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Internal problem ID [4675]
Internal file name [OUTPUT/4168_Sunday_June_05_2022_12_32_22_PM_59660583/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 38.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind", "first_order_ode_lie_sym-
metry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _rational , _Abel]

−ay3 + y′ = b

x
3
2

1.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = a y3x
3
2 + b

x
3
2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +

(
a y3x

3
2 + b

)
(b3 − a2)

x
3
2

−

(
a y3x

3
2 + b

)2
a3

x3

−

3a y3
2x −

3
(
a y3x

3
2 + b

)
2x 5

2

 (xa2 + ya3 + a1)− 3a y2(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−2x 11
2 a2y6a3 + 4x4ab y3a3 + 6x 13

2 a y2b2 + 2x 11
2 a y3a2 + 4x 11

2 a y3b3 + 6x 11
2 a y2b1 − 2b2x

11
2 + 2x 5

2 b2a3 − b x4a2 − 2x4bb3 − 3b x3ya3 − 3b x3a1

2x 11
2

= 0

Setting the numerator to zero gives

(6E)−2x 11
2 a2y6a3 − 6x 13

2 a y2b2 − 2x 11
2 a y3a2 − 4x 11

2 a y3b3 − 6x 11
2 a y2b1 + 2b2x

11
2

− 4x4ab y3a3 − 2x 5
2 b2a3 + b x4a2 + 2x4bb3 + 3b x3ya3 + 3b x3a1 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{
x, y, x

5
2 , x

11
2 , x

13
2

}
The following substitution is now made to be able to collect on all terms with {x, y}
in them {

x = v1, y = v2, x
5
2 = v3, x

11
2 = v4, x

13
2 = v5

}
The above PDE (6E) now becomes

(7E)−2v4a2v62a3 − 4v41abv32a3 − 2v4av32a2 − 4v4av32b3 + bv41a2 + 3bv31v2a3
+ 2v41bb3 − 6v4av22b1 − 6v5av22b2 + 3bv31a1 − 2v3b2a3 + 2b2v4 = 0
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Collecting the above on the terms vi introduced, and these are

{v1, v2, v3, v4, v5}

Equation (7E) now becomes

(8E)−4v41abv32a3 + (ba2 + 2bb3) v41 + 3bv31v2a3 + 3bv31a1 − 2v4a2v62a3
+ (−2aa2 − 4ab3) v32v4 − 6v4av22b1 − 6v5av22b2 − 2v3b2a3 + 2b2v4 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

2b2 = 0
−6ab1 = 0
−6ab2 = 0
−2a2a3 = 0

3ba1 = 0
3ba3 = 0

−2b2a3 = 0
−4aba3 = 0

−2aa2 − 4ab3 = 0
ba2 + 2bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −2b3
a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −2x
η = y
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The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−2x
= − y

2x
This is easily solved to give

y = c1√
x

Where now the coordinate R is taken as the constant of integration. Hence

R = y
√
x

And S is found from

dS = dx

ξ

= dx

−2x
Integrating gives

S =
∫

dx

T

= − ln (x)
2

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)
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Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = a y3x
3
2 + b

x
3
2

Evaluating all the partial derivatives gives

Rx = y

2
√
x

Ry =
√
x

Sx = − 1
2x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
=

√
x

−2x2a y3 − 2
√
x b− xy

(2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= − 1

2R3a+R + 2b

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
∫

− 1
2R3a+R + 2bdR + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x)
2 =

∫ y
√
x

− 1
2_a3a+ _a+ 2bd_a+ c1

Which simplifies to

− ln (x)
2 =

∫ y
√
x

− 1
2_a3a+ _a+ 2bd_a+ c1
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Summary
The solution(s) found are the following

(1)− ln (x)
2 =

∫ y
√
x

− 1
2_a3a+ _a+ 2bd_a+ c1

Verification of solutions

− ln (x)
2 =

∫ y
√
x

− 1
2_a3a+ _a+ 2bd_a+ c1

Verified OK.

1.1.2 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = ay3 + b

x
3
2

(1)

Therefore

f0(x) =
b

x
3
2

f1(x) = 0
f2(x) = 0
f3(x) = a

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

− 1
8b2a

Since the Abel invariant does not depend on x then this ode can be solved directly.
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Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
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3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 34� �
dsolve(-a*y(x)^3-b/(x^(3/2))+diff(y(x),x)=0,y(x), singsol=all)� �

y(x) =
RootOf

(
− ln (x) + c1 + 2

(∫ _Z 1
2a_a3+_a+2bd_a

))
√
x

3 Solution by Mathematica
Time used: 0.332 (sec). Leaf size: 320� �
DSolve[-a*y[x]^3-b/(x^(3/2))+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

23ab2RootSum
8#19ab2 + 24#16ab2 + 24#13ab2 +#13

+8ab2&,

4#16 log
(
y(x) 3

√
ax3/2

b
−#1

)
+ 2#14 3

√
− 1
ab2

log
(
y(x) 3

√
ax3/2

b
−#1

)
+ 8#13 log

(
y(x) 3

√
ax3/2

b
−#1

)
+#12

(
− 1

ab2

)2/3 log(y(x) 3

√
ax3/2

b
−#1

)
+ 2#1 3

√
− 1
ab2

log
(
y(x) 3

√
ax3/2

b
−#1

)
+ 4 log

(
y(x) 3

√
ax3/2

b
−#1

)
24#18ab2 + 48#15ab2 + 24#12ab2 +#12

&

= ax log(x)(
ax3/2

b

)2/3

+ c1, y(x)


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1.2 problem problem 41
1.2.1 Solving as first order ode lie symmetry calculated ode . . . . . . 11
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Internal problem ID [4676]
Internal file name [OUTPUT/4169_Sunday_June_05_2022_12_32_31_PM_62580225/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 41.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind", "exactWithInte-
grationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[ _homogeneous , `class G`], _Abel]

axy3 + by2 + y′ = 0

1.2.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

y′ = −xa y3 − b y2

y′ = ω(x, y)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηy − ξx)− ω2ξy − ωxξ − ωyη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = xa2 + ya3 + a1

(2E)η = xb2 + yb3 + b1
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Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)b2 +
(
−xa y3 − b y2

)
(b3 − a2)−

(
−xa y3 − b y2

)2
a3

+ a y3(xa2 + ya3 + a1)−
(
−3a y2x− 2by

)
(xb2 + yb3 + b1) = 0

Putting the above in normal form gives

−a2x2y6a3 − 2abx y5a3 − b2y4a3 + 3a x2y2b2 + 2ax y3a2 + 2ax y3b3
+ a y4a3 + 3ax y2b1 + a y3a1 + 2bxyb2 + b y2a2 + b y2b3 + 2byb1 + b2 = 0

Setting the numerator to zero gives

(6E)−a2x2y6a3 − 2abx y5a3 − b2y4a3 + 3a x2y2b2 + 2ax y3a2 + 2ax y3b3
+ a y4a3 + 3ax y2b1 + a y3a1 + 2bxyb2 + b y2a2 + b y2b3 + 2byb1 + b2 = 0

Looking at the above PDE shows the following are all the terms with {x, y} in them.

