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1.1 problem 1
1.1.1 Solvingasexactode . . ... ... ... ... .. ... .. ...

Internal problem ID [2988]
Internal file name [OUTPUT/2480_Sunday_June_05_2022_03_15_40_AM_29363400/index.tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 1.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type
[_rational, [_Abel, "2nd type , ~class B ]]

5yz +4y° + (° + 2yz) ¥ = —1

1.1.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 0d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

a—y =N



8%¢ __ 9%

But since 5—- = 5= then for the above to be valid, we require that
Y yox
OM ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition

59; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(z2 + 2zy) dy = (—5xy — 4g? — 1) dx
(5zy +4y® + 1) dz+(2* + 2zy) dy = 0 (2A)
Comparing (1A) and (2A) shows that
M(z,y) =bzy + 4> + 1
N(z,y) = 2* + 2zy
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied
oM _ 0N
oy Oz
Using result found above gives
oM _ o
dy Oy
=5z + 8y

(5zy +4y® +1)

And
ON 0
dr Oz
=2z + 2y
Since %—A; # %—JZ, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

. (8M 8N)

(:c2 + ny)

T N\dy Oz
1

(
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Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor u is

p=e JAdz
— ef % dz
The result of integrating gives
= 63 In(z)
= .T3

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

=2’ (5zy + 4y> + 1)
= (5xy + 497 + 1) z3
And
N =uN
= 1°(z* + 2zy)
= 2*(z +2y)

Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

. __dy
M+NZ =
+ 1z 0
d
((5zy +4y® +1) 2°) + (z*(z + 2y)) % =0
The following equations are now set up to solve for the function ¢(z,y)
06 —
9 - M (1)
00 —
T~ =N 2
o ®)

Integrating (1) w.r.t. z gives

%dx: /de
or

op . 2 3
awdar:—/(5avy—|—4y +1)z°dz
1
¢ =2y +a'y" + 2"+ f(y) (3)



Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

o =t 2y + ) (@

=a'(z+2y) + f(y)
But equation (2) says that g—Z’ = z*(x + 2y). Therefore equation (4) becomes
iz +2y) = '(z +29) + f'() (5)

Solving equation (5) for f'(y) gives
f'y) =0

Therefore
fly)=a
Where c; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

1
¢ = oy + zhy? + Zm“ +c

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

1
c = w5y + x4y2 + ZlA

Summary
The solution(s) found are the following

5 2 4 x_4_ 1
yr’+ye+ L =a (1)
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Figure 1: Slope field plot

Verification of solutions

Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

1; looking for linear symmetries

differential order:

trying exact

<- exact successful’




v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 59

Ldsolve((5*x*y(x)+4*y(x)‘2+1)+(x“2+2*x*y(x))*diff(y(x) ,x)=0,y(x), singsol=a11)J

—z3 — /25 — 11 — 4¢;

y(x) = 507
(z) = —23 + /28 — 21 — 4c;
viE = 222

v Solution by Mathematica
Time used: 0.664 (sec). Leaf size: 84

LDSolve [(B*x*y [x] +4xy [x] ~2+1) +(x"2+2xx*xy [x] ) *y ' [x]==0,y[x] ,x, IncludeSingularSojl.utions -> True

x® + V32" — 2% + dcix
y(x) - - 2t

z V3T — 25 + derx
2 2z4




1.2 problem 2

1.2.1 Solvingasexactode . . ... ... ... ... .. ... .. ... )

Internal problem ID [2989]
Internal file name [OUTPUT/2481_Sunday_June_05_2022_03_15_42_AM_22272722/index.tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 2.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"

Maple gives the following as the ode type

[[_1st_order, _with_exponential_symmetries]]

2ztan (y) + (z — z°tan (y)) y' =0

1.2.1 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(z,9) + N(z,y) 2 =0 (4)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d
Hence 96 0d
Yy _
or + oydr 0 (B)

Comparing (A,B) shows that

9¢

9 M

9¢

a—y =N



But since % = % then for the above to be valid, we require that
Y yox
oM _ ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
(96;: g’y = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(ztan(y) —1)dy = (2tan (y)) dz
(—2tan (y))dz +(ztan(y) —1)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = —2tan (y)
N(z,y) =xtan(y) — 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _ oN
oy Oz
Using result found above gives
oM 0
£ 6_y(_2 tan (y))
= —2sec(y)?
And
ON 0
B 8—(“311 (y) — 1)
— tan (y)

10



Smce 7é , then the ODE is not exact. Since the ODE is not exact, we will try to
find an 1ntegrat1ng factor to make it exact. Let
anL(om _on
8y ox
=——((—2—-2¢ t
Itan( = (= an (y)*) — (tan (y)))
—sin (y) — 2S€C( )
z sin (y) — cos (y)
Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

ON OM
B=u (%‘a—y)

=_C°t2(y)( ~(~2—2tan (y)?))
1

= —cot (y) —tan(y) - 5

Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

,u:edey

_ ef — cot(y)—tan(y)—1 dy

The result of integrating gives

— ¥ —In(sin(y))+1n(cos(y))

y

p=e
__cos(y)e 2
sin (y)
M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M = uM

_ cos cos (y)e 2
sin (y)

y
2

<d

— ——~—(—2tan(y))
=—2e"

And

_cos(y)e s stan (u) —

= (¢ —cot (y)) e~

SIS
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So now a modified ODE is obtained from the original ODE which will be exact and

can be solved using the standard method. The modified ODE is
M+ N o =0
dz

<—2 e_%> + ((x — cot (y)) e‘%) j_z —0

The following equations are now set up to solve for the function ¢(z,y)

