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Internal problem ID [4345]
Internal file name [OUTPUT/3838_Sunday_June_05_2022_11_20_18_AM_47450005/index . tex|

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 25.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "ex-
actWithIntegrationFactor", "first_ order__ode_ lie_ symmetry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class A"], _rational, _dAlembert]

' Ty
Y _xz_yz_o

1.1.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(x) x on the above ode results in new ode in u(z)

u'(z) z + u(z) — *u(z) =0

22 —u (z)° 22

In canonical form the ODE is



Where f(z) = —1 and g(u) = u;‘—il Integrating both sides gives

—du =——dx
u x
u2—1
/ 13 du = /—1 dz
U T
u2—1
1
In (u) + o —In(z) + ¢
The solution is
1
In (u(z)) + s+In(z) —c,=0
2u (x)

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

2

y\ , _
In <x> + 2 +In(z) —c2=0
2
4 z —
In <E> —|—2—y2+ln(w)—02—()

Summary
The solution(s) found are the following
y 2

ln<5>+2w—y2+ln(x)—02:0 (1)
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Figure 1: Slope field plot

Verification of solutions

2
Y z _
In <x) + 2 +In(z) —c2=0
Verified OK.

1.1.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

Ty
¥y = —x2+y2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - €z) - w2€y - wzf — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)



Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

ry(bs — az) z*y’as
by — 212 2
—22+y (—22 +2)
y 22%y ) (5E)
e - zxagz +yaz +a
( _fL'2 _|_ y2 (_$2 + y2)2 ( 2 y 3 1)
x 2z y?
N zby + ybs +b1) =0
( —a2 4 2 (—x2+y2)2)( 2 T Y03 1)
Putting the above in normal form gives
3x2y?by — 2z yiag + 22 y°bs — y'ag — y*by + %01 — 2?yay + zY*by — ylay 0

(a2 —y2)°
Setting the numerator to zero gives
—32%y%by + 2z y%ay — 22 9°bs + ytas + yiby — 236y + 2?ya; — 2% +3%a; =0 (6E)
Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}
The following substitution is now made to be able to collect on all terms with {z,y}
in them
{z =U,Y = U2}
The above PDE (6E) now becomes
2020105 + azvy — 3baviv: + boviy — 2b3v1v3 + 41920y + Vs — bivd — bivvi =0 (TE)

Collecting the above on the terms v; introduced, and these are

{v1,v2}



Equation (7E) now becomes
—b1v? — 3byviva + a1y + (2ay — 2b3) V13 — bivvs + (a3 + by) v + av3 =0 (SE)

Setting each coefficients in (8E) to zero gives the following equations to solve

a; =0
-b=0
—3by, =0

2a9 — 2b3 =0
az3+by =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=x
n=y
Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(,y)§

y3

x2 _y2

£=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.



The characteristic pde which is used to find the canonical coordinates is

do _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy

n

1
:/_ o3 dy

2—y2

S is found from

Which results in

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S tw(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

___
w(xay) - —x2+y2
Evaluating all the partial derivatives gives
R, =1
R,=0
x
S, = ”)
g _ —a? 4 y?
y y3
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
ds
iR = 0 (2A)



We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as

R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

0

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2In (y) y> + 2°

292 —a
Which simplifies to
21n (y) y® + 22
292 —a
Which gives
)= eLambertW(z—:v2e_2C1) ey

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical ) . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ __ ay s —
r ~ —x2+4y2 dR —
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Summary
The solution(s) found are the following

LambertW (7z2e_2cl )

y=e 2 te (1)
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Figure 2: Slope field plot
Verification of solutions
y _ eLambertW(Q—w2e72cl) ter
Verified OK.
1.1.3 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
dy

dz

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. z gives

d

10



Hence

0p O¢dy
— —_—— T B
Oor Oydx 0 (B)
Comparing (A,B) shows that
o
M
Oz
09
TN
Oy
But since % = % then for the above to be valid, we require that
oM _ 0N
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
;’: gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

(—a:2 + y2) dy = (—zy) dz
(zy)dz+(—2*+y*)dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) =zy
N(z,y) = —z* + ¢

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM_ o
oy oy’
=z

11



And

ON 0
o "ol Y
= —2x

Since %—Aj # %—1;’, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

1 /0M ON
=% o)
1
= m((@ — (—21))
3z

x2—y2

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

PEENLAY
M\ Oz dy
1
= x—y((—%) - (z))
3
oy
Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

p=el BY
o
The result of integrating gives
[ = 3w
_1
=5

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

M =upM

=

(zy)

1
| 8%

<
S



And
N = uN
1
=5 (=2* +¢7)
. —z? +y?
y3

So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

2 2
AT it A
y? y? dz

The following equations are now set up to solve for the function ¢(z,y)

o9  —
g—x—M (1)
¢__

9 =N 2)

Integrating (1) w.r.t. z gives
% dx = / M dx
O0x
0¢ z
2

¢=2—y2+f(y) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and

y. Taking derivative of equation (3) w.r.t y gives

¢ 2
T 4
L) (@)
But equation (2) says that g—z = # Therefore equation (4) becomes
—2? 42 72
e R (") ©)

13



Solving equation (5) for f'(y) gives
1
I = —
Fw) =7

Integrating the above w.r.t y gives

[ o= (2)o

fly)=In(y)+a

Where c; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
72

2

¢=In(y)+

But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and ¢y constants into new constant c; gives the solution as

$2

clzln(y)+2—y2

The solution becomes

LambertW(—wze_201 )
y = e 2

+c1

Summary
The solution(s) found are the following

LambertW (—z2e_2cl )

y=e 2 tea (1)

14
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Verification of solutions

Verified OK.
Maple trace
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X

Figure 3: Slope field plot

LambertW(—zQe_ch )
y = e 2

+c1

“Methods for first order ODEs:
--- Trying classification methods ---

trying a quadrature
trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear
trying homogeneous types:
trying homogeneous D

<- homogeneous successful”

15




v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 19

Ldsolve (diff (y(x) ,x)=x*y(x)/(x~2-y(x)~2),y(x), singsol=all) J

1
y(@) = \/_ LambertW (—c;22) v

v/ Solution by Mathematica
Time used: 8.026 (sec). Leaf size: 56

LDSolve [y' [x]==x*xy[x]/(x"2-y[x]~2),y[x],x,IncludeSingularSolutions -> True] J

y(z) = — W e
y(z) = s =y
y(z) =0

16



1.2 problem Example, page 27
1.2.1 Solving as homogeneousTypeMapleCode . . . . . . . .. .. .. 17
1.2.2 Solving as first order ode lie symmetry calculated ode . . . . . . 201

Internal problem ID [4346]
Internal file name [OUTPUT/3839_Sunday_June_05_2022_11_20_25_AM_71334307/index.tex]

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 27.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeMapleC",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class C°], _rational, [_Abel, ~2nd type’,
class A~]]

,_x+y—3_

=0
z—y—1

1.2.1 Solving as homogeneousTypeMapleC ode
Let Y =y + yo and X = x + x, then the above is transformed to new ode in Y (X)

iY(X) _ X+zo+Y(X)+y—3
dX X —zo0+Y (X)+y+1
Solving for possible values of xg and yo which makes the above ode a homogeneous ode
results in
To = 2
Yo=1

Using these values now it is possible to easily solve for Y (X). The above ode now
becomes

d X +Y(X)
ax Y X) = X +Y (X)

17



In canonical form, the ODE is

— F(X,Y)
X+Y
SR 1
-X+Y (L)
An ode of the form Y’ = (())g ;,/)) is called homogeneous if the functions M (X,Y’) and

N(X,Y) are both homogeneous functions and of the same order. Recall that a function
f(X,Y) is homogeneous of order n if

FEX,4"Y) = " f(X,Y)

In this case, it can be seen that both M = X +Y and N = X —Y are both homogeneous
and of the same order n = 1. Therefore this is a homogeneous ode. Since this ode is

homogeneous, it is converted to separable ODE using the substitution v = )—};, or
Y = uX. Hence

dY du
ax T ax >t
Applying the transformation Y = uX to the above ODE in (1) gives
du —u—1
axXtrE
du ;12%)__11 — u(X)
dx X
Or (X1
d a1 — wX)
x-——x =0
Or J J
2 —
(dX (X)) Xu(X) — (qu(X)> X +u(X)?+1=0
Or

.X(()—D(JQ(X»444XV+1=O

Which is now solved as separable in u(X). Which is now solved in u(X). In canonical
form the ODE is

= F(X,u)
= f(X)g(u)
u? +1
X (u—1)

18



Where f(X) = —+ and g(u) = “*L. Integrating both sides gives

1 1

u—1
1 1
u—1

2
@ +1) arctan (u) = —In (X) + ¢

2
The solution is

In (u(X)2 +1)
2

—arctan (u(X)) +In(X) —ce =0

Now u in the above solution is replaced back by Y using u = % which results in the

solution
i (16 +1)
2
Using the solution for Y (X)

1o (22 +1)
2

-t (Y29 13 0

- acan (1) 41 0) 0

And replacing back terms in the above solution using

Y=y+w

X =x4+x
Or

Y=1+4+y

X=z+2

Then the solution in y becomes

(y-1)°
n ((—m)2 + 1) < y—
— arctan

1
5 )+ln(—2+m)—02=0

24z

19



Summary
The solution(s) found are the following

m( )2+1> _1
(z242) —arctan(y x)+ln(—2+x)—c2=0
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Figure 4: Slope field plot

Verification of solutions

n (&2 +1) _1
(—2+2w) — arctan (_yz n x) +In(—242z)—c2=0

Verified OK.