{x, y}

The following substitution is now made to be able to collect on all terms with {x, y}
in them

{x = v1, y = v2}

The above PDE (6E) now becomes

(7E)−a2a3v
2
1v

6
2 − 2aba3v1v52 − b2a3v

4
2 + 2aa2v1v32 + aa3v

4
2 + 3ab2v21v22 + 2ab3v1v32

+ aa1v
3
2 + 3ab1v1v22 + ba2v

2
2 + 2bb2v1v2 + bb3v

2
2 + 2bb1v2 + b2 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}
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Equation (7E) now becomes

(8E)−a2a3v
2
1v

6
2 + 3ab2v21v22 − 2aba3v1v52 + (2aa2 + 2ab3) v1v32 + 3ab1v1v22

+ 2bb2v1v2 +
(
−b2a3 + aa3

)
v42 + aa1v

3
2 + (ba2 + bb3) v22 + 2bb1v2 + b2 = 0

Setting each coefficients in (8E) to zero gives the following equations to solve

b2 = 0
aa1 = 0
3ab1 = 0
3ab2 = 0

−a2a3 = 0
2bb1 = 0
2bb2 = 0

−2aba3 = 0
−b2a3 + aa3 = 0
2aa2 + 2ab3 = 0

ba2 + bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = y

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, y) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.
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The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= dy

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂y

)
S(x, y) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Therefore

dy

dx
= η

ξ

= y

−x

= −y

x

This is easily solved to give

y = c1
x

Where now the coordinate R is taken as the constant of integration. Hence

R = xy

And S is found from

dS = dx

ξ

= dx

−x

Integrating gives

S =
∫

dx

T

= − ln (x)

Where the constant of integration is set to zero as we just need one solution. Now
that R,S are found, we need to setup the ode in these coordinates. This is done by
evaluating

dS

dR
= Sx + ω(x, y)Sy

Rx + ω(x, y)Ry
(2)

Where in the above Rx, Ry, Sx, Sy are all partial derivatives and ω(x, y) is the right
hand side of the original ode given by

ω(x, y) = −xa y3 − b y2
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Evaluating all the partial derivatives gives

Rx = y

Ry = x

Sx = −1
x

Sy = 0

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

xy (x2a y2 + bxy − 1) (2A)

We now need to express the RHS as function of R only. This is done by solving for x, y
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R (aR2 + bR− 1)

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (aR2 + bR− 1)
2 −

b arctanh
(

2Ra+b√
b2+4a

)
√
b2 + 4a

− ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, y coordinates. This
results in

− ln (x) = ln (y2a x2 + bxy − 1)
2 −

b arctanh
(

2yax+b√
b2+4a

)
√
b2 + 4a

− ln (xy) + c1

Which simplifies to

− ln (x) = ln (y2a x2 + bxy − 1)
2 −

b arctanh
(

2yax+b√
b2+4a

)
√
b2 + 4a

− ln (xy) + c1

Summary
The solution(s) found are the following

(1)− ln (x) = ln (y2a x2 + bxy − 1)
2 −

b arctanh
(

2yax+b√
b2+4a

)
√
b2 + 4a

− ln (xy) + c1
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Verification of solutions

− ln (x) = ln (y2a x2 + bxy − 1)
2 −

b arctanh
(

2yax+b√
b2+4a

)
√
b2 + 4a

− ln (xy) + c1

Verified OK.

1.2.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)

To solve an ode of the form

M(x, y) +N(x, y) dy
dx

= 0 (A)

We assume there exists a function φ(x, y) = c where c is constant, that satisfies the
ode. Taking derivative of φ w.r.t. x gives

d

dx
φ(x, y) = 0

Hence
∂φ

∂x
+ ∂φ

∂y

dy

dx
= 0 (B)

Comparing (A,B) shows that

∂φ

∂x
= M

∂φ

∂y
= N

But since ∂2φ
∂x∂y

= ∂2φ
∂y∂x

then for the above to be valid, we require that

∂M

∂y
= ∂N

∂x

If the above condition is satisfied, then the original ode is called exact. We still need
to determine φ(x, y) but at least we know now that we can do that since the condition
∂2φ
∂x∂y

= ∂2φ
∂y∂x

is satisfied. If this condition is not satisfied then this method will not work
and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for
exactness, which is

M(x, y) dx+N(x, y) dy = 0 (1A)
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Therefore

dy =
(
−xa y3 − b y2

)
dx(

xa y3 + b y2
)
dx+dy = 0 (2A)

Comparing (1A) and (2A) shows that

M(x, y) = xa y3 + b y2

N(x, y) = 1

The next step is to determine if the ODE is is exact or not. The ODE is exact when
the following condition is satisfied

∂M

∂y
= ∂N

∂x

Using result found above gives

∂M

∂y
= ∂

∂y

(
xa y3 + b y2

)
= 3a y2x+ 2by

And
∂N

∂x
= ∂

∂x
(1)

= 0

Since ∂M
∂y

6= ∂N
∂x

, then the ODE is not exact. Since the ODE is not exact, we will try to
find an integrating factor to make it exact. Let

A = 1
N

(
∂M

∂y
− ∂N

∂x

)
= 1
((
3a y2x+ 2by

)
− (0)

)
= 3a y2x+ 2by

Since A depends on y, it can not be used to obtain an integrating factor. We will now
try a second method to find an integrating factor. Let

B = 1
M

(
∂N

∂x
− ∂M

∂y

)
= 1

y2 (axy + b)
(
(0)−

(
3a y2x+ 2by

))
= −3axy − 2b

y (axy + b)
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Since B depends on x, it can not be used to obtain an integrating factor.We will now
try a third method to find an integrating factor. Let

R =
∂N
∂x

− ∂M
∂y

xM − yN

R is now checked to see if it is a function of only t = xy. Therefore

R =
∂N
∂x

− ∂M
∂y

xM − yN

= (0)− (3a y2x+ 2by)
x (xa y3 + b y2)− y (1)

= −3axy − 2b
x2a y2 + bxy − 1

Replacing all powers of terms xy by t gives

R = −3at− 2b
a t2 + bt− 1

Since R depends on t only, then it can be used to find an integrating factor. Let the
integrating factor be µ then

µ = e
∫
R dt

= e
∫ ( −3at−2b

a t2+bt−1

)
dt

The result of integrating gives

µ = e
−

3 ln
(
a t2+bt−1

)
2 +

b arctanh
(

2at+b√
b2+4a

)
√

b2+4a

= e
b arctanh

(
2at+b√
b2+4a

)
√

b2+4a

(a t2 + bt− 1)
3
2

Now t is replaced back with xy giving

µ = e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2
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Multiplying M and N by this integrating factor gives new M and new N which are
called M and N so not to confuse them with the original M and N

M = µM

= e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

(
xa y3 + b y2

)

= y2(axy + b) e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

And

N = µN

= e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2
(1)

= e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

A modified ODE is now obtained from the original ODE, which is exact and can solved.
The modified ODE is

M +N
dy
dx = 0y2(axy + b) e

b arctanh
(

2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

+

 e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

 dy
dx = 0

The following equations are now set up to solve for the function φ(x, y)

∂φ

∂x
= M (1)

∂φ

∂y
= N (2)

Integrating (1) w.r.t. x gives∫
∂φ

∂x
dx =

∫
M dx
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∫
∂φ

∂x
dx =

∫
y2(axy + b) e

b arctanh
(

2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2

dx

(3)φ = − y e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a
√
x2a y2 + bxy − 1