8
g—x—M

¢__

oy =N 2)

Integrating (1) w.r.t. = gives

0 . [+
%dx—/de

8(15 _ _y
9 dx = /—2e dzx

¢=—2e"tz+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and

y. Taking derivative of equation (3) w.r.t y gives

g—z =etz+ f(y)

(4)

But equation (2) says that a¢ = (z — cot (y)) e~ 2. Therefore equation (4) becomes

(z—cot(y) e * =e iz + f(y) (5)

Solving equation (5) for f'(y) gives

f'(y) = —e7% cot (y)

Integrating the above w.r.t y gives

/f(y dy = / —e72 cot (y dy
-, -

_?cot( a)d_a+c

12



Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

y a
¢o=-2 e ir+ / —e 2 cot(_a)d_a+c;
0

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and
combining c¢; and c; constants into new constant c; gives the solution as

)
c1=—2e tx+ / —e~ % cot (_a)d_a
0

Summary
The solution(s) found are the following

y a
_2e_gx+/ —e 2 cot(_a)d a=c (1)
0
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Figure 2: Slope field plot

Verification of solutions

Y
—2e_3x+/ —e__Tacot( a)d_a=c
0

Verified OK.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

<- 1st order linear successful

<- inverse linear successful’

v/ Solution by Maple
Time used: 0.093 (sec). Leaf size: 32

Ldsolve((2*x*tan(y(x)))+(x-x‘2*tan(y(x)))*diff(y(x),x)=0,y(x), singsol=all) J

a

e’y (fy(x) cot (_a)e 2 d_a)
2

y(z

—e2ctx=

v/ Solution by Mathematica
Time used: 0.442 (sec). Leaf size: 78

‘DSolve[(2*x*Tan[y[x]])+(x-x“2*Tan[y[x]])*y'[x]==0,y[x],x,IncludeSingularSolut#ons -> True]

1 . . -
Solve {x =3 ((8 — 23)e?¥(® Hypergeometric2F1 (1, 1+ %, 2+ 431’ 62””(”“'))

N2

— 34i Hypergeometric2F1 (i, 1,1+ %, 62iy(w)>) + Cley(;,y(x)]

14



1.3 problem 3

Internal problem ID [2990]
Internal file name [QUTPUT/2482_Sunday_June_05_2022_03_15_45_AM_937798/index.tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 3.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

[_rational, [_Abel, "2nd type , ~class B~]]

Unable to solve or complete the solution.

yz(z2+1)+y+(2ya:+1)y'=0

Unable to determine ODE type.

15



Maple trace

-

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

Looking for potential symmetries

Looking for potential symmetries

Looking for potential symmetries

trying inverse_Riccati

trying an equivalence to an Abel ODE

differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order --—-

*, “—-> Computing symmetries using: way = 3
*, "> Computing symmetries using: way = 4
*, ~=> Computing symmetries using: way = 2

trying symmetry patterns for 1st order ODEs

-> trying a symmetry pattern of the form [F(x)*G(y), 0]

-> trying a symmetry pattern of the form [0, F(x)*G(y)]

-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]

-> trying a symmetry pattern of the form [F(x),G(x)]

-> trying a symmetry pattern of the form [F(y),G(y)]

-> trying a symmetry pattern of the form [F(x)+G(y), O]

-> trying a symmetry pattern of the form [0, F(x)+G(y)]

-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
a

-> trying a symmetry pattern of conformal type"

16



X Solution by Maple

Ldsolve((y(x)“2*(x“2+1)+y(x))+(2*x*y(x)+1)*diff(y(x),x)=0,y(x), singsol=all) J

No solution found

X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

LDSolve[(y[x]“2*(x‘2+1)+y[x])+(2*x*y[x]+1)*y'[x]==0,y[x],x,IncludeSingularSolg}ions -> True]

Not solved

17



1.4 problem 4
1.4.1 Solving as first order ode lie symmetry calculated ode . . . . . . 18]
1.42 Solvingasexactode . . ... ... ... ... .. ... .. ... 24

Internal problem ID [2991]
Internal file name [OUTPUT/2483_Sunday_June_05_2022_03_15_49_AM_42950774/index.tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 4.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, [_Abel, “2nd type,
class B"]11]

4y’z + 6y + (5z’y +8z)y =0

1.4.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

) 2y(2zy +3)
Y T Gay + 8)
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + w(ny - gx) - w2§y - wx§ - wy'r] =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz +yaz + o (1E)
n = xby + ybs + by (2E)

18



Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

_ 2y(2zy +3) (b3 —ay)  4y*(2xy + 3)° as

by

z (5zy + 8) 22 (5zy + 8)°
42 2y(2zy +3) 1042 (2zy + 3)) (5E)
— | = xas + yas + a
( z (5zy +8) x2(5zy +8) z (bzy + 8)2 (zaz +yas + a1)

2(2zy + 3) 4y 10y(2zy + 3))
N — + by +ybs+b) =0
( z(5zy+8) bSxy+8  (5zy+8)° (22 +ybs +b1)

Putting the above in normal form gives

45x*y%by — 362%y%as + 2023y?b, — 20x2y3a; + 144x3yby + 22%y2as + 222y%bs — 108z y3as + 64x%yb; — 6(
22 (5zy + 8)°

