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Internal problem ID [4675]
Internal file name [OUTPUT/4168_Sunday_June_05_2022_12_32_22_PM_59660583/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 38.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind", "first_ order_ ode_ lie_ sym-
metry__calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G'], _rational, _Abell
b
_ay3 _+_ y/ = -3
T2

1.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

3 3
ay’z2 +b
y = 5
T2
Y = w(z,y)

The condition of Lie symmetry is the linearized PDE given by
Nz + W(ny — &) — w2€y —we§ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 1 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

£ =20z +yas + a; (1E)
n= wbg + yb3 + bl (QE)



Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

z3 (5E)

Putting the above in normal form gives

11
2

a?ybaz + dzlabydas + 622 ay?by + 222 ayPas + 432 ayPbs + 622 ay?by — 2byz 2 + 2z3b%a5 — b

11
22

2z

=0

Setting the numerator to zero gives

—2w17>1a2y6a3 — 6x12*3ay2b2 — 2w17>1ay3a2 — 4x%ay3b3 — Gx%ay%l + 2b2w17>1 (6E)
— 4zabyPas — 2x%b2a3 + bxtay + 22%bbs + 3bzPyas + 3bzPa; =0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
5 1 13
{x7y’$27x27x2}

The following substitution is now made to be able to collect on all terms with {z,y}

— )

in them

5 u
{x=vl,y:v2,x2 =V3,T2 = Uy,

vl

The above PDE (6E) now becomes

—2v4a®vias — dviabvias — 2usaviay — 4v,avsbs + bviay + 3bvivsas (7E)
+ 2v‘11bb3 — 6v4av§b1 — 6v5av§b2 + 3bv:fa1 — 2usb®ag + 2bovy =0



Collecting the above on the terms v; introduced, and these are
{Uly V2, U3, Vs, v5}

Equation (7E) now becomes

—4viabviaz + (bay + 2bb3) v] + 3bvivyas + 3bvia; — 2via’vias (8E)
+ (—2aaz — 4abs) vg’m — 61)4(121%61 — 62)50,21562 — 2usb®ag + 2byv, = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2bs =0

—6ab; =0

—6ab; =0
—2d%a3 =0

3ba; =0

3basz =0

—2b%a3 =0
—4abaz =0
—2aay — 4abs =0
bay + 2bbs = 0

Solving the above equations for the unknowns gives

a; =0
as = —2bs
a3 =10
bp=0
by =0
bs = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=-2z
n=y



The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _n
dr ¢
- Y
2z
-_Y
2z
This is easily solved to give
C1

V=V

Where now the coordinate R is taken as the constant of integration. Hence

R=yVz
And S is found from

_do

§
_dz

-2z

as

Integrating gives

Where the constant of integration is set to zero as we just need one solution. Now
that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

ﬁ _ Sx +W($,y)Sy
dR R, +w(z,y)R,

(2)



Where in the above R, R, S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

w(z,y) =
Evaluating all the partial derivatives gives

Y
Re=5e
R, =z
1
Se= -5
S, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

ds NZ7
dR ~ —2z2aqy3 — 2/xb—xy (24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR~ 2R3a+R+2b

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

1
_[_ 4
S(R) / sRatrRropilita (4)

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

In (z) we 1
B a / 2 dda+_a+ 2bd_a ta

Which simplifies to

+c

In (z) / e 1

- d
2 ada+_a+2b —a



Summary
The solution(s) found are the following

In (z) we 1
T\ _ d
2 / 2 ada+_a+2b —a+

Verification of solutions

In (z) yve 1
T\ _ d
2 / 2 ada+_a+2b —at+ o

Verified OK.

1.1.2 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

y' = fo(z) + fi(@)y + f2(2)y” + f3(z)y°

Comparing the above to given ODE which is

Therefore

(1)

1)

Since fa(x) = 0 then we check the Abel invariant to see if it depends on z or not. The

Abel invariant is given by

I3
fefs

Which when evaluating gives

_ 1
8b2a

Since the Abel invariant does not depend on x then this ode can be solved directly.



Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’




v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 34

Ldsolve (-a*xy (x)~3-b/(x~(3/2))+diff (y(x),x)=0,y(x), singsol=all) J

) = (o) o +\2/S—Uf_z e amda))

v/ Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 320

‘ DSolve [-a*y[x]~3-b/(x~(3/2))+y' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truej]

2
Solve | Zab*RootSum | 8#1%ab? + 24#1%ab? + 24#1%ab® + #1°

3
4#1°1og (y(m) \ ax;/z - #1> + 2#1* \/ —% log (y(x) ¥ ax;'/2 - #1) + 8413 log (y(av)i/E

244+1°

+8ab’&,

+ (1, y(.’E)

10



1.2 problem problem 41

1.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 11
1.2.2 Solvingasexactode . . ... ... ... ... .. ... .. ... 161
1.2.3 Solving as abelFirstKindode . . ... ... ... ........ 21

Internal problem ID [4676]
Internal file name [OUTPUT/4169_Sunday_June_05_2022_12_32_31_PM_62580225/index . tex|

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 41.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind", "exactWithInte-
grationFactor", "first_ order__ode_ lie_ symmetry_ calculated"

Maple gives the following as the ode type

[[_homogeneous, “class G°], _Abell

axy® + by’ +4y' =0

1.2.1 Solving as first order ode lie symmetry calculated ode
Writing the ode as
y = —zay’ — by’
Yy =w(z,y)
The condition of Lie symmetry is the linearized PDE given by
Mo+ w(ny — &) — W&y —w€ —wyn =0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