+ f(y)

Where f(y) is used for the constant of integration since φ is a function of both x and
y. Taking derivative of equation (3) w.r.t y gives

(4)
∂φ

∂y
= y e

b arctanh
(

2axy+b√
b2+4a

)
√

b2+4a (2a x2y + bx)
2 (x2a y2 + bxy − 1)

3
2

− e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a
√
x2a y2 + bxy − 1

− 2ybax e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

√
x2a y2 + bxy − 1 (b2 + 4a)

(
− (2axy+b)2

b2+4a + 1
) + f ′(y)

= e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2
+ f ′(y)

But equation (2) says that ∂φ
∂y

= e

b arctanh
(

2axy+b√
b2+4a

)
√

b2+4a

(x2a y2+bxy−1)
3
2
. Therefore equation (4) becomes

(5)e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2
= e

b arctanh
(

2axy+b√
b2+4a

)
√

b2+4a

(x2a y2 + bxy − 1)
3
2
+ f ′(y)

Solving equation (5) for f ′(y) gives

f ′(y) = 0

Therefore
f(y) = c1

Where c1 is constant of integration. Substituting this result for f(y) into equation (3)
gives φ

φ = − y e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a
√
x2a y2 + bxy − 1

+ c1
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But since φ itself is a constant function, then let φ = c2 where c2 is new constant and
combining c1 and c2 constants into new constant c1 gives the solution as

c1 = − y e
b arctanh

(
2axy+b√
b2+4a

)
√

b2+4a
√
x2a y2 + bxy − 1

Summary
The solution(s) found are the following

(1)− y e
b arctanh

(
2yax+b√
b2+4a

)
√

b2+4a
√
y2a x2 + bxy − 1

= c1

Verification of solutions

− y e
b arctanh

(
2yax+b√
b2+4a

)
√

b2+4a
√
y2a x2 + bxy − 1

= c1

Verified OK.

1.2.3 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −axy3 − by2 (1)

Therefore

f0(x) = 0
f1(x) = 0
f2(x) = −b

f3(x) = −ax

Since f2(x) = −b is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(

−b

−3ax

)
= u(x)− b

3ax
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The above transformation applied to (1) gives a new ODE as

u′(x) = −axu(x)3 + u(x) b2
3ax − 2b3

27a2x2 − b

3a x2 (2)

The above ODE (2) can now be solved as separable.

Writing the ode as

u′(x) = −27a3x3u3 − 9u b2ax+ 2b3 + 9ab
27a2x2

u′(x) = ω(x, u)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηu − ξx)− ω2ξu − ωxξ − ωuη = 0 (A)

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved
using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

(1E)ξ = ua3 + xa2 + a1

(2E)η = ub3 + xb2 + b1

Where the unknown coefficients are

{a1, a2, a3, b1, b2, b3}

Substituting equations (1E,2E) and ω into (A) gives

(5E)

b2 −
(27a3x3u3 − 9u b2ax+ 2b3 + 9ab) (b3 − a2)

27a2x2

− (27a3x3u3 − 9u b2ax+ 2b3 + 9ab)2 a3
729a4x4 −

(
−81x2a3u3 − 9a b2u

27a2x2

+
2a3x3u3 − 2

3u b
2ax+ 4

27b
3 + 2

3ab

a2x3

)
(ua3 + xa2 + a1)

+ (81a3u2x3 − 9a b2x) (ub3 + xb2 + b1)
27a2x2 = 0

Putting the above in normal form gives

−729a6u6x6a3 − 486a4b2u4x4a3 − 729a5u4x4a3 − 1458a5u3x5a2 − 1458a5u3x5b3 − 2187a5u2x6b2 − 729a5u3x4a1 − 2187a5u2x5b1 + 108a3b3u3x3a3 + 486a4b u3x3a3 + 81a2b4u2x2a3 − 243a3b2u2x2a3 + 243a3b2x4b2 − 729b2a4x4 − 243a3b2ux2a1 + 243a3b2x3b1 − 36a b5uxa3 − 54a2b3uxa3 + 54a2b3x2a2 + 54a2b3x2b3 + 486a3buxa3 + 243a3b x2a2 + 243a3b x2b3 + 108a2b3xa1 + 4b6a3 + 486a3bxa1 + 36a b4a3 + 81a2b2a3
729a4x4

= 0
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Setting the numerator to zero gives

(6E)

−729a6u6x6a3 + 486a4b2u4x4a3 + 729a5u4x4a3 + 1458a5u3x5a2
+ 1458a5u3x5b3 + 2187a5u2x6b2 + 729a5u3x4a1 + 2187a5u2x5b1
− 108a3b3u3x3a3 − 486a4b u3x3a3 − 81a2b4u2x2a3 + 243a3b2u2x2a3
− 243a3b2x4b2 + 729b2a4x4 + 243a3b2ux2a1 − 243a3b2x3b1 + 36a b5uxa3
+ 54a2b3uxa3 − 54a2b3x2a2 − 54a2b3x2b3 − 486a3buxa3 − 243a3b x2a2
−243a3b x2b3−108a2b3xa1−4b6a3−486a3bxa1−36a b4a3−81a2b2a3 =0

Looking at the above PDE shows the following are all the terms with {u, x} in them.

{u, x}

The following substitution is now made to be able to collect on all terms with {u, x}
in them

{u = v1, x = v2}

The above PDE (6E) now becomes

(7E)

−729a6a3v61v62 + 486a4b2a3v41v42 + 1458a5a2v31v52 + 729a5a3v41v42
+ 2187a5b2v21v62 + 1458a5b3v31v52 + 729a5a1v31v42 + 2187a5b1v21v52
− 108a3b3a3v31v32 − 486a4ba3v31v32 − 81a2b4a3v21v22
+ 243a3b2a3v21v22 − 243a3b2b2v42 + 729a4b2v42 + 243a3b2a1v1v22
− 243a3b2b1v32 + 36a b5a3v1v2 − 54a2b3a2v22 + 54a2b3a3v1v2
− 54a2b3b3v22 − 243a3ba2v22 − 486a3ba3v1v2 − 243a3bb3v22
− 108a2b3a1v2 − 4b6a3 − 486a3ba1v2 − 36a b4a3 − 81a2b2a3 = 0

Collecting the above on the terms vi introduced, and these are

{v1, v2}

Equation (7E) now becomes

(8E)

−729a6a3v61v62 +
(
486a4b2a3 + 729a5a3

)
v41v

4
2

+
(
1458a5a2 + 1458a5b3

)
v31v

5
2 + 729a5a1v31v42

+
(
−108a3b3a3 − 486a4ba3

)
v31v

3
2 + 2187a5b2v21v62 + 2187a5b1v21v52

+
(
−81a2b4a3 + 243a3b2a3

)
v21v

2
2 + 243a3b2a1v1v22

+
(
36a b5a3 + 54a2b3a3 − 486a3ba3

)
v1v2 +

(
−243a3b2b2 + 729a4b2

)
v42

− 243a3b2b1v32 +
(
−54a2b3a2 − 54a2b3b3 − 243a3ba2 − 243a3bb3

)
v22

+
(
−108a2b3a1 − 486a3ba1

)
v2 − 4b6a3 − 36a b4a3 − 81a2b2a3 = 0
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Setting each coefficients in (8E) to zero gives the following equations to solve