=0
Setting the numerator to zero gives

45x*y%by — 362y as + 2023y%b; — 2027y a; + 144x3yby + 22%y2ay + 22°y?bs (6E)
— 108z y3a3 + 64x2yb1 — 60z y2a1 + 112by2% — 84y2a3 + 48xby; — 48ya; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z=v,y =02}

The above PDE (6E) now becomes

—36a3v3v5 +45byv vs —20a; V3V +20b; V3 V3 +2a5v7v3 — 108azv;vs +144byvivy (7E)
+ 2b3v3v3 — 60a,v1v3 + 64byv2vy — 84a3vs + 112byv7 — 48a,v; + 48b1v; = 0

19



Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

45byv3 02 + 20510302 + 144byv3vy — 36a3v3vs — 20010203 + (2a0 + 2b3) v20?2  (8E)
+ 64b1v2v5 + 112by07 — 108a3v1vs — 60a,v,v5 + 48byv; — 84asvs — 48a,v; =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—60a; =0
—48a; =0
—20a; =0
—108asz =0
—84a3 =0
—36a3 =0
200, =0
48b =0
64b; =0
45b, =0
1126, =0
144b, =0
2a5 +2b5 =0

Solving the above equations for the unknowns gives

a; =0
az = —b3
a3 =0
by =0
by =0
bs = b

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

=2
n=y

20



Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=mn-wy)§

Ty’ +2y
dxy + 8
£=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

Sz/ldy
n
1
=/mdy

5zy+8

S is found from

Which results in
S=In(zy+2)+4In(y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
2y(2zy + 3)

w(zy) = - z (5zy + 8)

21



Evaluating all the partial derivatives gives

R, =1
Ry =0
__ Y
T ozy+2
x 4

S, = —
Yooy +2 + Y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 3
T (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 3

dR~ R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = —31n (R) + & (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In(yz+2)+4ln(y) = -3In(z) +
Which simplifies to

In(yz+2)+4ln(y) = -3In(z) +

22



The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

The solution(s) found are the following

In(yz+2)+4In(y) = —3In(z) + 1

23
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Verification of solutions

Figure 3: Slope field plot

In(yr+2)+4In(y) = -3In(z) +

Verified OK.

1.4.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(ﬂs,y)£=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. x gives

Hence

d

%Qb(xay) =0
op  O¢dy _,
or  Oydx

24



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(5x2y + Sx) dy = (—436 v’ — 6y) dz
(4z y® + 6y) dz +(5z”y + 8z) dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = 4z y* + 6y
N(z,y) = 5z°y + 8z

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0
— = _—(4zy* +6
o 6y( 2y’ + 6y)
=8zy+6
And
ON 0 9
= 10zy + 8
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let
A 1 /OM ON
N\ dy Oox

_ —2zy—2
~ ba2y + 8z

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

p— L(ON _oM
- M\ oz Oy

=—((10 8) — (8 6
o7, (100+8) = (Bay +6)
_xy+1
C 2ry2 + 3y

Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

oo
R is now checked to see if it is a function of only ¢ = xy. Therefore
-5

(10zy + 8) — (8zy + 6)
z (4z y? + 6y) — y (5bz%y + 8z)

. —2zy—2
~ xy(zy +2)
Replacing all powers of terms zy by t gives
=2t -2
T t(t+2)

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be y then

— o/ Rt

_ J(@m)

W
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The result of integrating gives

p=e" In(t(t+2))
B 1
Ct(t+2)
Now t is replaced back with zy giving
. 1
b= zy (zy + 2)

Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

1
=—— (429> +6
xy(wy+2)( Ty y)
_ A4zy+6

 z(zy+2)
And

=
I

uN

I
MCED) (5z%y + 8z)

ory + 8
y(zy+2)

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

_ _dy
M — =0
+ dz

<4xy+6 >+< S5zy + 8 >%_0
T (zy + 2) y(zy+2)) do

The following equations are now set up to solve for the function ¢(z,y)

o  —
g—x_M (1)
¢ _w
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Integrating (1) w.r.t. z gives

0p . [~
8_zdx_/de

op . 4zy 4+ 6
%dx_/:c(xy—iﬂ) dz

¢é=In(zy+2)+3n(z)+ f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9¢ z ’
- — 4
9 ~garat W (4)
But equation (2) says that g—‘z = %. Therefore equation (4) becomes
Sry+8 oz

vy +2) ayta f'(y) (5)

Solving equation (5) for f’(y) gives
4
f'ly) = -
() y

Integrating the above w.r.t y gives

[rom=](5)e

fly) =4ln(y) +

Where c¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢

¢p=In(zy+2)+3ln(z)+4In(y) +

But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

cg=In(zy+2)+3In(z) +4In(y)
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Summary

The solution(s) found are the following

Verification of solutions

Verified OK.