¢ = 20y + yas + o (1E)
1 = xby + ybs + by (2E)

11



Where the unknown coeflicients are

{ala a2, as, bla b2a b3}

Substituting equations (1E,2E) and w into (A) gives

b+ (—zay® —by?) (bs — az) — (—zay® — by2)2 as (5E)
+ ay’(zay + yas + a1) — (—3a vir — 2by) (xby + ybs +b1) =0

Putting the above in normal form gives

—a’z*yPas — 2abzr y°as — b*y*as + 3a x’y?by + 2az yiay + 20z ybs
+aytas + 3az y?by + ayday + 2bxyby + byay + by?bs + 2byb; + by, =0

Setting the numerator to zero gives

—a?z*yPas — 2abz ySas — by as + 3a x%y?by + 2ax y3ay + 20z y3bs (6E)
+ ay*as + 3az y?by + ayPaq + 2bzybs + byPas + byPbs + 2byby + by = 0

Looking at the above PDE shows the following are all the terms with {z,y} in them.
{z, v}

The following substitution is now made to be able to collect on all terms with {z,y}

in them

{z =v,y = v}

The above PDE (6E) now becomes

—a’azvivs — 2abazv vy — basvi + 2aasv1v3 + aazvy + 3abyv?vi + 2absviv (TE)
+ aalvg‘ + 3ab11)1v§ + bag’U; + 2bbyvivg + bb3v§ + 2bbjvy + by =0

Collecting the above on the terms v; introduced, and these are

{’Ul, Uz}

12



Equation (7E) now becomes

—a’azvivs + 3abyvivs — 2abazvivs + (2aay + 2abs) v1v3 + 3abiviv3
+ 2bbov1v9 + (—b2a3 + aag) v 4 aa,v3 + (bag + bbs) v2 + 2bbyvy + by = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

by =0

aa; =0
3ab; =0
3aby =0
—a%a; =0
2bb; =0
2bb; = 0
—2abaz =0

—b2a3 + aaz = 0
2aas + 2abs; =0
ba2 + bbg =0

Solving the above equations for the unknowns gives

a; =0
az = —bs
az3 =10
by =0
by =0
bs = bs

(8E)

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for

any unknown in the RHS) gives

¢=—z
n=y

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,y) — (R, S) where (R, S) are the canonical coordinates which make the original

ode become a quadrature and hence solved by integration.

13



The characteristic pde which is used to find the canonical coordinates is

dr _dy _
§ n

The above comes from the requirements that <§ a% + n%) S(z,y) = 1. Starting with

ds (1)

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy _m
der £
- Y
—z
__Y
This is easily solved to give
C1
Yy=—
x

Where now the coordinate R is taken as the constant of integration. Hence
R=1xy
And S is found from

_do

§

_do

as

—T

dx
5= / dz
T
= —In(x)
Where the constant of integration is set to zero as we just need one solution. Now

that R, S are found, we need to setup the ode in these coordinates. This is done by
evaluating

Integrating gives

aS _ S;+w(z,y)Sy
dR R, +w(z,y)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(z,y) is the right
hand side of the original ode given by

(2)

w(z,y) = —zay® — by’

14



Evaluating all the partial derivatives gives

R, =y
R,==x
1
Sy =——
x
Sy, =0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

s _ 1
dR  zy(x2ay®+bzy — 1)

(24)

We now need to express the RHS as function of R only. This is done by solving for z,y
in terms of R, S from the result obtained earlier and simplifying. This gives

s 1
dR~ R(@R2+bR—1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives
2Ra+b
In(aR2+ bR —1 barctanh( 2 a)
S(R) = Blaf+ ) _ ) In(R)+a (4)
2 Vb2 +4a

To complete the solution, we just need to transform (4) back to z,y coordinates. This
results in

2yazx+b
In (y2a 2% + bzy — 1) b arctanh (m>
—In(x) = — —In(zy) +c¢
( ) 2 b2 i 40, ( y) 1
Which simplifies to
2yax+b
_ln(w)_ln(yQaa:Q—l-bxy 1) _barctanh (x/yW> In(zy) +c
2 Vb2 +4a Y !
Summary

The solution(s) found are the following

In (y2az? + bzy — 1

_1 _ _
n(z) 2 Vb2 +4a

15



Verification of solutions

—In(z) = 5 - N —In(zy) +

Verified OK.

1.2.2 Solving as exact ode
Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

M(z,y) + N(z,) 2 =0 (*)

We assume there exists a function ¢(z,y) = ¢ where c is constant, that satisfies the
ode. Taking derivative of ¢ w.r.t. x gives

d
- — 0
pRaCE)
Hence 06 06 d
Y
i st A B
ox + Oy dx 0 (B)
Comparing (A,B) shows that
o9
M
ox
o
T _N
Oy
But since %;; = % then for the above to be valid, we require that
oM _ oN
oy Oz

If the above condition is satisfied, then the original ode is called exact. We still need
to determine ¢(z,y) but at least we know now that we can do that since the condition
66: g’y = % is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for

exactness, which is

M(z,y)dz+N(z,y)dy =0 (1A)

16



Therefore

dy = (—xa y® — byz) dx
(zay®+by®)dz+dy =0 (2A)

Comparing (1A) and (2A) shows that

M(z,y) = zay’® + by’
N(z,y) =1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

oM  ON
oy Oz
Using result found above gives
oM 0
b
n 8y (zay®+by?)
= 3ay’z + 2by
And
ON
dr (1)
= 0

