x^{6}}{45}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=4 x^{2}+2+\frac{4 x^{4}}{3}+O\left(x^{6}\right)
$$

Verified OK.

7.20.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=4 y, y(0)=2,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-4 y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- \quad Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
$$

Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}$

- Use initial condition $y(0)=2$

$$
2=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+2 c_{2} \mathrm{e}^{2 x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=0$

$$
0=-2 c_{1}+2 c_{2}
$$

- Solve for c_{1} and c_{2}

$$
\left\{c_{1}=1, c_{2}=1\right\}
$$

- Substitute constant values into general solution and simplify

$$
y=\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

- \quad Solution to the IVP

$$
y=\mathrm{e}^{-2 x}+\mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff(y(x),x$2)-4*y(x)=0,y(0) = 2, D(y) (0) = 0],y(x),type='series',x=0);
```

$$
y(x)=2+4 x^{2}+\frac{4}{3} x^{4}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 17

$$
y(x) \rightarrow \frac{4 x^{4}}{3}+4 x^{2}+2
$$

7.21 problem problem 21

7.21.1 Existence and uniqueness analysis 1323
7.21.2 Maple step by step solution . 1331

Internal problem ID [412]
Internal file name [OUTPUT/412_Sunday_June_05_2022_01_40_48_AM_9667363/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second order series method. Ordinary point", "linear_second__order_ode_solved_by__an_integrating_factor", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

7.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =-2 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

The domain of $p(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{66}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{67}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =2 y^{\prime}-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =3 y^{\prime}-2 y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =4 y^{\prime}-3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =5 y^{\prime}-4 y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =6 y^{\prime}-5 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=2 \\
& F_{1}=3 \\
& F_{2}=4 \\
& F_{3}=5 \\
& F_{4}=6
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\frac{x^{6}}{120}+O\left(x^{6}\right) \\
& y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\frac{x^{6}}{120}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty}\left(-2 n a_{n} x^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=0}^{\infty}\left(-2(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-2(n+1) a_{n+1}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{2 n a_{n+1}-a_{n}+2 a_{n+1}}{(n+2)(n+1)} \\
& =-\frac{a_{n}}{(n+2)(n+1)}+\frac{(2 n+2) a_{n+1}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}-2 a_{1}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=a_{1}-\frac{a_{0}}{2}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-4 a_{2}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{2}-\frac{a_{0}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-6 a_{3}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{6}-\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-8 a_{4}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{24}-\frac{a_{0}}{30}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-10 a_{5}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{1}}{120}-\frac{a_{0}}{144}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-12 a_{6}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{720}-\frac{a_{0}}{840}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(a_{1}-\frac{a_{0}}{2}\right) x^{2}+\left(\frac{a_{1}}{2}-\frac{a_{0}}{3}\right) x^{3}+\left(\frac{a_{1}}{6}-\frac{a_{0}}{8}\right) x^{4}+\left(\frac{a_{1}}{24}-\frac{a_{0}}{30}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{8} x^{4}-\frac{1}{30} x^{5}\right) a_{0}+\left(x^{2}+x+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{8} x^{4}-\frac{1}{30} x^{5}\right) c_{1}+\left(x^{2}+x+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\frac{x^{6}}{120}+O\left(x^{6}\right) \tag{1}\\
& y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+\frac{x^{6}}{120}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x^{2}+x+\frac{x^{3}}{2}+\frac{x^{4}}{6}+\frac{x^{5}}{24}+O\left(x^{6}\right)
$$

Verified OK.

7.21.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=2 y^{\prime}-y, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-2 y^{\prime}+y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}-2 r+1=0
$$

- Factor the characteristic polynomial

$$
(r-1)^{2}=0
$$

- Root of the characteristic polynomial

$$
r=1
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{x}
$$

- \quad Repeated root, multiply $y_{1}(x)$ by x to ensure linear independence

$$
y_{2}(x)=x \mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}$
Check validity of solution $y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}$
- Use initial condition $y(0)=0$

$$
0=c_{1}
$$

- Compute derivative of the solution

$$
y^{\prime}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=1$

$$
1=c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=0, c_{2}=1\right\}$
- Substitute constant values into general solution and simplify

$$
y=x \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=x \mathrm{e}^{x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
Order:=6;
dsolve([diff(y(x),x$2)-2*diff (y(x),x)+y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);
```

$$
y(x)=x+x^{2}+\frac{1}{2} x^{3}+\frac{1}{6} x^{4}+\frac{1}{24} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 29
AsymptoticDSolveValue[\{y''[x]-2*y'[x]+y[x]==0,\{y[0]==0,y'[0]==1\}\},y[x],\{x,0,5\}].].

$$
y(x) \rightarrow \frac{x^{5}}{24}+\frac{x^{4}}{6}+\frac{x^{3}}{2}+x^{2}+x
$$

7.22 problem problem 22

7.22.1 Existence and uniqueness analysis 1334
7.22.2 Maple step by step solution . 1342

Internal problem ID [413]
Internal file name [OUTPUT/413_Sunday_June_05_2022_01_40_50_AM_76871572/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_coeff", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-2\right]
$$

With the expansion point for the power series method at $x=0$.

7.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The domain of $p(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{69}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{70}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime}+2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =3 y^{\prime}-2 y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-5 y^{\prime}+6 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =11 y^{\prime}-10 y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-21 y^{\prime}+22 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=-2$ gives

$$
\begin{aligned}
& F_{0}=4 \\
& F_{1}=-8 \\
& F_{2}=16 \\
& F_{3}=-32 \\
& F_{4}=64
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=2 x^{2}-2 x+1-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+O\left(x^{6}\right) \\
& y=2 x^{2}-2 x+1-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $0 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n+1}-2 a_{n}+a_{n+1}}{(n+2)(n+1)} \\
& =\frac{2 a_{n}}{(n+2)(n+1)}-\frac{a_{n+1}}{n+2} \tag{5}
\end{align*}
$$

For $n=0$ the recurrence equation gives

$$
2 a_{2}+a_{1}-2 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{2}=-\frac{a_{1}}{2}+a_{0}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+2 a_{2}-2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{2}-\frac{a_{0}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{3}-2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5 a_{1}}{24}+\frac{a_{0}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{4}-2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{11 a_{1}}{120}-\frac{a_{0}}{12}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{5}-2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{1}}{240}+\frac{11 a_{0}}{360}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{6}-2 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{43 a_{1}}{5040}-\frac{a_{0}}{120}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes
$y=a_{0}+a_{1} x+\left(-\frac{a_{1}}{2}+a_{0}\right) x^{2}+\left(\frac{a_{1}}{2}-\frac{a_{0}}{3}\right) x^{3}+\left(-\frac{5 a_{1}}{24}+\frac{a_{0}}{4}\right) x^{4}+\left(\frac{11 a_{1}}{120}-\frac{a_{0}}{12}\right) x^{5}+\ldots$
Collecting terms, the solution becomes
$y=\left(1+x^{2}-\frac{1}{3} x^{3}+\frac{1}{4} x^{4}-\frac{1}{12} x^{5}\right) a_{0}+\left(x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{5}{24} x^{4}+\frac{11}{120} x^{5}\right) a_{1}+O\left(x^{6}\right)$
At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+x^{2}-\frac{1}{3} x^{3}+\frac{1}{4} x^{4}-\frac{1}{12} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{2} x^{3}-\frac{5}{24} x^{4}+\frac{11}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}-2 x+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=2 x^{2}-2 x+1-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+O\left(x^{6}\right) \tag{1}\\
& y=1+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}-2 x+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=2 x^{2}-2 x+1-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}+\frac{4 x^{6}}{45}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}-2 x+O\left(x^{6}\right)
$$

Verified OK.

7.22.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime}+2 y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-2\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

- Characteristic polynomial of ODE

$$
r^{2}+r-2=0
$$

- Factor the characteristic polynomial

$$
(r+2)(r-1)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,1)
$$

- 1st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 \mathrm{nd}$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{x}
$$

- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions
$y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}$
Check validity of solution $y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}$
- Use initial condition $y(0)=1$

$$
1=c_{1}+c_{2}
$$

- Compute derivative of the solution

$$
y^{\prime}=-2 c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}
$$

- Use the initial condition $\left.y^{\prime}\right|_{\{x=0\}}=-2$

$$
-2=-2 c_{1}+c_{2}
$$

- Solve for c_{1} and c_{2}
$\left\{c_{1}=1, c_{2}=0\right\}$
- Substitute constant values into general solution and simplify
$y=\mathrm{e}^{-2 x}$
- \quad Solution to the IVP

$$
y=\mathrm{e}^{-2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([diff(y(x),x$2)+diff(y(x),x)-2*y(x)=0,y(0) = 1, D(y)(0) = -2],y(x),type='series',x=0)
```

$$
y(x)=1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}-\frac{4}{15} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34
AsymptoticDSolveValue[\{y''[x]+y'[x]-2*y[x]==0,\{y[0]==1,y'[0]==-2\}\},y[x],\{x,0,5\}]]

$$
y(x) \rightarrow-\frac{4 x^{5}}{15}+\frac{2 x^{4}}{3}-\frac{4 x^{3}}{3}+2 x^{2}-2 x+1
$$

7.23 problem problem 23

7.23.1 Maple step by step solution . 1353

Internal problem ID [414]
Internal file name [OUTPUT/414_Sunday_June_05_2022_01_40_52_AM_2426009/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y=0
$$

With the expansion point for the power series method at $x=0$.
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y=0
$$

The following is summary of singularities for the above ode. Writing the ode as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

Where

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
$$

Table 102: Table $p(x), q(x)$ singularites.

$p(x)=1$	
singularity	type

$q(x)=\frac{1}{x^{2}}$	
singularity	type
$x=0$	"regular"

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : $[\infty]$
Since $x=0$ is regular singular point, then Frobenius power series is used. The ode is normalized to be

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y=0
$$

Let the solution be represented as Frobenius power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2~A}
\end{equation*}
$$

The next step is to make all powers of x be $n+r$ in each summation term. Going over each summation term above with power of x in it which is not already x^{n+r} and adjusting the power and the corresponding index gives

$$
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
$$

Substituting all the above in $\mathrm{Eq}(2 \mathrm{~A})$ gives the following equation where now all powers of x are the same and equal to $n+r$.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
$$

The indicial equation is obtained from $n=0$. From Eq (2B) this gives

$$
x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
$$

When $n=0$ the above becomes

$$
x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
$$

Or

$$
\left(x^{r} r(-1+r)+x^{r}\right) a_{0}=0
$$

Since $a_{0} \neq 0$ then the above simplifies to

$$
\left(r^{2}-r+1\right) x^{r}=0
$$

Since the above is true for all x then the indicial equation becomes

$$
r^{2}-r+1=0
$$

Solving for r gives the roots of the indicial equation as

$$
\begin{aligned}
& r_{1}=\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& r_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
$$

Since $a_{0} \neq 0$ then the indicial equation becomes

$$
\left(r^{2}-r+1\right) x^{r}=0
$$

Solving for r gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using

$$
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
$$

Or

$$
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}-\frac{i \sqrt{3}}{2}}
\end{aligned}
$$

$y_{1}(x)$ is found first. Eq (2B) derived above is now used to find all a_{n} coefficients. The case $n=0$ is skipped since it was used to find the roots of the indicial equation. a_{0} is arbitrary and taken as $a_{0}=1$. For $1 \leq n$ the recursive equation is

$$
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n}=0 \tag{3}
\end{equation*}
$$

Solving for a_{n} from recursive equation (4) gives

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}-n-r+1} \tag{4}
\end{equation*}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
\begin{equation*}
a_{n}=-\frac{a_{n-1}(i \sqrt{3}+2 n-1)}{2 n(i \sqrt{3}+n)} \tag{5}
\end{equation*}
$$

At this point, it is a good idea to keep track of a_{n} in a table both before substituting $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ and after as more terms are found using the above recursive equation.

n	$a_{n, r}$	a_{n}
a_{0}	1	1

For $n=1$, using the above recursive equation gives

$$
a_{1}=-\frac{r}{r^{2}+r+1}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
a_{1}=-\frac{1}{2}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r+1}$	$-\frac{1}{2}$

For $n=2$, using the above recursive equation gives

$$
a_{2}=\frac{r(1+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
a_{2}=\frac{i \sqrt{3}+3}{16+8 i \sqrt{3}}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r+1}$	$-\frac{1}{2}$
a_{2}	$\frac{r(1+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}$	$\frac{i \sqrt{3}+3}{16+8 i \sqrt{3}}$

For $n=3$, using the above recursive equation gives

$$
a_{3}=-\frac{r(1+r)(2+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
a_{3}=\frac{-i \sqrt{3}-5}{48 i \sqrt{3}+96}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r+1}$	$-\frac{1}{2}$
a_{2}	$\frac{r(1+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}$	$\frac{i \sqrt{3}+3}{16+8 i \sqrt{3}}$
a_{3}	$-\frac{r(1+r)(2+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}$	$\frac{-i \sqrt{3}-5}{48 i \sqrt{3}+96}$

For $n=4$, using the above recursive equation gives

$$
a_{4}=\frac{r(1+r)(2+r)(3+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
a_{4}=\frac{(i \sqrt{3}+5)(i \sqrt{3}+7)}{384(i \sqrt{3}+4)(2+i \sqrt{3})}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r+1}$	$-\frac{1}{2}$
a_{2}	$\frac{r(1+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}$	$\frac{i \sqrt{3}+3}{16+8 i \sqrt{3}}$
a_{3}	$-\frac{r(1+r)(2+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}$	$\frac{-i \sqrt{3}-5}{48 i \sqrt{3}+96}$
a_{4}	$\frac{r(1+r)(2+r)(3+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)}$	$\frac{(i \sqrt{3}+5)(i \sqrt{3}+7)}{384(i \sqrt{3}+4)(2+i \sqrt{3})}$

For $n=5$, using the above recursive equation gives

$$
a_{5}=-\frac{r(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)\left(r^{2}+9 r+21\right)}
$$

Which for the root $r=\frac{1}{2}+\frac{i \sqrt{3}}{2}$ becomes

$$
a_{5}=-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9)}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}
$$

And the table now becomes

n	$a_{n, r}$	a_{n}
a_{0}	1	1
a_{1}	$-\frac{r}{r^{2}+r+1}$	$-\frac{1}{2}$
a_{2}	$\frac{r(1+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)}$	$\frac{i \sqrt{3}+3}{16+8 i \sqrt{3}}$
a_{3}	$-\frac{r(1+r)(2+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)}$	$\frac{-i \sqrt{3}-5}{48 i \sqrt{3}+96}$
a_{4}	$\frac{r(1+r)(2+r)(3+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)}$	$\frac{(i \sqrt{3}+5)(i \sqrt{3}+7)}{384(i \sqrt{3}+4)(2+i \sqrt{3})}$
a_{5}	$-\frac{r(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+r+1\right)\left(r^{2}+3 r+3\right)\left(r^{2}+5 r+7\right)\left(r^{2}+7 r+13\right)\left(r^{2}+9 r+21\right)}$	$-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9)}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}$

Using the above table, then the solution $y_{1}(x)$ is

$$
\begin{array}{r}
y_{1}(x)=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6} \ldots\right) \\
=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(i \sqrt{3}+3) x^{2}}{16+8 i \sqrt{3}}+\frac{(-i \sqrt{3}-5) x^{3}}{48 i \sqrt{3}+96}+\frac{(i \sqrt{3}+5)(i \sqrt{3}+7) x^{4}}{384(i \sqrt{3}+4)(2+i \sqrt{3})}\right. \\
\\
\left.\quad-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9) x^{5}}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{array}
$$

The second solution $y_{2}(x)$ is found by taking the complex conjugate of $y_{1}(x)$ which gives

$$
\begin{array}{r}
y_{2}(x)=x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}\left(1-\frac{x}{2}+\frac{(-i \sqrt{3}+3) x^{2}}{16-8 i \sqrt{3}}+\frac{(i \sqrt{3}-5) x^{3}}{-48 i \sqrt{3}+96}+\frac{(-i \sqrt{3}+5)(-i \sqrt{3}+7) x^{4}}{384(-i \sqrt{3}+4)(2-i \sqrt{3})}\right.} \begin{array}{r}
\left.-\frac{(-i \sqrt{3}+7)(-i \sqrt{3}+9) x^{5}}{3840(-i \sqrt{3}+4)(2-i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{array}
\end{array}
$$

Therefore the homogeneous solution is
$y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$

$$
\begin{aligned}
&= c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(i \sqrt{3}+3) x^{2}}{16+8 i \sqrt{3}}+\frac{(-i \sqrt{3}-5) x^{3}}{48 i \sqrt{3}+96}+\frac{(i \sqrt{3}+5)(i \sqrt{3}+7) x^{4}}{384(i \sqrt{3}+4)(2+i \sqrt{3})}\right. \\
&\left.-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9) x^{5}}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(-i \sqrt{3}+3) x^{2}}{16-8 i \sqrt{3}}+\right. \frac{(i \sqrt{3}-5) x^{3}}{-48 i \sqrt{3}+96} \\
&\left.+\frac{(-i \sqrt{3}+5)(-i \sqrt{3}+7) x^{4}}{384(-i \sqrt{3}+4)(2-i \sqrt{3})}-\frac{(-i \sqrt{3}+7)(-i \sqrt{3}+9) x^{5}}{3840(-i \sqrt{3}+4)(2-i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Hence the final solution is

$$
\begin{aligned}
& y=y_{h} \\
& \begin{array}{r}
=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(i \sqrt{3}+3) x^{2}}{16+8 i \sqrt{3}}+\frac{(-i \sqrt{3}-5) x^{3}}{48 i \sqrt{3}+96}+\frac{(i \sqrt{3}+5)(i \sqrt{3}+7) x^{4}}{384(i \sqrt{3}+4)(2+i \sqrt{3})}\right. \\
\\
\left.\quad-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9) x^{5}}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{array} \\
& +c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(-i \sqrt{3}+3) x^{2}}{16-8 i \sqrt{3}}+\frac{(i \sqrt{3}-5) x^{3}}{-48 i \sqrt{3}+96}+\frac{(-i \sqrt{3}+5)(-i \sqrt{3}+7) x^{4}}{384(-i \sqrt{3}+4)(2-i \sqrt{3})}\right. \\
& \\
& \left.-\frac{(-i \sqrt{3}+7)(-i \sqrt{3}+9) x^{5}}{3840(-i \sqrt{3}+4)(2-i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{aligned}
& y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(i \sqrt{3}+3) x^{2}}{16+8 i \sqrt{3}}+\frac{(-i \sqrt{3}-5) x^{3}}{48 i \sqrt{3}+96}+\frac{(i \sqrt{3}+5)(i \sqrt{3}+7) x^{4}}{384(i \sqrt{3}+4)(2+i \sqrt{3})}\right. \\
&\left.-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9) x^{5}}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}+O\left(x^{6}\right)\right) \\
&+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(-i \sqrt{3}+3) x^{2}}{16-8 i \sqrt{3}}+\frac{(i \sqrt{3}-5) x^{3}}{-48 i \sqrt{3}+96}\right. \\
&\left.+\frac{(-i \sqrt{3}+5)(-i \sqrt{3}+7) x^{4}}{384(-i \sqrt{3}+4)(2-i \sqrt{3})}-\frac{(-i \sqrt{3}+7)(-i \sqrt{3}+9) x^{5}}{3840(-i \sqrt{3}+4)(2-i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{aligned}
$$

Verification of solutions

$$
\begin{array}{r}
y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1-\frac{x}{2}+\frac{(i \sqrt{3}+3) x^{2}}{16+8 i \sqrt{3}}+\frac{(-i \sqrt{3}-5) x^{3}}{48 i \sqrt{3}+96}+\frac{(i \sqrt{3}+5)(i \sqrt{3}+7) x^{4}}{384(i \sqrt{3}+4)(2+i \sqrt{3})}\right. \\
\\
\left.-\frac{(i \sqrt{3}+7)(i \sqrt{3}+9) x^{5}}{3840(i \sqrt{3}+4)(2+i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{array} \begin{array}{r}
+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}\left(1-\frac{x}{2}+\frac{(-i \sqrt{3}+3) x^{2}}{16-8 i \sqrt{3}}+\frac{(i \sqrt{3}-5) x^{3}}{-48 i \sqrt{3}+96}+\frac{(-i \sqrt{3}+5)(-i \sqrt{3}+7) x^{4}}{384(-i \sqrt{3}+4)(2-i \sqrt{3})}\right.} \begin{array}{r}
\left.-\frac{(-i \sqrt{3}+7)(-i \sqrt{3}+9) x^{5}}{3840(-i \sqrt{3}+4)(2-i \sqrt{3})}+O\left(x^{6}\right)\right)
\end{array}
\end{array}
$$

Verified OK.

7.23.1 Maple step by step solution

Let's solve

$$
x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-y^{\prime}-\frac{y}{x^{2}}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime}+\frac{y}{x^{2}}=0
$$

Check to see if $x_{0}=0$ is a regular singular point

- Define functions

$$
\left[P_{2}(x)=1, P_{3}(x)=\frac{1}{x^{2}}\right]
$$

- $x \cdot P_{2}(x)$ is analytic at $x=0$
$\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0$
- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$
$\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1$
- $x=0$ is a regular singular point

Check to see if $x_{0}=0$ is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators
$x^{2} y^{\prime \prime}+y^{\prime} x^{2}+y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}$
- Convert $x^{2} \cdot y^{\prime \prime}$ to series expansion

$$
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}
$$

Rewrite ODE with series expansions
$a_{0}\left(r^{2}-r+1\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}-k-r+1\right)+a_{k-1}(k-1+r)\right) x^{k+r}\right)=0$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$r^{2}-r+1=0$
- Values of r that satisfy the indicial equation
$r \in\left\{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right\}$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+(2 r-1) k+r^{2}-r+1\right) a_{k}+a_{k-1}(k-1+r)=0$
- \quad Shift index using $k->k+1$
$\left((k+1)^{2}+(2 r-1)(k+1)+r^{2}-r+1\right) a_{k+1}+a_{k}(k+r)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=-\frac{a_{k}(k+r)}{k^{2}+2 k r+r^{2}+k+r+1}$
- Recursion relation for $r=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
a_{k+1}=-\frac{a_{k}\left(k+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{k^{2}+2 k\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+k+\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}
$$

- \quad Solution for $r=\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+1}=-\frac{a_{k}\left(k+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{k^{2}+2 k\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+k+\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right]
$$

- \quad Recursion relation for $r=\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
a_{k+1}=-\frac{a_{k}\left(k+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}{k^{2}+2 k\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+k+\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}
$$

- \quad Solution for $r=\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}, a_{k+1}=-\frac{a_{k}\left(k+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)}{k^{2}+2 k\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+k+\frac{3}{2}+\frac{\mathrm{T} \sqrt{3}}{2}}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}}\right), a_{k+1}=-\frac{a_{k}\left(k+\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)}{k^{2}+2 k\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)+\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}+k+\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2}}, b_{k+1}=\right.
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```


Solution by Maple

Time used: 0.016 (sec). Leaf size: 907