In(yz+2)+4ln(y) +3In(z) = ¢
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Figure 4: Slope field plot

In(yz+2)+4In(y) +3In(z) =
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 23

e N

Ldsolve((4*x*y(x)‘2+6*y(x))+(5*x‘2*y(x)+8*x)*diff(y(x),x)=0,y(x), singsol=a11{

RootOf (—In(z) +¢1 +In(2+_2) +4In(_2))

y(z) =

v/ Solution by Mathematica
Time used: 1.989 (sec). Leaf size: 156

e B

LDSolve[(4*x*y[x]“2+6*y[x])+(5*x“2*y[x]+8*x)*y'[x]==0,y[x],x,IncludeSingularSo}utions -> True

[ 2#1% et ]
5
y(xz) — Root | —#1° — + F&’ 1
2#1% e
y(x) — Root | —#1° — 21 + 6—4&, 2
x
[ 2#1% e
—_— 5 —_—— —
y(xz) = Root _ #1 . + o &, 3_
241% e
y(x) — Root | —#1° — 2#1 + 6—4&,4
x
[ 241% e
y(x) — Root | —#1° — #T + (;—4&, 5
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1.5 problem 5

1.5.1 Solving as differentialTypeode . . . . ... .. ... ... ... [31]
1.5.2 Solving as homogeneousTypeMapleCode . . . . . . ... .. .. [33]
1.5.3 Solving as first order ode lie symmetry calculated ode . . . . . . 361
1.5.4 Solvingasexactode . ... ... ... .. ... ......... 41l
1.5.5 Maple step by step solution . . . . ... ... ... .. ... .. 45}

Internal problem ID [2992]
Internal file name [OUTPUT/2484_Sunday_June_05_2022_03_15_52_AM_27302529/index.tex|

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 5.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "differentialType", "ho-
mogeneousTypeMapleC", "first_ order__ode_ lie_ symmetry_ calculated"
Maple gives the following as the ode type

[[_homogeneous, “class C°], _exact, _rational, [_Abel, ~2nd

type”, “class A"]]

2y+ 2z +y+1)y =—-bz—1

1.5.1 Solving as differentialType ode

Writing the ode as

, —dx—2y—1

_ 1
Y Ty +1 (1)

Which becomes
(y+1)dy = (—2z)dy + (—5z — 2y — 1) dx (2)

But the RHS is complete differential because

)
(—2z)dy + (=bz —2y — 1) dz = d(—éxQ —2zy — x)
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Figure 5: Slope field plot

e g g i o]

y=—22—1+V—-224+2c:+2z+1+¢c
y=—2x—1—\/—m2—|—261+2x—|—1+01
y=—2x—1+\/—m2+201+2x+1+cl
y=—2z—1—\/—x2+201+2x+1—|-cl

Integrating both sides gives gives these solutions

The solution(s) found are the following

Hence (2) becomes

Summary

T T T T T T T
on N — ) — N on

—~

=

~—

=~

y=—2x—1+\/—x2+2cl+2x+1+cl
y=—-20—1—\/—-224+2c;+22+14¢

Verification of solutions

Verified OK.
Verified OK.



1.5.2 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z, then the above is transformed to new ode in Y (X)

iY(X) _ 5X +5x30+2Y(X) + 2y + 1
dX 22X 425+ Y (X)) +yo +1
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
To = 1
Yo = —3

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d 5X +2Y(X)

ax  X)=—9x +Y (X)

In canonical form, the ODE is

Y'=F(X,Y)
5X +2Y
=—— 1
2X +Y (1)
An ode of the form Y’ = % is called homogeneous if the functions M(X,Y) and
N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

fE"X,t"Y) =t"f(X,Y)

In this case, it can be seen that both M = —5X — 2Y and N = 2X 4+ Y are both

homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since

this ode is homogeneous, it is converted to separable ODE using the substitution u = %,

or Y = uX. Hence

dY du
X ~ax
Applying the transformation Y = uX to the above ODE in (1) gives
du —2u—5
ax Xt
du _ ot —uX)
dx X
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—2u(X)—5
d u(X)+2 —U(X) _
ax ) - X 0
Or p p
(500 ) Xu(x) +2( SuX) ) X+ ()" + 4u(X) +5 =0
Or

X (u(X) +2) <diXu(X)) +u(X)? + 4u(X) +5 = 0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)

= f(X)g(u)

_u2 +4u+5
X (u+2)

Where f(X) = —% and g(u) = “2:;_'}?5. Integrating both sides gives

1 1
—u2+4'u,+5 d’LL = —Y dX
u+2

1 1
/mdw/—ydx

u+2

In (u? + 4u + 5)

5 =—In(X)+ec

Raising both side to exponential gives

Vu2 + du + 5 = e~ 2X)+e2
Which simplifies to

\/u2+4u+5=§
X

Which simplifies to

C2
Vu(X)? +du(X) +5= %
X
The solution is
9 c3e®?
\/u(X) +4u(X)+5= e
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Now u in the above solution is replaced back by Y using u = % which results in the

solution

Y(X)? 4V (X) | cze>
PR 00 o

Using the solution for Y'(X)

YV (X)?+4Y (X)X +5X2  cae
X2 X

And replacing back terms in the above solution using

Y=y+uw
X=£13+CL'0
Or
Y=y—-3
X=z+1

Then the solution in y becomes

+3)°+4@+3) @ -1 +5(@@—1)" _ cpe?
(w—l)2 z—1

Summary
The solution(s) found are the following

(W+3)°+4(y+3)(x—1)+5(@—1)"  cze
(ac—l)2 z—1
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Figure 6: Slope field plot

Verification of solutions

c3e®?

(@ —1)°

Y +4(y+3)(z—1)+5(x—1)>°

\/(y+3

1.5.3 Solving as first order ode lie symmetry calculated ode

Verified OK.