Since 7é 9N ' then the ODE is not exact. Since the ODE is not exact, we will try to
find an mtegratlng factor to make it exact. Let
Y
Jy Oox
1((3ay’z + 2by) — (0))
= 3ay’x + 2by

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

ON OM
5= (% %)
_ 1 _ 2
=V (azy +0) ((0) (3ay T+ Zby))
—3azy — 2b

- y (azy + b)

17



Since B depends on z, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

ON _ oM
__ Oz Oy
xM —yN

R is now checked to see if it is a function of only ¢ = xy. Therefore

ON _ M
oz oy
R=——
M —yN

_(0) — (Bay?x + 2by)
 z(zay+by?) —y(1)
—3axy — 2b
z2ay? + bry — 1

Replacing all powers of terms zy by t gives

_ —3at — 2b
a2 4+bt—1

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be y then

p= efRdt
—3at—2b
— ef<at2+bt—1> dt
The result of integrating gives
_3ln(a t2+bt—1) +b arctanh( \/2%)
u=e 2 Vb2+4a
arctan. 2at+b
b i h(\/b2+4a)
e Vb244a
= 3
(at?2+bt —1)2

Now t is replaced back with zy giving

2azy+b

b arctanh )
( Vb2+4a
e V b2 “+4a

(x2ay? +bzy — 1)

3
2

18



Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = uM
2azy+b
b arctanh(i\/m)
e Vb2+4a

(zay +by )
(any + bxy — 1)

b arctanh( \2/%)
Plasy +b)e e

(x2ay? + bxy — 1)

Njw

And
N =uN
2azy+b
b arctanh(\/bzym)
e Vb2 +4a

= (1)
(x2ay? + bxy — 1)%

b arctanh ( M)

VvV b2+4a
e Vb2 +4a

(x2ay? + bxy — 1)%

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

=~y
M+N-2
dx
v*(azy + b)e Vb2 +4a N e b2+4a
(x2ay? + bxy — 1)g (z2ay? + bxy — 1)2
The following equations are now set up to solve for the function ¢(z,
0 —
M 1
P (1)
0
T _N 9
5y ®)

Integrating (1) w.r.t. = gives
@ dx = / M dx
ox

19



b arctanh ( 2«117'y+b)

Vb2 +4a
@dx=/y2(axy+b)e 4

Oz (z2ay? + bay — 1)%

b arctanh M)
( Vb244a
ye Vb2 +4a

- _\/x2ay2 +bzy—1

+ /() (3)

Where f(y) is used for the constant of integration since ¢ is a function of both = and

y. Taking derivative of equation (3) w.r.t y gives

b arctanh( \2/%) b arctanh( \2;;2}11%41;)
0p ye  Viti (2a 2%y + bx) e Vo2ida
0y 2 (z2ay? + bay — 1) Vatay? + by — 1 (4)
b arctanh(M)
Vb2 +4a

2ybazx e V2440
- 2
Vr2ay? +bry — 1 (b2 + 4a) (—% +1

+ f'(y)
)

b arctanh ( 2azy+b >

vV b2+4a
e Vb2 +4a

= 5 o _ %+f(y)
(x2ay?®+ bxy — 1)

b arctanh( 2azy+b )

Vb244a
Vb2+4a

3
(z2ay2+bry—1)2

But equation (2) says that g—‘;’ = . Therefore equation (4) becomes

2azy+b 2azy+b
b .:aurc'canh(—L b arctanh
\/b2+4a> ( \/b2+4a>
e Vb2+4a e Vb2+4a

+ () ()

3
2

(z2ay? + bry — 1) (z2ay? + bry — 1)

Solving equation (5) for f'(y) gives
f'y) =0
Therefore
fly)=a
Where ¢, is constant of integration. Substituting this result for f(y) into equation (3)
gives ¢
b arctanh(%)
ye Vi2+da
- +a
vzlay® +bxy — 1

¢ =



But since ¢ itself is a constant function, then let ¢ = c; where ¢ is new constant and
combining ¢; and cy; constants into new constant c; gives the solution as

b arctanh ( M)

\ b2+4a
ye Vb2 +4a

_\/x2ay2 +bry — 1

C1 =

Summary
The solution(s) found are the following

b arctanh ( M)

vV b2+4a
ye Vb2+4a

— = 1
Vylaz? +bry — 1 “ (1)

Verification of solutions

b arctanh (M)

VvV b2+4a
ye Vb2 +4a

Vy2ax? + by — 1 -

C1

Verified OK.
1.2.3 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

Y = folz) + fi(@)y + fo(z)y” + f3(2)y?

Comparing the above to given ODE which is

y = —azy’ — by’ (1)

Therefore

fo(z) =0

fi(z) =0

fo(z) =—=b

f3(z) = —ax
Since fo(x) = —b is not zero, then the first step is to apply the following transformation
to remove fp. Let y = u(x) — 3% or

21



The above transformation applied to (1) gives a new ODE as

u(x) b 2° b @)

3ax  27a2x? 3a 12

u'(z) = —azu(z)® +

The above ODE (2) can now be solved as separable.
Writing the ode as

B 27a3z3u® — u bax + 20% + 9ab
2Ta2x?

u'(z) =
v (z) = w(z,u)

The condition of Lie symmetry is the linearized PDE given by
Ne + w('r/u - gm) - w2€u - wz€ T W) = 0 (A)

The type of this ode is not in the lookup table. To determine &, 7 then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

§ =uaz +zas + a (1E)
n = ubs + xby + by (2E)