```
Order:=6;
dsolve(x^2*diff(y(x),x$2)+x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)=\sqrt{x} & \left(c _ { 2 } x ^ { \frac { i \sqrt { 3 } } { 2 } } \left(1-\frac{1}{2} x+\frac{i \sqrt{3}+3}{8 i \sqrt{3}+16} x^{2}+\frac{-i \sqrt{3}-5}{48 i \sqrt{3}+96} x^{3}\right.\right. \\
& \left.+\frac{1}{384} \frac{(i \sqrt{3}+5)(i \sqrt{3}+7)}{(i \sqrt{3}+4)(i \sqrt{3}+2)} x^{4}-\frac{1}{3840} \frac{(i \sqrt{3}+7)(i \sqrt{3}+9)}{(i \sqrt{3}+4)(i \sqrt{3}+2)} x^{5}+\mathrm{O}\left(x^{6}\right)\right) \\
& +c_{1} x^{-\frac{i \sqrt{3}}{2}}\left(1-\frac{1}{2} x+\frac{\sqrt{3}+3 i}{8 \sqrt{3}+16 i} x^{2}+\frac{-\sqrt{3}-5 i}{48 \sqrt{3}+96 i} x^{3}+\frac{3 i \sqrt{3}-8}{576 i \sqrt{3}-480} x^{4}\right. \\
& \left.\left.\quad-\frac{1}{3840} \frac{(\sqrt{3}+7 i)(\sqrt{3}+9 i)}{(\sqrt{3}+4 i)(\sqrt{3}+2 i)} x^{5}+\mathrm{O}\left(x^{6}\right)\right)\right)
\end{aligned}
$$

Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 886
AsymptoticDSolveValue [x^2*y' $\quad[\mathrm{x}]+\mathrm{x} \wedge 2 * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
\begin{aligned}
& y(x) \\
& \rightarrow\left(\frac{(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\left(3-(-1)^{2 / 3}\right)(4}{\left(1-(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\right)\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)\left(1+\left(2-(-1)^{2 / 3}\right)\left(3-(-1)^{2 / 3}\right)\right)(1+}\right. \\
& -\frac{(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\left(3-(-1)^{2 / 3}\right) x^{4}}{\left(1-(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\right)\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)\left(1+\left(2-(-1)^{2 / 3}\right)\left(3-(-1)^{2 / 3}\right)\right)(1+} \\
& +\frac{(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right) x^{3}}{\left(1-(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\right)\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)\left(1+\left(2-(-1)^{2 / 3}\right)\left(3-(-1)^{2 / 3}\right)\right)} \\
& -\frac{(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right) x^{2}}{\left(1-(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)\right)\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)} \\
& +\frac{(-1)^{2 / 3} x}{1-(-1)^{2 / 3}\left(1-(-1)^{2 / 3}\right)} \\
& +1) c_{1} x^{-(-1)^{2 / 3}}+\left(-\frac{\sqrt[3]{-1}(1+\sqrt[3]{-1})(2+\sqrt[3]{-1})(3+\sqrt[3]{-}}{(1+\sqrt[3]{-1}(1+\sqrt[3]{-1}))(1+(1+\sqrt[3]{-1})(2+\sqrt[3]{-1}))(1+(2+\sqrt[3]{-1})(3+\sqrt[3]{-1}}\right.
\end{aligned}
$$

7.24 problem problem 26(a)

7.24.1 Existence and uniqueness analysis 1357
7.24.2 Solving as quadrature ode . 1358
7.24.3 Maple step by step solution . 1359

Internal problem ID [415]
Internal file name [OUTPUT/415_Sunday_June_05_2022_01_40_54_AM_45682351/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.1 Introduction and Review of power series. Page 615
Problem number: problem 26(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y^{2}=1
$$

With initial conditions

$$
[y(0)=0]
$$

7.24.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2}+1
\end{aligned}
$$

The y domain of $f(x, y)$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2}+1\right) \\
& =2 y
\end{aligned}
$$

The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=0$ is inside this domain. Therefore solution exists and is unique.

7.24.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y^{2}+1} d y & =x+c_{1} \\
\arctan (y) & =x+c_{1}
\end{aligned}
$$

Solving for y gives these solutions

$$
y_{1}=\tan \left(x+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\tan \left(c_{1}\right) \\
c_{1}=0
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\tan (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\tan (x) \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\tan (x)
$$

Verified OK.

7.24.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2}=1, y(0)=0\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{1+y^{2}}=1
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{1+y^{2}} d x=\int 1 d x+c_{1}
$$

- Evaluate integral

$$
\arctan (y)=x+c_{1}
$$

- \quad Solve for y

$$
y=\tan \left(x+c_{1}\right)
$$

- Use initial condition $y(0)=0$
$0=\tan \left(c_{1}\right)$
- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify

$$
y=\tan (x)
$$

- Solution to the IVP

$$
y=\tan (x)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 6

```
dsolve([diff(y(x),x)=1+y(x)^2,y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\tan (x)
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 7

```
DSolve[{y'[x]==1+y[x]~2,{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \tan (x)
$$

8 Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624

8.1 problem problem 1 1362
8.2 problem problem 2 1372
8.3 problem problem 3 1380
8.4 problem problem 4 1389
8.5 problem problem 5 1397
8.6 problem problem 6 1405
8.7 problem problem 7 1416
8.8 problem problem 8 1425
8.9 problem problem 9 1434
8.10 problem problem 10 1445
8.11 problem problem 11 1454
8.12 problem problem 12 1464
8.13 problem problem 13 1474
8.14 problem problem 14 1483
8.15 problem problem 15 1492
8.16 problem problem 16 1501
8.17 problem problem 17 1510
8.18 problem problem 18 1521
8.19 problem problem 19 1531
8.20 problem problem 20 1543
8.21 problem problem 21 1552
8.22 problem problem 22 1561
8.23 problem problem 23 1573
8.24 problem problem 24 1583
8.25 problem problem 25 1595
8.26 problem problem 26 1606
8.27 problem problem 27 1614
8.28 problem problem 28 1625
8.29 problem problem 29 1636
8.30 problem problem 30 1646
8.31 problem problem 33 1657
8.32 problem problem 34 1667

8.1 problem problem 1

8.1.1 Maple step by step solution . 1369

Internal problem ID [416]
Internal file name [OUTPUT/416_Sunday_June_05_2022_01_40_55_AM_89930341/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_1", "linear_second_order_ode_solved_by__an_integrating_factor", "second order series method. Taylor series method"

Maple gives the following as the ode type

$$
\begin{aligned}
& \text { [[_2nd_order, _exact, _linear, _homogeneous]] } \\
& \qquad\left(x^{2}-1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
\end{aligned}
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using

Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{74}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{75}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(y+2 y^{\prime} x\right)}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}+12 y x+6 y^{\prime}}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-96 x^{3} y^{\prime}-72 x^{2} y-96 y^{\prime} x-24 y}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(600 x^{4}+1200 x^{2}+120\right) y^{\prime}+480 x y\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-4320 x^{5}-14400 x^{3}-4320 x\right) y^{\prime}-3600 y\left(x^{4}+2 x^{2}+\frac{1}{5}\right)}{\left(x^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=6 y^{\prime}(0) \\
& F_{2}=24 y(0) \\
& F_{3}=120 y^{\prime}(0) \\
& F_{4}=720 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(x^{6}+x^{4}+x^{2}+1\right) y(0)+\left(x^{5}+x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+4\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}+2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

$n=1$ gives

$$
-6 a_{3}+6 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-(n+2) a_{n+2}(n+1)+4 n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=a_{n} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{2}-12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=a_{0}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{3}-20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=a_{1}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{4}-30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=a_{0}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{5}-42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{1} x^{5}+a_{0} x^{4}+a_{1} x^{3}+a_{0} x^{2}+a_{1} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{4}+x^{2}+1\right) a_{0}+\left(x^{5}+x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(x^{4}+x^{2}+1\right) c_{1}+\left(x^{5}+x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x^{6}+x^{4}+x^{2}+1\right) y(0)+\left(x^{5}+x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(x^{4}+x^{2}+1\right) c_{1}+\left(x^{5}+x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(x^{6}+x^{4}+x^{2}+1\right) y(0)+\left(x^{5}+x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(x^{4}+x^{2}+1\right) c_{1}+\left(x^{5}+x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.1.1 Maple step by step solution

Let's solve
$\left(x^{2}-1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+\frac{4 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}=0
$$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{4 x}{x^{2}-1}, P_{3}(x)=\frac{2}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=2$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(4 u-4)\left(\frac{d}{d u} y(u)\right)+2 y(u)=0$
- Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(1+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+r+1)(k+r+2)+a_{k}(k+r+2)(k+r+1)\right) u^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(1+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-1,0\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r+2)(k+r+1)\left(-2 a_{k+1}+a_{k}\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}}{2}
$$

- \quad Recursion relation for $r=-1$

$$
a_{k+1}=\frac{a_{k}}{2}
$$

- \quad Solution for $r=-1$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-1}, a_{k+1}=\frac{a_{k}}{2}\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k-1}, a_{k+1}=\frac{a_{k}}{2}\right]$
- Recursion relation for $r=0$
$a_{k+1}=\frac{a_{k}}{2}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{2}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}}{2}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+1)^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k}\right), a_{k+1}=\frac{a_{k}}{2}, b_{k+1}=\frac{b_{k}}{2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 26

```
Order:=6;
dsolve((x^2-1)*diff (y(x), x$2)+4*x*diff (y (x), x) +2*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(x^{4}+x^{2}+1\right) y(0)+\left(x^{5}+x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
\]
```

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 26
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-1\right) * y{ }^{\prime}{ }^{\prime}[x]+4 * x * y '[x]+2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x^{5}+x^{3}+x\right)+c_{1}\left(x^{4}+x^{2}+1\right)
$$

8.2 problem problem 2

Internal problem ID [417]
Internal file name [OUTPUT/417_Sunday_June_05_2022_01_40_56_AM_25828976/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_1", "linear_second_order_ode_solved_by__an_integrating_factor", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}+2\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{77}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{78}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(y+2 y^{\prime} x\right)}{x^{2}+2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}+12 y x-12 y^{\prime}}{\left(x^{2}+2\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-96 x^{3} y^{\prime}-72 x^{2} y+192 y^{\prime} x+48 y}{\left(x^{2}+2\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(600 x^{4}-2400 x^{2}+480\right) y^{\prime}+480 x y\left(x^{2}-2\right)}{\left(x^{2}+2\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-4320 x^{5}+28800 x^{3}-17280 x\right) y^{\prime}-3600 y\left(x^{4}-4 x^{2}+\frac{4}{5}\right)}{\left(x^{2}+2\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-3 y^{\prime}(0) \\
& F_{2}=6 y(0) \\
& F_{3}=30 y^{\prime}(0) \\
& F_{4}=-90 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}-\frac{1}{8} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+2\right) y^{\prime \prime}+4 y^{\prime} x+2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+4\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 4 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
4 a_{2}+2 a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
12 a_{3}+6 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+2(n+2) a_{n+2}(n+1)+4 n a_{n}+2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{2}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{3}+40 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{4}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{4}+60 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{8}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{5}+84 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{8}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{2} a_{1} x^{3}+\frac{1}{4} a_{0} x^{4}+\frac{1}{4} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right) a_{0}+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}-\frac{1}{8} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}-\frac{1}{8} x^{6}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((x^2+2)*diff(y(x),x$2)+4*x*diff (y(x),x)+2*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{4} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{4} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 68
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+2\right) * y '\right.$ ' $[x]+4 * y$ ' $\left.[x]+2 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(-\frac{x^{5}}{30}-\frac{x^{4}}{12}+\frac{x^{3}}{3}-\frac{x^{2}}{2}+1\right)+c_{2}\left(-\frac{x^{5}}{15}-\frac{x^{4}}{12}+\frac{x^{3}}{2}-x^{2}+x\right)
$$

8.3 problem problem 3

8.3.1 Maple step by step solution . 1387

Internal problem ID [418]
Internal file name [OUTPUT/418_Sunday_June_05_2022_01_40_57_AM_16875638/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
y^{\prime \prime}+y^{\prime} x+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{80}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{81}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}+y x-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x^{3} y^{\prime}-x^{2} y+5 y^{\prime} x+3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{2}+8\right) y^{\prime}+x y\left(x^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+14 x^{3}-33 x\right) y^{\prime}-y\left(x^{4}-12 x^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=3 y(0) \\
& F_{3}=8 y^{\prime}(0) \\
& F_{4}=-15 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.3.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x-y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x+y=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0, giving the recursion relation
$(k+1)\left(a_{k+2}(k+2)+a_{k}\right)=0$
- Recursion relation that defines the series solution to the ODE
$\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+2}\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(diff (y (x),x$2)+x*diff (y (x),x)+y(x)=0,y(x),type='series', x=0);
\[
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{15}-\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{x^{4}}{8}-\frac{x^{2}}{2}+1\right)
$$

8.4 problem problem 4

Internal problem ID [419]
Internal file name [OUTPUT/419_Sunday_June_05_2022_01_40_58_AM_65107965/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+6 y^{\prime} x+4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{83}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{84}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(3 y^{\prime} x+2 y\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{38 y^{\prime} x^{2}+32 y x-10 y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-272 x^{3} y^{\prime}-248 x^{2} y+208 y^{\prime} x+72 y}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(2200 x^{4}-3280 x^{2}+280\right) y^{\prime}+\left(2080 x^{3}-1760 x\right) y}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-19920 x^{5}+48480 x^{3}-12240 x\right) y^{\prime}-19200\left(x^{4}-\frac{33}{20} x^{2}+\frac{3}{20}\right) y}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-4 y(0) \\
& F_{1}=-10 y^{\prime}(0) \\
& F_{2}=72 y(0) \\
& F_{3}=280 y^{\prime}(0) \\
& F_{4}=-2880 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(-4 x^{6}+3 x^{4}-2 x^{2}+1\right) y(0)+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+6 y^{\prime} x+4 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+6\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
2 a_{2}+4 a_{0}=0
$$

$$
a_{2}=-2 a_{0}
$$

$n=1$ gives

$$
6 a_{3}+10 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{5 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+6 n a_{n}+4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{(n+4) a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
18 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=3 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
28 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{3}
$$

For $n=4$ the recurrence equation gives

$$
40 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-4 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
54 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-3 a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-2 a_{0} x^{2}-\frac{5}{3} a_{1} x^{3}+3 a_{0} x^{4}+\frac{7}{3} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(3 x^{4}-2 x^{2}+1\right) a_{0}+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(3 x^{4}-2 x^{2}+1\right) c_{1}+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(-4 x^{6}+3 x^{4}-2 x^{2}+1\right) y(0)+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(3 x^{4}-2 x^{2}+1\right) c_{1}+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(-4 x^{6}+3 x^{4}-2 x^{2}+1\right) y(0)+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(3 x^{4}-2 x^{2}+1\right) c_{1}+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((x^2+1)*diff(y(x),x$2)+6*x*diff (y(x),x)+4*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(3 x^{4}-2 x^{2}+1\right) y(0)+\left(x-\frac{5}{3} x^{3}+\frac{7}{3} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 60
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+1\right) * y '\right.$ ' $[x]+6 * y$ ' $\left.[x]+4 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(4 x^{5}-5 x^{4}+4 x^{3}-2 x^{2}+1\right)+c_{2}\left(\frac{77 x^{5}}{15}-\frac{13 x^{4}}{2}+\frac{16 x^{3}}{3}-3 x^{2}+x\right)
$$