1.2.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, z+y—3

—-z+y+1
Y =w(z,y)

20



The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny - fz) - wzéy - wz€ — Wyl = 0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zag +yaz + ay (1E)
1 = xbz + ybs + by (2E)

Where the unknown coefficients are

{ala a2, as, b17 b?, b3}

Substituting equations (1E,2E) and w into (A) gives

B (x+y—3)(bs —az) B (z+y—3)as

b2

—z+y+1 (—z+y+1)°
1 r+y—3 ) (5E)
— (= - zxag +yaz + a
< —z+y+1 (—z+y+1) (zaz +ya; + o)
1 z+y—3
S by +ybs+b1) =0
<—x+y+1 (—x+y—|—1)2)(x2 Yo3 1)

Putting the above in normal form gives

_ 2%ay + 2%az + 2%y — 2%b3 — 2xyay + 2xyag + 2xyby + 2xybs — y?as — yPaz — y?by + y?bs — 2way — 6
(x—y—

=0
Setting the numerator to zero gives

—z2ay — 2as — 2°by + 2%bs + 2zyas — 2zxyas — 2xyby — 2xybs + ylas (6E)

+ y2as + y?by — y2bs + 2zay + 6zas — 2xby + 2xby — 4bs + 2yas
— 2ya2 + 4ya3 + 2yb2 -|- 6yb3 —_ 2(11 —_ 3a2 —_ 90,3 + 461 + b2 -l- 3b3 = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.

{z,y}

21



The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z=v,y =02}

The above PDE (6E) now becomes

—afl)f + 2a21)1?)2 + CLQ’U% — (13’1)% - 2(13’1)1’02 + ag’l)g — bz’U% — 2b2'01’l)2 + b2v§ (7E)
+ b3’U% — 2b3’l)1'02 — b3’U§ + 20,1’02 =+ 2(1,2’01 — 2612'02 + 6&3’01 + 4(13’02 — 2b1’U1
+ 2b2’U1 + 2b2’l)2 — 4b3’l)1 + 6b3’l)2 — 2(11 — 302 — 9@3 + 4b1 + b2 + 3b3 =0

Collecting the above on the terms v; introduced, and these are
{v1, v2}

Equation (7E) now becomes

(—CL2 — as — b2 + b3) 'U% + (2@2 — 2a3 — 2b2 — 2b3) V1V (SE)
+ (2&2 + 6(13 — 2b1 + 2b2 - 4b3) U1 + (CLz + as + b2 — b3) ’Ug
+ (2&1 — 2as + 4az + 2by + 6b3) v — 2a1 — 3as — 9as + 4b; + by + 3b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve

—ay—az —by+b3=0
as+as+by,—b3=0

2a9 — 2a3 — 2by — 2b3 =0

2a; — 2a9 + 4az + 2by + 6b3 = 0

2a5 + 6a3 — 2by + 2by — 4b3 =0

—2a; — 3ay — 9a3 + 4b; + by +3b3 =0

Solving the above equations for the unknowns gives

a; = by — 2b3
as = bs

az = —by

by = —2by — b3
by = by

bs = b3

22



Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=-2+4+=x
n=y-1
Shifting is now applied to make £ = 0 in order to simplify the rest of the computation

n=n-w(zy)
:y—1—<—£i£:i>GQ+w)

—r+y+1
—r?—y*+4r+2y—5
N z—y—1

§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
The characteristic pde which is used to find the canonical coordinates is
dr dy
& n

The above comes from the requirements that <£ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S=/1dy
n

1
_/ —z2—y2+4z+2y—5 dy

rz—y—1

S is found from

Which results in

In(a” +¢* 4o —2y+5) 22~ )arctan (3:7)

2 2 — 4
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

23



Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

z+y—3

o) =

Evaluating all the partial derivatives gives

R, =1
R, =0
_ z+y—3
24y —4r—2y+5
—r+y+1
S, =
2+y?—4z—2y+5

T

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as _

dR
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR
The above is a quadrature ode. This is the whole point of Lie symmetry method.

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above

0 (2A)
0

gives

S(R) = (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

1 2 2 _ —
n(y*+z? —2y —4x +5) ~arctan [ Y 1 _ e
2 -2+
Which simplifies to

In (y? + 2% — 2y — 4z + 5) y—1
— arctan =cC
2 -2+
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical
.. ) . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy __ z4+y—3 das 0
r ~  —zt+y+l dR —
o> o o> b—b—b—n 'SV VN Vi W A
s B Vi N U T
B e = R N N 4
AT AT — = ~a ¢ Y
//////yjﬁ»»»-.\\\ Vi oy S(RY
AAAAAAAA 2B e\t PSS 24
AAAAAAAAA A 7 s ffpAp
AAAFAPAAF AL wm a2 R=z
VA Vi Bttt 9 9 :
R YA A IR e e In(z° +y*—dx + 21 ~=5 = 2 i
PAFFFLFE VNN e = < v
FrrAr il NN S 9
fffffffféz_{k\\\\\\s»—»—c’ >
A A I R TR T IRV AR A
A R T T Y A
IREEEEEERERRARER R R R R
IR R R R R R R R AR
Summary

The solution(s) found are the following

In (y* + 22 — 2y — 4z + 5)

2
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Figure 5: Slope field plot

Verification of solutions

y—11\
—2+4x —a

In (y? + 2% — 2y

—4 5
T ) — arctan (

2

Verified OK.
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Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature

trying 1st order linear
trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:
trying homogeneous C

trying homogeneous types:
trying homogeneous D

<- homogeneous successful

<- homogeneous successful”

N\ J

v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 32

Ldsolve(diff(y(x),x)=(x+y(x)—3)/(x—y(x)-1),y(x), singsol=all) J

y(z) = 1+ tan (RootOf (2_Z + In (sec(_2)*) +2In(z — 2) + 2¢1)) (—z + 2)

v Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 57

LDSolve[y'[x]==(x+y[x]—3)/(x—y[x]-1),y[x],x,IncludeSingularSolutions -> True] J

Solve [2 arctan < yz) +z-3 ) o (wz +y(2)® — 2y(z) — 4 + 5)

—y(z)+z -1 2(z — 2)?

+ 2log(z — 2) + ¢4, y(x)]
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1.3 problem Example, page 28

1.3.1 Solving as first order ode lie symmetry calculated ode . . . . . . 28]

Internal problem ID [4347]
Internal file name [OUTPUT/3840_Sunday_June_05_2022_11_20_33_AM_52930794/index. tex]|

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 28.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "first_ order__ode__lie_ symme-
try__calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class C°], _rational, [_Abel, ~2nd type’,
class A-1]]

, 2x+y—1
dr+2+5

1.3.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

, 2x+y-—1
Y 4wr2y+5
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Ne + w(ny -&) — w2€y —we§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ = zaz + yas + o (1E)
n = xby + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bl) b2a b3}

Substituting equations (1E,2E) and w into (A) gives

2z +y —1) (b3 — a2) B (2x—|—y—1)2a3

by +
? 442y +5 (42 + 2y + 5)°
2 4(2x+y—1)) (5E)
- - Tas + yas + a
(4x+2y+5 (42 + 2y + 5)° (w02 +yas + @)
1 2(2z+y—1))
— — xby +ybs +b,) =0
(4x+2y+5 (4z 4 2y + 5)° (wbs +ybs + b)

Putting the above in normal form gives

_8x2a2 + 42%a3 — 1622by — 822b3 + S8zyas + 4xyas — 162yby — 8xybs + 2y%as + y2as — 4y2by — 2ybs +

(4 + 2y
=0

Setting the numerator to zero gives

—82%ay — 42%a3 + 1622by + 82%b3 — 8xyay — 4ryas + 16zyby + STybs (6E)
— 2y%ay — y2as + 4y°by + 2y°bs — 20zay + 4xas + 33xby + 62bs — 3yas
- 12ya3 + 20yb2 - 4yb3 - 14(11 + 5&2 — asz — 7b1 + 25b2 - 5b3 =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}
in them

{z =v1,y = v}

The above PDE (6E) now becomes

—8a2vf — 8asu1vy — 2(12’0% — 4a31)% — 4asv vy — a3v§ + 16b211% + 16byv1 v, (TE)
+ 4b2’l}§ + 8b3’U% + 8b31)1’02 + 2631}% — 20&2’01 - 3(12’02 + 4a3’l)1 - 12&3’02
+ 33b2’01 + 20b21)2 + 6b3’l)1 — 4b3’l)2 — 1461/1 + 5a2 —as — 761 + 25b2 — 5b3 =0
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Collecting the above on the terms v; introduced, and these are
{vla ’U2}