729a5a1 = 0
2187a5b1 = 0
2187a5b2 = 0
−729a6a3 = 0
243a3b2a1 = 0

−243a3b2b1 = 0
−108a2b3a1 − 486a3ba1 = 0
−81a2b4a3 + 243a3b2a3 = 0
−108a3b3a3 − 486a4ba3 = 0

486a4b2a3 + 729a5a3 = 0
−243a3b2b2 + 729a4b2 = 0
1458a5a2 + 1458a5b3 = 0

−4b6a3 − 36a b4a3 − 81a2b2a3 = 0
36a b5a3 + 54a2b3a3 − 486a3ba3 = 0

−54a2b3a2 − 54a2b3b3 − 243a3ba2 − 243a3bb3 = 0

Solving the above equations for the unknowns gives

a1 = 0
a2 = −b3

a3 = 0
b1 = 0
b2 = 0
b3 = b3

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for
any unknown in the RHS) gives

ξ = −x

η = u
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Shifting is now applied to make ξ = 0 in order to simplify the rest of the computation

η = η − ω(x, u) ξ

= u−
(
−27a3x3u3 − 9u b2ax+ 2b3 + 9ab

27a2x2

)
(−x)

= −27a3x3u3 + 9u b2ax+ 27u a2x− 2b3 − 9ab
27a2x

ξ = 0

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, u) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
dx

ξ
= du

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂u

)
S(x, u) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

−27a3x3u3+9u b2ax+27u a2x−2b3−9ab
27a2x

dy

Which results in

S = ln (3uxa− b)− ln (9a2x2u2 + 3abux− 2b2 − 9a)
2 +

axb arctanh
(

18u a2x2+3abx
9
√
a2b2x2+4a3x2

)
√
a2b2x2 + 4a3x2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, u)Su

Rx + ω(x, u)Ru
(2)

Where in the above Rx, Ru, Sx, Su are all partial derivatives and ω(x, u) is the right
hand side of the original ode given by

ω(x, u) = −27a3x3u3 − 9u b2ax+ 2b3 + 9ab
27a2x2
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Evaluating all the partial derivatives gives

Rx = 1
Ru = 0

Sx = − 27a2u
27a3x3u3 − 27u a2x− 9b (bux− 1) a+ 2b3

Su = − 27a2x
27a3x3u3 − 27u a2x− 9b (bux− 1) a+ 2b3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= 1

x
(2A)

We now need to express the RHS as function of R only. This is done by solving for x, u
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= 1

R

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) = ln (R) + c1 (4)

To complete the solution, we just need to transform (4) back to x, u coordinates. This
results in

2 ln (3u(x) ax− b)
√
b2 + 4a− ln

(
9a2x2u(x)2 + (3bu(x)x− 9) a− 2b2

)√
b2 + 4a+ 2b arctanh

(
6u(x)ax+b

3
√
b2+4a

)
2
√
b2 + 4a

= ln (x) + c1

Which simplifies to

2 ln (3u(x) ax− b)
√
b2 + 4a− ln

(
9a2x2u(x)2 + (3bu(x)x− 9) a− 2b2

)√
b2 + 4a+ 2b arctanh

(
6u(x)ax+b

3
√
b2+4a

)
2
√
b2 + 4a

= ln (x) + c1

Substituting u = y − b
3ax in the above solution gives

2 ln
(
3
(
y − b

3ax

)
ax− b

)√
b2 + 4a− ln

(
9a2x2(y − b

3ax

)2 + (3b(y − b
3ax

)
x− 9

)
a− 2b2

)√
b2 + 4a+ 2b arctanh

(
6
(
y− b

3ax

)
ax+b

3
√
b2+4a

)
2
√
b2 + 4a

= ln (x) + c1
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Summary
The solution(s) found are the following

(1)
2 ln

(
3
(
y − b

3ax

)
ax− b

)√
b2 + 4a− ln

(
9a2x2(y − b

3ax

)2 + (3b(y − b
3ax

)
x− 9

)
a− 2b2

)√
b2 + 4a+ 2b arctanh

(
6
(
y− b

3ax

)
ax+b

3
√
b2+4a

)
2
√
b2 + 4a

= ln (x) + c1

Verification of solutions

2 ln
(
3
(
y − b

3ax

)
ax− b

)√
b2 + 4a− ln

(
9a2x2(y − b

3ax

)2 + (3b(y − b
3ax

)
x− 9

)
a− 2b2

)√
b2 + 4a+ 2b arctanh

(
6
(
y− b

3ax

)
ax+b

3
√
b2+4a

)
2
√
b2 + 4a

= ln (x) + c1

Verified OK.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`� �
3 Solution by Maple
Time used: 0.047 (sec). Leaf size: 103� �
dsolve(a*x*y(x)^3+b*y(x)^2+diff(y(x),x)=0,y(x), singsol=all)� �
y(x)

= e
RootOf

(
2
√
b2+4a b arctanh

(
2a e_Z+b√

b2+4a

)
−ln

(
x2(a e2_Z+b e_Z−1

))
b2+2c1b2+2_Z b2−4 ln

(
x2(a e2_Z+b e_Z−1

))
a+8c1a+8_Za

)
x
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3 Solution by Mathematica
Time used: 0.192 (sec). Leaf size: 103� �
DSolve[a*x*y[x]^3+b*y[x]^2+y'[x]==0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


−

b2

2 arctan

−2axy(x)−b

b

√
− 4a

b2
−1


√

− 4a
b2 −1

− log
(

a(−x)y(x)(−axy(x)−b)−a
a2x2y(x)2

)
2a = −b2 log(x)

a
+ c1, y(x)


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1.3 problem problem 46
1.3.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 29

Internal problem ID [4677]
Internal file name [OUTPUT/4170_Sunday_June_05_2022_12_32_42_PM_72807646/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 46.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

y′ − xay3 + 3y2 − x−ay = x−2a − a x−a−1

1.3.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = xay3 − 3y2 + x−ay + x−2a − a x−a−1 (1)

Therefore

f0(x) = x−2a − x−aa

x
f1(x) = x−a

f2(x) = −3
f3(x) = xa

Since f2(x) = −3 is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−
(
−3
3xa

)
= u(x) + x−a
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The above transformation applied to (1) gives a new ODE as

u′(x) = xau(x)3 − 2x−au(x) (2)

The above ODE (2) can now be solved as separable.