8.5 problem problem 5

Internal problem ID [420]
Internal file name [OUTPUT/420_Sunday_June_05_2022_01_40_58_AM_37968535/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{86}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{87}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2 x y^{\prime}}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(6 x^{2}-2\right) y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-24 x^{3}+24 x\right) y^{\prime}}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{120\left(x^{4}-2 x^{2}+\frac{1}{5}\right) y^{\prime}}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-720 x^{5}+2400 x^{3}-720 x\right) y^{\prime}}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=0 \\
& F_{3}=24 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+2 n a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{n a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
6 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
12 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{5}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
30 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{7}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{3} a_{1} x^{3}+\frac{1}{5} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve((x^2+1)*diff ( }\textrm{y}(\textrm{x}),\textrm{x}$2)+2*x*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})=0,y(x),type='series',x=0)
```

$$
y(x)=y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 25
AsymptoticDSolveValue[(x~2-3)*y' ' $[x]+2 * x * y$ ' $[x]==0, y[x],\{x, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{45}+\frac{x^{3}}{9}+x\right)+c_{1}
$$

8.6 problem problem 6

8.6.1 Maple step by step solution . 1412

Internal problem ID [421]
Internal file name [OUTPUT/421_Sunday_June_05_2022_01_40_59_AM_27112025/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 y^{\prime} x+12 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{89}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{90}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{6 y^{\prime} x-12 y}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}-48 y x+6 y^{\prime}}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{24 x^{3} y^{\prime}-72 x^{2} y+24 y^{\prime} x-24 y}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =0 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =0
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=12 y(0) \\
& F_{1}=6 y^{\prime}(0) \\
& F_{2}=24 y(0) \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-1\right) y^{\prime \prime}-6 y^{\prime} x+12 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-6\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+12\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\sum_{n=1}^{\infty}\left(-6 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}+12 a_{0}=0 \\
a_{2}=6 a_{0} \\
-6 a_{3}+6 a_{1}=0
\end{gathered}
$$

$n=1$ gives

Which after substituting earlier equations, simplifies to

$$
a_{3}=a_{1}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-(n+2) a_{n+2}(n+1)-6 n a_{n}+12 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}-7 n+12\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
2 a_{2}-12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=a_{0}
$$

For $n=3$ the recurrence equation gives

$$
-20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
-30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
2 a_{5}-42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0} x^{4}+a_{1} x^{3}+6 a_{0} x^{2}+a_{1} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{4}+6 x^{2}+1\right) a_{0}+\left(x^{3}+x\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(x^{4}+6 x^{2}+1\right) c_{1}+\left(x^{3}+x\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.6.1 Maple step by step solution

Let's solve
$\left(x^{2}-1\right) y^{\prime \prime}-6 y^{\prime} x+12 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{6 x y^{\prime}}{x^{2}-1}-\frac{12 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-\frac{6 x y^{\prime}}{x^{2}-1}+\frac{12 y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=-\frac{6 x}{x^{2}-1}, P_{3}(x)=\frac{12}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=-3$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}-6 y^{\prime} x+12 y=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-6 u+6)\left(\frac{d}{d u} y(u)\right)+12 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(-4+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r-3)+a_{k}(k+r-3)(k+r-4)\right) u^{k+r}\right)
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(-4+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{0,4\}$
- Each term in the series must be 0, giving the recursion relation
$(k+r-3)\left((-2 k-2 r-2) a_{k+1}+a_{k}(k+r-4)\right)=0$
- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r-4)}{2(k+1+r)}$
- Recursion relation for $r=0$; series terminates at $k=4$
$a_{k+1}=\frac{a_{k}(k-4)}{2(k+1)}$
- Apply recursion relation for $k=0$
$a_{1}=-2 a_{0}$
- Apply recursion relation for $k=1$
$a_{2}=-\frac{3 a_{1}}{4}$
- Express in terms of a_{0}
$a_{2}=\frac{3 a_{0}}{2}$
- Apply recursion relation for $k=2$

$$
a_{3}=-\frac{a_{2}}{3}
$$

- Express in terms of a_{0}

$$
a_{3}=-\frac{a_{0}}{2}
$$

- Apply recursion relation for $k=3$
$a_{4}=-\frac{a_{3}}{8}$
- \quad Express in terms of a_{0}
$a_{4}=\frac{a_{0}}{16}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li

$$
y(u)=a_{0} \cdot\left(1-2 u+\frac{3}{2} u^{2}-\frac{1}{2} u^{3}+\frac{1}{16} u^{4}\right)
$$

- Revert the change of variables $u=x+1$

$$
\left[y=\frac{a_{0}(x-1)^{4}}{16}\right]
$$

- \quad Recursion relation for $r=4$

$$
a_{k+1}=\frac{a_{k} k}{2(k+5)}
$$

- \quad Solution for $r=4$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+4}, a_{k+1}=\frac{a_{k} k}{2(k+5)}\right]
$$

- \quad Revert the change of variables $u=x+1$
$\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k+4}, a_{k+1}=\frac{a_{k} k}{2(k+5)}\right]$
- Combine solutions and rename parameters
$\left[y=\frac{a_{0}(x-1)^{4}}{16}+\left(\sum_{k=0}^{\infty} b_{k}(x+1)^{k+4}\right), b_{k+1}=\frac{b_{k} k}{2(k+5)}\right]$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 25

```
Order:=6;
dsolve((x^2-1)*diff (y(x),x$2)-6*x*diff (y (x),x)+12*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(x^{4}+6 x^{2}+1\right) y(0)+\left(x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 25
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-1\right) * y\right.$ ' $'[x]-6 * x * y$ ' $\left.[x]+12 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x^{3}+x\right)+c_{1}\left(x^{4}+6 x^{2}+1\right)
$$

8.7 problem problem 7

Internal problem ID [422]
Internal file name [OUTPUT/422_Sunday_June_05_2022_01_41_00_AM_24441164/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}+3\right) y^{\prime \prime}-7 y^{\prime} x+16 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{92}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{93}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{7 y^{\prime} x-16 y}{x^{2}+3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{26 y^{\prime} x^{2}-80 y x-27 y^{\prime}}{\left(x^{2}+3\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{50 x^{3} y^{\prime}-176 x^{2} y-165 y^{\prime} x+192 y}{\left(x^{2}+3\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(24 x^{4}-216 x^{2}+81\right) y^{\prime}+\left(-96 x^{3}+432 x\right) y}{\left(x^{2}+3\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{24 x\left(\left(x^{4}-9 x^{2}+\frac{27}{8}\right) y^{\prime}+\left(-4 x^{3}+18 x\right) y\right)}{\left(x^{2}+3\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-\frac{16 y(0)}{3} \\
& F_{1}=-3 y^{\prime}(0) \\
& F_{2}=\frac{64 y(0)}{9} \\
& F_{3}=y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+3\right) y^{\prime \prime}-7 y^{\prime} x+16 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+3\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-7\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+16\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-7 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 16 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-7 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 16 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
6 a_{2}+16 a_{0}=0 \\
a_{2}=-\frac{8 a_{0}}{3}
\end{gathered}
$$

$n=1$ gives

$$
18 a_{3}+9 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+3(n+2) a_{n+2}(n+1)-7 n a_{n}+16 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-8 n+16\right)}{3(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+36 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{8 a_{0}}{27}
$$

For $n=3$ the recurrence equation gives

$$
a_{3}+60 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
a_{5}+126 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{15120}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{8}{3} a_{0} x^{2}-\frac{1}{2} a_{1} x^{3}+\frac{8}{27} a_{0} x^{4}+\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) a_{0}+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) c_{1}+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((x^2+3)*diff (y(x),x$2)-7*x*diff (y (x),x)+16*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{8}{3} x^{2}+\frac{8}{27} x^{4}\right) y(0)+\left(x-\frac{1}{2} x^{3}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+3\right) * y\right.$ ' $'[x]-7 * x * y$ ' $\left.[x]+16 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}-\frac{x^{3}}{2}+x\right)+c_{1}\left(\frac{8 x^{4}}{27}-\frac{8 x^{2}}{3}+1\right)
$$

8.8 problem problem 8

Internal problem ID [423]
Internal file name [OUTPUT/423_Sunday_June_05_2022_01_41_01_AM_41111291/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change__of_variable_on__x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, 
    _with_symmetry_[0,F(x)]`]]
```

$$
\left(-x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+16 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{95}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{96}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y^{\prime} x-16 y}{x^{2}-2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{18 y^{\prime} x^{2}-48 y x-30 y^{\prime}}{\left(x^{2}-2\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{-102 x^{3} y^{\prime}+432 x^{2} y+174 y^{\prime} x-384 y}{\left(x^{2}-2\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{420\left(2 x^{4}-4 x^{2}+1\right) y^{\prime}+3360\left(-x^{3}+x\right) y}{\left(x^{2}-2\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{3780\left(2 y^{\prime} x^{4}-8 y x^{3}-4 y^{\prime} x^{2}+8 y x+y^{\prime}\right) x}{\left(x^{2}-2\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-8 y(0) \\
& F_{1}=-\frac{15 y^{\prime}(0)}{2} \\
& F_{2}=48 y(0) \\
& F_{3}=\frac{105 y^{\prime}(0)}{4} \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(2 x^{4}-4 x^{2}+1\right) y(0)+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-x^{2}+2\right) y^{\prime \prime}-y^{\prime} x+16 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-x^{2}+2\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+16\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 16 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 16 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
4 a_{2}+16 a_{0}=0 \\
a_{2}=-4 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
12 a_{3}+15 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{5 a_{1}}{4}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+2(n+2) a_{n+2}(n+1)-n a_{n}+16 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}-16\right)}{2(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{2}+24 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=2 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
7 a_{3}+40 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{32}
$$

For $n=4$ the recurrence equation gives

$$
60 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
-9 a_{5}+84 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{3 a_{1}}{128}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-4 a_{0} x^{2}-\frac{5}{4} a_{1} x^{3}+2 a_{0} x^{4}+\frac{7}{32} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(2 x^{4}-4 x^{2}+1\right) a_{0}+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(2 x^{4}-4 x^{2}+1\right) c_{1}+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(2 x^{4}-4 x^{2}+1\right) y(0)+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(2 x^{4}-4 x^{2}+1\right) c_{1}+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(2 x^{4}-4 x^{2}+1\right) y(0)+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(2 x^{4}-4 x^{2}+1\right) c_{1}+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((2-x^2)*diff(y(x),x$2)-x*diff(y(x),x)+16*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(2 x^{4}-4 x^{2}+1\right) y(0)+\left(x-\frac{5}{4} x^{3}+\frac{7}{32} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 38
AsymptoticDSolveValue[(2-x~2)*y' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+16 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{7 x^{5}}{32}-\frac{5 x^{3}}{4}+x\right)+c_{1}\left(2 x^{4}-4 x^{2}+1\right)
$$

8.9 problem problem 9

8.9.1 Maple step by step solution . 1441

Internal problem ID [424]
Internal file name [OUTPUT/424_Sunday_June_05_2022_01_41_02_AM_34500257/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 9.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[_Gegenbauer]

$$
\left(x^{2}-1\right) y^{\prime \prime}+8 y^{\prime} x+12 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{98}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{99}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{4\left(2 y^{\prime} x+3 y\right)}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{60 y^{\prime} x^{2}+120 y x+20 y^{\prime}}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{120\left(4 x^{3} y^{\prime}+9 x^{2} y+4 y^{\prime} x+3 y\right)}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(4200 x^{4}+8400 x^{2}+840\right) y^{\prime}+10080 x y\left(x^{2}+1\right)}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-40320 x^{5}-134400 x^{3}-40320 x\right) y^{\prime}-100800 y\left(x^{4}+2 x^{2}+\frac{1}{5}\right)}{\left(x^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=12 y(0) \\
& F_{1}=20 y^{\prime}(0) \\
& F_{2}=360 y(0) \\
& F_{3}=840 y^{\prime}(0) \\
& F_{4}=20160 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(28 x^{6}+15 x^{4}+6 x^{2}+1\right) y(0)+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-1\right) y^{\prime \prime}+8 y^{\prime} x+12 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+8\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+12\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 8 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)=\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right)
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\left(\sum_{n=1}^{\infty} 8 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 12 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
-2 a_{2}+12 a_{0}=0 \\
a_{2}=6 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
-6 a_{3}+20 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{10 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-(n+2) a_{n+2}(n+1)+8 n a_{n}+12 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}+7 n+12\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
30 a_{2}-12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=15 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
42 a_{3}-20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=7 a_{1}
$$

For $n=4$ the recurrence equation gives

$$
56 a_{4}-30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=28 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
72 a_{5}-42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=12 a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+6 a_{0} x^{2}+\frac{10}{3} a_{1} x^{3}+15 a_{0} x^{4}+7 a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(15 x^{4}+6 x^{2}+1\right) a_{0}+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(15 x^{4}+6 x^{2}+1\right) c_{1}+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(28 x^{6}+15 x^{4}+6 x^{2}+1\right) y(0)+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(15 x^{4}+6 x^{2}+1\right) c_{1}+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(28 x^{6}+15 x^{4}+6 x^{2}+1\right) y(0)+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(15 x^{4}+6 x^{2}+1\right) c_{1}+\left(x+\frac{10}{3} x^{3}+7 x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.9.1 Maple step by step solution

Let's solve

$$
\left(x^{2}-1\right) y^{\prime \prime}+8 y^{\prime} x+12 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{8 x y^{\prime}}{x^{2}-1}-\frac{12 y}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{8 x y^{\prime}}{x^{2}-1}+\frac{12 y}{x^{2}-1}=0$

Check to see if x_{0} is a regular singular point

- Define functions

$$
\left[P_{2}(x)=\frac{8 x}{x^{2}-1}, P_{3}(x)=\frac{12}{x^{2}-1}\right]
$$

- $\quad(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$
$\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=4$
- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$
$\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0$
- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point $x_{0}=-1$

- Multiply by denominators

$$
\left(x^{2}-1\right) y^{\prime \prime}+8 y^{\prime} x+12 y=0
$$

- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$ $\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(8 u-8)\left(\frac{d}{d u} y(u)\right)+12 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$ $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1 . .2$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$
$u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$
Rewrite ODE with series expansions
$-2 a_{0} r(3+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)(k+r+4)+a_{k}(k+r+4)(k+r+3)\right) u^{k+r}\right)=$
- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(3+r)=0$
- Values of r that satisfy the indicial equation
$r \in\{-3,0\}$
- Each term in the series must be 0 , giving the recursion relation
$(k+r+4)\left((-2 k-2 r-2) a_{k+1}+a_{k}(k+r+3)\right)=0$
- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r+3)}{2(k+1+r)}
$$

- \quad Recursion relation for $r=-3$

$$
a_{k+1}=\frac{a_{k} k}{2(k-2)}
$$

- Series not valid for $r=-3$, division by 0 in the recursion relation at $k=2$

$$
a_{k+1}=\frac{a_{k} k}{2(k-2)}
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}(k+3)}{2(k+1)}
$$

- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+3)}{2(k+1)}\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+1}=\frac{a_{k}(k+3)}{2(k+1)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve((x^2-1)*diff (y(x),x$2)+8*x*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+12*y(x)=0,y(x),type='series',x=0)
    y(x)=(15\mp@subsup{x}{}{4}+6\mp@subsup{x}{}{2}+1)y(0)+(x+\frac{10}{3}\mp@subsup{x}{}{3}+7\mp@subsup{x}{}{5})D(y)(0)+O(\mp@subsup{x}{}{6})
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 36
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2-1\right) * y\right.$ ' $[x]+8 * x * y$ ' $\left.[x]+12 * y[x]==0, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(7 x^{5}+\frac{10 x^{3}}{3}+x\right)+c_{1}\left(15 x^{4}+6 x^{2}+1\right)
$$

8.10 problem problem 10

Internal problem ID [425]
Internal file name [OUTPUT/425_Sunday_June_05_2022_01_41_03_AM_10644048/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 10.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
3 y^{\prime \prime}+x y^{\prime}-4 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{101}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{102}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{x y^{\prime}}{3}+\frac{4 y}{3} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{x^{2} y^{\prime}}{9}-\frac{4 x y}{9}+y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-x^{3}-15 x\right) y^{\prime}}{27}+\frac{4 y\left(x^{2}+6\right)}{27} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{4}+18 x^{2}+27\right) y^{\prime}}{81}-\frac{4 y x\left(x^{2}+9\right)}{81} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{\left(\left(x^{4}+18 x^{2}+27\right) y^{\prime}-4 y x\left(x^{2}+9\right)\right) x}{243}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=\frac{4 y(0)}{3} \\
& F_{1}=y^{\prime}(0) \\
& F_{2}=\frac{8 y(0)}{9} \\
& F_{3}=\frac{y^{\prime}(0)}{3} \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)}{3}+\frac{4\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)}{3} \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 3 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
6 a_{2}-4 a_{0}=0 \\
a_{2}=\frac{2 a_{0}}{3}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
3(n+2) a_{n+2}(n+1)+n a_{n}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n-4)}{3(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
18 a_{3}-3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
36 a_{4}-2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{27}
$$

For $n=3$ the recurrence equation gives

$$
60 a_{5}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{360}
$$

For $n=4$ the recurrence equation gives

$$
90 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
126 a_{7}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{45360}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{2}{3} a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}+\frac{1}{27} a_{0} x^{4}+\frac{1}{360} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) a_{0}+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) c_{1}+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form is not straightforward to achieve - returning special function solu
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(3*diff(y(x),x$2)+x*diff (y(x),x)-4*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1+\frac{2}{3} x^{2}+\frac{1}{27} x^{4}\right) y(0)+\left(x+\frac{1}{6} x^{3}+\frac{1}{360} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
AsymptoticDSolveValue[3*y''[x]+x*y'[x]-4*y[x]==0,y[x],\{x,0,5\}]

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{360}+\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{4}}{27}+\frac{2 x^{2}}{3}+1\right)
$$

8.11 problem problem 11

8.11.1 Maple step by step solution . 1461

Internal problem ID [426]
Internal file name [OUTPUT/426_Sunday_June_05_2022_01_41_05_AM_20911788/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 11.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
5 y^{\prime \prime}-2 y^{\prime} x+10 y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{104}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{105}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{2 y^{\prime} x}{5}-2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{4 y^{\prime} x^{2}}{25}-\frac{4 y x}{5}-\frac{8 y^{\prime}}{5} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{4\left(2 x^{3}-35 x\right) y^{\prime}}{125}+\frac{4\left(-2 x^{2}+15\right) y}{25} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{8\left(2 x^{4}-45 x^{2}+100\right) y^{\prime}}{625}+\frac{8\left(-2 x^{3}+25 x\right) y}{125} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{8\left(4 x^{5}-100 x^{3}+375 x\right) y^{\prime}}{3125}-\frac{32\left(x^{4}-15 x^{2}+\frac{75}{4}\right) y}{625}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \\
& F_{1}=-\frac{8 y^{\prime}(0)}{5} \\
& F_{2}=\frac{12 y(0)}{5} \\
& F_{3}=\frac{32 y^{\prime}(0)}{25} \\
& F_{4}=-\frac{24 y(0)}{25}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-x^{2}+\frac{1}{10} x^{4}-\frac{1}{750} x^{6}\right) y(0)+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\frac{2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x}{5}-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 5 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 10 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} 5 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 5(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} 5(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 10 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
10 a_{2}+10 a_{0}=0 \\
a_{2}=-a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
5(n+2) a_{n+2}(n+1)-2 n a_{n}+10 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{2 a_{n}(n-5)}{5(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
30 a_{3}+8 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{4 a_{1}}{15}
$$

For $n=2$ the recurrence equation gives

$$
60 a_{4}+6 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{10}
$$

For $n=3$ the recurrence equation gives

$$
100 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{4 a_{1}}{375}
$$

For $n=4$ the recurrence equation gives

$$
150 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{750}
$$

For $n=5$ the recurrence equation gives

$$
210 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-a_{0} x^{2}-\frac{4}{15} a_{1} x^{3}+\frac{1}{10} a_{0} x^{4}+\frac{4}{375} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-x^{2}+\frac{1}{10} x^{4}\right) a_{0}+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-x^{2}+\frac{1}{10} x^{4}\right) c_{1}+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-x^{2}+\frac{1}{10} x^{4}-\frac{1}{750} x^{6}\right) y(0)+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-x^{2}+\frac{1}{10} x^{4}\right) c_{1}+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-x^{2}+\frac{1}{10} x^{4}-\frac{1}{750} x^{6}\right) y(0)+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-x^{2}+\frac{1}{10} x^{4}\right) c_{1}+\left(x-\frac{4}{15} x^{3}+\frac{4}{375} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.11.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=\frac{2 y^{\prime} x}{5}-2 y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-\frac{2 y^{\prime} x}{5}+2 y=0
$$

- Multiply by denominators

$$
5 y^{\prime \prime}-2 y^{\prime} x+10 y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite DE with series expansions

- Convert $x \cdot y^{\prime}$ to series expansion

$$
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(5 a_{k+2}(k+2)(k+1)-2 a_{k}(k-5)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
5\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-5)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}(k-5)}{5\left(k^{2}+3 k+2\right)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    <- Kummer successful
    <- special function solution successful
        Solution using Kummer functions still has integrals. Trying a hypergeometric solution.
        -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form for at least one hypergeometric solution is achieved - returning wi
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