Writing the ode as

oz +2y+1

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - fz) - w2€y - wx€ — Wyl
The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)
(2E)

ras + yas + a;

£
U]

xby + ybz + by
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(br+2y+1)(bs —a2) (bz+2y+ 1)% a

by —
? 2r+y+1 (2 +y +1)°
5 10x+4y+2> (5E)
— | — xas + yas + a

2 S5z +2y+1 )
— (- + by + ybs +b1) =0
( 2e+y+1  (2z+y+1)° (w2 +bs +51)
Putting the above in normal form gives

102%ay — 252%a3 + 322by — 1022bs + 10zyas — 20xyas + 4xyby — 10zybs + 2y%as — 3y2as + y2by — 2y2bs
2z +y

=0

Setting the numerator to zero gives

10z%ay — 252%a3 + 322by — 1022b3 + 10zyas — 202yas + 4xybs — 10zybs (6E)
+ 2y2a2 — 3y2a3 - y2b2 — 2y2b3 + 10zagy — 10xas — xb; + bxby — Txbs
+ yay 4+ 3yas — yaz + 2ybs — 2ybs + 3a; +as —as+ by + by —b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

10012'0% + 10aqv1v9 + 2agv§ — 25(131)% — 20a3v1v9 — 3a31)§ + 3b2v% + 4bov1v9 (TE)
+ bQUg — 10()31)% - 10b3’01’l}2 — 2b37)% +ai1vy + 10a2v1 + 3(121)2 - 100,3’01 — A3V
- bl’l)l + 5b2’l)1 + 2b2’l}2 - 7b3’l)1 — 2b3’02 + 3(11 + a9 — as -+ bl + b2 - b3 =0
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Collecting the above on the terms v; introduced, and these are
{’Ul, UZ}

Equation (7E) now becomes

(10(12 — 25&3 + 3b2 — 10b3) ’U% + (10(12 — 20&3 + 4b2 — 10b3) V1V (SE)
+ (10ag — 10ag — by + 5by — 7bs) v1 + (2a2 — 3az + by — 2b3) v3
+(a1+3a2—a3+2b2—2b3)v2+3a1+a2—a3+b1+b2—b3:0

Setting each coefficients in (8E) to zero gives the following equations to solve
2a9 — 3az + by — 2b3 =0
10as — 25a3 + 3by — 10b3 =0
10as — 20a3 + 4by — 10b3 =0
a1+ 3as — ag + 2by — 2b5 =0
10ay — 10as — by + 5by — 7b3 =0
3a1+as —as3+b;+by—b3=0

Solving the above equations for the unknowns gives

a; = —as — bs
as = 4as + b3
as = as

b, = Saz + 3bs3
by = —bas

bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x—-1
n=y+3
Shifting is now applied to make & = 0 in order to simplify the rest of the computation
n=n-w(y)¢

or+2y+1
—y3— (T
y+ ( 2x+y+1)@ )
b4 dry+yP + 2z + 2y + 2

2r+y+1

£€=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

s (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S=/1dy
n

1 d
- 5z2+4zy+y2+2z+2y+2 Yy
2z+y+1

S is found from

Which results in

In (522 + 4zy + y2 + 2z + 2y + 2)
2

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

as _ St w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

oz )__5x—l—2y—|—1

Y T o Y+ 1

Evaluating all the partial derivatives gives

R, =1
R,=0
or+2y+1
Sy =
522 4+ (4y + 2) x + y2 + 2y + 2
2 1
S, = T+y+

y:+ (4r +2)y + 522 4 20 + 2
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds

R 0 (2A)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.

0

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
In (522 + (4y +2) = + y* + 2y + 2)
2

:Cl

Which simplifies to

In (522 + (dy +2) z + y* + 2y + 2)
2
The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

:Cl

Canonical
Original ode in z,y coordinates coordinates
transformation

ODE in canonical coordinates
(R, 9)

_ S5z+2y+1 s __ 0
2oty+1 dR —

Fl&
I

N
VIS

IS

4';»\
=

i\ ¥ X s &
| on A s s

P R R R s o et

=

A/A/A/A//A/A/A/A/A/A/A/&“—ﬁw &
N4 a o oo o s g llom o o o o o o a o
R R R S
P S eI » SR I e e e e
e aa a a e e a a a a e e
P R Lt A
P et d S
P s et

P A A 2 8 R R A a e
Vi i i e i =
///A//A/A//A/_é/'/ﬁ/ﬁ/a/a/a/a/a/(d/
Vel i i i i i i a a a w e
Ve e e e e i T e 2 e i i e
Vi a ot 2 i 2 i i 2 a2 i s s i

P N AR
P R R A AR R
b s h i a s s i e i s s s i a s s

o B o et e
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Summary

The solution(s) found are the following
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Figure 7: Slope field plot

Verification of solutions

:Cl

In (522 + (4y + 2) T + > + 2y + 2)

Verified OK.