Where the unknown coeflicients are

{ala az, as, b17 b2a b3}

Substituting equations (1E,2E) and w into (A) gives

(27a*z%u® — ub’az + 20 + 9ab) (b3 — az)

by —
2 27a2x?
_ (270°7%u® — QubPazx + 2b° + 9ab)’ as ([ 812%d*w® — 9ab’u
7290 270%2 (5E)
2 3,.3,3_ 2 b2 ibS 2 b
a’zu $U 2a§'+27 +3a)(ua3+xa2+a1)
a’z
N (8laPu®z® — 9a b’x) (ubs + wby + by) 0
27a2x? N

Putting the above in normal form gives

_729a6u6x6a3 — 486a*b*uztas — 729a%u*z*as — 1458a’udx’ay — 1458a’ulz5bs — 2187a’u?x8by — 729a°

=0

22



Setting the numerator to zero gives

—729a6u6x6a3 + 486a*b*utztas + 729a5u4x4a3 + 1458a5u3a:5a

+ 1458a°u? 5b3 + 2187a°u?z%;, + 729a°uxa; + 2187 U’z
— 108a3b®ulzas — 486a*bulz3as; — 81a?b*ulz?as + 243a3b2u z? a3 (6E)
— 243a3b%x*by + 729050 z* + 243a3b%u 2%a; — 243a3b%23b, + 36a bPuzas
+ 54a’bPuzas — 54a?b3x%ay — 54063 2%bs — 486acbuzas — 243a3b 22as,
—243a3b 22b3 — 108a2b>za; —4b%as — 486a3bxa; —36a bias —81a®b?as =0

Looking at the above PDE shows the following are all the terms with {u,z} in them.
{u, =}

The following substitution is now made to be able to collect on all terms with {u,z}
in them
{u=v,z =}

The above PDE (6E) now becomes

—729a%a30v0§ 4 486a*b?azvivy + 1458a° agvva + 729a°azviv,
+ 2187a°byv?vs + 1458a°b3v3vs + 729a°a,v3v; + 2187a°b viv]
— 108a*b*azvivd v2 486a*bazvivs — 81la’b*azvivs (7E)
+ 243a*b%azvivs — 243a°b*byv; + T29a bovy + 243a°b%a,v,v3
— 243(13172b1v2 + 36a bPaszvivs — 54a2b3a21)2 + 54ab3azv1 v,
— 54a2b°b3v3 — 243a®bayv: — 486abazv vy — 243a°bbsva
— 108a%b%a vy — 4b8as — 486a3ba,vs — 36a bias — 81a%b%as = 0

Collecting the above on the terms v; introduced, and these are
{’Ul, 1}2}

Equation (7E) now becomes

—729a°%azv805 + (486a4b2a3 + 729aa3) vivy
+ (1458a°ay + 1458a°b3) v} vlv2 + 729a°a;viv;
+ (—108a*v*az — 486a’bas) v} vlv2 - 2187a5b2v11)2 + 2187a°b,v%03 (8E)
+ (—8la,2b4a3 + 243a3b2a3) v2v3 + 243ab*a v,v3
+ (36ab’as + 54a’b’as — 486a°bas) vivs + (—243a’b*by + 729aby) v5
— 243a*b’byv5 + (—54a’b%ay — 54a°6°b; — 243a’bay — 243a’bbs) v3
+ (—108a2b3a1 — 486a3ba1) vy — 4b%as — 36a b*as — 81a2b%asz = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

729a%a; = 0
2187a°b; =0
2187a’b, = 0

—729a%a3 = 0

243a3b%a; = 0

—243a%b%b, = 0

—108a%b®a; — 486a%ba; = 0
—81a®b*as + 243ab*a3 = 0
—108a®b®as — 486a*bas = 0
486a*b%as + 729a°as = 0
—243a®b%by + 729a*by = 0

1458a°ay + 1458a°bs = 0

—4b%a5 — 36a bas — 81a%b%az = 0
36a b3as + 54a®b3as — 486a3bas = 0
—54a%b3as — 54a%b%bs — 243a3bay — 243a3bbs = 0

Solving the above equations for the unknowns gives

a; =0
ay = —bs
a3 =10
by =0
by =0
bs = bs

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

E=—x

n=u
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Shifting is now applied to make & = 0 in order to simplify the rest of the computation

n=n-—w(zu)é
27a3z3u® — 9u b%ax + 203 + 9abd
—u- (- (~2)
27a2x?
B —27a3z3u® + 9u bax + 27u a’z — 2b° — 9ab
N 27a%x
§=0
The next step is to determine the canonical coordinates R, S. The canonical coordinates

map (z,u) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dr du
£

The above comes from the requirements that (& % + na%) S(z,u) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R=x
S is found from
1
S = / —dy
n
1 d
= —27a3z3u3+9u b2ax+27u a?x—2b3—9ab Y

27a2x
Which results in

18u a?z?+3ab:
In (9a’z?u? + 3abuz — 2b* — 9a) N azb arctanh (%)

2 Va2b?a? + da3z?
Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

S =1n (3uza — b)

ﬁ St w(z,u)Sy @)
dR R, +w(z,u)R,

Where in the above R, R,,S;, S, are all partial derivatives and w(x,u) is the right
hand side of the original ode given by

27a3z3u® — Qu b%ax + 203 + 9abd
2Ta2x?

w(z,u) = —
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Evaluating all the partial derivatives gives