```
Order:=6;
dsolve(5*diff (y (x),x$2)-2*x*diff (y (x), x)+10*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-x^{2}+\frac{1}{10} x^{4}\right) y(0)+\left(\frac{4}{375} x^{5}-\frac{4}{15} x^{3}+x\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40
AsymptoticDSolveValue[5*y' ' $[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+10 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{4 x^{5}}{375}-\frac{4 x^{3}}{15}+x\right)+c_{1}\left(\frac{x^{4}}{10}-x^{2}+1\right)
$$

8.12 problem problem 12

8.12.1 Maple step by step solution . 1471

Internal problem ID [427]
Internal file name [OUTPUT/427_Sunday_June_05_2022_01_41_06_AM_54462440/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 12.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-y^{\prime} x^{2}-3 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{107}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{108}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y^{\prime} x^{2}+3 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{4}+5 x\right) y^{\prime}+\left(3 x^{3}+3\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{6}+12 x^{3}+8\right) y^{\prime}+3\left(x^{5}+8 x^{2}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\left(x^{7}+21 x^{4}+68 x\right) y^{\prime}+3 y\left(x^{6}+17 x^{3}+24\right)\right) x \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{10}+32 x^{7}+224 x^{4}+208 x\right) y^{\prime}+3 y\left(x^{3}+6\right)\left(x^{6}+22 x^{3}+4\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=3 y(0) \\
& F_{2}=8 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=72 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}+3\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty}\left(-n x^{1+n} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-3 x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=2}^{\infty}\left(-(n-1) a_{n-1} x^{n}\right)+\sum_{n=1}^{\infty}\left(-3 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}-3 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{2}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-(n-1) a_{n-1}-3 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-1}}{1+n} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-4 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{3}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-5 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{10}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-7 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{18}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{2} a_{0} x^{3}+\frac{1}{3} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{2}\right) a_{0}+\left(x+\frac{1}{3} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{2} x^{3}+\frac{1}{10} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{2}\right) c_{1}+\left(x+\frac{1}{3} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.12.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=y^{\prime} x^{2}+3 y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y^{\prime} x^{2}-3 y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1}(k+2)\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+2)\left(k a_{k+2}-a_{k-1}+a_{k+2}\right)=0
$$

- \quad Shift index using $k->k+1$

$$
(k+3)\left((k+1) a_{k+3}-a_{k}+a_{k+3}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k}}{k+2}, 2 a_{2}=0\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff (y (x), x$2)-x^2*diff (y(x),x)-3*x*y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1+\frac{x^{3}}{2}\right) y(0)+\left(x+\frac{1}{3} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' ' $[\mathrm{x}]-\mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]-3 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{3}+x\right)+c_{1}\left(\frac{x^{3}}{2}+1\right)
$$

8.13 problem problem 13

8.13.1 Maple step by step solution . 1481

Internal problem ID [428]
Internal file name [OUTPUT/428_Sunday_June_05_2022_01_41_07_AM_13020367/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 13.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
y^{\prime \prime}+y^{\prime} x^{2}+2 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{110}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{111}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x^{2}-2 y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{4}-4 x\right) y^{\prime}+\left(2 x^{3}-2\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{6}+10 x^{3}-6\right) y^{\prime}-2 x^{2} y\left(x^{3}-7\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\left(x^{7}-18 x^{4}+50 x\right) y^{\prime}+2 y\left(x^{6}-15 x^{3}+20\right)\right) x \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{10}+28 x^{7}-170 x^{4}+140 x\right) y^{\prime}-2 y\left(x^{9}-25 x^{6}+110 x^{3}-20\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y(0) \\
& F_{2}=-6 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=40 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n x^{1+n} a_{n} & =\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{0}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+(n-1) a_{n-1}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{4}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{18}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{28}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{3} a_{0} x^{3}-\frac{1}{4} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{3}\right) a_{0}+\left(x-\frac{1}{4} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{18} x^{6}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{3}\right) c_{1}+\left(x-\frac{1}{4} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.13.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x^{2}-2 y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x^{2}+2 y x=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$

$$
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

- Convert $x^{2} \cdot y^{\prime}$ to series expansion

$$
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}
$$

- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}(k+1)\right) x^{k}\right)=0$
- \quad Each term must be 0

$$
2 a_{2}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)+a_{k-1}\right)=0
$$

- \quad Shift index using $k->k+1$

$$
(k+2)\left(a_{k+3}(k+3)+a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}}{k+3}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff (y (x), x$2)+x^2*diff (y (x), x) +2*x*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{x^{3}}{3}\right) y(0)+\left(x-\frac{1}{4} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' $[\mathrm{x}]+\mathrm{x} \sim 2 * \mathrm{y}$ ' $[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{4}\right)+c_{1}\left(1-\frac{x^{3}}{3}\right)
$$

8.14 problem problem 14

8.14.1 Maple step by step solution 1490

Internal problem ID [429]
Internal file name [OUTPUT/429_Sunday_June_05_2022_01_41_08_AM_52240698/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 14.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel__ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{113}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{114}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-y^{\prime} x-y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =x^{2} y-2 y^{\prime} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(y^{\prime} x+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-y x^{3}+6 y^{\prime} x+4 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=4 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{504}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{12} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{3}}{6}\right) a_{0}+\left(x-\frac{1}{12} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{3}}{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.14.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y x
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion
$x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}$
- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}\right) x^{k}\right)=0$
- Each term must be 0
$2 a_{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x),x$2)+x*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1-\frac{x^{3}}{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

```
AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{4}}{12}\right)+c_{1}\left(1-\frac{x^{3}}{6}\right)
$$

8.15 problem problem 15

8.15.1 Maple step by step solution . 1498

Internal problem ID [430]
Internal file name [OUTPUT/430_Sunday_June_05_2022_01_41_09_AM_50501255/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 15.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}+x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{116}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{117}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-x\left(2 y+y^{\prime} x\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y x^{4}-4 y^{\prime} x-2 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} x^{4}+8 y x^{3}-6 y^{\prime} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =12 x^{3} y^{\prime}-x^{2} y\left(x^{4}-30\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=-2 y(0) \\
& F_{3}=-6 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} x^{n+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{12} a_{0} x^{4}-\frac{1}{20} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{4}}{12}\right) a_{0}+\left(x-\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.15.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-x^{2} y
$$

- Highest derivative means the order of the ODE is 2 $y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+x^{2} y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion

$$
x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}
$$

- Shift index using $k->k-2$

$$
x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions

$$
6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-2}\right) x^{k}\right)=0
$$

- The coefficients of each power of x must be 0

$$
\left[2 a_{2}=0,6 a_{3}=0\right]
$$

- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{a_{k}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff (y (x), x$2)+x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 28
AsymptoticDSolveValue[y' ' $\left.[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{2}\left(x-\frac{x^{5}}{20}\right)+c_{1}\left(1-\frac{x^{4}}{12}\right)
$$

8.16 problem problem 16

8.16.1 Existence and uniqueness analysis 1501

Internal problem ID [431]
Internal file name [OUTPUT/431_Sunday_June_05_2022_01_41_10_AM_29856551/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 16.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second_order_ode_non_constant_coeff_transformation_on_B"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

With initial conditions

$$
\left[y(0)=0, y^{\prime}(0)=1\right]
$$

With the expansion point for the power series method at $x=0$.

8.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{2 x}{x^{2}+1} \\
q(x) & =-\frac{2}{x^{2}+1} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}+1}-\frac{2 y}{x^{2}+1}=0
$$

The domain of $p(x)=\frac{2 x}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-\frac{2}{x^{2}+1}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{119}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{120}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(-y+y^{\prime} x\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{8\left(-y+y^{\prime} x\right) x}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{8\left(-y+y^{\prime} x\right)\left(5 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{240\left(-y+y^{\prime} x\right) x\left(x^{2}-\frac{3}{5}\right)}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{48\left(-y+y^{\prime} x\right)\left(35 x^{4}-42 x^{2}+3\right)}{\left(x^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=0 \\
& F_{3}=0 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=x+O\left(x^{6}\right)
$$

$$
y=x+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}+1\right) y^{\prime \prime}+2 y^{\prime} x-2 y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+2 n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{(n-1) a_{n}}{n+1} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
4 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{3}
$$

For $n=3$ the recurrence equation gives

$$
10 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
18 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{5}
$$

For $n=5$ the recurrence equation gives

$$
28 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}-\frac{1}{3} a_{0} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+x^{2}-\frac{1}{3} x^{4}\right) a_{0}+a_{1} x+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1+x^{2}-\frac{1}{3} x^{4}\right) c_{1}+c_{2} x+O\left(x^{6}\right) \\
y=x+O\left(x^{6}\right)
\end{gathered}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x+O\left(x^{6}\right) \tag{1}\\
& y=x+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x+O\left(x^{6}\right)
$$

Verified OK.

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5

```
Order:=6;
dsolve([(1+x^2)*\operatorname{diff}(y(x),x$2)+2*x*\operatorname{diff}(y(x),x)-2*y(x)=0,y(0)=0,D(y)(0) = 1],y(x),type='s
```

$$
y(x)=x
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 4

```
AsymptoticDSolveValue[{(1+x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,{y[0]==0,y'[0]==1}},y[x],{x,0,5}]
```

$$
y(x) \rightarrow x
$$

8.17 problem problem 17

8.17.1 Existence and uniqueness analysis 1510
8.17.2 Maple step by step solution . 1518

Internal problem ID [432]
Internal file name [OUTPUT/432_Sunday_June_05_2022_01_41_12_AM_23931826/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 17.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x-2 y=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=0\right]
$$

With the expansion point for the power series method at $x=0$.

8.17.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =-2 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x-2 y=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{122}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{123}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x+2 y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x^{2}-2 y x+y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-x y^{\prime}\left(x^{2}+1\right)+2 x^{2} y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-1\right) y^{\prime}+\left(-2 x^{3}+2 x\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left(x^{2}-3\right)\left(\left(x^{2}+1\right) y^{\prime}-2 y x\right) x
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
F_{0} & =2 \\
F_{1} & =0 \\
F_{2} & =0 \\
F_{3} & =0 \\
F_{4} & =0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=x^{2}+1+O\left(x^{6}\right) \\
& y=x^{2}+1+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}(n-2)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+3 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{1680}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+a_{0} x^{2}+\frac{1}{6} a_{1} x^{3}-\frac{1}{120} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(x^{2}+1\right) a_{0}+\left(x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y=\left(x^{2}+1\right) c_{1} & +\left(x+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y & =x^{2}+1+O\left(x^{6}\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=x^{2}+1+O\left(x^{6}\right) \tag{1}\\
& y=x^{2}+1+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=x^{2}+1+O\left(x^{6}\right)
$$

Verified OK.

$$
y=x^{2}+1+O\left(x^{6}\right)
$$

Verified OK.

8.17.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-y^{\prime} x+2 y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x-2 y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion
$y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}$
- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions
$\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k-2)\right) x^{k}=0$

- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}(k-2)=0$
- Recursion relation; series terminates at $k=2$
$a_{k+2}=-\frac{a_{k}(k-2)}{k^{2}+3 k+2}$
- Apply recursion relation for $k=0$
$a_{2}=a_{0}$
- Terminating series solution of the ODE. Use reduction of order to find the second linearly ind

$$
y=A_{2} x^{2}+A_{1} x+a_{0}
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Group is reducible, not completely reducible
    Solution has integrals. Trying a special function solution free of integrals...
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        <- Kummer successful
    <- special function solution successful
        -> Trying to convert hypergeometric functions to elementary form...
        <- elementary form is not straightforward to achieve - returning special function solu
    <- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
Order:=6;
dsolve([diff (y (x),x$2)+x*\operatorname{diff}(y(x),x)-2*y(x)=0,y(0)=1,D(y)(0)=0],y(x),type='series', x=0
```

$$
y(x)=x^{2}+1
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 19
AsymptoticDSolveValue[\{y' ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-2 * \mathrm{y}[\mathrm{x}]==0,\{\mathrm{y}[0]==0, \mathrm{y}$ ' $[0]==1\}\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow-\frac{x^{5}}{120}+\frac{x^{3}}{6}+x
$$

8.18 problem problem 18

8.18.1 Existence and uniqueness analysis 1521
8.18.2 Maple step by step solution . 1529

Internal problem ID [433]
Internal file name [OUTPUT/433_Sunday_June_05_2022_01_41_14_AM_37236895/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 18.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _exact, _linear, _homogeneous]]
```

$$
y^{\prime \prime}+(x-1) y^{\prime}+y=0
$$

With initial conditions

$$
\left[y(1)=2, y^{\prime}(1)=0\right]
$$

With the expansion point for the power series method at $x=1$.

8.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x-1 \\
q(x) & =1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+(x-1) y^{\prime}+y=0
$$

The domain of $p(x)=x-1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\frac{d^{2}}{d t^{2}} y(t)+t\left(\frac{d}{d t} y(t)\right)+y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{125}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{126}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-t\left(\frac{d}{d t} y(t)\right)-y(t) \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\left(\frac{d}{d t} y(t)\right) t^{2}+y(t) t-2 \frac{d}{d t} y(t) \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =-\left(\frac{d}{d t} y(t)\right) t^{3}-y(t) t^{2}+5 t\left(\frac{d}{d t} y(t)\right)+3 y(t) \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\left(t^{4}-9 t^{2}+8\right)\left(\frac{d}{d t} y(t)\right)+t y(t)\left(t^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\left(-t^{5}+14 t^{3}-33 t\right)\left(\frac{d}{d t} y(t)\right)-y(t)\left(t^{4}-12 t^{2}+15\right)
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=2$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-2 \\
& F_{1}=0 \\
& F_{2}=6 \\
& F_{3}=0 \\
& F_{4}=-30
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y(t)=-t^{2}+2+\frac{t^{4}}{4}-\frac{t^{6}}{24}+O\left(t^{6}\right)
$$

$$
y(t)=-t^{2}+2+\frac{t^{4}}{4}-\frac{t^{6}}{24}+O\left(t^{6}\right)
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=-t\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} n t^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right)+\left(\sum_{n=1}^{\infty} n t^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{0}}{8}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{48}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{105}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t-\frac{1}{2} a_{0} t^{2}-\frac{1}{3} a_{1} t^{3}+\frac{1}{8} a_{0} t^{4}+\frac{1}{15} a_{1} t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{8} t^{4}\right) a_{0}+\left(t-\frac{1}{3} t^{3}+\frac{1}{15} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(1-\frac{1}{2} t^{2}+\frac{1}{8} t^{4}\right) c_{1}+\left(t-\frac{1}{3} t^{3}+\frac{1}{15} t^{5}\right) c_{2}+O\left(t^{6}\right) \\
y(t)=-t^{2}+2+\frac{t^{4}}{4}+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
y=-(x-1)^{2}+2+\frac{(x-1)^{4}}{4}-\frac{(x-1)^{6}}{24}+O\left((x-1)^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-(x-1)^{2}+2+\frac{(x-1)^{4}}{4}-\frac{(x-1)^{6}}{24}+O\left((x-1)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-(x-1)^{2}+2+\frac{(x-1)^{4}}{4}-\frac{(x-1)^{6}}{24}+O\left((x-1)^{6}\right)
$$

Verified OK.

8.18.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}+(x-1) y^{\prime}+y=0, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite DE with series expansions

- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite DE with series expansions

$$
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k+1}(k+1)+a_{k}(k+1)\right) x^{k}=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+1)\left(a_{k+2}(k+2)-a_{k+1}+a_{k}\right)=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{-a_{k+1}+a_{k}}{k+2}\right]
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([diff (y (x),x$2)+(x-1)*diff (y(x),x)+y(x)=0,y(1) = 2, D(y)(1) = 0],y(x),type='series',x
```

$$
y(x)=2-(x-1)^{2}+\frac{1}{4}(x-1)^{4}+\mathrm{O}\left((x-1)^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 21

$$
y(x) \rightarrow \frac{1}{4}(x-1)^{4}-(x-1)^{2}+2
$$

8.19 problem problem 19

8.19.1 Existence and uniqueness analysis 1531
8.19.2 Maple step by step solution . 1539

Internal problem ID [434]
Internal file name [OUTPUT/434_Sunday_June_05_2022_01_41_16_AM_60641738/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 19.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(-x^{2}+2 x\right) y^{\prime \prime}-6(x-1) y^{\prime}-4 y=0
$$

With initial conditions

$$
\left[y(1)=0, y^{\prime}(1)=1\right]
$$

With the expansion point for the power series method at $x=1$.

8.19.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{-6 x+6}{-x^{2}+2 x} \\
q(x) & =-\frac{4}{-x^{2}+2 x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{(-6 x+6) y^{\prime}}{-x^{2}+2 x}-\frac{4 y}{-x^{2}+2 x}=0
$$

The domain of $p(x)=\frac{-6 x+6}{-x^{2}+2 x}$ is

$$
\{-\infty \leq x<0,0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=-\frac{4}{-x^{2}+2 x}$ is

$$
\{-\infty \leq x<0,0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-1
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(-(t+1)^{2}+2 t+2\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-6 t\left(\frac{d}{d t} y(t)\right)-4 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{128}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{129}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2\left(3 t\left(\frac{d}{d t} y(t)\right)+2 y(t)\right)}{t^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{38\left(\frac{d}{d t} y(t)\right) t^{2}+32 y(t) t+10 \frac{d}{d t} y(t)}{\left(t^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{-272\left(\frac{d}{d t} y(t)\right) t^{3}-248 y(t) t^{2}-208 t\left(\frac{d}{d t} y(t)\right)-72 y(t)}{\left(t^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{\left(2200 t^{4}+3280 t^{2}+280\right)\left(\frac{d}{d t} y(t)\right)+\left(2080 t^{3}+1760 t\right) y(t)}{\left(t^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =\frac{\left(-19920 t^{5}-48480 t^{3}-12240 t\right)\left(\frac{d}{d t} y(t)\right)-19200 y(t)\left(t^{4}+\frac{33}{20} t^{2}+\frac{3}{20}\right)}{\left(t^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=0$ and $y^{\prime}(0)=1$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=10 \\
& F_{2}=0 \\
& F_{3}=280 \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y(t)=t+\frac{5 t^{3}}{3}+\frac{7 t^{5}}{3}+O\left(t^{6}\right) \\
& y(t)=t+\frac{5 t^{3}}{3}+\frac{7 t^{5}}{3}+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(-t^{2}+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-6 t\left(\frac{d}{d t} y(t)\right)-4 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(-t^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)-6 t\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)-4\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to
$\sum_{n=2}^{\infty}\left(-t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\sum_{n=1}^{\infty}\left(-6 n a_{n} t^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} t^{n}\right)=0$
The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(-t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right)+\sum_{n=1}^{\infty}\left(-6 n a_{n} t^{n}\right)+\sum_{n=0}^{\infty}\left(-4 a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-4 a_{0}=0 \\
a_{2}=2 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-10 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{5 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-6 n a_{n}-4 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{(n+4) a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
-18 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=3 a_{0}
$$

For $n=3$ the recurrence equation gives

$$
-28 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{7 a_{1}}{3}
$$

For $n=4$ the recurrence equation gives

$$
-40 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=4 a_{0}
$$

For $n=5$ the recurrence equation gives

$$
-54 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=3 a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t+2 a_{0} t^{2}+\frac{5}{3} a_{1} t^{3}+3 a_{0} t^{4}+\frac{7}{3} a_{1} t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(3 t^{4}+2 t^{2}+1\right) a_{0}+\left(t+\frac{5}{3} t^{3}+\frac{7}{3} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
y(t)=\left(3 t^{4}+2 t^{2}+1\right) c_{1}+\left(t+\frac{5}{3} t^{3}+\frac{7}{3} t^{5}\right) c_{2}+O\left(t^{6}\right)
$$

$$
y(t)=t+\frac{5 t^{3}}{3}+\frac{7 t^{5}}{3}+O\left(t^{6}\right)
$$

Replacing t in the above with the original independent variable $x s u \operatorname{sing} t=x-1$ results in

$$
y=x-1+\frac{5(x-1)^{3}}{3}+\frac{7(x-1)^{5}}{3}+O\left((x-1)^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-1+\frac{5(x-1)^{3}}{3}+\frac{7(x-1)^{5}}{3}+O\left((x-1)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=x-1+\frac{5(x-1)^{3}}{3}+\frac{7(x-1)^{5}}{3}+O\left((x-1)^{6}\right)
$$

Verified OK.