Equation (7E) now becomes

(—8&2 - 4a3 + 16b2 + 8b3) ’U% + (—8a2 - 4a3 + 16b2 + 8b3) V1V (SE)
+ (—20&2 + 4(13 + 33b2 + 6b3) U1+ (—2a2 — a3+ 4b2 + 2b3) ’U%
+ (—3CL2 - 12a3 + 20b2 - 4b3) Vg — 1401 + 5&2 — as — 7b1 + 25b2 - 5b3 =0

Setting each coefficients in (8E) to zero gives the following equations to solve
—20ay + 4as + 33by 4 6b3 = 0
—8ay — 4as + 16by + 8b3 = 0
—3agy — 12a3 + 20by — 4b3 =0
—2a3 — a3z + 4by + 2b3 =0
—14a; + bag — a3 — 7by + 25b; — 5b3 = 0

Solving the above equations for the unknowns gives

a; = ap
a9 = 2b2
asz = bg
9b

by = —2a; + 72
by = b

b
b3 = 52

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

£=1
n=-2

Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)§

=9 <M> (1)

4r +2y +5
—10z — 5y — 9
dr +2y+5
£E=0
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The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

S is found from

1
:/ —10x—5y—9dy

4z+2y+5
Which results in

S__2_y_ 71n (10z + 5y + 9)
5 25

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

as _ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
2r+y—1

Evaluating all the partial derivatives gives

R, =1

R,=0

S —_ 14
50z + 25y + 45
—4xr —2y—5

Y~ 10z + by + 9
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Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds 1

-~ 2A

dR ) (24)
We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR 5
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by

integration when the ode is in the canonical coordiates R, S. Integrating the above

gives
R
S(R)=—3+01 (4)
To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in
2y T7In(10z+5y+9) _ T e
5 25 o5

Which simplifies to

2y  7ln(10z 45y +9) __% .,
5 25 5

Which gives

25z 4 18 _ 25¢y .
— LambertW % + 2571 + % _ 7°1
(] 5 9
Y= — 2T — —
5 5
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Original ode in z,y coordinates

Canonical
coordinates
transformation

ODE in canoni
(R,

cal coordinates

5)

dy _ 2x+y—1

de ~ 4

\»4——/),5,/
v 4
J
[

T+2y+5

Bl Pl P
P P P g Ol
v T v v T T T T
> v v T v v T ¥
> v v v v v v =
> v v v v v v v v

S > v v v o v v v v _v

NN NS se—a

L N~s—ro v v

A7 N~ o v v v v v v 5
AAF N\ ey s s s o
AAAN L N> T v o o v o
AL N e v v v o
B | N e et
////////L%\\**””»”””
AFAAAAFASS \ o~ >

sA 1

77

N\
N\
NN
N\
NN
NN
NN\

AAARAAAAT
AAAAAAAFS
AAFAARFAFFS S

n
iy

Y

f \ > v v >
i N o
7”1

L N~——r e

R=x=x

2y 7ln(10z -

5

ds _
dR —

———e—a—a—a——a—a—n—t]
—a—h A= —a—a—in ]
s
——s—a—s—a——a—a—n—s]
—a—a—a—a— ——
AR 03
——e—a—a—a—a—a—a a2
—a—h A= —a—a—in ]
N

— e bbb —p

1
5

~ s~ s s>
~—a s —a—a—a—a—a—a
~—a—b—b—b—b—b bbb
~> s s —a s>
~—a s —a—a s —a—a—a
~——a—b—s—a—a s
~> s —a s>
~—a s —a—a—a—a—a—a
~—s—a—b—s—a—a———s

e e e S S SN

=<y

T T
e o S 1
— s bbb —b—b |
B e e e S SN
e e e a a2l
— s bbb —b—b |
B e e e S SN
e e e e S SN G CEN
—s b b —a b —a s
B e e e S SN

e S G N |

T T
R B SN S
~—s—s—s—spe—b—b—b—b
~> s~ s —a s s>
~—a s —a—a—a—a—a—a
~——a—b—s—a—a s
~ s —a s>
~—a s —a—a—a—a—a—a
~—s—a—b—s—a—a s
~> s s —a s>

~ A s e s —n

Summary
The solution(s) found are the following
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Figure 6: Slope field plot

Verification of solutions

218 25¢) 25
C
—LambertW | 2ef 7T |4 252418254

e
= —9r— =
Yy 5 z

Verified OK.

34



Maple trace

“Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
1st order, trying the canonical coordinates of the invariance group
-> Calling odsolve with the ODE", diff(y(x), x) = -2, y(x)°
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- 1st order, canonical coordinates successful

<- homogeneous successful”

**x*%x Sublevel 2 *x*x*

v Solution by Maple
Time used: 0.015 (sec). Leaf size: 23

e

tdsolve(diff(y(x),x)=(2*x+y(x)—1)/(4*x+2*y(x)+5),y(x), singsol=all)

~—

7 LambertW (—26¥+%Tw_25%)
7 9 5
via) = 10 5

v/ Solution by Mathematica
Time used: 3.875 (sec). Leaf size: 41

N\

DSolve[y' [x]==(2*x+y[x]-1)/(4*x+2*y[x]+5) ,y[x],x,IncludeSingularSolutions -> True]

7 %J—1+61 9
y(ac)—>1—0W(—e 7 > —2:0—5

9
y(x) = —2z — £
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1.4 problem Example, page 30

1.4.1 Solving aslinearode . . . . . .. ... ... ... ... 361
1.4.2 Solving as first order ode lie symmetry lookup ode . .. .. .. 38}
1.4.3 Solvingasexactode . .. ... .. ... ... .......... 42
1.4.4 Maple step by step solution . . . . ... ... ... ... ... 4T

Internal problem ID [4348]
Internal file name [OUTPUT/3841_Sunday_June_05_2022_11_20_41_AM_63362806/index.tex|

Book: Differential and integral calculus, vol IT By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 30.

ODE order: 1.

ODE degree: 1.

nn

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFac-
tor", "first_ order_ode_ lie_ symmetry_ lookup"

Maple gives the following as the ode type

[_linear]

1.4.1 Solving as linear ode
Entering Linear first order ODE solver. In canonical form a linear first order is
y +p(z)y = q(z)

Where here

Hence the ode is

x+1_
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The integrating factor u is

The ode becomes

Integrating gives

(z—?:l)2 =/d:c

Y
(z +1)°

=T+

Dividing both sides by the integrating factor yu = m results in

y=zx(z+ 1)2 +a(z+ 1)2
which simplifies to
Y= (w+1)2(x+cl)

Summary
The solution(s) found are the following

y=(z+1)>*@+c)
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Figure 7: Slope field plot

Verification of solutions

y=(x+1)2(x+cl)

Verified OK.

1.4.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

23 +322+3x+2y+1

r+1

The condition of Lie symmetry is the linearized PDE given by

0

Nz + w(ny - fz) - w2€y —wz€ —wyn

The type of this ode is known. It is of type linear. Therefore we do not need to solve

the PDE (A), and can just use the lookup table shown below to find £,
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Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | i = g(z)e" @+ 4 f(z) | & Jof ;?;‘;f—h(@ f@)e=/ ;’{;’)”d“‘h(”
form ID 1
: __ aiz+biy+c a1bax—agbiz—bica+b a1boy—azbiy—aice—asc
polynomial type ode y = . +b;Z o T 2 ajb;?iazilz 20
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

£(z,y) =0

n(z,y) = (z +1)°

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

as

1)

The above comes from the requirements that (f a% + 77(%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

39



canonical coordinates, where S(R). Since £ = 0 then in this special case

R=zx

S=/1dy
n

S is found from

Which results in

_ Y
(z+1)?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Sitw(z,y)Sy (2)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

P+ 322+ 3+ 2y+1

Evaluating all the partial derivatives gives
R, =1
R,=0
2
Sy = ——Y
(x+1)
B 1
Y (m+1)?

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
as
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

1 (2A)

1
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R)=R+ ¢ 4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

Y
m =+
Which simplifies to
Y
@yt

Which gives
Y= (ac+1)2(x+cl)

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. . . . ODE in canonical coordinates

Original ode in z,y coordinates coordinates (R, S)
transformation ’
dy _ z3+432243x+2y+1 s _q
dx z+1 dR —

ISR ED IR A R R R R R
IBEEASEEREIIREEEEEE N R R R R R
Prt2~yvyltuttttttrts R R s R R R
frtr=viitrtttttt AAPAPAAAAANAAAAAAASAS
Prtt-Nyt ittt ttt s e R R s
INEREACERRIIEEEEN ! AT AANAAAAAAAASS

Prtz~Vbt et R o L R R

trrz—=xitrrrrtttt R R L R

tttr Nyt 2ttt R==x APAPAPAAAAANAAAAS SRS S

L e 0 A V0 A I A O A A JIAPAP PPN PSSP

TRTT7 7/ o/ TTRITT] Yy L N W Vi Y

PrtrrrityNe=2t 101t =09 R R L R s

RN E RN ENE! (x +1) R R R

ffrffffL%\/ffff t R N R

trtrrrtiynN~tttttt R R L R s

prrttrtbuN—=21t1t11 APPSR PR AAAAAAS AL

Prettrtybjisrtrttt R R L R R

Prttttt N2ttt R | L s

IBEREEEER AN EE! AAPAPPAPAANAAAAA AL
trrtttrti sttt AAPAPPAPAAAAAAS AL

Summary
The solution(s) found are the following
2
y=(@+1) (z+c) (1)
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Figure 8: Slope field plot

Verification of solutions

y=(w+1)2(x+cl)

Verified OK.