R, =1
R,=0
g —_ 27a%u
‘ 27a3z3ud — 27Tu a2z — 9b (bux — 1) a + 2b°
S, — 27a%x

2703230 — 2Tuax — 9b (bux — 1) a + 2b3
Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

as 1
R 2A
dR =« (24)
We now need to express the RHS as function of R only. This is done by solving for z, u
in terms of R, S from the result obtained earlier and simplifying. This gives

as 1

dR R
The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

S(R) =ln(R) +a (4)

To complete the solution, we just need to transform (4) back to z,u coordinates. This
results in

21n (3u(z) az — b) Vb2 + 4a — In (9a?z%u(z)’ + (3bu(z) z — 9) a — 2b%) Vb2 + 4a + 2b arctanh (6;\(/%1’
2Vb? + 4a

Which simplifies to
21n (3u(z) az — b) Vb2 + 4a — In (9a?z%u(z)’ + (3bu(z) = — 9) a — 2b%) Vb2 + 4a + 2b arctanh <%/%’
2Vb? + 4a
b

Substituting u = y — 5 in the above solution gives

3az T 3az

2v/b% + 4a

2ln (3(y — 3= )az—b) V6> +4a—1In <9a2w2(y - L)Q +Bb(y— =)z —9)a— 2b2) Vb2 + 4a + 2b a
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Summary
The solution(s) found are the following

2In (3(y — 3 ) az — b) VP? + 4a —In <9a2x2(y - &%)2 + (3b(y — 3= )x—9) a— 20 ) Vb® + da + 2b a
(1
\J.

2/b2 + 4a

\
7
=In(z)+a

Verification of solutions

3ax 3azx 3azx

2v/b% + 4a

2In (3(y — =) az —b) VB> +4a—In <9a2x2(y — L)Z +Bb(y—s=)z—9)a— 2b2) Vb2 + 4a + 2b a;

=ln(z)+a

Verified OK.
Maple trace

“Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying homogeneous G

<- homogeneous successful’

v Solution by Maple
Time used: 0.047 (sec). Leaf size: 103

-

Ldsolve (axx*y (x) ~3+b*xy (x) “2+diff (y(x) ,x)=0,y(x), singsol=all)

N

y(z)
Z
eRootOf (2\/b2+4a b arctanh ( 2abe—2+ Lb) —In(z?(ae®~Z+be—Z—1))b%+2c1b?+2_Zb?—41n(z? (ae®~Z+be—Z—1))a+8c1 a+8_Za)

X
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v/ Solution by Mathematica
Time used: 0.192 (sec). Leaf size: 103

kDSolve [a*xx*y [x] “3+b*y [x] "2+y"' [x]==0,y[x] ,x,IncludeSingularSolutions -> Truel J

2arctan (—2%11(70)—17)
4a
B2 o) log <a(—m>y<m)(—azy(z)_b)_a>

\/_;%_1 a2a2y(z)2
b% log(z)

Ive | — _ |
Solve 5a . +c1,y(x)

28



1.3 problem problem 46
1.3.1 Solving as abelFirstKindode . . ... .. ... ... .. .... 29]

Internal problem ID [4677]
Internal file name [OUTPUT/4170_Sunday_June_05_2022_12_32_42_PM_72807646/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 46.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abell

—2a —a—1

v —2yP + 3P —r =2 —azx

1.3.1 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form
Yy = fol@) + fi(@)y + fa(2)y® + fs(z)y®
Comparing the above to given ODE which is
=% -3+ Y+ —ar ! (1)

Therefore

Since fo(z) = —3 is not zero, then the first step is to apply the following transformation

to remove fp. Let y = u(x) — 3’% or

y=u(z) - (;)

=u(x) +x7°
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The above transformation applied to (1) gives a new ODE as

v (z) = 2%u(z)® — 227 %(x)

The above ODE (2) can now be solved as separable.

Writing the ode as

u(z)=u
v (z) = w(z,u)

(132GU2 _ 2) x—a

The condition of Lie symmetry is the linearized PDE given by

Nz + w(nu - éz) - w2§u - ww§ — Wy = 0

2)

(A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find £, 7

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form 13 n
linear ode vy = f(@)y(z) + g(z) 0 el fdz
separable ode Yy = f(z) g(y) % 0
quadrature ode Yy = f(x) 0 1
quadrature ode Yy =9(y) 1 0
homogeneous ODEs of | ¢/ = f (%) T Y
Class A
homogeneous ODEs of | i/ = (a + bz + cy)™ 1 —?:
Class C
homogeneous class D | ¢ = £ 4 g(z) F(¥) x? zy

. . ; h(z)+b — [bf(z)dz—h(z) f(z)e~ | bf(@)dz—h(z)
First order special | ¥ = g(x) e"®*% 4 f(z) —— @)
form ID 1

polynomial type ode

/ — aiztbhiyta
y azx+boy+c2

a1bar—aobix—bica+bacy

a1bey—agbiy—aico—azcy

ai1ba—azb;

ai1ba—azby

Bernoulli ode

Y = f(x)y+g(z)y"

e f(n—l)f(w)dxyn

Reduced Riccati

Y = fi(z)y + folz) y?

e~ J frdz
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The above table shows that

&(z,u) =0
n(z,u) = u

—a
3 4z x

e a1 (A1)

The next step is to determine the canonical coordinates R, S. The canonical coordinates
map (z,u) = (R, S) where (R, S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

do _du _

§ n

The above comes from the requirements that (¢ % + na%) S(z,u) = 1. Starting with
the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since £ = 0 then in this special case

ds (1)

R==x
S is found from
1
S = / —dy
n
By -
wde™ ST
Which results in
4gz—0+1
e a—1
S =—
2u?