8.19.2 Maple step by step solution

Let's solve

$$
\left[\left(-x^{2}+2 x\right) y^{\prime \prime}+(-6 x+6) y^{\prime}-4 y=0, y(1)=0,\left.y^{\prime}\right|_{\{x=1\}}=1\right]
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{4 y}{x(-2+x)}-\frac{6(x-1) y^{\prime}}{x(-2+x)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{6(x-1) y^{\prime}}{x(-2+x)}+\frac{4 y}{x(-2+x)}=0$
Check to see if x_{0} is a regular singular point
- Define functions
$\left[P_{2}(x)=\frac{6(x-1)}{x(-2+x)}, P_{3}(x)=\frac{4}{x(-2+x)}\right]$
- $x \cdot P_{2}(x)$ is analytic at $x=0$

$$
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3
$$

- $x^{2} \cdot P_{3}(x)$ is analytic at $x=0$

$$
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
$$

- $x=0$ is a regular singular point

Check to see if x_{0} is a regular singular point

$$
x_{0}=0
$$

- Multiply by denominators

$$
y^{\prime \prime} x(-2+x)+(6 x-6) y^{\prime}+4 y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k+r}$
Rewrite ODE with series expansions
- Convert $x^{m} \cdot y^{\prime}$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
$$

- Convert $x^{m} \cdot y^{\prime \prime}$ to series expansion for $m=1 . .2$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
$$

Rewrite ODE with series expansions

$$
-2 a_{0} r(2+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+r+1)(k+3+r)+a_{k}(k+r+4)(k+r+1)\right) x^{k+r}\right)=
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r(2+r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\{-2,0\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
(k+r+1)\left((-2 k-2 r-6) a_{k+1}+a_{k}(k+r+4)\right)=0
$$

- Recursion relation that defines series solution to ODE

$$
a_{k+1}=\frac{a_{k}(k+r+4)}{2(k+3+r)}
$$

- Recursion relation for $r=-2$

$$
a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}
$$

- \quad Solution for $r=-2$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-2}, a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}\right]
$$

- Recursion relation for $r=0$

$$
a_{k+1}=\frac{a_{k}(k+4)}{2(k+3)}
$$

- \quad Solution for $r=0$

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}(k+4)}{2(k+3)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+1}=\frac{a_{k}(k+2)}{2(k+1)}, b_{k+1}=\frac{b_{k}(k+4)}{2(k+3)}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
Order: $=6$;
$\operatorname{dsolve}\left(\left[\left(2 * x-x^{2} 2\right) * \operatorname{diff}(y(x), x \$ 2)-6 *(x-1) * \operatorname{diff}(y(x), x)-4 * y(x)=0, y(1)=0, D(y)(1)=1\right], y(x), t\right.$

$$
y(x)=(x-1)+\frac{5}{3}(x-1)^{3}+\frac{7}{3}(x-1)^{5}+\mathrm{O}\left((x-1)^{6}\right)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 24
AsymptoticDSolveValue $\left[\left\{\left(2 * x-x^{\wedge} 2\right) * y{ }^{\prime} '[x]-6 *(x-1) * y '[x]-4 * y[x]==0,\left\{y[1]==0, y^{\prime}[1]==1\right\}\right\}, y[x],\{x\right.$,

$$
y(x) \rightarrow \frac{7}{3}(x-1)^{5}+\frac{5}{3}(x-1)^{3}+x-1
$$

8.20 problem problem 20

8.20.1 Existence and uniqueness analysis 1543

Internal problem ID [435]
Internal file name [OUTPUT/435_Sunday_June_05_2022_01_41_18_AM_90937312/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 20.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}-6 x+10\right) y^{\prime \prime}-4(x-3) y^{\prime}+6 y=0
$$

With initial conditions

$$
\left[y(3)=2, y^{\prime}(3)=0\right]
$$

With the expansion point for the power series method at $x=3$.

8.20.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{-4 x+12}{x^{2}-6 x+10} \\
q(x) & =\frac{6}{x^{2}-6 x+10} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{(-4 x+12) y^{\prime}}{x^{2}-6 x+10}+\frac{6 y}{x^{2}-6 x+10}=0
$$

The domain of $p(x)=\frac{-4 x+12}{x^{2}-6 x+10}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=3$ is inside this domain. The domain of $q(x)=\frac{6}{x^{2}-6 x+10}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=3$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x-3
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left((t+3)^{2}-6 t-8\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-4 t\left(\frac{d}{d t} y(t)\right)+6 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =2 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{131}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{132}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{4 t\left(\frac{d}{d t} y(t)\right)-6 y(t)}{t^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{6\left(\frac{d}{d t} y(t)\right) t^{2}-12 y(t) t-2 \frac{d}{d t} y(t)}{\left(t^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =0 \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =0 \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =0
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=2$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
F_{0} & =-12 \\
F_{1} & =0 \\
F_{2} & =0 \\
F_{3} & =0 \\
F_{4} & =0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y(t)=-6 t^{2}+2+O\left(t^{6}\right) \\
& y(t)=-6 t^{2}+2+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{2}+1\right)-4 t\left(\frac{d}{d t} y(t)\right)+6 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(t^{2}+1\right)-4 t\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)+6\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\sum_{n=1}^{\infty}\left(-4 n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right)+\sum_{n=1}^{\infty}\left(-4 n a_{n} t^{n}\right)+\left(\sum_{n=0}^{\infty} 6 a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+6 a_{0}=0 \\
a_{2}=-3 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-4 n a_{n}+6 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-5 n+6\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
2 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
6 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t-3 a_{0} t^{2}-\frac{1}{3} a_{1} t^{3}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(-3 t^{2}+1\right) a_{0}+\left(t-\frac{1}{3} t^{3}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(-3 t^{2}+1\right) c_{1}+\left(t-\frac{1}{3} t^{3}\right) c_{2}+O\left(t^{6}\right) \\
y(t)=-6 t^{2}+2+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s$ using $t=x-3$ results in

$$
y=-6(x-3)^{2}+2+O\left((x-3)^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-6(x-3)^{2}+2+O\left((x-3)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-6(x-3)^{2}+2+O\left((x-3)^{6}\right)
$$

Verified OK.
Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
Order:=6;
dsolve([(x~2-6*x+10)*\operatorname{diff}(y(x),x$2)-4*(x-3)*\operatorname{diff}(y(x),x)+6*y(x)=0,y(3)=2,D(y)(3)=0],y(x
```

$$
y(x)=-6 x^{2}+36 x-52
$$

Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 12
AsymptoticDSolveValue $\left[\left\{\left(x^{\wedge} 2-6 * x+10\right) * y '^{\prime}[x]-4 *(x-3) * y '[x]+6 * y[x]==0,\{y[3]==2, y]^{\prime}[3]==0\right\}\right\}, y[x]$,

$$
y(x) \rightarrow 2-6(x-3)^{2}
$$

8.21 problem problem 21

$$
\text { 8.21.1 Existence and uniqueness analysis } 1552
$$

Internal problem ID [436]
Internal file name [OUTPUT/436_Sunday_June_05_2022_01_41_21_AM_15042728/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 21.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]

$$
\left(4 x^{2}+16 x+17\right) y^{\prime \prime}-8 y=0
$$

With initial conditions

$$
\left[y(-2)=1, y^{\prime}(-2)=0\right]
$$

With the expansion point for the power series method at $x=-2$.

8.21.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =-\frac{8}{4 x^{2}+16 x+17} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}-\frac{8 y}{4 x^{2}+16 x+17}=0
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is inside this domain. The domain of $q(x)=-\frac{8}{4 x^{2}+16 x+17}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-2$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=2+x
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left(4(t-2)^{2}+16 t-15\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-8 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{134}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{135}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =\frac{8 y(t)}{4 t^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{32\left(\frac{d}{d t} y(t)\right) t^{2}-64 y(t) t+8 \frac{d}{d t} y(t)}{\left(4 t^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =\frac{128\left(-4\left(\frac{d}{d t} y(t)\right) t^{2}+8 y(t) t-\frac{d}{d t} y(t)\right) t}{\left(4 t^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{10240\left(\left(t^{2}+\frac{1}{4}\right)\left(\frac{d}{d t} y(t)\right)-2 y(t) t\right)\left(t^{2}-\frac{1}{20}\right)}{\left(4 t^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =-\frac{245760\left(\left(t^{2}+\frac{1}{4}\right)\left(\frac{d}{d t} y(t)\right)-2 y(t) t\right) t\left(t^{2}-\frac{3}{20}\right)}{\left(4 t^{2}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
F_{0} & =8 \\
F_{1} & =0 \\
F_{2} & =0 \\
F_{3} & =0 \\
F_{4} & =0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y(t)=4 t^{2}+1+O\left(t^{6}\right)
$$

$$
y(t)=4 t^{2}+1+O\left(t^{6}\right)
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(4 t^{2}+1\right)-8 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(4 t^{2}+1\right)-8\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 4 t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} 4 t^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) t^{n}\right)+\sum_{n=0}^{\infty}\left(-8 a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}-8 a_{0}=0 \\
a_{2}=4 a_{0}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}-8 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{4 a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
4 n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-8 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{4(n-2) a_{n}}{n+2} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=0
$$

For $n=3$ the recurrence equation gives

$$
16 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{16 a_{1}}{15}
$$

For $n=4$ the recurrence equation gives

$$
40 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
72 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{64 a_{1}}{35}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t+4 a_{0} t^{2}+\frac{4}{3} a_{1} t^{3}-\frac{16}{15} a_{1} t^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(4 t^{2}+1\right) a_{0}+\left(t+\frac{4}{3} t^{3}-\frac{16}{15} t^{5}\right) a_{1}+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(4 t^{2}+1\right) c_{1}+\left(t+\frac{4}{3} t^{3}-\frac{16}{15} t^{5}\right) c_{2}+O\left(t^{6}\right) \\
y(t)=4 t^{2}+1+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable x susing $t=2+x$ results in

$$
y=4(2+x)^{2}+1+O\left((2+x)^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=4(2+x)^{2}+1+O\left((2+x)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=4(2+x)^{2}+1+O\left((2+x)^{6}\right)
$$

Verified OK.
Maple trace

```
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
Order:=6;
dsolve([(4*x^2+16*x+17)*diff (y(x),x$2)=8*y(x),y(-2) = 1, D(y) (-2) = 0],y(x),type='series', x=
```

$$
y(x)=4 x^{2}+16 x+17
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 12
AsymptoticDSolveValue[\{(4*x^2+16*x+17)*y' $\left.\left.{ }^{\prime}[x]==8 * y[x],\left\{y[-2]==1, y^{\prime}[-2]==0\right\}\right\}, y[x],\{x,-2,5\}\right]$

$$
y(x) \rightarrow 4(x+2)^{2}+1
$$

8.22 problem problem 22

8.22.1 Existence and uniqueness analysis 1561
8.22.2 Maple step by step solution . 1569

Internal problem ID [437]
Internal file name [OUTPUT/437_Sunday_June_05_2022_01_41_23_AM_37533081/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 22.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{2}+6 x\right) y^{\prime \prime}+(3 x+9) y^{\prime}-3 y=0
$$

With initial conditions

$$
\left[y(-3)=1, y^{\prime}(-3)=0\right]
$$

With the expansion point for the power series method at $x=-3$.

8.22.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3 x+9}{x^{2}+6 x} \\
q(x) & =-\frac{3}{x^{2}+6 x} \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+\frac{(3 x+9) y^{\prime}}{x^{2}+6 x}-\frac{3 y}{x^{2}+6 x}=0
$$

The domain of $p(x)=\frac{3 x+9}{x^{2}+6 x}$ is

$$
\{-\infty \leq x<-6,-6<x<0,0<x \leq \infty\}
$$

And the point $x_{0}=-3$ is inside this domain. The domain of $q(x)=-\frac{3}{x^{2}+6 x}$ is

$$
\{-\infty \leq x<-6,-6<x<0,0<x \leq \infty\}
$$

And the point $x_{0}=-3$ is also inside this domain. Hence solution exists and is unique.
The ode does not have its expansion point at $x=0$, therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let

$$
t=x+3
$$

The ode is converted to be in terms of the new independent variable t. This results in

$$
\left((t-3)^{2}+6 t-18\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+3 t\left(\frac{d}{d t} y(t)\right)-3 y(t)=0
$$

With its expansion point and initial conditions now at $t=0$. With initial conditions now becoming

$$
\begin{aligned}
y(0) & =1 \\
y^{\prime}(0) & =0
\end{aligned}
$$

The transformed ODE is now solved. Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the
case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{137}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{138}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{3\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right)}{t^{2}-9} \\
F_{1} & =\frac{d F_{0}}{d t} \\
& =\frac{\partial F_{0}}{\partial t}+\frac{\partial F_{0}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{0}}{\partial \frac{d}{d t} y(t)} F_{0} \\
& =\frac{15\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right) t}{\left(t^{2}-9\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d t} \\
& =\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{1}}{\partial \frac{d}{d t} y(t)} F_{1} \\
& =-\frac{90\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right)\left(t^{2}+\frac{3}{2}\right)}{\left(t^{2}-9\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d t} \\
& =\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{2}}{\partial \frac{d}{d t} y(t)} F_{2} \\
& =\frac{630\left(t^{2}+\frac{9}{2}\right)\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right) t}{\left(t^{2}-9\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d t} \\
& =\frac{\partial F_{3}}{\partial t}+\frac{\partial F_{3}}{\partial y} \frac{d}{d t} y(t)+\frac{\partial F_{3}}{\partial \frac{d}{d t} y(t)} F_{3} \\
& =-\frac{5040\left(t\left(\frac{d}{d t} y(t)\right)-y(t)\right)\left(t^{4}+9 t^{2}+\frac{81}{16}\right)}{\left(t^{2}-9\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $t=0$ and $y(0)=1$ and $y^{\prime}(0)=0$ gives

$$
\begin{aligned}
& F_{0}=-\frac{1}{3} \\
& F_{1}=0 \\
& F_{2}=-\frac{5}{27} \\
& F_{3}=0 \\
& F_{4}=-\frac{35}{81}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y(t)=1-\frac{t^{2}}{6}-\frac{5 t^{4}}{648}-\frac{7 t^{6}}{11664}+O\left(t^{6}\right) \\
& y(t)=1-\frac{t^{2}}{6}-\frac{5 t^{4}}{648}-\frac{7 t^{6}}{11664}+O\left(t^{6}\right)
\end{aligned}
$$

Since the expansion point $t=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{2}-9\right)+3 t\left(\frac{d}{d t} y(t)\right)-3 y(t)=0
$$

Let the solution be represented as power series of the form

$$
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n}
$$

Then

$$
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=1}^{\infty} n a_{n} t^{n-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} t^{n-2}\right)\left(t^{2}-9\right)+3 t\left(\sum_{n=1}^{\infty} n a_{n} t^{n-1}\right)-3\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right)=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-9 n(n-1) a_{n} t^{n-2}\right)+\left(\sum_{n=1}^{\infty} 3 n a_{n} t^{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} t^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of t be n in each summation term. Going over each summation term above with power of t in it which is not already t^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty}\left(-9 n(n-1) a_{n} t^{n-2}\right)=\sum_{n=0}^{\infty}\left(-9(n+2) a_{n+2}(n+1) t^{n}\right)
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of t are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} t^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-9(n+2) a_{n+2}(n+1) t^{n}\right)+\left(\sum_{n=1}^{\infty} 3 n a_{n} t^{n}\right)+\sum_{n=0}^{\infty}\left(-3 a_{n} t^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
-18 a_{2}-3 a_{0}=0 \\
a_{2}=-\frac{a_{0}}{6}
\end{gathered}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-9(n+2) a_{n+2}(n+1)+3 n a_{n}-3 a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}+2 n-3\right)}{9(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=2$ the recurrence equation gives

$$
5 a_{2}-108 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{5 a_{0}}{648}
$$

For $n=3$ the recurrence equation gives

$$
12 a_{3}-180 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
21 a_{4}-270 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{7 a_{0}}{11664}
$$

For $n=5$ the recurrence equation gives

$$
32 a_{5}-378 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=0
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y(t) & =\sum_{n=0}^{\infty} a_{n} t^{n} \\
& =a_{3} t^{3}+a_{2} t^{2}+a_{1} t+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y(t)=a_{0}+a_{1} t-\frac{1}{6} a_{0} t^{2}-\frac{5}{648} a_{0} t^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y(t)=\left(1-\frac{1}{6} t^{2}-\frac{5}{648} t^{4}\right) a_{0}+a_{1} t+O\left(t^{6}\right) \tag{3}
\end{equation*}
$$

At $t=0$ the solution above becomes

$$
\begin{gathered}
y(t)=\left(1-\frac{1}{6} t^{2}-\frac{5}{648} t^{4}\right) c_{1}+c_{2} t+O\left(t^{6}\right) \\
y(t)=1-\frac{t^{2}}{6}-\frac{5 t^{4}}{648}+O\left(t^{6}\right)
\end{gathered}
$$

Replacing t in the above with the original independent variable $x s$ using $t=x+3$ results in

$$
y=1-\frac{(x+3)^{2}}{6}-\frac{5(x+3)^{4}}{648}-\frac{7(x+3)^{6}}{11664}+O\left((x+3)^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1-\frac{(x+3)^{2}}{6}-\frac{5(x+3)^{4}}{648}-\frac{7(x+3)^{6}}{11664}+O\left((x+3)^{6}\right) \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=1-\frac{(x+3)^{2}}{6}-\frac{5(x+3)^{4}}{648}-\frac{7(x+3)^{6}}{11664}+O\left((x+3)^{6}\right)
$$

Verified OK.

8.22.2 Maple step by step solution

Let's solve

$$
\left[\left(x^{2}+6 x\right) y^{\prime \prime}+(3 x+9) y^{\prime}-3 y=0, y(-3)=1,\left.y^{\prime}\right|_{\{x=-3\}}=0\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\frac{3 y}{x(x+6)}-\frac{3(x+3) y^{\prime}}{x(x+6)}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{3(x+3) y^{\prime}}{x(x+6)}-\frac{3 y}{x(x+6)}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{3(x+3)}{x(x+6)}, P_{3}(x)=-\frac{3}{x(x+6)}\right]
$$

- $(x+6) \cdot P_{2}(x)$ is analytic at $x=-6$
$\left.\left((x+6) \cdot P_{2}(x)\right)\right|_{x=-6}=\frac{3}{2}$
- $(x+6)^{2} \cdot P_{3}(x)$ is analytic at $x=-6$

$$
\left.\left((x+6)^{2} \cdot P_{3}(x)\right)\right|_{x=-6}=0
$$

- $x=-6$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-6$

- Multiply by denominators

$$
y^{\prime \prime} x(x+6)+(3 x+9) y^{\prime}-3 y=0
$$

- Change variables using $x=u-6$ so that the regular singular point is at $u=0$
$\left(u^{2}-6 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(3 u-9)\left(\frac{d}{d u} y(u)\right)-3 y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
$$

- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1$.. 2

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
$$

Rewrite ODE with series expansions

$$
-3 a_{0} r(1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-3 a_{k+1}(k+1+r)(2 k+3+2 r)+a_{k}(k+r+3)(k+r-1)\right) u^{k+r}\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-3 r(1+2 r)=0$
- Values of r that satisfy the indicial equation

$$
r \in\left\{0,-\frac{1}{2}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation

$$
-6(k+1+r)\left(k+\frac{3}{2}+r\right) a_{k+1}+a_{k}(k+r+3)(k+r-1)=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+1}=\frac{a_{k}(k+r+3)(k+r-1)}{3(k+1+r)(2 k+3+2 r)}$
- Recursion relation for $r=0$; series terminates at $k=1$
$a_{k+1}=\frac{a_{k}(k+3)(k-1)}{3(k+1)(2 k+3)}$
- Apply recursion relation for $k=0$
$a_{1}=-\frac{a_{0}}{3}$
- Terminating series solution of the ODE for $r=0$. Use reduction of order to find the second li

$$
y(u)=a_{0} \cdot\left(1-\frac{u}{3}\right)
$$

- \quad Revert the change of variables $u=x+6$

$$
\left[y=a_{0}\left(-1-\frac{x}{3}\right)\right]
$$

- \quad Recursion relation for $r=-\frac{1}{2}$

$$
a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)\left(k-\frac{3}{2}\right)}{3\left(k+\frac{1}{2}\right)(2 k+2)}
$$

- \quad Solution for $r=-\frac{1}{2}$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)\left(k-\frac{3}{2}\right)}{3\left(k+\frac{1}{2}\right)(2 k+2)}\right]
$$

- \quad Revert the change of variables $u=x+6$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+6)^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)\left(k-\frac{3}{2}\right)}{3\left(k+\frac{1}{2}\right)(2 k+2)}\right]
$$

- Combine solutions and rename parameters

$$
\left[y=a_{0}\left(-1-\frac{x}{3}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+6)^{k-\frac{1}{2}}\right), b_{k+1}=\frac{b_{k}\left(k+\frac{5}{2}\right)\left(k-\frac{3}{2}\right)}{3\left(k+\frac{1}{2}\right)(2 k+2)}\right]
$$

Maple trace Kovacic algorithm successful

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
    A Liouvillian solution exists
    Reducible group (found an exponential solution)
    Reducible group (found another exponential solution)
<- Kovacics algorithm successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve([(x^2+6*x)*diff (y(x),x$2)+(3*x+9)*diff (y(x),x)-3*y(x)=0,y(-3)=1,D(y)(-3)=0],y(x)
```