1.5.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(x,y)+N(w,y)£=0

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the

ode. Taking derivative of ¢ w.r.t. = gives

=0

¢(z,y)

d
dz

41



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore

2z +y+1)dy=(—-bz—2y—1)dzx
bz+2y+1)dz+2x+y+1)dy=0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =5z +2y+1
N(z,y)=2x+y+1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives

oM

0

=2
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And

ON 0
— =—(2 1
9~ 2oty +1)
=2
Since %}Vf = %, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)
99 _

or M (1)
9¢

Integrating (1) w.r.t. z gives

@dx=/de
or

%dx=/5x+2y+ldx
ox

b= z(5z —|—24y +2) + ) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

9¢ :
9y~ =TI (4)

But equation (2) says that g—ﬁ = 2z + y + 1. Therefore equation (4) becomes

2r+y+1=2z+ f(y) (5)
Solving equation (5) for f'(y) gives
flyy=y+1
Integrating the above w.r.t y gives

[rwa=[w+nay

1
f(y)=§y2+y+cl

43



1)

2
Y
9 +y+c
2
Y
+ 9 Ty
2
o5 ty=a

+
Y

z(5x + 4y + 2)
+

z(5z + 4y +2)

z(5x + 4y + 2)

C1 =

P P L L L L L L L L L L L L L N

P P i L s A e .
PP P g S S P P P P B e

P i §

P

PP A |
P L L L L A G P L A g e}

P PP PPV aP A A A A e
P AN
AN AN |
o7 N~~~

o777 [ \N~———m |
7 I ANN————————
/] I\ ~—————— -~~~
IN~~———— |
~N———— -

ty=a

2

X
v
2

+
44

e i B

—_—— = 7 7 7 7 T 7 7
e g i il

Figure 8: Slope field plot

z(5z + 4y + 2)

e g il o]

Where ¢; is constant of integration. Substituting result found above for f(y) into
¢

equation (3) gives ¢
But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

The solution(s) found are the following

Summary

N
_ ! !

—

=

~—r

=~

Verification of solutions

Verified OK.



1.5.5 Maple step by step solution

Let’s solve
2+ 2z +y+1)y =-bzr—1
° Highest derivative means the order of the ODE is 1

/

Yy
O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function
F'(z,y) =0

o Compute derivative of lhs
F'(z,y) + (%F(x, y)) y =0

o Evaluate derivatives

2=2
o Condition met, ODE is exact
° Exact ODE implies solution will be of this form
|Fle,y) = e, M(z,) = F'(z,9), N(w,9) = 3 F(z,9)
° Solve for F(z,y) by integrating M (x,y) with respect to x
F(z,y) = [ (bz+ 2y +1)dz + fi(y)
° Evaluate integral
F(z,y) = % +2zy + 2+ fi(y)
o Take derivative of F(z,y) with respect to y
N(z,y) = 5. F(z,y)
° Compute derivative

20 +y+1=2z+ 4 fi(y)

o Isolate for d% fi(y)
whiy) =y+1
o Solve for fi(y)
hly)=3v"+y
. Substitute f1(y) into equation for F(z,y)
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F(z,y) =322+ 2zy+z+ 3y° +y

o Substitute F'(z,y) into the solution of the ODE
¥+ 2zy+z+ iy +y=a

° Solve for y

{y=-22—-1-vV=22+2c; +2z+ 1,y = 2z — 1+ /—2% + 2¢; + 2z + 1}

Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

v/ Solution by Maple
Time used: 0.406 (sec). Leaf size: 32

‘dsolve((5*x+2*y(x)+1)+(2*x+y(x)+1)*diff(y(x),x)=0,y(x), singsol=all)

/= (@ -1°E+1+(-22-1¢q
Sy V- @—17E +1+( )

C1
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v/ Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 53

kDSolve [(5*x+2*y [x]+1)+(2*x+y [x]+1) *y' [x]==0,y[x] ,x,IncludeSingularSolutions -# True]

yx) = —/—22+2z+1+¢ -2z —1
yx) = V—224+ 2 +1+¢ —2z—1
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1.6 problem 6
1.6.1 Solving as first order ode lie symmetry calculated ode . . . . . . [48]

Internal problem ID [2993]
Internal file name [OUTPUT/2485_Sunday_June_05_2022_03_15_56_AM_58613521/index.tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 6.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, ~2nd type’,
class A-1]]

—y—(6z—2y—3)y' =—-3z—1

1.6.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as

, —3r+y-—1
- —6z+2y+3
Y = w(z,y)

Y

The condition of Lie symmetry is the linearized PDE given by

Ne + W(ny — &) — w2€y —wz§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =zay+yaz + a (1E)
n = xbs +ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

L (=3z+y—1) (b3 — a2) B (—3x+y—1)2a3

b
? —6x + 2y + 3 (—6z + 2y + 3)
3 —18x+6y—6) (5E)
ol + zTaz +yaz +a
( 6o+ 2y+3 | (<6a+2y+37) TR TYRTH

1 2(=3z+y—1) )
— — xby +ybz +b1) =0
Putting the above in normal form gives

B 182%ay + 92%a3 — 3622by — 18x2bs — 12zyas — 6xyas + 24xybs + 12zybs + 2y%as + y2as — 4y?by — 292
(6x — 21

=0

Setting the numerator to zero gives

—18z%ay — 97%as + 36x2by + 1822b3 + 12xyay + 6xyas — 24xyby — 12zybs (6E)
— 2y%ay — y2as + 4y°by + 2y?bs + 18zay — 6xasz — 41xby — 3xbs — yay
+ 17ya3 + 12yby — 4ybs + 15a; + 3as — az — 5by + 9bs — 3b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—18azv% + 12a9v1v9 — 2azv§ — 9a3v% + 6asv vy — agvg + 36b2vf — 24bov1v9 (TE)
+ 4b2’l}§ + 18[)31)% — 12b3’l}17)2 + 2b3’03 + ].8(12’1)1 — AUy — 6a3v1 + ].7(13’02
- 41b2U1 + 12b2’l}2 - 3b3’l}1 - 4b3’02 + 15(11 + 302 — agz — 5b1 + 9b2 — 3b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