1.4.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
M(w,y)+N(fv,y)ﬁ=0
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Comparing (A,B) shows that

99
T M
ox
9 _ n
Oy
But since 682g = (,;9 2(;5 then for the above to be valid, we require that
0y yOx
oM _oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
aa; gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

Therefore

. 2y 2
dy = (x_l_l—}—(ac-l—l) )dx

(-gffr’l —(x+1)2> dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

2y
M(z,y) = o4l (z+ 1)2

N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

OM  ON

oy Oz

Using result found above gives

aM_g(_ 2 —(w+1)2)

By  dy\ z+1
2
z+1
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And

ON 0
oz~ ootV
=0

Since %i; 9N then the ODE is not exact. Since the ODE is not exact, we will try to

Bz

find an integrating factor to make it exact. Let

am k(2 o)

- N Oy Oox
()
z_x-?—l

Since A does not depend on y, then it can be used to find an integrating factor. The
integrating factor y is

4= el Ade
_ o)
The result of integrating gives
§ = e~2n(+D)
1
@1y

M and N are multiplied by this integrating factor, giving new M and new N which
are called M and N for now so not to confuse them with the original M and N.

M = puM
1 2y 2
— — —(z+1
(x+1)2< sr1 OF )>
_ —r*—32 -3z —-2y—1
(z+1)°
And
N =uN
1
= 1
(x+1)2()
_ 1
(z +1)°
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Now a modified ODE is ontained from the original ODE, which is exact and can be
solved. The modified ODE is

M+N%=0
dz

(—x3_3x2—3x—2y—1>+< 1 )%zo
(x+1)° (z+1)*) dz

The following equations are now set up to solve for the function ¢(z,y)

%zﬁ (1)
0p —
8_y_N (2)

Integrating (1) w.r.t. z gives

0¢ [~
%dz—/de

—p3 392 _ — —
0¢ do — / x° — 3z 3z3 2y — 1 e
oz (x+1)

. Y
b=ot L+ ) ®)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

9 1
dy  (z+1)°

+ () (4)

L . Therefore equation (4) becomes

i 0¢ __
But equation (2) says that % = Gii?

(@ Ji V" @ j AL (5)

Solving equation (5) for f’'(y) gives

Therefore
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Where ¢; is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢

+c

(z+1)°

$=—c+

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢ is new constant and

combining c¢; and ¢, constants into new constant c; gives the solution as

(x + 1)?

¢ =—T+

The solution becomes

y=(z+1)2(x+cl)

Summary

The solution(s) found are the following

(1)

y=(w+1)2(x+cl)
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Figure 9: Slope field plot
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Verification of solutions

Y= (x+1)2(x+cl)
Verified OK.

1.4.4 Maple step by step solution

Let’s solve

y - a:—}-l (.’L’ + 1)
° Highest derivative means the order of the ODE is 1

/

Y

° Isolate the derivative
y =2+ (z+1)
° Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
y — 2 = (z+1)
° The ODE is linear; multiply by an integrating factor u(x)
ule) (v — 2) = (@) (@ + 1)
o Assume the lhs of the ODE is the total derivative - (u(z) y)
w@) (v — 25) =W (@) y+ pl@)y
o Isolate ()

_ 2p(x)
Wiz) = -7

° Solve to find the integrating factor
pu(z) = ﬁ

° Integrate both sides with respect to x

[ (£(u(@)y) dz = [ plz) (@ +1)* dz +
° Evaluate the integral on the lhs

pw@)y = [ =) (z+1)de + ¢
° Solve for y

y = S u(w)(wJ(r;))deJrcl

o  Substitute u(z) = jl)Q

47



y=(z+1)> (fldx+01)
° Evaluate the integrals on the rhs

yz(x+1)2(x+cl)

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

<- 1st order linear successful~

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

Ldsolve(diff(y(x) ,x) 2%y (x)/ (1+x)=(x+1)"2,y(x), singsol=all) J

y(@) = (z+a) (1 +2)°

v/ Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 15

LDsolve[y'[x]—2*y[x]/(1+x)==(x+1)‘2,y[x],x,IncludeSingularSolutions -> True] J

y(z) = (z+1)*(z + c1)
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1.5 problem Example, page 33
1.5.1 Solving as first order ode lie symmetry lookup ode . .. .. .. 49|
1.5.2 Solving as bernoulliode . . . .. .. ... ... ... ..... H3]

Internal problem ID [4349]
Internal file name [OUTPUT/3842_Sunday_June_05_2022_11_20_49_AM_77102453/index.tex]

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 33.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "first__order__ode_ lie_ sym-
metry_ lookup"

Maple gives the following as the ode type

[_Bernoullil

Y +xy— 13y =0

1.5.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as
y =y’z® —ay
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo +w(ny — &) — w8y — we€ —wyn =0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find &, 7
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Table 4: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n

linear ode Yy = f(z)y(x) + g(x) 0 el fdo

separable ode vy = f(z) g(y) % 0

quadrature ode Yy = f(z) 0 1

quadrature ode vy =g(y) 1 0

homogeneous ODEs of | ¢ = f(¥) x Y

Class A

homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:

Class C

homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy

First order special | ¥ = g(z) M@+ 4 f(z) e_fbf;z# f)e” f;(;?dw_h(z)
form ID 1

polynomial type ode | 3/ = 2z D
Bernoulli ode v = f(x)y+g(z)y" 0 e~ J(n=D)f(@)dzyn
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide

The above table shows that

(A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dv _ dy _

dsS
§ 7

1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
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canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x

1
Sz/—dy
n
1
= [ —d
/ yre Y

e
2y?

S is found from

Which results in
S =—

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ _ Set+w(z,y)S, @)
dR R, + w(z,y)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) = v’z — 2y

Evaluating all the partial derivatives gives

R, =1
R,=0
re
Sy = )
e~ %
Sy = "

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

S, .

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as

ao _ p3 —R?
iR R’e
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The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

(R?+1) eI
2

To complete the solution, we just need to transform (4) back to z,y coordinates. This

S (R) = — + C1 (4)
results in

e (£ +1) e
2y2 2

+c

Which simplifies to

_e_762 (2 +1) e
2y2 2

+c

The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical . . .
. . . . ODE in canonical coordinates
Original ode in z,y coordinates coordinates
. (R,S)
transformation
dy _ ,3,.3 ds 3 .—R2
YT — 1Y g = R’e
[ N A T A T R B S St D e e e
I A N A L O T R B —~——a—ts_F_ T > bbb
O A e e O G Y A
ti‘LJ’t»\“;;; ; 4444444 N P T > > b bbb
B O L T T S R (S R
! $)/ij()(? \/\&f tt 1 %%%%%KRI\QAB%/V//V 444444
ttit\q;ﬁ\/;; ; 4444444 ~—ald o v v oo s
B A S S S S S e o S ~ > T T P>
N Sa——F 7 7 ¥ v > s m~a~aa—s—> 7 7 s | R D e
T’ f 'f f——aw»w& ,L l, 2y2 4444444 RV N N 3 S NN
f T 1‘ f /_\2,4/?\ L j, ‘L ﬁﬁﬁﬁﬁﬁ B g
IR IR I A A A A A R GG .
fTTff\»»Ll,jJ \i ﬁﬁﬁﬁﬁﬁ e e . S e
SR B B S S o A A N
PEY P Y] L A I B B S e e
L T A N T S S S S N B et e S e O
Summary
The solution(s) found are the following
2 2 —IE2
e ? (z*+1)e
=R g 1)

22 2
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Figure 10: Slope field plot

Verification of solutions

e  (P+1)e ™

Ty ;4
Verified OK.
1.5.2 Solving as bernoulli ode
In canonical form, the ODE is
Yy =F(z,y)
=y’z® —ay
This is a Bernoulli ODE.
y = —zy+2°y’ (1)
The standard Bernoulli ODE has the form
y' = fo(z)y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives
y n
g = @y "+ (@) (3)
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The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.
Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) = —=z
fi(z) = 2*
n=3

Dividing both sides of ODE (1) by y" = y3 gives

1 x
/ _ 3
y E = —E +x (4)
Let
w = yl—n
1
= (5)
Taking derivative of equation (5) w.r.t z gives
2
w =2y ©)
Substituting equations (5) and (6) into equation (4) gives
/
—@ = —w(z)z + 23
w = =223 + 2zw (7)

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q(z)

Where here
p(z) = 2z
q(z) = —22°
Hence the ode is
w'(z) — 2w(z) z = —223
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The integrating factor u is

The ode becomes

Integrating gives
e w = / —27%e ™% dz
e T = (w2 + 1) e +¢
Dividing both sides by the integrating factor u = e~ results in
w(z) = e’ (2 +1) e 4 cre®
which simplifies to

w(z) = 2%+ 14 c;e”
Replacing w in the above by y—12 using equation (5) gives the final solution.
1
— =22+ 1+ e

Solving for y gives

Summary
The solution(s) found are the following

1

y= 1)
Va2 + 14 e

1

y=— (2)
V 2+ 1+ Cler
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Figure 11: Slope field plot

Verification of solutions

Verified OK.
y=— 1
\V 2+ 1+ Cler
Verified OK.

Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bernoulli successful’
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v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 35

Ldsolve(diff(y(x),x)+x*y(x)=x“3*y(x)‘B,y(x), singsol=all)

1

e*’ci + 22+ 1
1

e*’cp + 22+ 1

v/ Solution by Mathematica
Time used: 7.029 (sec). Leaf size: 50

kDSolve [y' [x]+x*y[x]==x"3%y[x] ~3,y[x],x,IncludeSingularSolutions -> True]

1
y(z) = — -
2+ ce +1
1
y(z) — -
22+ ce®® +1
y(z) =0
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1.6 problem Example, page 36

1.6.1 Solving as homogeneousTypeD2ode . .. ... .. ... .. .. 58]
1.6.2 Solving as first order ode lie symmetry calculated ode . . . . . . 60]
1.6.3 Solvingasexactode . .. ... .. ................ 60!
1.6.4 Maple step by step solution . . . . ... ... ... ....... 701

Internal problem ID [4350]
Internal file name [OUTPUT/3843_Sunday_June_05_2022_11_21_02_AM_3402446/index.tex]

Book: Differential and integral calculus, vol IT By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 36.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "homogeneousTypeD2",
"first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, ~class A"], _exact, _rational, _dAlembert]

1.6.1 Solving as homogeneousTypeD2 ode
Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

2 (u(z)? 22 — 32?) (v'(z) = + u(z))

3 1 =0
z%u (x) u(x)” x*

In canonical form the ODE is

v = F(z,u)
= f(z)g(u)
R
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Where f(z) = —1 and g(u) = w=u Integrating both sides gives

u2—-3"°

—ln(u+1)—In(u—1)+3In(u) = —In(x) + c

Raising both side to exponential gives

e In(u+1)—In(u—1)+3In(u) _ e In(z)+c2

Which simplifies to

The solution is
3
u@)' e

u(x)2—1: x

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

Yy _&
3 (Z—; — 1)
y3 C3

Which simplifies to

Y
— = cC
(@-y)(z+y)
Summary
The solution(s) found are the following
3
Y
— =c 1
G n)Ety © W
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Figure 12: Slope field plot

Verification of solutions

y3

(z —y)(z+y)

C3
Verified OK.

1.6.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

p_ 2my
R
Y =w(z,y)

The condition of Lie symmetry is the linearized PDE given by

Nz + W(ny - gac) - w2€y - wxf — Wy = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =zaz +yas + a (1E)
n = by + ybs + by (2E)
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Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

_ 2zy(bs — as) 4r2y’az

b _
2 —3.’1)2 +y2 (—3$2 +y2)2
2y 1222y (5E)
( =3z +y* (-3z2+ y2)2) (w2, +yas + a1)
21 4 9
o = b bs+b;) =0
( St g (_3m2+y2)2> (2bs + ybs + 1)

Putting the above in normal form gives

3z, + 2x%y%as — 8x2y?by + 4z y2ay — 4w y3bs + 2ytas + yiby — 6236, + 622ya; — 22 %0, + 2y°%a;
(322 — y?)*

=0
Setting the numerator to zero gives

3z%by + 22%y%as — 82%y?by + 4z y2as — 4z y3bs + 2yas (6E)
+ y*by — 62°b, + 62%ya; — 22 9%b; + 2y%a; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z,y}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{CB =0,y = UQ}

The above PDE (6E) now becomes

4ayv105 + 2a303v5 + 2a3v;s + 3byvi — 8byviva + bovs (7E)
— 4b3v11)§’ + 60,111%122 + 2a1v§’ — 6b1vi‘ — 2b1v1v§ =0
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Collecting the above on the terms v; introduced, and these are
{vla UZ}

Equation (7E) now becomes

3()2’01L — 6b1’0§ + (2&3 — 8[)2) ’U%’Ug + 6(11’0%’02 (8E)
+ (4ay — 4b3) v1v5 — 2b,v1v5 + (2a3 + ba) v5 + 2a1v3 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

201 =0

6a; =0

—6b; =0
—2b; =0

3bp =0

4as — 4b3 =0
2a3 — 8by =0
2a3 +by =0

Solving the above equations for the unknowns gives

a; =0
as = bs
a3 =0
by =0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=zx
n=y
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-w(y)é

=v= (o)

:y:cQ—yZ”
3x2 — y?
§=0

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _ dy _
§ n

The above comes from the requirements that <£ 2+ n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

R=«x

1
S=/—dy
n
1
:/Wdy

32 —y2

S is found from

Which results in
S=—-In(z+y)+3ln(y) —In(—z+y)

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

ﬁ S+ w(z,y)S, @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by
2zy

(.d(il?,y) = __3:1;2 +y2
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Evaluating all the partial derivatives gives

R, =1
R,=0

2z
T

1 3 1
Sy =— + -+

r+y Yy xT—y
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s

E—O

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) = (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

—In(z+y)+3ln(y) —In(—z+y)=c
Which simplifies to

—In(z+y)+3ln(y) —In(—z+y)=c
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The following diagram shows solution curves of the original ode and how they transform
in the canonical coordinates space using the mapping shown.

Canonical

. ODE in canonical coordinates
coordinates

Original ode in z,y coordinates (R, S)

transformation

PE e N

Voot
\\\\\\kéi»
\\\\\\y\ S
R e S VR f}i
e S S N W

—s—e—s—a—s—a~aa )

s —s—s—a—a

~t Ao o>
NS Ao

P e

oy~ 4
e = SR AW
e v v ¥ 7 A f ~al
D Pl BN

S S e
S\ e e —s—s—b
=/ \ NN
— 7 1 N N N aaae

R =
S=—-In(zx+y)+3ly

X

B GO BN g SR RV SN
N AN N N
N A LN N N 4
~
~

~—em 7 A LN N N N
~—t 7 ALV N NN

Summary
The solution(s) found are the following

—In(z+y)+3n(y) —In(—z+y)=c
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Verification of solutions

Figure 13: Slope field plot

—In(z+y)+3ln(y) —In(—z+y) =

Verified OK.

1.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

d
Aﬂ%w+N@whﬁ=0

(A)

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

Hence

d
E;M%y)_o
op  O¢dy _,
or  Oydx
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Comparing (A,B) shows that

09
M
ox
2 _
Ay
But since % = (,;9; g; then for the above to be valid, we require that
oM  ON
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
26 _ 8¢
Ozdy ~ Oydzx
and we have to now look for an integrating factor to force this condition, which might

or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

is satisfied. If this condition is not satisfied then this method will not work

M(z,y)dz+N(z,y)dy =0 (1A)

92,2 2 2
( 3wy4+y ) W= <_y_§) 4
9.2, .2
(z—f) dx+<%) dy =0 (2A)

Comparing (1A) and (2A) shows that

Therefore

2x

—3xz? + y?