$$
y(x)=1-\frac{1}{6}(x+3)^{2}-\frac{5}{648}(x+3)^{4}+\mathrm{O}\left((x+3)^{6}\right)
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 23
AsymptoticDSolveValue $\left[\left\{\left(x^{\wedge} 2+6 * x\right) * y '^{\prime}[x]+(3 * x+9) * y '[x]-3 * y[x]==0,\left\{y[-3]==1, y^{\prime}[-3]==0\right\}\right\}, y[x],\{\right.$

$$
y(x) \rightarrow-\frac{5}{648}(x+3)^{4}-\frac{1}{6}(x+3)^{2}+1
$$

8.23 problem problem 23

8.23.1 Maple step by step solution . 1580

Internal problem ID [438]
Internal file name [OUTPUT/438_Sunday_June_05_2022_01_41_25_AM_63224170/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 23.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
y^{\prime \prime}+(x+1) y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{140}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{141}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-(x+1) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(-x-1) y^{\prime}-y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+\left(x^{2}+2 x+1\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left((x+1) y^{\prime}+4 y\right)(x+1) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-(x+1)^{3} y+(6 x+6) y^{\prime}+4 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0)-y(0) \\
& F_{2}=-2 y^{\prime}(0)+y(0) \\
& F_{3}=y^{\prime}(0)+4 y(0) \\
& F_{4}=3 y(0)+6 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{240} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-(x+1)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{a_{n-1}+a_{n}}{(n+2)(1+n)} \\
& =-\frac{a_{n}}{(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}+a_{0}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{1}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}+\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+a_{2}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{30}+\frac{a_{1}}{120}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+a_{3}+a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{240}+\frac{a_{1}}{120}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+a_{4}+a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{560}-\frac{a_{0}}{560}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}+\left(-\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) x^{3}+\left(-\frac{a_{1}}{12}+\frac{a_{0}}{24}\right) x^{4}+\left(\frac{a_{0}}{30}+\frac{a_{1}}{120}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{240} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O(x(3))
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{240} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}+\frac{1}{120} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.23.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-(x+1) y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=(-x-1) y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+(x+1) y=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

$\square \quad$ Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .1$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions
$2 a_{2}+a_{0}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}+a_{k-1}\right) x^{k}\right)=0$

- Each term must be 0

$$
2 a_{2}+a_{0}=0
$$

- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k}+a_{k-1}=0$
- \quad Shift index using $k->k+1$
$\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+1}+a_{k}=0$
- Recursion relation that defines the series solution to the ODE $\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k+1}+a_{k}}{k^{2}+5 k+6}, 2 a_{2}+a_{0}=0\right]$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 49

```
Order:=6;
dsolve(diff(y(x),x$2)+(1+x)*y(x)=0,y(x),type='series', x=0);
```

$$
\begin{aligned}
y(x)= & \left(1-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}-\frac{1}{12} x^{4}+\frac{1}{120} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 63
AsymptoticDSolveValue[y' ' $[\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{x^{5}}{120}-\frac{x^{4}}{12}-\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{x^{5}}{30}+\frac{x^{4}}{24}-\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
$$

8.24 problem problem 24

8.24.1 Maple step by step solution . 1590

Internal problem ID [439]
Internal file name [OUTPUT/439_Sunday_June_05_2022_01_41_26_AM_71221353/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 24.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

```
[[_2nd_order, _with_linear_symmetries]]
```

$$
\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x+2 y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{143}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{144}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{2 x\left(y^{\prime}+y\right)}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(-2 x^{3}+6 x^{2}+2 x+2\right) y^{\prime}+\left(6 x^{2}+2\right) y}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(12 x^{4}-24 x^{3}-8 x^{2}-24 x-4\right) y^{\prime}+4 x y\left(x^{3}-6 x^{2}-x-6\right)}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(4 x^{6}-72 x^{5}+112 x^{4}+244 x^{2}+72 x+24\right) y^{\prime}-32\left(x^{5}-\frac{15}{4} x^{4}-\frac{1}{2} x^{3}-\frac{15}{2} x^{2}-\frac{1}{2} x-\frac{3}{4}\right) y}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(-48 x^{7}+480 x^{6}-648 x^{5}+480 x^{4}-2400 x^{3}-864 x^{2}-744 x-96\right) y^{\prime}-8 y\left(x^{7}-30 x^{6}+88 x^{5}-10 x^{4}\right.}{\left(x^{2}-1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=2 y^{\prime}(0)+2 y(0) \\
& F_{2}=4 y^{\prime}(0) \\
& F_{3}=24 y(0)+24 y^{\prime}(0) \\
& F_{4}=16 y(0)+96 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{45} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}+\frac{2}{15} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x+2 y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{2}-1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(1+n) x^{n}\right) \tag{3}\\
& \quad+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=1$ gives

$$
-6 a_{3}+2 a_{1}+2 a_{0}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{3}+\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
n a_{n}(n-1)-(n+2) a_{n+2}(1+n)+2 n a_{n}+2 a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =\frac{n^{2} a_{n}+n a_{n}+2 a_{n-1}}{(n+2)(1+n)} \\
& =\frac{\left(n^{2}+n\right) a_{n}}{(n+2)(1+n)}+\frac{2 a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
6 a_{2}-12 a_{4}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{6}
$$

For $n=3$ the recurrence equation gives

$$
12 a_{3}-20 a_{5}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{a_{0}}{5}+\frac{a_{1}}{5}
$$

For $n=4$ the recurrence equation gives

$$
20 a_{4}-30 a_{6}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{2 a_{1}}{15}+\frac{a_{0}}{45}
$$

For $n=5$ the recurrence equation gives

$$
30 a_{5}-42 a_{7}+2 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{0}}{7}+\frac{19 a_{1}}{126}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(\frac{a_{0}}{3}+\frac{a_{1}}{3}\right) x^{3}+\frac{a_{1} x^{4}}{6}+\left(\frac{a_{0}}{5}+\frac{a_{1}}{5}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) a_{0}+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{45} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}+\frac{2}{15} x^{6}\right) y^{\prime}(0)+O(\tag{6}\\
& y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}+\frac{1}{45} x^{6}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}+\frac{2}{15} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) c_{1}+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.24.1 Maple step by step solution

Let's solve

$$
\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x+2 y x=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=-\frac{2 x y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 x y}{x^{2}-1}=0$
Check to see if x_{0} is a regular singular point
- Define functions

$$
\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=\frac{2 x}{x^{2}-1}\right]
$$

- $(x+1) \cdot P_{2}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1) \cdot P_{2}(x)\right)\right|_{x=-1}=1
$$

- $(x+1)^{2} \cdot P_{3}(x)$ is analytic at $x=-1$

$$
\left.\left((x+1)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
$$

- $x=-1$ is a regular singular point

Check to see if x_{0} is a regular singular point
$x_{0}=-1$

- Multiply by denominators
$\left(x^{2}-1\right) y^{\prime \prime}+2 y^{\prime} x+2 y x=0$
- \quad Change variables using $x=u-1$ so that the regular singular point is at $u=0$
$\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+(2 u-2) y(u)=0$
- \quad Assume series solution for $y(u)$
$y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}$
Rewrite ODE with series expansions
- Convert $u^{m} \cdot y(u)$ to series expansion for $m=0 . .1$

$$
u^{m} \cdot y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r+m}
$$

- Shift index using $k->k-m$

$$
u^{m} \cdot y(u)=\sum_{k=m}^{\infty} a_{k-m} u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d}{d u} y(u)\right)$ to series expansion for $m=0 . .1$
$u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}$
- Shift index using $k->k+1-m$

$$
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
$$

- Convert $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)$ to series expansion for $m=1$.. 2

$$
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
$$

- Shift index using $k->k+2-m$ $u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}$

Rewrite ODE with series expansions

$$
-2 a_{0} r^{2} u^{-1+r}+\left(-2 a_{1}(1+r)^{2}+a_{0}(2+r)(-1+r)\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r\right.\right.
$$

- $\quad a_{0}$ cannot be 0 by assumption, giving the indicial equation
$-2 r^{2}=0$
- Values of r that satisfy the indicial equation

$$
r=0
$$

- Each term must be 0

$$
-2 a_{1}(1+r)^{2}+a_{0}(2+r)(-1+r)=0
$$

- Each term in the series must be 0 , giving the recursion relation

$$
-2 a_{k+1}(k+1)^{2}+\left(k^{2}+k-2\right) a_{k}+2 a_{k-1}=0
$$

- \quad Shift index using $k->k+1$

$$
-2 a_{k+2}(k+2)^{2}+\left((k+1)^{2}+k-1\right) a_{k+1}+2 a_{k}=0
$$

- Recursion relation that defines series solution to ODE
$a_{k+2}=\frac{k^{2} a_{k+1}+3 k a_{k+1}+2 a_{k}}{2(k+2)^{2}}$
- Recursion relation for $r=0$
$a_{k+2}=\frac{k^{2} a_{k+1}+3 k a_{k+1}+2 a_{k}}{2(k+2)^{2}}$
- \quad Solution for $r=0$

$$
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+2}=\frac{k^{2} a_{k+1}+3 k a_{k+1}+2 a_{k}}{2(k+2)^{2}},-2 a_{1}-2 a_{0}=0\right]
$$

- \quad Revert the change of variables $u=x+1$

$$
\left[y=\sum_{k=0}^{\infty} a_{k}(x+1)^{k}, a_{k+2}=\frac{k^{2} a_{k+1}+3 k a_{k+1}+2 a_{k}}{2(k+2)^{2}},-2 a_{1}-2 a_{0}=0\right]
$$

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 39

```
Order:=6;
dsolve((x^2-1)*diff (y (x), x$2)+2*x*diff (y (x),x)+2*x*y(x)=0,y(x),type='series',x=0);
\[
y(x)=\left(1+\frac{1}{3} x^{3}+\frac{1}{5} x^{5}\right) y(0)+\left(x+\frac{1}{3} x^{3}+\frac{1}{6} x^{4}+\frac{1}{5} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49
AsymptoticDSolveValue $\left[\left(x^{\wedge} 2+1\right) * y '\right.$ ' $[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}$ ' $\left.[\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{5}-\frac{x^{3}}{3}+1\right)+c_{2}\left(\frac{x^{5}}{5}-\frac{x^{4}}{6}-\frac{x^{3}}{3}+x\right)
$$

8.25 problem problem 25

8.25.1 Maple step by step solution . 1602

Internal problem ID [440]
Internal file name [OUTPUT/440_Sunday_June_05_2022_01_41_27_AM_62848587/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 25.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x^{2}+x^{2} y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{146}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{147}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y^{\prime} x^{2}-x^{2} y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(\left(x^{3}-x-2\right) y^{\prime}+y\left(x^{3}-2\right)\right) x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-x^{6}+2 x^{4}+6 x^{3}-4 x-2\right) y^{\prime}-y\left(x^{6}-x^{4}-6 x^{3}+2\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{8}-3 x^{6}-12 x^{5}+x^{4}+18 x^{3}+20 x^{2}-6\right) y^{\prime}+x^{2} y\left(x^{6}-2 x^{4}-12 x^{3}+8 x+20\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left(\left(x^{9}-4 x^{7}-20 x^{6}+3 x^{5}+48 x^{4}+80 x^{3}-12 x^{2}-80 x-40\right) y^{\prime}+y\left(x^{9}-3 x^{7}-20 x^{6}+x^{5}+30 x^{4}-\right.\right.
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=-2 y^{\prime}(0)-2 y(0) \\
& F_{3}=-6 y^{\prime}(0) \\
& F_{4}=0
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x^{2}-x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{1+n} a_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n+2} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n x^{1+n} a_{n} & =\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n} \\
\sum_{n=0}^{\infty} x^{n+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=2}^{\infty}(n-1) a_{n-1} x^{n}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)+(n-1) a_{n-1}+a_{n-2}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n-1}+a_{n-2}-a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{n-2}}{(n+2)(1+n)}-\frac{(n-1) a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+a_{1}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{1}}{12}-\frac{a_{0}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+2 a_{2}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{20}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+3 a_{3}+a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=0
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+4 a_{4}+a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{126}+\frac{a_{0}}{126}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(-\frac{a_{1}}{12}-\frac{a_{0}}{12}\right) x^{4}-\frac{a_{1} x^{5}}{20}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{4}}{12}\right) a_{0}+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{4}}{12}\right) c_{1}+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.25.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=-y^{\prime} x^{2}-x^{2} y
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}+y^{\prime} x^{2}+x^{2} y=0$
- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y$ to series expansion
$x^{2} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+2}$
- Shift index using $k->k-2$
$x^{2} \cdot y=\sum_{k=2}^{\infty} a_{k-2} x^{k}$
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$6 a_{3} x+2 a_{2}+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}(k-1)+a_{k-2}\right) x^{k}\right)=0$
- The coefficients of each power of x must be 0
$\left[2 a_{2}=0,6 a_{3}=0\right]$
- \quad Solve for the dependent coefficient(s)
$\left\{a_{2}=0, a_{3}=0\right\}$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-1} k+a_{k-2}-a_{k-1}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k+1}(k+2)+a_{k}-a_{k+1}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k a_{k+1}+a_{k}+a_{k+1}}{k^{2}+7 k+12}, a_{2}=0, a_{3}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunT ODE, case c = 0
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
Order:=6;
dsolve(diff(y(x),x$2)+x^2*diff (y(x),x)+x^2*y(x)=0,y(x),type='series', x=0);
```

$$
y(x)=\left(1-\frac{x^{4}}{12}\right) y(0)+\left(x-\frac{1}{12} x^{4}-\frac{1}{20} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35
AsymptoticDSolveValue [y' ' $[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}$ ' $\left.[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(1-\frac{x^{4}}{12}\right)+c_{2}\left(-\frac{x^{5}}{20}-\frac{x^{4}}{12}+x\right)
$$

8.26 problem problem 26

Internal problem ID [441]
Internal file name [OUTPUT/441_Sunday_June_05_2022_01_41_28_AM_31501157/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 26.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\left(x^{3}+1\right) y^{\prime \prime}+y x^{4}=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{149}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{150}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y x^{4}}{x^{3}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-\frac{\left(\left(x^{4}+x\right) y^{\prime}+y\left(x^{3}+4\right)\right) x^{3}}{\left(x^{3}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(\left(-2 x^{7}-10 x^{4}-8 x\right) y^{\prime}+y\left(x^{9}+x^{6}+6 x^{3}-12\right)\right) x^{2}}{\left(x^{3}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\left(x^{13}+2 x^{10}+19 x^{7}-18 x^{4}-36 x\right) y^{\prime}+4 y\left(x^{12}+5 x^{9}-2 x^{6}+\frac{57}{2} x^{3}-6\right)\right) x}{\left(x^{3}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{6\left(x^{16}+6 x^{13}-7 x^{10}+64 x^{7}+60 x^{4}-16 x\right) y^{\prime}-y\left(x^{18}-2 x^{15}+7 x^{12}-258 x^{9}+932 x^{6}-720 x^{3}+24\right)}{\left(x^{3}+1\right)^{5}}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=0 \\
& F_{2}=0 \\
& F_{3}=0 \\
& F_{4}=-24 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{x^{6}}{30}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\left(x^{3}+1\right) y^{\prime \prime}+y x^{4}=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(x^{3}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x^{4}=0 \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{n+4} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{1+n} a_{n}(n-1) & =\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{n+4} a_{n} & =\sum_{n=4}^{\infty} a_{n-4} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.
$\left(\sum_{n=3}^{\infty}(n-1) a_{n-1}(n-2) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=4}^{\infty} a_{n-4} x^{n}\right)=0$
$n=3$ gives

$$
2 a_{2}+20 a_{5}=0
$$

Which after substituting earlier equations, simplifies to

$$
20 a_{5}=0
$$

Or

$$
a_{5}=0
$$

For $4 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n-1) a_{n-1}(n-2)+(n+2) a_{n+2}(1+n)+a_{n-4}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n-1}-3 n a_{n-1}+a_{n-4}+2 a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{n-4}}{(n+2)(1+n)}-\frac{\left(n^{2}-3 n+2\right) a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
$$

For $n=4$ the recurrence equation gives

$$
6 a_{3}+30 a_{6}+a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{a_{0}}{30}
$$

For $n=5$ the recurrence equation gives

$$
12 a_{4}+42 a_{7}+a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{a_{1}}{42}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{1} x+a_{0}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=a_{1} x+a_{0}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=c_{2} x+c_{1}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{x^{6}}{30}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=c_{2} x+c_{1}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{x^{6}}{30}\right) y(0)+x y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=c_{2} x+c_{1}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Whittaker
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    -> hypergeometric
    -> heuristic approach
    -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
    -> Mathieu
    -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunC ODE, case a <> 0, e <> 0, c =
```


Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