(—18ay — 9as + 36by + 18b3) v? + (12a5 + 6as — 24by — 12b3) V10, (SE)
+ (18(12 - 6(13 - 41b2 - 3b3) U1+ (—2a2 — as + 4b2 + 2b3) ’Ug
+ (—ag + 17a3 + 12b2 — 4b3) () + 15@1 + 3(12 — asz — 5b1 4 9b2 — 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—18ay — 9a3 + 36by 4+ 18b3 = 0

—2a9 — a3z + 4by + 2b5 =0

—ag + 17a3 + 12by — 4b3 =0

12a5 + 6a3 — 24by — 12b3 =0

18ay — 6a3 — 41by — 3b3 = 0

15a; + 3a; — a3 — 5by + 9by — 3b3 =0

Solving the above equations for the unknowns gives

a; = a;
(1,2=2b2
a' —_2_b2
T3

1
by =3a1-|-0—b2

3
b2=b2

b

by =

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)¢
-3 -1
_g_(orty=1 1)
—6x + 2y +3
_ 15z — 5y — 10
- 6zx—2y—3
£€=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

= / m_lmdy
62—2y—3
Which results in
2y In(-3z+y+2)
"5 5
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by
—3r+y—1

W(T.9) = T os 13
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Evaluating all the partial derivatives gives

R, =1
R, =0
3
S“‘_wm—5y—m
2 1
S, ==+

5 1bx —5y —10
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
-~ = 2A
dR 5 (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _1

dR 5
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

R
S (R) = g + (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2y In(-3z+y+2) =

5 5 =Fta

Which simplifies to

2y In(-3z+y+2) =
5 5 —pTa

Which gives

_ LambertW (—2e%~475)

9 + 3z — 2

y:
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canonical coordinates

(R,

5)

dy _ —3z+y-—1
dr ~— —6z+2y+3

T v v v
B O e e
P e O e
P PPl e iy
P e td v |
w25
D e e P
P P B
P P B s |

N f A
e\ A
et AT
N A A
s\ A
e~ A
NS A A
=\ A AT
~t A
NP AAAAAS A

v g w i wly ]
P G
B e e e
o e e v o e

///»}/»4\%
/V/v/v/v/v/v,aa,\f
B e e O e MY ]
D el et ata s AN

NS AAF AT
IRt statatatat
fPAAAA A A A

\fAAAAA A A7z

AASAAAAAAAA
AAAAAAAAAS
AAAAAAARF T T
AAAAAAANAAA
AAAAAAAAAA
AAAAAIAIAAAA

as _ 1
dR ~ 5

O O L g g G T g g g 4

> > > B > > > > B > > > > > > > > > >

> > > > > > > vl > > > > > > > > > b

g B O g g g 5 g e gL g g O
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> > > > >

> > > > > > > > > >
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R I
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> > > B > > > > B > > > > > > > > > >
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Summary

The solution(s) found are the following

LambertW (—2 e5*—4-51)

y:

2
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Figure 9: Slope field plot

Verification of solutions

LambertW (—2 e5z—4-5¢1)
2

y= + 3z — 2

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---

trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous C

1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful’
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v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

Ldsolve((3*x—y(x)+1)—(6*x—2*y(x) -3)*diff (y(x),x)=0,y(x), singsol=all) J

_ LambertW (—2e~*+5#75)

9 + 3z —2

y(z) =

v/ Solution by Mathematica
Time used: 3.791 (sec). Leaf size: 35

-

N
LDSolve [(3*x-y[x]+1)-(6*x-2*y [x]-3) *y' [x]==0,y[x],x,IncludeSingularSolutions —j> True]

1
y(x) — —§W(—e5x_1+°1) + 3z —2
y(z) = 3x — 2
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1.7 problem 7
1.7.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 5ol
1.7.2  Solving as first order ode lie symmetry calculated ode . . . . . . Ol

Internal problem ID [2994]
Internal file name [OUTPUT/2486_Sunday_June_05_2022_03_15_58_AM_51338548/index. tex]

Book: Differential equations, Shepley L. Ross, 1964
Section: 2.4, page 55

Problem number: 7.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C'], _rational, [_Abel, “2nd type,
class A°]]

—2y+2z+y—1)y =—-z+3

1.7.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + z then the above is transformed to new ode in Y (X)

iY(X)— —X — 20 +2Y(X) +2yo +3
dX 22X 220+ Y (X)) +yo—1

Solving for possible values of xy and yo which makes the above ode a homogeneous ode
results in

.’L'():l
Yo=—1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d =X +2Y(X)
x X =oxy (X)

96



In canonical form, the ODE is

Y'=F(X,Y)
—X +2Y

=X +v o

An ode of the form Y’ = %g;:)) is called homogeneous if the functions M(X,Y) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

FEX,Y) = " (X, Y)

In this case, it can be seen that both M = —X +2Y and N = 2X + Y are both
homogeneous and of the same order n = 1. Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution v = ¥

X
or Y =uX. Hence

dY du
X ~ax*
Applying the transformation Y = uX to the above ODE in (1) gives
du 2u —1
ax Xt
du_ S —eX)
dx X
Or 2u(X)—1
iu(X) B s — wX) _0
X X
Or d d
2 fr—
(qu(X)) Xu(X) + 2(qu(X)> X+uX)"+1=0
Or

X (u(X) +2) (diXU(X)) Fu(X)?41=0

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

v = F(X,u)
= f(X)g(u)
u? +1
X (u+2)
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Where f(X) = —+ and g(u) = * +1 . Integrating both sides gives