Writing the ode as

u′(x) = u
(
x2au2 − 2

)
x−a

u′(x) = ω(x, u)

The condition of Lie symmetry is the linearized PDE given by

ηx + ω(ηu − ξx)− ω2ξu − ωxξ − ωuη = 0 (A)

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to
solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 1: Lie symmetry infinitesimal lookup table for known first order ODE’s

ODE class Form ξ η

linear ode y′ = f(x)y(x) + g(x) 0 e
∫
fdx

separable ode y′ = f(x) g(y) 1
f

0

quadrature ode y′ = f(x) 0 1

quadrature ode y′ = g(y) 1 0

homogeneous ODEs of
Class A

y′ = f
(
y
x

)
x y

homogeneous ODEs of
Class C

y′ = (a+ bx+ cy)
n
m 1 − b

c

homogeneous class D y′ = y
x
+ g(x)F

(
y
x

)
x2 xy

First order special
form ID 1

y′ = g(x) eh(x)+by + f(x) e−
∫
bf(x)dx−h(x)

g(x)
f(x)e−

∫
bf(x)dx−h(x)

g(x)

polynomial type ode y′ = a1x+b1y+c1
a2x+b2y+c2

a1b2x−a2b1x−b1c2+b2c1
a1b2−a2b1

a1b2y−a2b1y−a1c2−a2c1
a1b2−a2b1

Bernoulli ode y′ = f(x) y + g(x) yn 0 e−
∫
(n−1)f(x)dxyn

Reduced Riccati y′ = f1(x) y + f2(x) y2 0 e−
∫
f1dx
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The above table shows that

ξ(x, u) = 0

η(x, u) = u3e−
4x x−a

a−1 (A1)

The next step is to determine the canonical coordinates R,S. The canonical coordinates
map (x, u) → (R,S) where (R,S) are the canonical coordinates which make the original
ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

dx

ξ
= du

η
= dS (1)

The above comes from the requirements that
(
ξ ∂
∂x

+ η ∂
∂u

)
S(x, u) = 1. Starting with

the first pair of ode’s in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where S(R). Since ξ = 0 then in this special case

R = x

S is found from

S =
∫ 1

η
dy

=
∫ 1

u3e−
4x x−a

a−1

dy

Which results in

S = −e
4x−a+1

a−1

2u2

Now that R,S are found, we need to setup the ode in these coordinates. This is done
by evaluating

dS

dR
= Sx + ω(x, u)Su

Rx + ω(x, u)Ru
(2)

Where in the above Rx, Ru, Sx, Su are all partial derivatives and ω(x, u) is the right
hand side of the original ode given by

ω(x, u) = u
(
x2au2 − 2

)
x−a
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Evaluating all the partial derivatives gives

Rx = 1
Ru = 0

Sx = 2x−ae
4x−a+1

a−1

u2

Su = e
4x−a+1

a−1

u3

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

dS

dR
= xae

4x−a+1
a−1 (2A)

We now need to express the RHS as function of R only. This is done by solving for x, u
in terms of R,S from the result obtained earlier and simplifying. This gives

dS

dR
= Rae

4R−a+1
a−1

The above is a quadrature ode. This is the whole point of Lie symmetry method.
It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R,S. Integrating the above
gives

S(R) =
2−

2a
−a+1−

2
−a+1

( 1
−a+1

) a+1
a−1

(
−

2−3+ 2a
−a+1+ 2

−a+1+ 2
a−1 (a−1)R− a2

−a+1+ 1
−a+1+a−1

(
1

−a+1

)− a+1
a−1

(
− 4R−a+1a2

−a+1 + 8R−a+1a
−a+1 − 4R−a+1

−a+1 +2a−2
)
(−a+1)

(
R−a+1
−a+1

) 1
a−1 e−

2R−a+1
−a+1 WhittakerM

(
− a+1

a−1+
1

a−1 ,−
1

a−1+
1
2 ,

4R−a+1
−a+1

)
(a+1)(a−3) +

2−1+ 2a
−a+1+ 2

−a+1+ 2
a−1 (a−1)R− a2

−a+1+ 1
−a+1+a−1

(
1

−a+1

)− a+1
a−1 (−a+1)

(
R−a+1
−a+1

) 1
a−1 e−

2R−a+1
−a+1 WhittakerM

(
− a+1

a−1+
1

a−1+1,− 1
a−1+

1
2 ,

4R−a+1
−a+1

)
(a+1)(a−3)

)
−a+ 1 + c1

(4)

To complete the solution, we just need to transform (4) back to x, u coordinates. This
results in

−e
4x−a+1

a−1

2u (x)2
=

2−
2a

−a+1−
2

−a+1
( 1
−a+1

) a+1
a−1

(
−

2−3+ 2a
−a+1+ 2

−a+1+ 2
a−1 (a−1)x− a2

−a+1+ 1
−a+1+a−1

(
1

−a+1

)− a+1
a−1

(
− 4x−a+1a2

−a+1 + 8x−a+1a
−a+1 − 4x−a+1

−a+1 +2a−2
)
(−a+1)

(
x−a+1
−a+1

) 1
a−1 e−

2x−a+1
−a+1 WhittakerM

(
− a+1

a−1+
1

a−1 ,−
1

a−1+
1
2 ,

4x−a+1
−a+1

)
(a+1)(a−3) +

2−1+ 2a
−a+1+ 2

−a+1+ 2
a−1 (a−1)x− a2

−a+1+ 1
−a+1+a−1

(
1

−a+1

)− a+1
a−1 (−a+1)

(
x−a+1
−a+1

) 1
a−1 e−

2x−a+1
−a+1 WhittakerM

(
− a+1

a−1+
1

a−1+1,− 1
a−1+

1
2 ,

4x−a+1
−a+1

)
(a+1)(a−3)

)
−a+ 1 + c1

Which simplifies to

−32 e
iπ+2x−a+1

a−1 u(x)2 (a− 1)
−2+a
a−1

((
x− x2a−1

4

)
2

−3a+5
a−1 + x2a−14

1
a−1

32

)
WhittakerM

(
− 1

a−1 ,
a−3
2a−2 ,−

4x−a+1

a−1

)
− (a− 3)

((
4u(x)2 x2 + 2xa+1u(x)2 + a+ 1

)
e

4x−a+1
a−1 + 2c1u(x)2 (a+ 1)

)
2 (a+ 1) (a− 3)u (x)2

= 0
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Substituting u = y + x−a in the above solution gives

−32 e
iπ+2x−a+1

a−1 (y + x−a)2 (a− 1)
−2+a
a−1

((
x− x2a−1

4

)
2

−3a+5
a−1 + x2a−14

1
a−1

32

)
WhittakerM

(
− 1

a−1 ,
a−3
2a−2 ,−

4x−a+1

a−1

)
− (a− 3)

((
4(y + x−a)2 x2 + 2xa+1(y + x−a)2 + a+ 1

)
e

4x−a+1
a−1 + 2c1(y + x−a)2 (a+ 1)

)
2 (a+ 1) (a− 3) (y + x−a)2

= 0

Summary
The solution(s) found are the following

(1)
−32 e

iπ+2x−a+1
a−1 (y + x−a)2 (a− 1)

−2+a
a−1

((
x− x2a−1

4

)
2

−3a+5
a−1 + x2a−14

1
a−1

32

)
WhittakerM

(
− 1

a−1 ,
a−3
2a−2 ,−

4x−a+1

a−1

)
− (a− 3)

((
4(y + x−a)2 x2 + 2xa+1(y + x−a)2 + a+ 1

)
e

4x−a+1
a−1 + 2c1(y + x−a)2 (a+ 1)

)
2 (a+ 1) (a− 3) (y + x−a)2

= 0
Verification of solutions

−32 e
iπ+2x−a+1

a−1 (y + x−a)2 (a− 1)
−2+a
a−1

((
x− x2a−1

4

)
2

−3a+5
a−1 + x2a−14

1
a−1

32

)
WhittakerM

(
− 1

a−1 ,
a−3
2a−2 ,−

4x−a+1

a−1

)
− (a− 3)