```
Order:=6;
dsolve((1+x^3)*diff (y (x),x$2)+x^4*y (x)=0,y(x),type='series', x=0);
```

$$
y(x)=y(0)+D(y)(0) x+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 10
AsymptoticDSolveValue[(1+x^3)*y' ' $[\mathrm{x}]+\mathrm{x} \wedge 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2} x+c_{1}
$$

8.27 problem problem 27

8.27.1 Existence and uniqueness analysis 1614
8.27.2 Maple step by step solution . 1622

Internal problem ID [442]
Internal file name [OUTPUT/442_Sunday_June_05_2022_01_41_30_AM_13553494/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 27.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y^{\prime} x+y\left(2 x^{2}+1\right)=0
$$

With initial conditions

$$
\left[y(0)=1, y^{\prime}(0)=-1\right]
$$

With the expansion point for the power series method at $x=0$.

8.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
$$

Where here

$$
\begin{aligned}
p(x) & =x \\
q(x) & =2 x^{2}+1 \\
F & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime \prime}+y^{\prime} x+y\left(2 x^{2}+1\right)=0
$$

The domain of $p(x)=x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=2 x^{2}+1$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{152}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{153}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-2 x^{2} y-y^{\prime} x-y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =2 y x^{3}-y^{\prime} x^{2}-3 y x-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(3 x^{3}-3 x\right) y^{\prime}+y\left(2 x^{4}+11 x^{2}-1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(-x^{4}+23 x^{2}-4\right) y^{\prime}-6\left(x^{4}-\frac{11}{6} x^{2}-\frac{25}{6}\right) x y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-5 x^{5}-16 x^{3}+75 x\right) y^{\prime}+2\left(x^{6}-\frac{75}{2} x^{4}+9 x^{2}+\frac{29}{2}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=1$ and $y^{\prime}(0)=-1$ gives

$$
\begin{aligned}
& F_{0}=-1 \\
& F_{1}=2 \\
& F_{2}=-1 \\
& F_{3}=4 \\
& F_{4}=29
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
& y=1-x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{24}+\frac{x^{5}}{30}+\frac{29 x^{6}}{720}+O\left(x^{6}\right) \\
& y=1-x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{24}+\frac{x^{5}}{30}+\frac{29 x^{6}}{720}+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2 x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty} 2 x^{n+2} a_{n} & =\sum_{n=2}^{\infty} 2 a_{n-2} x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=2}^{\infty} 2 a_{n-2} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
2 a_{2}+a_{0}=0
$$

$$
a_{2}=-\frac{a_{0}}{2}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{3}
$$

For $2 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+2 a_{n-2}+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
a_{n+2} & =-\frac{n a_{n}+a_{n}+2 a_{n-2}}{(n+2)(n+1)} \\
& =-\frac{a_{n}}{n+2}-\frac{2 a_{n-2}}{(n+2)(n+1)} \tag{5}
\end{align*}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}+3 a_{2}+2 a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=-\frac{a_{0}}{24}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}+4 a_{3}+2 a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=-\frac{a_{1}}{30}
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}+5 a_{4}+2 a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{29 a_{0}}{720}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}+6 a_{5}+2 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{13 a_{1}}{630}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}-\frac{1}{24} a_{0} x^{4}-\frac{1}{30} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) a_{0}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
\begin{gathered}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}\right) c_{1}+\left(x-\frac{1}{3} x^{3}-\frac{1}{30} x^{5}\right) c_{2}+O\left(x^{6}\right) \\
y=1-\frac{x^{2}}{2}-\frac{x^{4}}{24}-x+\frac{x^{3}}{3}+\frac{x^{5}}{30}+O\left(x^{6}\right)
\end{gathered}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
& y=1-x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{24}+\frac{x^{5}}{30}+\frac{29 x^{6}}{720}+O\left(x^{6}\right) \tag{1}\\
& y=1-\frac{x^{2}}{2}-\frac{x^{4}}{24}-x+\frac{x^{3}}{3}+\frac{x^{5}}{30}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=1-x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{24}+\frac{x^{5}}{30}+\frac{29 x^{6}}{720}+O\left(x^{6}\right)
$$

Verified OK.

$$
y=1-\frac{x^{2}}{2}-\frac{x^{4}}{24}-x+\frac{x^{3}}{3}+\frac{x^{5}}{30}+O\left(x^{6}\right)
$$

Verified OK.

8.27.2 Maple step by step solution

Let's solve

$$
\left[y^{\prime \prime}=-2 x^{2} y-y^{\prime} x-y, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=-1\right]
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Isolate 2nd derivative

$$
y^{\prime \prime}=\left(-2 x^{2}-1\right) y-y^{\prime} x
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}+y^{\prime} x+y\left(2 x^{2}+1\right)=0
$$

- \quad Assume series solution for y

$$
y=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Rewrite ODE with series expansions

- Convert $x^{m} \cdot y$ to series expansion for $m=0 . .2$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
$$

- Shift index using $k->k-m$

$$
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
$$

- Convert $x \cdot y^{\prime}$ to series expansion $x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite ODE with series expansions
$2 a_{2}+a_{0}+\left(6 a_{3}+2 a_{1}\right) x+\left(\sum_{k=2}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)+2 a_{k-2}\right) x^{k}\right)=0$

- The coefficients of each power of x must be 0

$$
\left[2 a_{2}+a_{0}=0,6 a_{3}+2 a_{1}=0\right]
$$

- \quad Solve for the dependent coefficient(s)

$$
\left\{a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{3}\right\}
$$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}+a_{k} k+a_{k}+2 a_{k-2}=0$
- \quad Shift index using $k->k+2$
$\left((k+2)^{2}+3 k+8\right) a_{k+4}+a_{k+2}(k+2)+a_{k+2}+2 a_{k}=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{k a_{k+2}+2 a_{k}+3 a_{k+2}}{k^{2}+7 k+12}, a_{2}=-\frac{a_{0}}{2}, a_{3}=-\frac{a_{1}}{3}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
        -> hyper3: Equivalence to 1F1 under a power @ Moebius
        <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
Order:=6;
dsolve([diff (y (x),x$2)+x*diff (y(x),x)+(2*x^2+1)*y(x)=0,y(0) = 1, D (y) (0) = -1],y(x),type='se
```

$$
y(x)=1-x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\mathrm{O}\left(x^{6}\right)
$$

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 49
AsymptoticDSolveValue $\left[\left\{\left(x^{\wedge} 2+1\right) * y '\right.\right.$ ' $\left.\left.[x]+2 * x * y '[x]+2 * x * y[x]==0,\{ \}\right\}, y[x],\{x, 0,5\}\right]$

$$
y(x) \rightarrow c_{1}\left(\frac{x^{5}}{5}-\frac{x^{3}}{3}+1\right)+c_{2}\left(\frac{x^{5}}{5}-\frac{x^{4}}{6}-\frac{x^{3}}{3}+x\right)
$$

8.28 problem problem 28

Internal problem ID [443]
Internal file name [OUTPUT/443_Sunday_June_05_2022_01_41_32_AM_81640338/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 28.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_bessel_ode_form_A", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}+y \mathrm{e}^{-x}=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{155}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{156}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-y \mathrm{e}^{-x} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\mathrm{e}^{-x}\left(-y^{\prime}+y\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\mathrm{e}^{-x}\left(y \mathrm{e}^{-x}+2 y^{\prime}-y\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(y^{\prime}-4 y\right) \mathrm{e}^{-2 x}+\left(y-3 y^{\prime}\right) \mathrm{e}^{-x} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(11 y-6 y^{\prime}\right) \mathrm{e}^{-2 x}+\left(-y+4 y^{\prime}\right) \mathrm{e}^{-x}-y \mathrm{e}^{-3 x}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0)+y(0) \\
& F_{2}=2 y^{\prime}(0) \\
& F_{3}=-3 y(0)-2 y^{\prime}(0) \\
& F_{4}=9 y(0)-2 y^{\prime}(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{80} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
\mathrm{e}^{x} y^{\prime \prime}+y=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\mathrm{e}^{x}\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
$$

Expanding e^{x} as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\mathrm{e}^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\ldots \\
& =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Expanding the first term in (1) gives

$$
\begin{aligned}
\text { 1. } & \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{2}}{2} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) \\
& +\frac{x^{3}}{6} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{4}}{24} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{5}}{120} \\
& \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{6}}{720} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} \frac{n x^{n+4} a_{n}(n-1)}{720}\right)+\left(\sum_{n=2}^{\infty} \frac{n x^{n+3} a_{n}(n-1)}{120}\right) \\
& +\left(\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24}\right)+\left(\sum_{n=2}^{\infty} \frac{n x^{1+n} a_{n}(n-1)}{6}\right)+\left(\sum_{n=2}^{\infty} \frac{n a_{n} x^{n}(n-1)}{2}\right) \tag{2}\\
& +\left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} \frac{n x^{n+4} a_{n}(n-1)}{720} & =\sum_{n=6}^{\infty} \frac{(n-4) a_{n-4}(n-5) x^{n}}{720} \\
\sum_{n=2}^{\infty} \frac{n x^{n+3} a_{n}(n-1)}{120} & =\sum_{n=5}^{\infty} \frac{(n-3) a_{n-3}(n-4) x^{n}}{120} \\
\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24} & =\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24} \\
\sum_{n=2}^{\infty} \frac{n x^{1+n} a_{n}(n-1)}{6} & =\sum_{n=3}^{\infty} \frac{(n-1) a_{n-1}(n-2) x^{n}}{6} \\
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers
of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=6}^{\infty} \frac{(n-4) a_{n-4}(n-5) x^{n}}{720}\right)+\left(\sum_{n=5}^{\infty} \frac{(n-3) a_{n-3}(n-4) x^{n}}{120}\right) \\
& +\left(\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24}\right)+\left(\sum_{n=3}^{\infty} \frac{(n-1) a_{n-1}(n-2) x^{n}}{6}\right) \tag{3}\\
& +\left(\sum_{n=2}^{\infty} \frac{n a_{n} x^{n}(n-1)}{2}\right)+\left(\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n}\right) \\
& +\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
2 a_{2}+6 a_{3}+a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}-\frac{a_{1}}{6}
$$

$n=2$ gives

$$
2 a_{2}+6 a_{3}+12 a_{4}=0
$$

Which after substituting earlier equations, simplifies to

$$
-a_{1}+12 a_{4}=0
$$

Or

$$
a_{4}=\frac{a_{1}}{12}
$$

$n=3$ gives

$$
\frac{a_{2}}{3}+4 a_{3}+12 a_{4}+20 a_{5}=0
$$

Which after substituting earlier equations, simplifies to

$$
\frac{a_{0}}{2}+\frac{a_{1}}{3}+20 a_{5}=0
$$

Or

$$
a_{5}=-\frac{a_{0}}{40}-\frac{a_{1}}{60}
$$

$n=4$ gives

$$
\frac{a_{2}}{12}+a_{3}+7 a_{4}+20 a_{5}+30 a_{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
-\frac{3 a_{0}}{8}+\frac{a_{1}}{12}+30 a_{6}=0
$$

Or

$$
a_{6}=\frac{a_{0}}{80}-\frac{a_{1}}{360}
$$

$n=5$ gives

$$
\frac{a_{2}}{60}+\frac{a_{3}}{4}+2 a_{4}+11 a_{5}+30 a_{6}+42 a_{7}=0
$$

Which after substituting earlier equations, simplifies to

$$
\frac{2 a_{0}}{15}-\frac{17 a_{1}}{120}+42 a_{7}=0
$$

Or

$$
a_{7}=-\frac{a_{0}}{315}+\frac{17 a_{1}}{5040}
$$

For $6 \leq n$, the recurrence equation is

$$
\begin{align*}
& \frac{(n-4) a_{n-4}(n-5)}{720}+\frac{(n-3) a_{n-3}(n-4)}{120} \tag{4}\\
& +\frac{(n-2) a_{n-2}(n-3)}{24}+\frac{(n-1) a_{n-1}(n-2)}{6}+\frac{n a_{n}(n-1)}{2} \\
& +(1+n) a_{1+n} n+(n+2) a_{n+2}(1+n)+a_{n}=0
\end{align*}
$$

Solving for a_{n+2}, gives

$$
\begin{aligned}
a_{n+2}= & \\
- & \frac{360 n^{2} a_{n}+720 n^{2} a_{1+n}+n^{2} a_{n-4}+6 n^{2} a_{n-3}+30 n^{2} a_{n-2}+120 n^{2} a_{n-1}-360 n a_{n}+720 n a_{1+n}-9 n a_{n-4}}{720(n+2)(1+} \\
(5)= & -\frac{\left(360 n^{2}-360 n+720\right) a_{n}}{720(n+2)(1+n)}-\frac{\left(720 n^{2}+720 n\right) a_{1+n}}{720(n+2)(1+n)}-\frac{\left(n^{2}-9 n+20\right) a_{n-4}}{720(n+2)(1+n)} \\
& -\frac{\left(6 n^{2}-42 n+72\right) a_{n-3}}{720(n+2)(1+n)}-\frac{\left(30 n^{2}-150 n+180\right) a_{n-2}}{720(n+2)(1+n)} \\
& -\frac{\left(120 n^{2}-360 n+240\right) a_{n-1}}{720(n+2)(1+n)}
\end{aligned}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{a_{0} x^{2}}{2}+\left(\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) x^{3}+\frac{a_{1} x^{4}}{12}+\left(-\frac{a_{0}}{40}-\frac{a_{1}}{60}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{80} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}+\frac{1}{80} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        <- Bessel successful
    <- special function solution successful
    Change of variables used:
        [x = - ln(t)]
    Linear ODE actually solved:
        u(t)+diff(u(t),t)+t*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```


\checkmark Solution by Maple

Time used: 0.0 (sec). Leaf size: 44

```
Order:=6;
dsolve(diff(y(x),x$2)+exp(-x)*y(x)=0,y(x),type='series', x=0);
```

$y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{40} x^{5}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue[y' $\quad[\mathrm{x}]+\operatorname{Exp}[-\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(-\frac{x^{5}}{60}+\frac{x^{4}}{12}-\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{x^{5}}{40}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
$$

8.29 problem problem 29

Internal problem ID [444]
Internal file name [OUTPUT/444_Sunday_June_05_2022_01_41_33_AM_7732130/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 29.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
\cos (x) y^{\prime \prime}+y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{158}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{159}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =-\frac{y}{\cos (x)} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-\sec (x)\left(\tan (x) y+y^{\prime}\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2\left(\tan (x) y^{\prime}+(-1+\sec (x))\left(\sec (x)+\frac{1}{2}\right) y\right) \sec (x) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\sec (x)\left(\left(-6 \sec (x)^{2}+\sec (x)+3\right) y^{\prime}+\tan (x) \sec (x)^{2} y\left(\cos (x)^{2}+4 \cos (x)-6\right)\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-24\left(-\frac{\sec (x)^{2} \tan (x)\left(\cos (x)^{2}+\frac{3 \cos (x)}{2}-6\right) y^{\prime}}{6}+y\left(\sec (x)^{4}-\frac{3 \sec (x)^{3}}{4}-\frac{19 \sec (x)^{2}}{24}+\frac{11 \sec (}{24}\right.\right.
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0) \\
& F_{2}=0 \\
& F_{3}=-2 y^{\prime}(0) \\
& F_{4}=y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{\sum_{n=0}^{\infty} a_{n} x^{n}}{\cos (x)} \tag{1}
\end{equation*}
$$

Expanding $\cos (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\cos (x) & =1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\ldots \\
& =1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
$$

Expanding the first term in (1) gives

$$
\begin{aligned}
& 1 \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\frac{x^{2}}{2} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\frac{x^{4}}{24} \\
& \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\frac{x^{6}}{720} \cdot\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \sum_{n=2}^{\infty}\left(-\frac{n x^{n+4} a_{n}(n-1)}{720}\right)+\left(\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24}\right) \tag{2}\\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{n a_{n} x^{n}(n-1)}{2}\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty}\left(-\frac{n x^{n+4} a_{n}(n-1)}{720}\right) & =\sum_{n=6}^{\infty}\left(-\frac{(n-4) a_{n-4}(n-5) x^{n}}{720}\right) \\
\sum_{n=2}^{\infty} \frac{n x^{n+2} a_{n}(n-1)}{24} & =\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24} \\
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\end{aligned}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{align*}
& \sum_{n=6}^{\infty}\left(-\frac{(n-4) a_{n-4}(n-5) x^{n}}{720}\right)+\left(\sum_{n=4}^{\infty} \frac{(n-2) a_{n-2}(n-3) x^{n}}{24}\right) \tag{3}\\
& \quad+\sum_{n=2}^{\infty}\left(-\frac{n a_{n} x^{n}(n-1)}{2}\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=-\frac{a_{1}}{6}
$$

$n=3$ gives

$$
-2 a_{3}+20 a_{5}=0
$$

Which after substituting earlier equations, simplifies to

$$
\frac{a_{1}}{3}+20 a_{5}=0
$$

Or

$$
a_{5}=-\frac{a_{1}}{60}
$$

$n=4$ gives

$$
\frac{a_{2}}{12}-5 a_{4}+30 a_{6}=0
$$

Which after substituting earlier equations, simplifies to

$$
-\frac{a_{0}}{24}+30 a_{6}=0
$$

Or

$$
a_{6}=\frac{a_{0}}{720}
$$

$n=5$ gives

$$
\frac{a_{3}}{4}-9 a_{5}+42 a_{7}=0
$$

Which after substituting earlier equations, simplifies to

$$
\frac{13 a_{1}}{120}+42 a_{7}=0
$$

Or

$$
a_{7}=-\frac{13 a_{1}}{5040}
$$

For $6 \leq n$, the recurrence equation is

$$
\begin{equation*}
-\frac{(n-4) a_{n-4}(n-5)}{720}+\frac{(n-2) a_{n-2}(n-3)}{24}-\frac{n a_{n}(n-1)}{2}+(n+2) a_{n+2}(n+1)+a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{align*}
& a_{n+2} \\
& =\frac{360 n^{2} a_{n}+n^{2} a_{n-4}-30 n^{2} a_{n-2}-360 n a_{n}-9 n a_{n-4}+150 n a_{n-2}-720 a_{n}+20 a_{n-4}-180 a_{n-2}}{720(n+2)(n+1)} \\
& \quad(5) \tag{5}\\
& \quad=\frac{\left(360 n^{2}-360 n-720\right) a_{n}}{720(n+2)(n+1)}+\frac{\left(n^{2}-9 n+20\right) a_{n-4}}{720(n+2)(n+1)}+\frac{\left(-30 n^{2}+150 n-180\right) a_{n-2}}{720(n+2)(n+1)}
\end{align*}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}-\frac{1}{60} a_{1} x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{x^{2}}{2}\right) a_{0}+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{x^{2}}{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1-\frac{x^{2}}{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{720} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1-\frac{x^{2}}{2}\right) c_{1}+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

Maple trace

```
Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
    trying a quadrature
    checking if the LODE has constant coefficients
    checking if the LODE is of Euler type
    trying a symmetry of the form [xi=0, eta=F(x)]
    checking if the LODE is missing y
    -> Trying a Liouvillian solution using Kovacics algorithm
    <- No Liouvillian solutions exists
    -> Trying a solution in terms of special functions:
        -> Bessel
        -> elliptic
        -> Legendre
        -> Kummer
            -> hyper3: Equivalence to 1F1 under a power @ Moebius
        -> hypergeometric
            -> heuristic approach
            -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
        -> Mathieu
            -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
    trying a solution in terms of MeijerG functions
    -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
    <- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0,
    Change of variables used:
        [x = arccos(t)]
    Linear ODE actually solved:
        u(t)-t^2*diff(u(t),t)+(-t^3+t)*diff(diff(u(t),t),t) = 0
<- change of variables successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 29