Now that R, S are found, we need to setup the ode in these coordinates. This is done
by evaluating

aS _ S; +w(z,u)S, @)
dR R, +w(z,u)R,

Where in the above R,, R,,S;, S, are all partial derivatives and w(x,u) is the right
hand side of the original ode given by

w(z,u) = u(z*u® - 2) z7°
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Evaluating all the partial derivatives gives

R, =1
R,=0
4gp—a+1
2z % a1
Sy = 5
u
4w7a+1
e a-1
S =

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS z—otl

bl g% T (2A)
We now need to express the RHS as function of R only. This is done by solving for z, u
in terms of R, S from the result obtained earlier and simplifying. This gives

ds 4R+l
_— = Rae a—1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above
gives

20 _ 2 1
2 —a+1 7a+1( )0_1

2
2 2 2 1 - — —
a+tl 2’3+T‘il+T+1+ﬁ(a—1)R*$H+T+1+“*l( 1 ) a=1 (_4R otle? | sp~Hlq .
—a+1

S(R) =

To complete the solution, we just need to transform (4) back to z, u coordinates. This

results in
—34 2a + 2 4 2 _ a? 4 1 ta—1 _af—k% —a+1_2 —a+:
2 2 1 L—Fi 2 —a+ —a+1 aTI(a_l)x —a+ —a+1 (_a1+1> a— (_4z_a+1a +Bm_a+1
sp—atl 27 —atl ‘“+1(T+1 R e
e a—1
_ s =
2u (z)
Which simplifies to
int2z 011 2 —2ta 2a—1 —3a+5 2a—1 %1 —a+1
_ - _ “1 _z - z=t7 4a-1 ; __1 a3 _ 4z _
32e 1 wu(z)'(a—1)= (m 1 )2 a1 4 T—0p WhlttakerM< ) s, — e

2(a+1)(a—3)u(z)’
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Substituting u =y + ™

imt2z 011 —2+a
-32 e%(y + 279 (a—1) = ((a: —

in the above solution gives

> 9 —304—5

T —a
#> WhlttakerM< a=3 _ 4z~

32 a—1’ 2a—2? a—1

Summary
The solution(s) found are the following

int2z 11 —24a
—32e" e (y+2z%°(a—1) = ((m -

2a—1 —3a+5
z=® 2 a—1
4

2(a+1)(a—3)(y-

32 a—1

=0
Verification of solutions

int2z 011 —24a
-32 e%(y + 279 (a—1) = ((:c —

2a—1 —3a+5
z=* 2 a—1
4

1
+ &) WhittakerM ( Ll “‘ _dat
A
9

i —a
+ M) WhittakerM <—ﬁ, a3 _ dz=o

(a+ —3)(y-

32 2a—-27 a—1

=0
Warning, solution could not be verified

Maple trace

2(a+1)(a—3)(y-

“Methods for first order ODEs:

--- Trying classification methods ---

trying
trying
trying
trying
trying
trying
trying

a quadrature

1st order linear
Bernoulli
separable

inverse linear
homogeneous types:
Chini

differential order: 1; looking for linear symmetries

trying exact
trying Abel
<- Abel successful"
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v/ Solution by Maple
Time used: 0.015 (sec). Leaf size: 2084

Ldsolve (diff (y(x) ,x)-x"a*xy(x) "3+3*y(x) "2-x~ (-a) *y (x) -x~ (-2*a) +a*x~(-a-1) = 0, ny) , singsol=al

Expression too large to display
Expression too large to display

v Solution by Mathematica
Time used: 13.424 (sec). Leaf size: 231

LDSolve [y' [x]-x"a*y [x] "3+3*y [x] "2-x" (-a) ¥y [x] -x~ (-2*a) +a*x~ (-a-1) == 0,y[x],x, J[HCIHdeSingulax
2z1-@
e a—-1
y(@) =" - ~
\/ 2311—1 xa+1<z1 a“)aTIr\(% _4(217—10‘)
o a—1 +a
2zl
— e a-1
T e )
2 a—1 gatl xl_—: a—1p % 42 —la
\/_ a—1 +c
y(z) -z
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1.4 problem problem 51
1.4.1 Solving as abelFirstKindode . . ... ... ... ... .....

Internal problem ID [4678]
Internal file name [OUTPUT/4171_Sunday_June_05_2022_12_35_19_PM_64352952/index . tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 51.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abell

Unable to solve or complete the solution.

=0

y/ _ (y _ f($)) (y _ g(m)) (y _ f(.’E) a+ bg(x)) h(x) _ fl(m) (y _ g(.’L’)) _ gl(x) (y — f(l'))

a+b f(x)—g(x) 9(z) - f(x)

1.4.1 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

y' = fo(z) + fi(z)y + fo(2)y® + f3(2)y’
Comparing the above to given ODE which is

J = — (—f(z) h(z)a — f(x) h(z) b+ g(z) h(z) a + g(z) h(z) b) ¥* B (2f(x)2 h(z)a+ f(z)* h(z)b— f(z)
(a+b)(f(z) —g(z))