((
4(y + x−a)2 x2 + 2xa+1(y + x−a)2 + a+ 1

)
e

4x−a+1
a−1 + 2c1(y + x−a)2 (a+ 1)

)
2 (a+ 1) (a− 3) (y + x−a)2

= 0

Warning, solution could not be verified

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
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3 Solution by Maple
Time used: 0.015 (sec). Leaf size: 2084� �
dsolve(diff(y(x),x)-x^a*y(x)^3+3*y(x)^2-x^(-a)*y(x)-x^(-2*a)+a*x^(-a-1) = 0,y(x), singsol=all)� �

Expression too large to display
Expression too large to display

3 Solution by Mathematica
Time used: 13.424 (sec). Leaf size: 231� �
DSolve[y'[x]-x^a*y[x]^3+3*y[x]^2-x^(-a)*y[x]-x^(-2*a)+a*x^(-a-1) == 0,y[x],x,IncludeSingularSolutions -> True]� �

y(x) → x−a − e
2x1−a

a−1√
−

2
3a+1
a−1 xa+1

(
x1−a

1−a

) a+1
a−1 Γ

(
a+1
1−a

,− 4x1−a

a−1

)
a−1 + c1

y(x) → x−a + e
2x1−a

a−1√
−

2
3a+1
a−1 xa+1

(
x1−a

1−a

) a+1
a−1 Γ

(
a+1
1−a

,− 4x1−a

a−1

)
a−1 + c1

y(x) → x−a
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1.4 problem problem 51
1.4.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 35

Internal problem ID [4678]
Internal file name [OUTPUT/4171_Sunday_June_05_2022_12_35_19_PM_64352952/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 51.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_Abel]

Unable to solve or complete the solution.

y′ − (y − f(x)) (y − g(x))
(
y − f(x) a+ bg(x)

a+ b

)
h(x)− f ′(x) (y − g(x))

f (x)− g (x) − g′(x) (y − f(x))
g (x)− f (x) = 0

1.4.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −(−f(x)h(x) a− f(x)h(x) b+ g(x)h(x) a+ g(x)h(x) b) y3
(a+ b) (f (x)− g (x)) −

(
2f(x)2 h(x) a+ f(x)2 h(x) b− f(x) g(x)h(x) a+ f(x) g(x)h(x) b− g(x)2 h(x) a− 2g(x)2 h(x) b

)
y2

(a+ b) (f (x)− g (x)) −
(
−f(x)3 h(x) a− h(x) f(x)2 ag(x)− 2f(x)2 g(x)h(x) b+ 2f(x) g(x)2 h(x) a+ h(x) bg(x)2 f(x) + g(x)3 h(x) b− af ′(x)− f ′(x) b+ ag′(x) + g′(x) b

)
y

(a+ b) (f (x)− g (x)) − f(x)3 g(x)h(x) a− f(x)2 g(x)2 h(x) a+ f(x)2 g(x)2 h(x) b− f(x) g(x)3 h(x) b− g′(x) f(x) a− g′(x) f(x) b+ f ′(x) g(x) a+ f ′(x) g(x) b
(a+ b) (f (x)− g (x))

(1)
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Therefore

f0(x) = − f(x)3 g(x)h(x) a
(a+ b) (f (x)− g (x)) +

f(x)2 g(x)2 h(x) a
(a+ b) (f (x)− g (x)) −

f(x)2 g(x)2 h(x) b
(a+ b) (f (x)− g (x)) +

f(x) g(x)3 h(x) b
(a+ b) (f (x)− g (x)) +

g′(x) f(x) a
(a+ b) (f (x)− g (x)) +

g′(x) f(x) b
(a+ b) (f (x)− g (x)) −

f ′(x) g(x) a
(a+ b) (f (x)− g (x)) −

f ′(x) g(x) b
(a+ b) (f (x)− g (x))

f1(x) =
af ′(x)

(a+ b) (f (x)− g (x)) +
bf ′(x)

(a+ b) (f (x)− g (x)) −
ag′(x)

(a+ b) (f (x)− g (x)) −
g′(x) b

(a+ b) (f (x)− g (x)) +
f(x)3 h(x) a

(a+ b) (f (x)− g (x)) −
g(x)3 h(x) b

(a+ b) (f (x)− g (x)) +
h(x) f(x)2 ag(x)

(a+ b) (f (x)− g (x)) +
2f(x)2 g(x)h(x) b

(a+ b) (f (x)− g (x)) −
2f(x) g(x)2 h(x) a

(a+ b) (f (x)− g (x)) −
h(x) bg(x)2 f(x)

(a+ b) (f (x)− g (x))

f2(x) = − 2f(x)2 h(x) a
(a+ b) (f (x)− g (x)) −

f(x)2 h(x) b
(a+ b) (f (x)− g (x)) +

g(x)2 h(x) a
(a+ b) (f (x)− g (x)) +

2g(x)2 h(x) b
(a+ b) (f (x)− g (x)) +

f(x) g(x)h(x) a
(a+ b) (f (x)− g (x)) −

f(x) g(x)h(x) b
(a+ b) (f (x)− g (x))

f3(x) =
af(x)h(x)

(a+ b) (f (x)− g (x)) +
f(x)h(x) b

(a+ b) (f (x)− g (x)) −
g(x)h(x) a

(a+ b) (f (x)− g (x)) −
g(x)h(x) b

(a+ b) (f (x)− g (x))

Since f2(x) = − 2f(x)2h(x)a
(a+b)(f(x)−g(x))−

f(x)2h(x)b
(a+b)(f(x)−g(x))+

g(x)2h(x)a
(a+b)(f(x)−g(x))+

2g(x)2h(x)b
(a+b)(f(x)−g(x))+

f(x)g(x)h(x)a
(a+b)(f(x)−g(x))−

f(x)g(x)h(x)b
(a+b)(f(x)−g(x)) is not zero, then the first step is to apply the following transformation
to remove f2. Let y = u(x)− f2

3f3 or

y = u(x)−

− 2f(x)2h(x)a
(a+b)(f(x)−g(x)) −

f(x)2h(x)b
(a+b)(f(x)−g(x)) +

g(x)2h(x)a
(a+b)(f(x)−g(x)) +

2g(x)2h(x)b
(a+b)(f(x)−g(x)) +

f(x)g(x)h(x)a
(a+b)(f(x)−g(x)) −

f(x)g(x)h(x)b
(a+b)(f(x)−g(x))

3af(x)h(x)
(a+b)(f(x)−g(x)) +

3f(x)h(x)b
(a+b)(f(x)−g(x)) −

3g(x)h(x)a
(a+b)(f(x)−g(x)) −

3g(x)h(x)b
(a+b)(f(x)−g(x))


= f(x) (2a+ b) + (a+ 2b) g(x) + 3(a+ b)u(x)

3a+ 3b

The above transformation applied to (1) gives a new ODE as

Expression too large to display (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = Expression too large to display (1)