```
Order:=6;
dsolve(cos(x)*diff(y(x),x$2)+y(x)=0,y(x),type='series',x=0);
```

$$
y(x)=\left(1-\frac{x^{2}}{2}\right) y(0)+\left(x-\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) D(y)(0)+O\left(x^{6}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 35
AsymptoticDSolveValue[Cos[x]*y' ' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{1}\left(1-\frac{x^{2}}{2}\right)+c_{2}\left(-\frac{x^{5}}{60}-\frac{x^{3}}{6}+x\right)
$$

8.30 problem problem 30

Internal problem ID [445]
Internal file name [OUTPUT/445_Sunday_June_05_2022_01_41_35_AM_58847833/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 30.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type

[_Lienard]

$$
x y^{\prime \prime}+\sin (x) y^{\prime}+y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{161}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{162}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
& F_{0}=-\frac{\sin (x) y^{\prime}+y x}{x} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{\left(\sin (x)^{2}+\sin (x)-x(x+\cos (x))\right) y^{\prime}+\sin (x) x y}{x^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{\left(-\sin (x)^{3}-3 \sin (x)^{2}+\left(3 x^{2}+3 x \cos (x)-2\right) \sin (x)+2 x \cos (x)\right) y^{\prime}+\left(-\sin (x)^{2}-2 \sin (x)+x\right)}{x^{3}} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{\left(6 \sin (x)^{3}+\left(-\cos (x)^{2}+12\right) \sin (x)^{2}+\left(-7 x^{2}-14 x \cos (x)+6\right) \sin (x)+\left(6 \cos (x)^{3}+10 \cos (x)^{2}\right.\right.}{F_{4}} \\
&=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=\frac{\left(\left(\cos (x)^{2}-36\right) \sin (x)^{3}+\left(10 \cos (x)^{2}-60\right) \sin (x)^{2}+\left(-10 x \cos (x)^{3}-29 x^{2} \cos (x)^{2}+\left(-30 x^{3}+\varepsilon\right.\right.\right.}{2}
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-y^{\prime}(0)-y(0) \\
& F_{1}=y(0) \\
& F_{2}=\frac{4 y^{\prime}(0)}{3} \\
& F_{3}=-2 y(0)-\frac{7 y^{\prime}(0)}{3} \\
& F_{4}=4 y(0)+\frac{4 y^{\prime}(0)}{5}
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{180} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}+\frac{1}{900} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series The ode is normalized to be

$$
x y^{\prime \prime}+\sin (x) y^{\prime}+y x=0
$$

Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x+\sin (x)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0 \tag{1}
\end{equation*}
$$

Expanding $\sin (x)$ as Taylor series around $x=0$ and keeping only the first 6 terms gives

$$
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}
\end{aligned}
$$

Hence the ODE in Eq (1) becomes

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}\right)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0
\end{aligned}
$$

Expanding the second term in (1) gives

$$
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x+x \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{3}}{6} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \\
& +\frac{x^{5}}{120} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{7}}{5040} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x=0
\end{aligned}
$$

Which simplifies to

$$
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+2} a_{n}}{6}\right) \tag{2}\\
& \quad+\left(\sum_{n=1}^{\infty} \frac{n x^{n+4} a_{n}}{120}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+6} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0
\end{align*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+2} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{(n-2) a_{n-2} x^{n}}{6}\right) \\
\sum_{n=1}^{\infty} \frac{n x^{n+4} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{(n-4) a_{n-4} x^{n}}{120} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+6} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{(n-6) a_{n-6} x^{n}}{5040}\right) \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers
of x are the same and equal to n.

$$
\begin{align*}
& \left(\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=3}^{\infty}\left(-\frac{(n-2) a_{n-2} x^{n}}{6}\right) \tag{3}\\
& \quad+\left(\sum_{n=5}^{\infty} \frac{(n-4) a_{n-4} x^{n}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{(n-6) a_{n-6} x^{n}}{5040}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0
\end{align*}
$$

$n=0$ gives

$$
\begin{gathered}
2 a_{2}+a_{1}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}-\frac{a_{1}}{2}
\end{gathered}
$$

$n=1$ gives

$$
6 a_{3}+2 a_{2}+a_{1}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{3}=\frac{a_{0}}{6}
$$

$n=2$ gives

$$
12 a_{4}+3 a_{3}-\frac{a_{1}}{6}+a_{2}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{4}=\frac{a_{1}}{18}
$$

$n=3$ gives

$$
20 a_{5}+4 a_{4}-\frac{a_{2}}{3}+a_{3}=0
$$

Which after substituting earlier equations, simplifies to

$$
20 a_{5}+\frac{7 a_{1}}{18}+\frac{a_{0}}{3}=0
$$

Or

$$
a_{5}=-\frac{a_{0}}{60}-\frac{7 a_{1}}{360}
$$

$n=4$ gives

$$
30 a_{6}+5 a_{5}-\frac{a_{3}}{2}+\frac{a_{1}}{120}+a_{4}=0
$$

Which after substituting earlier equations, simplifies to

$$
a_{6}=\frac{a_{0}}{180}+\frac{a_{1}}{900}
$$

For $7 \leq n$, the recurrence equation is

$$
\begin{equation*}
(1+n) a_{1+n} n+n a_{n}-\frac{(n-2) a_{n-2}}{6}+\frac{(n-4) a_{n-4}}{120}-\frac{(n-6) a_{n-6}}{5040}+a_{n-1}=0 \tag{4}
\end{equation*}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\left(-\frac{a_{0}}{2}-\frac{a_{1}}{2}\right) x^{2}+\frac{a_{0} x^{3}}{6}+\frac{a_{1} x^{4}}{18}+\left(-\frac{a_{0}}{60}-\frac{7 a_{1}}{360}\right) x^{5}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) a_{0}+\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{180} x^{6}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}+\frac{1}{900} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{180} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}+\frac{1}{900} x^{6}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x})$ * Y where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\rightarrow Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})$, dx$)$) $* 2 \mathrm{~F} 1$ trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way = 5
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in x and $y(x)$
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form $\mathrm{mu}(\mathrm{x}, \mathrm{y})$
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form $\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}$ where $\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1$
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \rightarrow trying a solution of the form $r 0(x) * Y+r 1(x) * Y$ where $Y=\exp (\operatorname{int}(r(x), d x)) *$ trying a symmetry of the form $5_{5}^{[x i=0 \text {, eta }=F(x)] ~}$
trying 2nd order exact linear
trying symmetries linear in x and $\mathrm{y}(\mathrm{x})$
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 44

```
Order:=6;
dsolve(x*diff (y (x),x$2)+\operatorname{sin}(x)*\operatorname{diff}(y(x),x)+x*y(x)=0,y(x),type='series',x=0);
```

$y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}\right) y(0)+\left(x-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{7}{360} x^{5}\right) D(y)(0)+O\left(x^{6}\right)$
\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue[x*y' ' $[\mathrm{x}]+\operatorname{Sin}[\mathrm{x}] * \mathrm{y}$ ' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(-\frac{7 x^{5}}{360}+\frac{x^{4}}{18}-\frac{x^{2}}{2}+x\right)+c_{1}\left(-\frac{x^{5}}{60}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
$$

8.31 problem problem 33

8.31.1 Maple step by step solution . 1664

Internal problem ID [446]
Internal file name [OUTPUT/446_Sunday_June_05_2022_01_41_38_AM_54218894/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 33.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]

$$
y^{\prime \prime}-2 y^{\prime} x+2 \alpha y=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{164}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{165}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =2 y^{\prime} x-2 \alpha y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(4 x^{2}-2 \alpha+2\right) y^{\prime}-4 y \alpha x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(8 x^{3}-8 \alpha x+12 x\right) y^{\prime}-8\left(x^{2}-\frac{\alpha}{2}+1\right) \alpha y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =4\left(3+\alpha^{2}+2\left(-3 x^{2}-2\right) \alpha+4 x^{4}+12 x^{2}\right) y^{\prime}-16\left(x^{2}-\alpha+\frac{5}{2}\right) x \alpha y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =32\left(\frac{3 \alpha^{2}}{4}+\left(-2 x^{2}-\frac{15}{4}\right) \alpha+x^{4}+5 x^{2}+\frac{15}{4}\right) x y^{\prime}-32 \alpha\left(2+\frac{\alpha^{2}}{4}+\frac{3\left(-x^{2}-1\right) \alpha}{2}+x^{4}+\frac{9 x^{2}}{2}\right) y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=-2 y(0) \alpha \\
& F_{1}=-2 y^{\prime}(0) \alpha+2 y^{\prime}(0) \\
& F_{2}=4 y(0) \alpha^{2}-8 y(0) \alpha \\
& F_{3}=4 y^{\prime}(0) \alpha^{2}-16 y^{\prime}(0) \alpha+12 y^{\prime}(0) \\
& F_{4}=-8 y(0) \alpha^{3}+48 y(0) \alpha^{2}-64 y(0) \alpha
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
\begin{aligned}
y= & \left(1-\alpha x^{2}+\frac{1}{6} x^{4} \alpha^{2}-\frac{1}{3} x^{4} \alpha-\frac{1}{90} x^{6} \alpha^{3}+\frac{1}{15} x^{6} \alpha^{2}-\frac{4}{45} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{3} x^{3} \alpha+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} \alpha^{2}-\frac{2}{15} x^{5} \alpha+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) x-2 \alpha\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 \alpha a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
$$

Substituting all the above in Eq (2) gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 \alpha a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

$n=0$ gives

$$
\begin{gathered}
2 \alpha a_{0}+2 a_{2}=0 \\
a_{2}=-\alpha a_{0}
\end{gathered}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(n+1)-2 n a_{n}+2 \alpha a_{n}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=-\frac{2 a_{n}(\alpha-n)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
2 \alpha a_{1}-2 a_{1}+6 a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=-\frac{1}{3} \alpha a_{1}+\frac{1}{3} a_{1}
$$

For $n=2$ the recurrence equation gives

$$
2 \alpha a_{2}-4 a_{2}+12 a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{1}{6} \alpha^{2} a_{0}-\frac{1}{3} \alpha a_{0}
$$

For $n=3$ the recurrence equation gives

$$
2 \alpha a_{3}-6 a_{3}+20 a_{5}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=\frac{1}{30} \alpha^{2} a_{1}-\frac{2}{15} \alpha a_{1}+\frac{1}{10} a_{1}
$$

For $n=4$ the recurrence equation gives

$$
2 \alpha a_{4}-8 a_{4}+30 a_{6}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=-\frac{1}{90} \alpha^{3} a_{0}+\frac{1}{15} \alpha^{2} a_{0}-\frac{4}{45} \alpha a_{0}
$$

For $n=5$ the recurrence equation gives

$$
2 \alpha a_{5}-10 a_{5}+42 a_{7}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=-\frac{1}{630} \alpha^{3} a_{1}+\frac{1}{70} \alpha^{2} a_{1}-\frac{23}{630} \alpha a_{1}+\frac{1}{42} a_{1}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
\begin{aligned}
y= & a_{0}+a_{1} x-\alpha a_{0} x^{2}+\left(-\frac{1}{3} \alpha a_{1}+\frac{1}{3} a_{1}\right) x^{3} \\
& +\left(\frac{1}{6} \alpha^{2} a_{0}-\frac{1}{3} \alpha a_{0}\right) x^{4}+\left(\frac{1}{30} \alpha^{2} a_{1}-\frac{2}{15} \alpha a_{1}+\frac{1}{10} a_{1}\right) x^{5}+\ldots
\end{aligned}
$$

Collecting terms, the solution becomes

$$
\begin{align*}
y= & \left(1-\alpha x^{2}+\left(\frac{1}{6} \alpha^{2}-\frac{1}{3} \alpha\right) x^{4}\right) a_{0} \tag{3}\\
& +\left(x+\left(-\frac{\alpha}{3}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{30} \alpha^{2}-\frac{2}{15} \alpha+\frac{1}{10}\right) x^{5}\right) a_{1}+O\left(x^{6}\right)
\end{align*}
$$

At $x=0$ the solution above becomes

$$
\begin{aligned}
y= & \left(1-\alpha x^{2}+\left(\frac{1}{6} \alpha^{2}-\frac{1}{3} \alpha\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\alpha}{3}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{30} \alpha^{2}-\frac{2}{15} \alpha+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{align*}
y= & \left(1-\alpha x^{2}+\frac{1}{6} x^{4} \alpha^{2}-\frac{1}{3} x^{4} \alpha-\frac{1}{90} x^{6} \alpha^{3}+\frac{1}{15} x^{6} \alpha^{2}-\frac{4}{45} x^{6} \alpha\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{3} x^{3} \alpha+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} \alpha^{2}-\frac{2}{15} x^{5} \alpha+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right) \\
y= & \left(1-\alpha x^{2}+\left(\frac{1}{6} \alpha^{2}-\frac{1}{3} \alpha\right) x^{4}\right) c_{1} \tag{2}\\
& +\left(x+\left(-\frac{\alpha}{3}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{30} \alpha^{2}-\frac{2}{15} \alpha+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{align*}
$$

Verification of solutions

$$
\begin{aligned}
y= & \left(1-\alpha x^{2}+\frac{1}{6} x^{4} \alpha^{2}-\frac{1}{3} x^{4} \alpha-\frac{1}{90} x^{6} \alpha^{3}+\frac{1}{15} x^{6} \alpha^{2}-\frac{4}{45} x^{6} \alpha\right) y(0) \\
& +\left(x-\frac{1}{3} x^{3} \alpha+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} \alpha^{2}-\frac{2}{15} x^{5} \alpha+\frac{1}{10} x^{5}\right) y^{\prime}(0)+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

$$
\begin{aligned}
y= & \left(1-\alpha x^{2}+\left(\frac{1}{6} \alpha^{2}-\frac{1}{3} \alpha\right) x^{4}\right) c_{1} \\
& +\left(x+\left(-\frac{\alpha}{3}+\frac{1}{3}\right) x^{3}+\left(\frac{1}{30} \alpha^{2}-\frac{2}{15} \alpha+\frac{1}{10}\right) x^{5}\right) c_{2}+O\left(x^{6}\right)
\end{aligned}
$$

Verified OK.

8.31.1 Maple step by step solution

Let's solve

$$
y^{\prime \prime}=2 y^{\prime} x-2 \alpha y
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime}-2 y^{\prime} x+2 \alpha y=0
$$

- \quad Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
$\square \quad$ Rewrite DE with series expansions
- Convert $x \cdot y^{\prime}$ to series expansion
$x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- \quad Shift index using $k->k+2$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
$$

Rewrite DE with series expansions
$\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+2 a_{k}(\alpha-k)\right) x^{k}=0$

- Each term in the series must be 0 , giving the recursion relation $\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-\alpha)=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{2 a_{k}(\alpha-k)}{k^{2}+3 k+2}\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    -> elliptic
    -> Legendre
    -> Kummer
    -> hyper3: Equivalence to 1F1 under a power @ Moebius
    <- hyper3 successful: received ODE is equivalent to the 1F1 ODE
    <- Kummer successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 63

```
Order:=6;
dsolve(diff(y(x),x$2)-2*x*diff(y(x),x)+2*alpha*y(x)=0,y(x),type='series',x=0);
```

$$
\begin{aligned}
y(x)= & \left(1-\alpha x^{2}+\frac{\alpha(\alpha-2) x^{4}}{6}\right) y(0) \\
& +\left(x-\frac{(\alpha-1) x^{3}}{3}+\frac{\left(\alpha^{2}-4 \alpha+3\right) x^{5}}{30}\right) D(y)(0)+O\left(x^{6}\right)
\end{aligned}
$$

Solution by Mathematica

Time used: 0.001 (sec). Leaf size: 78
AsymptoticDSolveValue[y' ' $[\mathrm{x}]-2 * \mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]+2 * \backslash[$ Alpha $] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,5\}]$

$$
y(x) \rightarrow c_{2}\left(\frac{\alpha^{2} x^{5}}{30}-\frac{2 \alpha x^{5}}{15}+\frac{x^{5}}{10}-\frac{\alpha x^{3}}{3}+\frac{x^{3}}{3}+x\right)+c_{1}\left(\frac{\alpha^{2} x^{4}}{6}-\frac{\alpha x^{4}}{3}-\alpha x^{2}+1\right)
$$

8.32 problem problem 34

8.32.1 Maple step by step solution 1674

Internal problem ID [447]
Internal file name [OUTPUT/447_Sunday_June_05_2022_01_41_39_AM_88645353/index.tex]
Book: Differential equations and linear algebra, 4th ed., Edwards and Penney
Section: Chapter 11 Power series methods. Section 11.2 Power series solutions. Page 624
Problem number: problem 34.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]

$$
y^{\prime \prime}-y x=0
$$

With the expansion point for the power series method at $x=0$.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
$$

Assuming expansion is at $x_{0}=0$ (we can always shift the actual expansion point to 0 by change of variables) and assuming $f\left(x, y, y^{\prime}\right)$ is analytic at x_{0} which must be the case for an ordinary point. Let initial conditions be $y\left(x_{0}\right)=y_{0}$ and $y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}$. Using Taylor series gives

$$
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
$$

But

$$
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{167}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{168}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
$$

And so on. Hence if we name $F_{0}=f\left(x, y, y^{\prime}\right)$ then the above can be written as

$$
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
$$

Therefore (6) can be used from now on along with

$$
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
$$

To find $y(x)$ series solution around $x=0$. Hence

$$
\begin{aligned}
F_{0} & =y x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime} x+y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =x^{2} y+2 y^{\prime} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(y^{\prime} x+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =y x^{3}+6 y^{\prime} x+4 y
\end{aligned}
$$

And so on. Evaluating all the above at initial conditions $x=0$ and $y(0)=y(0)$ and $y^{\prime}(0)=y^{\prime}(0)$ gives

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=y(0) \\
& F_{2}=2 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=4 y(0)
\end{aligned}
$$

Substituting all the above in (7) and simplifying gives the solution as

$$
y=\left(1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x+\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Since the expansion point $x=0$ is an ordinary, we can also solve this using standard
power series Let the solution be represented as power series of the form

$$
y=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

Then

$$
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
$$

Substituting the above back into the ode gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x \tag{1}
\end{equation*}
$$

Which simplifies to

$$
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
$$

The next step is to make all powers of x be n in each summation term. Going over each summation term above with power of x in it which is not already x^{n} and adjusting the power and the corresponding index gives

$$
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
$$

Substituting all the above in $\mathrm{Eq}(2)$ gives the following equation where now all powers of x are the same and equal to n.

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
$$

For $1 \leq n$, the recurrence equation is

$$
\begin{equation*}
(n+2) a_{n+2}(1+n)-a_{n-1}=0 \tag{4}
\end{equation*}
$$

Solving for a_{n+2}, gives

$$
\begin{equation*}
a_{n+2}=\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{equation*}
$$

For $n=1$ the recurrence equation gives

$$
6 a_{3}-a_{0}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{3}=\frac{a_{0}}{6}
$$

For $n=2$ the recurrence equation gives

$$
12 a_{4}-a_{1}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{4}=\frac{a_{1}}{12}
$$

For $n=3$ the recurrence equation gives

$$
20 a_{5}-a_{2}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{5}=0
$$

For $n=4$ the recurrence equation gives

$$
30 a_{6}-a_{3}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{6}=\frac{a_{0}}{180}
$$

For $n=5$ the recurrence equation gives

$$
42 a_{7}-a_{4}=0
$$

Which after substituting the earlier terms found becomes

$$
a_{7}=\frac{a_{1}}{504}
$$

And so on. Therefore the solution is

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
$$

Substituting the values for a_{n} found above, the solution becomes

$$
y=a_{0}+a_{1} x+\frac{1}{6} a_{0} x^{3}+\frac{1}{12} a_{1} x^{4}+\ldots
$$

Collecting terms, the solution becomes

$$
\begin{equation*}
y=\left(1+\frac{x^{3}}{6}\right) a_{0}+\left(x+\frac{1}{12} x^{4}\right) a_{1}+O\left(x^{6}\right) \tag{3}
\end{equation*}
$$

At $x=0$ the solution above becomes

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\left(1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x+\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right) \tag{1}\\
& y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right) \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\left(1+\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x+\frac{1}{12} x^{4}\right) y^{\prime}(0)+O\left(x^{6}\right)
$$

Verified OK.

$$
y=\left(1+\frac{x^{3}}{6}\right) c_{1}+\left(x+\frac{1}{12} x^{4}\right) c_{2}+O\left(x^{6}\right)
$$

Verified OK.

8.32.1 Maple step by step solution

Let's solve
$y^{\prime \prime}=y x$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $y^{\prime \prime}-y x=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x \cdot y$ to series expansion

$$
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
$$

- Shift index using $k->k-1$
$x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1}\right) x^{k}\right)=0$
- Each term must be 0
$2 a_{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-1}=0$
- \quad Shift index using $k->k+1$

$$
\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k}=0
$$

- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
    -> Bessel
    <- Bessel successful
<- special function solution successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24

```
Order:=6;
dsolve(diff(y(x), x$2)=x*y(x),y(x),type='series', x=0);
\[
y(x)=\left(1+\frac{x^{3}}{6}\right) y(0)+\left(x+\frac{1}{12} x^{4}\right) D(y)(0)+O\left(x^{6}\right)
\]
```

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 28

```
AsymptoticDSolveValue[y''[x]==x*y[x],y[x],{x,0,5}]
```

$$
y(x) \rightarrow c_{2}\left(\frac{x^{4}}{12}+x\right)+c_{1}\left(\frac{x^{3}}{6}+1\right)
$$