1)
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Therefore

fol@) = — f(z) g(x) h(z) a N f@’g@’h(z)a  fx)’g()’h(z)b N F(z) g(x)* h(z) b
(@+b)(f(z)—g() (a+d)(f(z)—g(®) (a+b)(f(x)—g(z)) (a+b)(f(z)—g(:

e @ @ w@ g
(a+b)(f(z)—g(z)) (a+bd)(f(z)—g(=) (a+b)(f(z)—g(z)) (a+d)(f(z)—g(2)
PR O O I (O 1O 9@ hz)a . 29z h()b
(a+b)(f(z)—g(z)) (@+bd)(f(z)—g(=) (a+b)(f(z)—g(z)) (a+b)(f(z)—gC(
fi(a) = af(z) h(z) + f(z)h(z)b B g9(z) h(z) a B g(z) h(z) b
(a+b)(f(z)—g(z)) (a+d)(f(z)—g(@) (a+b)(f(z)—g(z)) (a+d)(f(z)—g()
: _ __2f@°h@a _ _ f(&)’h(z)b 9(z)*h(z)a 29(x)h(z)b f(@)g(z)h(z)a
Since f2(2) = ~ @ (7@ —s@) ~ @@ 9@ T @@ 9@ T @D F@-—9@) T @D @) -g@)
% is not zero, then the first step is to apply the following transformation
to remove fo. Let y = u(z) — 3’% or
_ 2f(@)’h(@)a  _  f(x)’h(z)b + 9(z)*h(z)a + 29(z)>h(z)b + f(@)g(x)h(z)a _  f(z)g
_ u(m) . (a+b)(f(z)—g(x))  (a+b)(f(z)—g(z)) * (atb)(f(z)—g(z)) ' (a+b)(f(z)—g(®)) ' (a+b)(f(z)—g(z))  (a+b)(/
y 3af(z)h(zx) + 3f(z)h(z)b _ 3g(z)h(z)a _ 3g(z)h(z)b
(a+b)(f(z)—g(z)) * (a+b)(f(z)—g(z))  (a+b)(f(z)—g(z))  (a+b)(f(z)—g())

_ f(@)(2a+b) + (a+2b) g(x) + 3(a + b) u(x)
3a + 3b

The above transformation applied to (1) gives a new ODE as
Expression too large to display (2)
This is Abel first kind ODE, it has the form
u'(2) = fo@) + filz)ulz) + fa(e)u(z)’ + fo(z)u(z)®
Comparing the above to given ODE which is
u/'(z) = Expression too large to display (1)

Therefore

fola) = — f (924 h(z)ab? f (963)4 h(z) a®b 4 2f (z3)4 h(z) a® 3 2f (ﬂﬂ3
9(@+b)°(f(z)—g(z) 9(a+b) (f(z)—g(x) 27(a+b)(f(z)—g(z)) 27(a+bd)

fi(z) = Expression too large to display

fo(z) =0

fs(z) =

8

@’ f(x) h(z) n h(z) f(z) b’ _ a’g(z) h(x) g(z) h(z) b°
@+0*(f(@)~9(@)  (a+0)*(f(@)~g()) (@+)’(f(2)~g() (a+b)(f(z)~g

36



Since f2(z) = 0 then we check the Abel invariant to see if it depends on z or not. The
Abel invariant is given by

_ S
f3f3
Which when evaluating gives
Expression too large to display
Since the Abel invariant depends on z then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

e N

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

<- Abel successful”

v/ Solution by Maple
Time used: 0.156 (sec). Leaf size: 648

Ldsolve (diff (y(x) ,x)-(y(x)-£(x))*(y(x)-g(x))*(y(x)-(a*f (x)+b*g(x))/(a+b)) *h(x)fdiff (£ (x) ,x)*(

y(z)
(f(z) —g(z)) (a+2b)e

3 2 2 3 Z Z 2 2 3 Z Z
RootOf(—_Za4—b4 ln(Qa +18a b+18ab2::£: +ae—“+2be— >+ln<9a b+9a b +92_—Zae— +2be— )a4+ln(§
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v/ Solution by Mathematica

Time used: 1.124 (sec). Leaf size: 355

e

LDSolve [y' [x]-(y[x]-f [x])*(y [x]-g [x]) * (y [x] - (a*f [x] +bxg [x] ) / (a+b) ) *h [x] -f ' [x] x| yIx]-glx1) /(£

Solve | —=(a

—b)?/3(2a+b)*3(a+2b)**RootSum

#13(a—b)?3(2a+b)*/3(a+2b)*/® —3#1a% — 3#1ab— 3#1b>+ (a—b)?
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1.5 problem problem 146
1.5.1 Solving as abelFirstKindode . . ... .. ... ... .. .... 391

Internal problem ID [4679]
Internal file name [OUTPUT/4172_Sunday_June_05_2022_12_36_12_PM_19241691/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 146.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type

[_rational, _Abell]

Unable to solve or complete the solution.

2’y + 9’z +y*a =0

1.5.1 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

Y = fo(z) + fi(@)y + fo(2)y? + f3(2)y?

Comparing the above to given ODE which is

y=-2 -2 M
Therefore
folw) =0
fi(z) =0
fa(z) = —%
@) = -
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Since fy(x) = — 2 is not zero, then the first step is to apply the following transformation
to remove f>. Let y = u(x) — ;% or

u(z)®  u(z)a? 2  a
x 33 27z4 322

This is Abel first kind ODE, it has the form

v(z) = fo(z) + fi(@)u(z) + fo(z)u(z)’ + fa(z)u(z)’

(2)

Comparing the above to given ODE which is

u(z)® N u(z)a®  24*+9az’
x 33 27x4

1)

' (r) = —

Therefore

2a3 a
folw) = _273;4 T 352

fi(z) =
fo(z) =
fa(z) =

Since fa(z) = 0 then we check the Abel invariant to see if it depends on z or not. The
Abel invariant is given by

“_
33
0

1

R
f3fs

Which when evaluating gives

3 3 243 > 3
8a 2a 2a a a a 2
+ _2a° _ _a_ a
2725 ' 323 2724 322 ( 2724 322 4
+ — v\ T

T z2 T

27 (_227(54 - 3%)5

Since the Abel invariant depends on x then unable to solve this ode at this time.
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Unable to complete the solution now.