Y
The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

N(x,y) =

oM _ oN
oy Oz
Using result found above gives
oM _ 0 (%
oy — Oy\y®
6z
Ty
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And

Since %M = ‘:’%, then the ODE is exact The following equations are now set up to solve

for the function ¢(z,y)

8¢
=M (1)

3
oy =V 2)

Integrating (1) w.r.t. z gives

—dz—/de

o= [

¢=y—+f(y) 3)

Where f(y) is used for the constant of integration since ¢ is a function of both z and
y. Taking derivative of equation (3) w.r.t y gives

0o 3x?
By =—?+f/(y) (4)
But equation (2) says that g—‘g = % Therefore equation (4) becomes

—3z% + 9 _31
g T + f'(y) (5)

Solving equation (5) for f'(y) gives

flly) =

Qﬁwl —_
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Integrating the above w.r.t y gives

[rwa=[(5)aw

f(y)=—$+01

Where ¢; is constant of integration. Substituting result found above for f(y) into
equation (3) gives ¢
x> 1
p=2_11¢
) Y

But since ¢ itself is a constant function, then let ¢ = ¢, where ¢, is new constant and
combining c¢; and cp constants into new constant c¢; gives the solution as

2

ol
Yy
Summary
The solution(s) found are the following
2 1
F oy g
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Figure 14: Slope field plot
Verification of solutions
72
gy
Verified OK.
1.6.4 Maple step by step solution
Let’s solve
2_ zz /
o
° Highest derivative means the order of the ODE is 1

/

Y

O Check if ODE is exact

o ODE is exact if the lhs is the total derivative of a C? function

F'(z,y) =0

o Compute derivative of lhs
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F'(z,y) + (%F(x, y)) y =0

Evaluate derivatives

_6z _ _ 6z
yt Tyt

Condition met, ODE is exact

Exact ODE implies solution will be of this form
|F(2,9) = c1, M(z,9) = F'(w,9) , N(2,9) = §F(,7)
Solve for F(z,y) by integrating M (x,y) with respect to x
F(z,y) = [ Bdz + fi(y)

Evaluate integral

F(z,y) = % + f1(y)

Take derivative of F'(z,y) with respect to y

N(z,y) = £ F(z,y)

Compute derivative

S = 32 4 4 (y)

Isolate for d% fi(y)

Zhy) = ?’1,%2 — e

y
Solve for fi(y)

fily)=—;

Substitute f(y) into equation for F'(z,y)
Flz,y)=2% -1

Substitute F(z,y) into the solution of the ODE
Solve for y

(

=

2
1 (12\/??3:‘/272 ‘

2 —
+ — Y=

1
3
3c1 (12\/3 z4/2722c2—4c1 +108w2c§—8)

(12\/§m /27x2c2—4 cl+108z2c§—8>
= 6c1

y_
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Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous D

<- homogeneous successful’

v Solution by Maple
Time used: 0.016 (sec). Leaf size: 317

Ldsolve(2*x/y(x)‘3+ (y(x)~2-3%x"2) / (y(x) ~4) *diff (y(x) ,x)=0,y(x), singsol=all)J

1

3
(12\/:%, /27223 —4 c1—108x2c§+8)

1+ 5 + 2 T
(12\/:7,951 [2Tz2c3—4 c1 —108m2c%+8>
y(z) = 3or
y(e) =

2
(1+iv/3) (12\/5 o\/2T523 — Ay — 1082262 + 8) 43— 4(12\/3 2\/2T523 — Ay — 1082%¢2 -
1
12 (12\/5 o\/2T2E — Ay — 108222 + 8) e

y(z) 2

(iv/3 - 1) (12\/?3 o\/2T2E — 4y — 10827 + 8) — 43 + 4(12\/5 2\/2T2E — dey — 10827 + §
1
12 (12\/5 o\/2T22E — d ey — 108222 + 8> o
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v/ Solution by Mathematica
Time used: 60.204 (sec). Leaf size: 458

tDSolve [2%x/y [x]~3+(y [x]~2-3%x"2) / (y [x] ~4) *y' [x]==0,y[x],x, IncludeSingularSoluj;ions -> True]

1 f/ 27ec1z2 4 3v/81e2c1 4 — 12e4c142 — 2e3cr
3 V2

y(z) =

\3/56201
+ 3
\/ 27e132 + 3v/8le21 gt — 12et132 — 2e3
7,(\/3 + z) €/Q7eclx2 + 3v/8le2c1t — 12¢de1 42 — 2e3c1
6v/2
Z(\/g - 1/) 6201 ecl

— &t

y(z) —

3 22/3 {'/27601.152 + 3V/8le2eigt — 12ede172 — 2e3cr

i(v3—1) {’/ 27e13? + 3v/8le2i gt — 12ete132 — 2e3a1
6v/2
'L(\/§ + Z) e2a el

y(z) > —

+

3 92/3 {’/27601 22 4 3v/81e2c1 24 — 12etc12 — 2¢3cr
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1.7 problem Example, page 38

1.7.1 Solving as homogeneousTypeD2ode . .. ... ... .. .. .. [74
1.7.2  Solving as first order ode lie symmetry lookup ode . .. .. .. 761
1.7.3 Solving as bernoulliode . . .. .. ... ... .......... 801
1.74 Solvingasexactode . . ... ... .. ... .. ......... 831
1.7.5 Solving asriccatiode . . . . . . . .. ... ... ... .. 8]

Internal problem ID [4351]
Internal file name [OUTPUT/3844_Sunday_June_05_2022_11_21_09_AM_38053898/index.tex|

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 38.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "bernoulli", "homoge-
neousTypeD2", "exactWithIntegrationFactor", "first_ order_ ode_ lie sym-
metry_ lookup"

Maple gives the following as the ode type

[[_homogeneous, “class D°], _rational, _Bernoulli]

y+zy —ay =0

1.7.1 Solving as homogeneousTypeD2 ode

Using the change of variables y = u(z) z on the above ode results in new ode in u(z)

2

u(@)z +2°u(@)” — 2(u'(z) T + u(z)) = 0

In canonical form the ODE is

u =

!

(2, u)
(z)g(u)

I
~

I
S
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Where f(z) = z and g(u) = u?. Integrating both sides gives

The solution is

—2du=xdx

U
1
/—Qdu=/ccdx
U
1 x?

w2 te

1 z?
- Y -0
u(z) 2 “

Replacing u(z) in the above solution by ¥ results in the solution for y in implicit form

Summary

The solution(s) found are the following

S -
2
S -
2
T T
_Q_E_CZZO (1)
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Figure 15: Slope field plot
y =

Nz + W("?y - gz) - W2£y —wg€ — Wy

1.7.2 Solving as first order ode lie symmetry lookup ode
The type of this ode is known. It is of type Bernoulli. Therefore we do not need to

solve the PDE (A), and can just use the lookup table shown below to find £, 7

The condition of Lie symmetry is the linearized PDE given by

Verification of solutions
Verified OK.
Writing the ode as



Table 7: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode Yy = f(z)y(x) + g(x) 0 el fdo
separable ode vy = f(z) g(y) % 0
quadrature ode Yy = f(z) 0 1
quadrature ode vy =g(y) 1 0
homogeneous ODEs of | ¢ = f(¥) x Y
Class A
homogeneous ODEs of | 3 = (a + bz + cy)™ 1 —:
Class C
homogeneous class D | ¢’ = £ 4 g(z) F (g) z? Yy
First order special | ¥ = g() ehl@)+by 4 f(z) | &= ! bf;z;x_h(z) fele f;(:)cm_h(w)
form ID 1
polynomial type ode y = —Z;zizgig alb?z—;‘fggf;:gfﬁb?cl “1b2y_232;?i;‘2‘;1€2_“201
Bernoulli ode "= f(x)y + g(x) y"™ 0 e~ J(n=D)f(@)dzyn
Y Yyr+g\r)y Y
Reduced Riccati v = fi(x)y + folx) y? 0 e~/ fide
The above table shows that
§(z,y) =0
%
n(z,y) =~ (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

de _dy _

ds
§ N

(1)

The above comes from the requirements that ({f a% + n%) S(z,y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the

7



canonical coordinates, where S(R). Since £ = 0 then in this special case

R==x
S is found from
1
S= [ —dy
n
1
Which results in
g—_%
Y

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ Sp+w(z,y)Sy @)
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,y) is the right
hand side of the original ode given by

y(zy +1
la,y) = D
x
Evaluating all the partial derivatives gives
R, =1
R,=0
1
Se=——
Yy
x
Sy = "

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
s
dR

We now need to express the RHS as function of R only. This is done by solving for z,y

in terms of R, S from the result obtained earlier and simplifying. This gives

as _
dR

x (2A)

R
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(4)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
S(R)

It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
R2

gives

P N N N NN NS

T T T T T T T T T S T S T T S T S

e L T e T S S e S |
AN NS S S S N N N
T T T T W e W W W |

[P F e T S
[Fm T T T S B S S S Ve
4/4N¢/a/¢/¢/a/¢/¢/a/
[P T T T R R R R R

=R

(R,5)
das

ODE in canonical coordinates
dR

A S SN NSNS SN SN AN NN N NN NN
RARRRRNRNRRRNRN RN
R R Y
1 T S O
Frd Tt T et et rrat?
FAPPPPPPIP A PRSP A
- R
Pl e Al

A

v v v v v _v_7_»|

> > > > > > > > _>_ o
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| v v v _ v v v v v _v_v

B D aaaa g g g d

\\M.\V\v\v\v\v\v\v\v\v
{ o » > > > > > > _»_»

L > > o > > > > > o> >

=7+Cl

g
—~ 3 -3
Ss & 81>
o m 8 [
g g
2738 [
R
© 9 g SR
S
+~
PR R N NN 4 4 A N
ffffff LN AN w v?./ R T S S S e
ffffff LN ) ﬁ AT NE N
A!A!.«IAIAIA/A/«/«/» ﬂ, ﬂXq/ﬁ/«lA/AIAIA!A!
ffffff SIS | N\
?????? LN »4}.» R Bttt
8 v —= X w / wd/fA/A/AIAIAI
???????? ~ X | e w AR

dy _ y(zy+1)

Original ode in z,y coordinates
dx

To complete the solution, we just need to transform (4) back to z,y coordinates. This
The following diagram shows solution curves of the original ode and how they transform

in the canonical coordinates space using the mapping shown.