Therefore

f0(x) = − f(x)4 h(x) a b2

9 (a+ b)3 (f (x)− g (x))
+ f(x)4 h(x) a2b

9 (a+ b)3 (f (x)− g (x))
+ 2f(x)4 h(x) a3

27 (a+ b)3 (f (x)− g (x))
− 2f(x)4 h(x) b3

27 (a+ b)3 (f (x)− g (x))
+ 2g(x)4 h(x) a3

27 (a+ b)3 (f (x)− g (x))
− 2g(x)4 h(x) b3

27 (a+ b)3 (f (x)− g (x))
− 8f(x)3 g(x)h(x) a3

27 (a+ b)3 (f (x)− g (x))
+ 8f(x)3 g(x)h(x) b3

27 (a+ b)3 (f (x)− g (x))
+ 4f(x)2 g(x)2 h(x) a3

9 (a+ b)3 (f (x)− g (x))
− 4f(x)2 g(x)2 h(x) b3

9 (a+ b)3 (f (x)− g (x))
− 8f(x) g(x)3 h(x) a3

27 (a+ b)3 (f (x)− g (x))
+ 8f(x) g(x)3 h(x) b3

27 (a+ b)3 (f (x)− g (x))
+ g(x)4 h(x) a2b

9 (a+ b)3 (f (x)− g (x))
− g(x)4 h(x) a b2

9 (a+ b)3 (f (x)− g (x))
+ 4f(x)3 g(x)h(x) a b2

9 (a+ b)3 (f (x)− g (x))
+ 2f(x)2 g(x)2 h(x) a2b

3 (a+ b)3 (f (x)− g (x))
− 2f(x)2 g(x)2 h(x) a b2

3 (a+ b)3 (f (x)− g (x))
− 4f(x) g(x)3 h(x) a2b

9 (a+ b)3 (f (x)− g (x))
+ 4f(x) g(x)3 h(x) a b2

9 (a+ b)3 (f (x)− g (x))
− 4f(x)3 g(x)h(x) a2b

9 (a+ b)3 (f (x)− g (x))
f1(x) = Expression too large to display
f2(x) = 0

f3(x) =
a3f(x)h(x)

(a+ b)3 (f (x)− g (x))
+ h(x) f(x) b3

(a+ b)3 (f (x)− g (x))
− a3g(x)h(x)

(a+ b)3 (f (x)− g (x))
− g(x)h(x) b3

(a+ b)3 (f (x)− g (x))
+ 3f(x) a2h(x) b

(a+ b)3 (f (x)− g (x))
+ 3h(x) f(x) a b2

(a+ b)3 (f (x)− g (x))
− 3a2g(x)h(x) b

(a+ b)3 (f (x)− g (x))
− 3g(x)h(x) a b2

(a+ b)3 (f (x)− g (x))
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Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

Expression too large to display

Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.156 (sec). Leaf size: 648� �
dsolve(diff(y(x),x)-(y(x)-f(x))*(y(x)-g(x))*(y(x)-(a*f(x)+b*g(x))/(a+b))*h(x)-diff(f(x),x)*(y(x)-g(x))/(f(x)-g(x))-diff(g(x),x)*(y(x)-f(x))/(g(x)-f(x)) = 0,y(x), singsol=all)� �
y(x)

= (f(x)− g(x)) (a+ 2b) e
RootOf

(
−_Z a4−b4 ln

(
9a3+18a2b+18a b2+9b3+a e_Z+2b e_Z

2a+b

)
+ln

(
9a2b+9a b2+9b3+a e_Z+2b e_Z

a−b

)
a4+ln

(
9a2b+9a b2+9b3+a e_Z+2b e_Z

a−b

)
b4+3c1a3b+6c1a2b2+3c1a b3−2a b3

(∫
f(x)g(x)h(x)dx

)
−2a3b

(∫
f(x)g(x)h(x)dx

)
−2a2b2

(∫
f(x)g(x)h(x)dx

)
+a2b2

(∫
f(x)2h(x)dx

)
+a b3

(∫
f(x)2h(x)dx

)
+a3b

(∫
f(x)2h(x)dx

)
+a2b2

(∫
g(x)2h(x)dx

)
+a b3

(∫
g(x)2h(x)dx

)
+a3b

(∫
g(x)2h(x)dx

)
−2_Z a3b−2_Z a2b2−_Za b3+3 ln

(
9a2b+9a b2+9b3+a e_Z+2b e_Z

a−b

)
a3b+4 ln

(
9a2b+9a b2+9b3+a e_Z+2b e_Z

a−b

)
a2b2+3 ln

(
9a2b+9a b2+9b3+a e_Z+2b e_Z

a−b

)
a b3−a3b ln

(
9a3+18a2b+18a b2+9b3+a e_Z+2b e_Z

2a+b

)
−2a2b2 ln

(
9a3+18a2b+18a b2+9b3+a e_Z+2b e_Z

2a+b

)
−2a b3 ln

(
9a3+18a2b+18a b2+9b3+a e_Z+2b e_Z

2a+b

))
+ 9f(x) (a+ b) (a2 + ba+ b2)

9a3 + 18a2b+ 18a b2 + 9b3
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3 Solution by Mathematica
Time used: 1.124 (sec). Leaf size: 355� �
DSolve[y'[x]-(y[x]-f[x])*(y[x]-g[x])*(y[x]-(a*f[x]+b*g[x])/(a+b))*h[x]-f'[x]*(y[x]-g[x])/(f[x]-g[x])-g'[x]*(y[x]-f[x])/(g[x]-f[x]) == 0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


−1
3(a

−b)2/3(2a+b)2/3(a+2b)2/3RootSum


#13(a−b)2/3(2a+b)2/3(a+2b)2/3−3#1a2−3#1ab−3#1b2+(a−b)2/3(2a+b)2/3(a+2b)2/3&,

log


−2af(x)h(x)−ag(x)h(x)−bf(x)h(x)−2bg(x)h(x)

a+b
+3h(x)y(x)

3

√
(f(x)− g(x))3 (2a3h(x)3 + 3a2bh(x)3 − 3ab2h(x)3 − 2b3h(x)3)

(a+ b)3

−#1


−#12(a− b)2/3(2a+ b)2/3(a+ 2b)2/3 + a2 + ab+ b2

&


=
∫ x

1

(
(f(K[1])−g(K[1]))3

(
2a3h(K[1])3−2b3h(K[1])3−3ab2h(K[1])3+3a2bh(K[1])3

)
(a+b)3

)2/3
9h(K[1]) dK[1]+c1, y(x)


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1.5 problem problem 146
1.5.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 39

Internal problem ID [4679]
Internal file name [OUTPUT/4172_Sunday_June_05_2022_12_36_12_PM_19241691/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 146.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

x2y′ + y3x+ y2a = 0

1.5.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = −y3

x
− ay2

x2 (1)

Therefore

f0(x) = 0
f1(x) = 0

f2(x) = − a

x2

f3(x) = −1
x
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Since f2(x) = − a
x2 is not zero, then the first step is to apply the following transformation

to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(− a

x2

− 3
x

)
= u(x)− a

3x

The above transformation applied to (1) gives a new ODE as

u′(x) = −u(x)3

x
+ u(x) a2

3x3 − 2a3
27x4 − a

3x2 (2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −u(x)3

x
+ u(x) a2

3x3 − 2a3 + 9a x2

27x4 (1)