Maple trace

"Methods for first order ODEs:

-—- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

<- Abel successful"

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 65

Ldsolve(x‘2*diff(y(x),x)+x*y(x)‘3+a*y(x)‘2 = 0,y(x), singsol=all) J

V2 (ay(z)+z 1
_ ((ata)y(@)+2)(a—a)y(z)+a) erf <—( @te)) /2 Vmae:z

o +e B - 2y(z)z 5 ~0

v/ Solution by Mathematica
Time used: 0.61 (sec). Leaf size: 78

LDSolve[x‘2*y'[x]+x*y[x]‘3+a*y[x]“2 == 0,y[x],x,IncludeSingularSolutions -> T;?e]

1 ia 2
ol 265(_?_?4(%))
Solve | —— = ,y(x)
T —da_ i
2merfi ( z ﬂy(’”) + 2¢;
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1.6 problem problem 169
1.6.1 Solving as abelFirstKindode . .. ... ... .. ........ 42]

Internal problem ID [4680]
Internal file name [OUTPUT/4173_Sunday_June_05_2022_12_36_26_PM_78426666/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant

Problem number: problem 169.

ODE order: 1.

ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type

[_rational, _Abell]

Unable to solve or complete the solution.

(az + b)Yy + (az +b) y® +cy? =0

1.6.1 Solving as abelFirstKind ode
This is Abel first kind ODE, it has the form

y' = fo(z) + fi(@)y + f2(2)y” + f3(z)y°

Comparing the above to given ODE which is

3 2
/ y Cy (1)

v :_a$+b_(ax+b)2

Therefore

fo([L‘) = 0
fi(z) =0
fa(z) =

- °
(az + b)°
1

fo(e) = Car+b
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Since fo(x) = —m is not zero, then the first step is to apply the following transfor-
mation to remove f,. Let y = u(z) — 3’% or

B axcb2
=) - (=57
az+b
C
= u(z) - 3azx + 3b

The above transformation applied to (1) gives a new ODE as

u(z)® a®z? B 3u(z)® a®b z? B 3u(z)’ a b’z B u(z)® b adcz? u(z) ac’zx 2a2be

(az +b)* (az + b)* (az +b)* (az + b)* 3 (az+b)*  3(az+0b)* 3(az+t
(2)

u'(z) = —

This is Abel first kind ODE, it has the form

v(z) = fo(x) + fi(@)u(@) + fo(z)u(z)’ + fs(z)u(z)’
Comparing the above to given ODE which is
(27a32® + 81a®b x> + 81la b’z + 27b°) u(z)® _ (F9acz — 9 u(z) 9aPca® + 18a°bex + 9a

/ [
v(@) 27 (azx + b)* 27 (azx + b)* 27 (az + b)*
(1)
Therefore
a’c x? 2a%bcx ab’c 28
fo(z) = — i - i 1
3(ax+b)" 3(ax+b)" 3(ax+b)" 27(ax+Db)
az c? bc?
= +
hi@) 3(azx +b)*  3(az+0b)*
f2(x) =0
alx’ 3a%b 2 3a b3z b3
fa(z) = —

(az +b)* - (az + b)* - (az + b)* - (az + b)*

Since fa(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

f3
_J1
2
fofs
Which when evaluating gives
[ 4a*cx® __  2za3c 8a3bcx _  2a%bc + 4a%bc + 8c3a __a®z® _ 3a%b2%? _ 3ab’z b3
3(az+b)® 3(az+b)* 3(az+b)® 3(az+b)* 3(az+b)® 27(ax+b)° (az+b)* (az+b)* (az+b)* (az+d)
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Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

"Methods for first order ODEs:

--- Trying classification methods ---
trying a quadrature

trying 1st order linear

trying Bernoulli

trying separable

trying inverse linear

trying homogeneous types:

trying Chini

differential order: 1; looking for linear symmetries
trying exact

trying Abel

<- Abel successful’

v/ Solution by Maple
Time used: 0.0 (sec). Leaf size: 126

Ldsolve((a*x+b)”2*diff(y(x),x)+(a*x+b)*y(x)‘3+c*y(x)”2 = 0,y(x), singsol=a11)J

1
_ (az+b+o)y(e)+a(az+b)) (—az—b+c)y(x)+a(az+b) 2 \/meZa erf( (y@)talazth))Va
<\/ab + a%x> e 2y(m)2(az+b)2a + Cfﬁe aer ( 22\/Ey(z)(az+b) ) + c]_a/%

N[

=0

44



v/ Solution by Mathematica
Time used: 1.43 (sec). Leaf size: 149

LDSolve [(a*x+b) ~2xy' [x]+(a*x+b)*y [x] “3+cxy [x] 2

== 0,y[x] ,x,IncludeSingularSolj.ltions -> True]

1 c
. 2exp (§ (_ /—a(az1b)?

(—t)L(ax—i—b)Q)?’/2 2
ay(z)(az+b)3

Solve

/—alaz + )2 .

(—a(az+b)2)3/2 ) y(z)

\/7a(az+b)2 - ay(z)(az+b)3

vV 2merfi
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