Which simplifies to

results in
Which gives

— e

e
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1)

2x
72+ 2¢;

y:

The solution(s) found are the following

Summary
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Figure 16: Slope field plot
y = F(z,y)

1.7.3 Solving as bernoulli ode
In canonical form, the ODE is

This is a Bernoulli ODE.

Verification of solutions

Verified OK.



The standard Bernoulli ODE has the form

Y = fo()y + fi(z)y" (2)
The first step is to divide the above equation by y™ which gives

y n

i fo(@)y' ™ + fi(@) (3)
The next step is use the substitution w = y'~" in equation (3) which generates a new
ODE in w(z) which will be linear and can be easily solved using an integrating factor.

Backsubstitution then gives the solution y(z) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2)
Shows that

fo(z) =
fi(z)

|
N

Dividing both sides of ODE (1) by y™ = y? gives

1 1
/
y—=—++1 4
iy (4)
Let
w = yl—n
1
== 5
” (5)
Taking derivative of equation (5) w.r.t z gives
1
w = ——y 6
" (6)
Substituting equations (5) and (6) into equation (4) gives
—w'(z) = w(z) +1
x
, w
=Y 7
w =" @

The above now is a linear ODE in w(z) which is now solved.

Entering Linear first order ODE solver. In canonical form a linear first order is

w'(z) + p(z)w(z) = q()

81



Where here

1

p(z) =

q(z) = -1
Hence the ode is

w'(z) + wie) _ -1
x

The integrating factor u is

b= ef Ldz

=z

The ode becomes

Integrating gives

Tw = /—mdx

22
TWw = —?—i-cl

Dividing both sides by the integrating factor u = x results in

T C1

1 r
y 2z
Or
1
T
Summary

The solution(s) found are the following
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Figure 17: Slope field plot
dz

d
Aﬂ%w+N@whﬁ=0

Entering Exact first order ODE solver. (Form one type)

1.7.4 Solving as exact ode
ode. Taking derivative of ¢ w.r.t. z gives

We assume there exists a function ¢(x,y) = ¢ where c is constant, that satisfies the
Hence

To solve an ode of the form

Verification of solutions

Verified OK.



Comparing (A,B) shows that

09
T M
ox
9 _ n
Oy
But since aa;gy = ;; g’x then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need

to determine ¢(z,y) but at least we know now that we can do that since the condition
59;, gy = % is satisfied. If this condition is not satisfied then this method will not work

and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)
Therefore
(—2)dy = (—y’z —y)da
(y’z+y)dz+(—z)dy =0 (2A)
Comparing (1A) and (2A) shows that

M(z,y) =y’z+y
N(z,y) = —x

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM _oN
oy Oz
Using result found above gives
oM 0 ,,
oy oy VT
=2zy+1
And
N _ 0
oxr Ox
=-1
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Since %i; # %—]Z, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

am k(2o

- N Oy ox
1
= ——(zy+1) - (-1))
—2zy — 2
N x

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let
PEENCAY
M\ Oz dy
. 1
Yty
2

(
Since B does not depend on z, it can be used to obtain an integrating factor. Let the
integrating factor be . Then

((=1) = 2zy + 1))

p= e/ Bdy
T
The result of integrating gives
)
_ 1
=2

M and N are now multiplied by this integrating factor, giving new M and new N
which are called M and N so not to confuse them with the original M and N.

And
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So now a modified ODE is obtained from the original ODE which will be exact and
can be solved using the standard method. The modified ODE is

M+N@=0
dz

zy+1 z\dy
( y >+( y2)dw_0

The following equations are now set up to solve for the function ¢(z,y)

9¢
oz
9¢
Oy

(1)

I
<

I
=1
~~
=

Integrating (1) w.r.t. z gives
% dx = / M dx
ox

%dm=/xy+1dz
or Y

_ z(zy +2)
="y

¢ + 1) (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and
y. Taking derivative of equation (3) w.r.t y gives

¢ = =z(zy+2)

—_————_ 4

oy —2 op T1W (4)
x

= + f'(v)
But equation (2) says that g—z = —.5- Therefore equation (4) becomes
x x
—E:——z—i-f'(y) (5)

Solving equation (5) for f’'(y) gives
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(1)

2y
2z
—x2 4+ 2¢;

2x
—22 + 2¢;

z(zy + 2)

fly)=a

Y

e —
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\ \~—— e~ ~
\N~—~7"7777
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////;////
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Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)

gives ¢
But since ¢ itself is a constant function, then let ¢ = c; where ¢, is new constant and

combining ¢; and ¢y constants into new constant c; gives the solution as

The solution(s) found are the following

The solution becomes

Therefore
Summary

3
2_
1

NG p—

X

S ————~—~— |

Figure 18: Slope field plot
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Verification of solutions

_ 2z
y= -2 4 2¢;
Verified OK.
1.7.5 Solving as riccati ode
In canonical form the ODE is
y =F(z,y)
_ylzy+1)
x
This is a Riccati ODE. Comparing the ODE to solve
=9+
x

With Riccati ODE standard form

y' = fo(z) + fi(z)y + fa(z)y?

Shows that fo(z) =0, fi(z) = 1 and fy(z) = 1. Let

B f 2U
_u,

- M)

U

Y

Using the above substitution in the given ODE results (after some simplification)in a
second order ODE to solve for u(x) which is

fou" (@) — (fy + fufo) W' (z) + f3 fou(z) = 0 (2)
But
fo=0
fifs =2
X
f2fo=0

Substituting the above terms back in equation (2) gives

u'(x)

T

u'(z) — =0
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Solving the above ODE (this ode solved using Maple, not this program), gives

u(z) = cox® + ¢

The above shows that
v (z) = 2co1

Using the above in (1) gives the solution

2cox

cr? + ¢

Dividing both numerator and denominator by c; gives, after renaming the constant
£ = c3 the following solution

C1

_ 2z
y= 2+ c3
Summary
The solution(s) found are the following
2z
= 1
v %+ c3 (1)
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Figure 19: Slope field plot
90

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

<- Bermoulli successful’

Maple trace

Verification of solutions

Verified OK.




v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

Ldsolve((y(x)+x*y(x)*2)—x*diff (y(x),x)=0,y(x), singsol=all) J

v/ Solution by Mathematica
Time used: 0.144 (sec). Leaf size: 23

LDSolve [(y [x]1+x*y[x]~2)-x*y' [x]==0,y[x],x,IncludeSingularSolutions -> True] J

2x
2 —2¢;

y(z) = —
y(z) =0
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1.8 problem example page 46
1.8.1 Maple step by step solution . . . . ... ... ... ... ... 93]

Internal problem ID [4352]
Internal file name [OUTPUT/3845_Sunday_June_05_2022_11_21_17_AM_49579362/index.tex]

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: example page 46.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type

[_quadrature]

Yy (1 + y'2) = R?

Solving the given ode for y' results in 2 differential equations to solve. Each one of these
will generate a solution. The equations generated are

, _2+R2

Y= (1)
, _2+R2

y =Y T @)

Now each one of the above ODE is solved.

Solving equation (1)

Integrating both sides gives

y —
| J=gto= |

(R-y)@+R) _
NETES 2
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Summary
The solution(s) found are the following

(R-y)(y+R)

Va0
Verification of solutions
_E-yw+R)_

VTR
Verified OK.
Solving equation (2)

Integrating both sides gives

(R—y)(y+R)

Wy -2 =T+c
Summary
The solution(s) found are the following
(R—y)(y+R) _
VPt R T+
Verification of solutions
R— R
E-y@+R) _ .

VTR
Verified OK.

1.8.1 Maple step by step solution

Let’s solve

y*(1+y?%) = R?

° Highest derivative means the order of the ODE is 1

/

)
° Separate variables
y'y =1
V-y*+R?
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° Integrate both sides with respect to z

f\/%dx=fldx+cl
° Evaluate integral

V-9 +R=z+¢
° Solve for y

{y =R2—c}—2cix— 22,y =—/R2—c} —QClx—xz}

Maple trace

"Methods for first order ODEs:
*** Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables

<- differential order: 1; missing x successful’

v/ Solution by Maple
Time used: 0.031 (sec). Leaf size: 54

r

Ldsolve(y(x)“2*(1+diff(y(x),x)“2)=R“2,y(x), singsol=all)
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v/ Solution by Mathematica
Time used: 0.22 (sec). Leaf size: 101

kDSolve [y [x]~2*(1+(y' [x])~2)==R~2,y([x] ,x,IncludeSingularSolutions -> Truel

y(@) = =R — (z + 1)?

y(x) = VR2 — (x4 ;)2

y(xr) = —/R2 — (x — ;)2

yEa:) — VR2 — (z —c;)?
(

y(z) — R
z) =

<
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1.9 problem example page 47
1.9.1 Solving as clairautode . . . . . . . . ... ... L. 96!