Therefore

f0(x) = − 2a3
27x4 − a

3x2

f1(x) =
a2

3x3

f2(x) = 0

f3(x) = −1
x

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
8a3
27x5+

2a
3x3

x
+ − 2a3

27x4−
a

3x2
x2 −

(
− 2a3

27x4−
a

3x2

)
a2

x4

)3

x4

27
(
− 2a3

27x4 − a
3x2

)5
Since the Abel invariant depends on x then unable to solve this ode at this time.
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Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 65� �
dsolve(x^2*diff(y(x),x)+x*y(x)^3+a*y(x)^2 = 0,y(x), singsol=all)� �

c1 + e−
((a+x)y(x)+x)((a−x)y(x)+x)

2y(x)2x2 x+
erf
(√

2 (ay(x)+x)
2y(x)x

)√
2
√
π a e 1

2

2 = 0

3 Solution by Mathematica
Time used: 0.61 (sec). Leaf size: 78� �
DSolve[x^2*y'[x]+x*y[x]^3+a*y[x]^2 == 0,y[x],x,IncludeSingularSolutions -> True]� �

Solve

−ia

x
= 2e

1
2

(
− ia

x
− i

y(x)

)2

√
2πerfi

(
− ia

x
− i

y(x)√
2

)
+ 2c1

, y(x)


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1.6 problem problem 169
1.6.1 Solving as abelFirstKind ode . . . . . . . . . . . . . . . . . . . 42

Internal problem ID [4680]
Internal file name [OUTPUT/4173_Sunday_June_05_2022_12_36_26_PM_78426666/index.tex]

Book: Differential Gleichungen, Kamke, 3rd ed, Abel ODEs
Section: Abel ODE’s with constant invariant
Problem number: problem 169.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "abelFirstKind"

Maple gives the following as the ode type
[_rational , _Abel]

Unable to solve or complete the solution.

(ax+ b)2 y′ + (ax+ b) y3 + cy2 = 0

1.6.1 Solving as abelFirstKind ode

This is Abel first kind ODE, it has the form

y′ = f0(x) + f1(x)y + f2(x)y2 + f3(x)y3

Comparing the above to given ODE which is

y′ = − y3

ax+ b
− cy2

(ax+ b)2
(1)

Therefore

f0(x) = 0
f1(x) = 0

f2(x) = − c

(ax+ b)2

f3(x) = − 1
ax+ b
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Since f2(x) = − c
(ax+b)2 is not zero, then the first step is to apply the following transfor-

mation to remove f2. Let y = u(x)− f2
3f3 or

y = u(x)−
(
− c

(ax+b)2

− 3
ax+b

)
= u(x)− c

3ax+ 3b
The above transformation applied to (1) gives a new ODE as

u′(x) = −u(x)3 a3x3

(ax+ b)4
− 3u(x)3 a2b x2

(ax+ b)4
− 3u(x)3 a b2x

(ax+ b)4
− u(x)3 b3

(ax+ b)4
− a3c x2

3 (ax+ b)4
+ u(x) a c2x

3 (ax+ b)4
− 2a2bcx

3 (ax+ b)4
+ u(x) b c2

3 (ax+ b)4
− a b2c

3 (ax+ b)4
− 2c3

27 (ax+ b)4

(2)

This is Abel first kind ODE, it has the form

u′(x) = f0(x) + f1(x)u(x) + f2(x)u(x)2 + f3(x)u(x)3

Comparing the above to given ODE which is

u′(x) = −(27a3x3 + 81a2b x2 + 81a b2x+ 27b3)u(x)3

27 (ax+ b)4
− (−9a c2x− 9b c2)u(x)

27 (ax+ b)4
− 9a3c x2 + 18a2bcx+ 9a b2c+ 2c3

27 (ax+ b)4

(1)

Therefore

f0(x) = − a3c x2

3 (ax+ b)4
− 2a2bcx

3 (ax+ b)4
− a b2c

3 (ax+ b)4
− 2c3

27 (ax+ b)4

f1(x) =
ax c2

3 (ax+ b)4
+ b c2

3 (ax+ b)4

f2(x) = 0

f3(x) = − a3x3

(ax+ b)4
− 3a2b x2

(ax+ b)4
− 3a b2x

(ax+ b)4
− b3

(ax+ b)4

Since f2(x) = 0 then we check the Abel invariant to see if it depends on x or not. The
Abel invariant is given by

− f 3
1

f 2
0 f3

Which when evaluating gives

−

(
−
(

4a4c x2

3(ax+b)5 −
2x a3c

3(ax+b)4 +
8a3bcx

3(ax+b)5 −
2a2bc

3(ax+b)4 +
4a2b2c

3(ax+b)5 +
8c3a

27(ax+b)5

)(
− a3x3

(ax+b)4 −
3a2b x2

(ax+b)4 −
3a b2x
(ax+b)4 −

b3

(ax+b)4

)
+
(
− a3c x2

3(ax+b)4 −
2a2bcx

3(ax+b)4 −
a b2c

3(ax+b)4 −
2c3

27(ax+b)4

)(
4a4x3

(ax+b)5 −
3a3x2

(ax+b)4 +
12a3b x2

(ax+b)5 − 6a2bx
(ax+b)4 +

12a2b2x
(ax+b)5 −

3a b2
(ax+b)4 +

4b3a
(ax+b)5

)
+ 3
(
− a3c x2

3(ax+b)4 −
2a2bcx

3(ax+b)4 −
a b2c

3(ax+b)4 −
2c3

27(ax+b)4

)(
− a3x3

(ax+b)4 −
3a2b x2

(ax+b)4 −
3a b2x
(ax+b)4 −

b3

(ax+b)4

)(
ax c2

3(ax+b)4 +
b c2

3(ax+b)4

))3
27
(
− a3x3

(ax+b)4 −
3a2b x2

(ax+b)4 −
3a b2x
(ax+b)4 −

b3

(ax+b)4

)4 (
− a3c x2

3(ax+b)4 −
2a2bcx

3(ax+b)4 −
a b2c

3(ax+b)4 −
2c3

27(ax+b)4

)5

43



Since the Abel invariant depends on x then unable to solve this ode at this time.

Unable to complete the solution now.

Maple trace

� �
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel successful`� �
3 Solution by Maple
Time used: 0.0 (sec). Leaf size: 126� �
dsolve((a*x+b)^2*diff(y(x),x)+(a*x+b)*y(x)^3+c*y(x)^2 = 0,y(x), singsol=all)� �
(√

a b+ a
3
2x
)
e−

((ax+b+c)y(x)+a(ax+b))((−ax−b+c)y(x)+a(ax+b))
2y(x)2(ax+b)2a +

c
√
2
√
π e

1
2a erf

(
(cy(x)+a(ax+b))

√
2

2
√
a y(x)(ax+b)

)
2 + c1a

3
2

a
3
2

= 0
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3 Solution by Mathematica
Time used: 1.43 (sec). Leaf size: 149� �
DSolve[(a*x+b)^2*y'[x]+(a*x+b)*y[x]^3+c*y[x]^2 == 0,y[x],x,IncludeSingularSolutions -> True]� �

Solve


− c√

−a(ax+ b)2
=

2 exp
(

1
2

(
− c√

−a(ax+b)2 −
(
−a(ax+b)2

)3/2
ay(x)(ax+b)3

)2
)

√
2πerfi

− c√
−a(ax+b)2

−
(
−a(ax+b)2

)3/2
ay(x)(ax+b)3

√
2

+ 2c1

, y(x)


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