1 1
u+2

/ 2+1du—/——dX
u+2

In (u? +1)

5 + 2arctan (u) = —In (X) + ¢

The solution is

In (u(X)2 +1)
2

+ 2arctan (u(X)) +In(X) —ce =0

Now w in the above solution is replaced back by Y using u = % which results in the

solution < )
In Y(X) +1 Y(X
5 + 2arctan ((T))+ln(X)—C2=O
Using the solution for Y (X)
In Y(X) +1 Y(X
< 2 > + 2arctan (%)4‘1]1()()—02:0

And replacing back terms in the above solution using

Y=y+uw
X=z+x
Or
Y=y-1
X=z+1

Then the solution in y becomes

(y+1)?
In ((z—ﬁ

2

+1) .
+ 2arctan (i——|_1> +In(z—1)—c=0
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Summary
The solution(s) found are the following
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Figure 10: Slope field plot

Verification of solutions

2

1
+ 2arctan (itl) +In(z—1)—c=0

Verified OK.

1.7.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, —r+2y+3
2r+y—1
Y =w(z,y)
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The condition of Lie symmetry is the linearized PDE given by

Nz + w(ny - fz) - wzéy —wg€ — Wyt = 0

(A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved

using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zay +yaz + a;
'I7=$b2+yb3+b1

Where the unknown coefficients are

{ala a2, as, b17 b?, b3}

Substituting equations (1E,2E) and w into (A) gives

(—z+2y+3)(bs—az) (—z+2y+3)°as

by +

27 +y—1 2z +y — 1)
1 2(—m+2y+3))
—| - — zraz + yaz +a
(2x+y—1 Gory—1p )R TyBto)
2 —x+2y+3)
- - xby + ybs +b1) =0
<2x+y—1 (2x+y—1)2 (b2 + ybs 1)

Putting the above in normal form gives

(1E)
(2E)

(5E)

2x2ay — x2a3 — 22by — 222b3 + 2zyas + 4xyas + dzryby — 22ybs — 2y%as + y2as + y2by + 2y%bs — 2zas +

=0

Setting the numerator to zero gives

22%ay — x2ag — x2by — 2x°bs + 2xyay + 4zyas + 4zyby — 2zybs — 2y%a;,

+ y2as + y?by + 2y?bs — 2xas + 6zas — 5xby + by + Txbs + Syay

— yas — Tyas — 2yby + 6ybs + 5a; + 3as — a3 + 5b; + by — 3b3 = 0

2z+y—:

(6E)

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}
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The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y =02}

The above PDE (6E) now becomes

2(12’1)% + 2&21)1’1}2 - 20/2'05 - a3’U% + 4CL3U1’U2 + (13’1)% - bQU% + 4b2’01’l)2 + bz’Ug (7E)
— 2b3’l)% — 2b3’l)1'02 + 2b3’l]§ + 5(],1’02 — 20,2’01 — QoUy + 6&3’01 - 7(1,3’02 — 5b1’01
+ bz'l)l — 2b2’l)2 + 7b3’U1 + 6b3’l)2 + 501 + 3(12 — 9@3 + 5b1 + b2 — 3b3 =0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

(2&2 — as — b2 — 2b3) ’U% + (2&2 + 4(13 + 4b2 — 2b3) V1V (SE)
+ (—2&2 + 6(13 — 5b1 + bz + 7b3) U1 + (—2&2 + as + bz + 2()3) ’Ug
+ (5(11 — Q9 — 703 — 2b2 +6b3)’02 +5G,1 —|—3a2 —9&3 +5b1 +b2 — 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—2a9 + a3 +by+2b3 =0

2a9 —az — by —2b5 =0

2aq + 4asz + 4by — 2b5 =0

5a; — ag — Tas — 2by + 6b3 =0
—2as + 6a3z — bby + by + Tb3 =0

5a; + 3a; — 9as + 5b; + by — 3b3 =0

Solving the above equations for the unknowns gives

a3 = —by — b3
az = b3

az = —by

by = —by+ b3
by = by

bs = b3
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Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x—-1
n=y+1

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-wy)é

oyl (—x—|—2y—|—3) (z—1)

2r+y—1
22+ -2+ 2y +2
2r+y—1
£E=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
d d
@ _ % _ 19 (1)

& n

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S = /dy

/ z24y?— 2w+2;£+2
2z+y—1

S is found from

T e Y

Which results in

1 2 2_9 2 2 242
S = n(z®+y 2$+ y+ )+Zarctan( + g)
a’;_

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,
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Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

—z+2y+3

WEY) = Sy 1

Evaluating all the partial derivatives gives

R, =1

R,=0

_ r—2y—3
242 — 2z +2y+2
_ 2r+y—1

YU a2y - 20+ 2y+2

T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0 (2A)

0

gives
S(R)=c (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (y? 24 2y—2 2 1
I'l(y +z +2y T+ )+2arctan(z—i_1)zcl

Which simplifies to

In (y? 242y —2 2 1
n(y +z +2y Tt )+2arctan<y+1) =
x_
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The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Canonical
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ —a+2y+3 as _
dr ~ 2z+y—-1 dR —
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N

AR T ~
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SNNNNNN NV A e

SOUNNNNN N Y A s R==x
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Summary
The solution(s) found are the following

In (y? 242y —2 2 1
n(y” +z +2y Tt )+2arctan<y+1> =c
x_
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