Internal problem ID [4353]
Internal file name [OUTPUT/3846_Sunday_June_05_2022_11_21_24_AM_63114565/index . tex]

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: example page 47.

ODE order: 1.

ODE degree: 4.

The type(s) of ODE detected by this program : "clairaut"

Maple gives the following as the ode type

[_Clairaut]

/

ay

/ f—
VW e

1.9.1 Solving as clairaut ode

This is Clairaut ODE. It has the form
y=zy +9()

Where g is function of y'(z). Let p = ¢ the ode becomes
ap

— x _——

T e

Solving for y from the above results in

_p(VP?P+1z+a) (1A)
/e
The above ode is a Clairaut ode which is now solved. We start by replacing ¢’ by p
which gives

=zp+ w
A A |
IRV
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Writing the ode as

y=zp+ g(p)

We now write g = g(p) to make notation simpler but we should always remember that
g is function of p which in turn is function of . Hence the above becomes

y=zp+g (1)
Then we see that
__ap
/s

Taking derivative of (1) w.r.t. z gives

—i(x +9)

. dp ,dp
p= (p”dx) * (9 dx)

dp
— /_
p—p+(x+g)dx
n dp
0—(1’4‘9)%

Where ¢’ is derivative of g(p) w.r.t. p. The general solution is given by

dp
L _y
dx
b=

Substituting this in (1) gives the general solution as
acy

=Cr+ —
Y 1 Z+1

The singular solution is found from solving for p from

z+4(p)=0

And substituting the result back in (1). Since we found above that g = \/;LH’ then the
above equation becomes

2
a a
r+g'(p) =+ -

VPP T (p2 4 1)

=0
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Solving the above for p results in

\/ (—axz)% — 1z

P =
x
(—a x2)§ — z?
p2=—
T
V2 \/7,\/3 (—ax2)§ - (—az2)% — 222
ps =
2z
V2 \/Z\/g (—axQ)% —(—a xz)% — 22
by = —
2z
\/—21'\/3 (—a ac?)% —2(—a xz)% — 4z2
Ps =
2z
\/—271\/3 (—axz)% -2 (—ax2)% — 4z2
Ps = —

2z
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Substituting the above back in (1) results in

2
(—ac?)3
T pa
(-az?)8 23 _ 2
-z e —a)\/(—azr?)’ -z
Y2 = >
(zaz?)3

iv3—1)(—ax2 3
\/2\/3 (—ax2)% - (—aac?)% — 212 (ﬁx\/(i# + Qa)
Ys = -
iv/3—1)(—ax?
2m\/—< Vs 1)( s

2

Ve (VA1) (cas?)

\/i 3 (— ax2)§ (— az2)% — 222 — +a
Yo = —
\/(zf 1)(—(1:1:2)3
'L\[ —axz?
\/— (—axz)% —iV3 (—aw2)% — 212 <\/_ \/ 1+ ( k e+ Qa)
Ys = -
1+iv3)(—a22)3

\/— (—az?)s —iV3 (—agz?)s — 222 ﬂw\/_ — +a

Yo = —
\/ (1+zf)( ax2)3

x2
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Summary

The solution(s) found are the following

y=car+

1

acy
Vel +

V2z

(sv8-1) (-as2) &

A

T
3 +a

8-1) (- x2)3

14iv/3) (—az2)3

\/— (—ax2)% — i3 (—axz)% — 212 (ﬁx\/—( s

+ Qa)

y:

2x\/ _ (i

V3)(~aa?)3

x2

(1+v5) (-es?)’

— V3 (—az?)’ — 222 ‘/i””\/_—ﬁ

2

+a

-

100
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(1+zf) (—a=?) 3

(4)

(5)

(6)

(7)



Verification of solutions

Y =cT+ a201
ci+1
Verified OK.
(—az2)s — 72 (x (—ag;?)% + a)
v . (—axx;)%
Verified OK.
(—x (_aw”f)% - a) —az?)3 — 2
V= . (—axz;)%
Verified OK.

\/’t\/§ (—a:ﬁ)% - (—aa:Q)g — 212 (‘/590\/(i\/g_l)(—_wz)g + 2(1)

y= '
2x\/<z\/§—llg—az )3
Verified OK.
) (een)?
\/z\/g (—axz)%—(—az2)%—2w2 vz 5 +a
Yy=—- 2
\/(iﬁ—l)(—aaﬁ)?
2 z
Verified OK.

\/_ (—amQ)g — i3 (—ax2)% 92 (\/ﬁ \/_M —|—2a>

1122
y =
1+iv/3 (—119:2)33T
2x\/——< Zz
Verified OK.
) e
\/— (—axz)%—zx/g (—azQ)%—2z2 V2 \/ = +a
Yy=-

] 2
\/— _(1"'“/5) (Faa®)? x
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Maple trace

“Methods for first order ODEs:

-> Solving 1st order ODE of high degree, 1st attempt

trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE

trying 1st order ODE linearizable_by_differentiation

trying differential order: 1; missing variables

trying dAlembert

<- dAlembert successful’

v/ Solution by Maple
Time used: 1.391 (sec). Leaf size: 17

[dsolve(y(x)=x*diff(y(x),x)+ axdiff (y(x),x)/(sqrt(1+diff (y(x),x)"2)),y(x), si#%sol=all)

(@)=c|z+ S
Y 1 21
v/ Solution by Mathematica

Time used: 35.7 (sec). Leaf size: 27

LDSolve[y[x]==x*y'[x]+ a*y'[x]/(Sqrt[1+(y'[x])“2]),y[x],x,IncludeSingularSoluﬁﬁons -> True]

y(x) — e (x + \/%012)

y(z) =0
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1.10 problem Example, page 49
1.10.1 Solving as dAlembert ode . . . . . ... ... ... ... .... 103}

Internal problem ID [4354]
Internal file name [OUTPUT/3847_Sunday_June_05_2022_11_27_37_AM_38946746/index. tex]|

Book: Differential and integral calculus, vol II By N. Piskunov. 1974
Section: Chapter 1

Problem number: Example, page 49.

ODE order: 1.

ODE degree: 2.

The type(s) of ODE detected by this program : "dAlembert"

Maple gives the following as the ode type

[[_homogeneous, ~class C ], _rational, _dAlembert]

y—azy’ -y =0

1.10.1 Solving as dAlembert ode

Let p = v the ode becomes
—zp?—p*+y=0
Solving for y from the above results in
y=zp’+p’ (1A)
This has the form
y =zf(p) +9(p) *)

Where f, g are functions of p = y/(z). The above ode is dAlembert ode which is now
solved. Taking derivative of (*) w.r.t. z gives

p=f+(af +9) P
d;
p—f=(f+9) (2)
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Comparing the form y = zf + g to (1A) shows that

f
g

v
v
Hence (2) becomes

—p* +p = (2zp+ 2p) P () (2A)

The singular solution is found by setting j—ﬁ = 0 in the above which gives

—p*+p=0
Solving for p from the above gives
p=0
p=1
Substituting these in (1A) gives
y=0
y=z+1

The general solution is found when 2 # 0. From eq. (2A). This results in

o —p@)’ +pz)
p(z) = 2p (z) z + 2p (x) 3)

This ODE is now solved for p(x).

Entering Linear first order ODE solver. In canonical form a linear first order is

P'(z) + p(z)p(z) = q(z)

Where here
1
P) =5
1
1(*) =5
Hence the ode is
x 1
P (@) + p(x)
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The integrating factor u is

The ode becomes

2x + 2
1
d0m+4.>=<———— dz
P NZES
Integrating gives
1
Ve+lp= | ————dz
P (/2¢x+1

Vz+lp=vz+1l+c

Dividing both sides by the integrating factor u = v/ + 1 results in

C1
vVe+1

Substituing the above solution for p in (2A) gives

p(z) =1+

=<(1r )+ (0 )
y r+1 r+1

Summary
The solution(s) found are the following
y=0 (1)
y=z+1 (2)
C1 2 C1 2
=z(l 1 3
v=o(1+ ) + (1 ) @
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Verification of solutions

y=0
Verified OK.
y=x+1
Verified OK.
C1 2 C1 2
=1 1
v=s(1+ 2) + (1+ 72)
Verified OK.

Maple trace

/

"Methods for first order ODEs:
**k*x Sublevel 2 **x*
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert

<- dAlembert successful"

v/ Solution by Maple
Time used: 0.016 (sec). Leaf size: 53

-

Ldsolve(y(x)=x*diff(y(x),x)“2+diff(y(x),x)‘2,y(x), singsol=all)

-/

(x

14z ,
z—l—l-\/(l-l-w)(l—i—cl))
1+z

y(z) =0
N )
y(z) = <_
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v/ Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 57

-

N
kDSolve [y [x]==x*(y' [x]) "2+ (y' [x])~2,y[x],x,IncludeSingularSolutions -> True] J

2
c
y(z) s>z —eaVr+1+14—

4

2
y(x)—>z+clx/w+1+1+%
y(z) =0
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