A Solution Manual For

Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.

Nasser M. Abbasi

May 15, 2024

Contents

1 Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9

2 Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS. Page 12

3 Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15

4 Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20

5 Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28

6 Chapter 1. What is a differential equation. Section 1.8. Integrating
Factors. Page 32

7 Chapter 1. What is a differential equation. Section 1.9. Reduction
of Order. Page 38

8 Chapter 1. What is a differential equation. Problems for Review
and Discovery. Page 53

9 Chapter 2. Second-Order Linear Equations. Section 2.1. Linear
Equations with Constant Coefficients. Page 62

10 Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD
OF UNDETERMINED COEFFICIENTS. Page 67

11 Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71

12 Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74

13 Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98

14 Chapter 2. Problems for Review and Discovery. Drill excercises.
Page 105
15 Chapter 2. Problems for Review and Discovery. Challenge excercises. Page 105

2663
16 Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105

17 Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162[2731

18 Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169

2961
19 Chapter 4. Power Series Solutions and Special Functions. Section
4.4. REGULAR SINGULAR POINTS. Page 175
20 Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183

3357
21 Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187

3488
22 Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194

3592
23 Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (B) Challenge Problems . Page 194

24 Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions. Page 303

25 Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309

26 Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section B, Challenge Problems. Page 310

27 Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
28 Chapter 10. Systems of First-Order Equations. Section 10.3 Homo- geneous Linear Systems with Constant Coefficients. Page 387 3999
29 Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400 4086
30 Chapter 10. Systems of First-Order Equations. Section B. Challenge Problems. Page 401 4224

1 Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9

1.1 problem 1(a) 5
1.2 problem 1(b) 8
1.3 problem 1(c) 23
1.4 problem 1(d) 35
1.5 problem 1(e) 38
1.6 problem 1(f) 48
1.7 problem 1(h) 58
1.8 problem 1(i) 60
1.9 problem 1(j) 70
1.10 problem $1(\mathrm{k})$ 84
1.11 problem 1(L) 99
1.12 problem 1(m) 112
1.13 problem 1(n) 126
1.14 problem 1(o) 139
1.15 problem 2(a) 142
1.16 problem 2(b) 145
1.17 problem 2(c) 148
1.18 problem 2(d) 151
1.19 problem 2(e) 154
1.20 problem 2(f) 157
1.21 problem 2(g) 160
1.22 problem 2(h) 163
1.23 problem 2(i) 166
1.24 problem 2(j) 169
1.25 problem 3(a) 172
1.26 problem 3(b) 176
1.27 problem 3(c) 180
1.28 problem 3(d) 184
1.29 problem 3(e) 188
1.30 problem 3(f) 192
1.31 problem 4 196
1.32 problem 5 209
1.33 problem 6 217
1.34 problem 7 229

1.1 problem 1(a)

1.1.1 Solving as quadrature ode . 5
1.1.2 Maple step by step solution . 6

Internal problem ID [6105]
Internal file name [OUTPUT/5353_Sunday_June_05_2022_03_35_10_PM_5110884/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=2 x
$$

1.1.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 2 x \mathrm{~d} x \\
& =x^{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 1: Slope field plot
Verification of solutions

$$
y=x^{2}+c_{1}
$$

Verified OK.

1.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}=2 x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int 2 x d x+c_{1}
$$

- Evaluate integral

$$
y=x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=x^{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9

```
dsolve(diff(y(x),x)=2*x,y(x), singsol=all)
```

$$
y(x)=x^{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 11
DSolve[y'[x]==2*x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{2}+c_{1}
$$

1.2 problem 1(b)

1.2.1 Solving as separable ode 8
1.2.2 Solving as linear ode 10
1.2.3 Solving as homogeneousTypeD2 ode 11
1.2.4 Solving as first order ode lie symmetry lookup ode 13
1.2.5 Solving as exact ode 17
1.2.6 Maple step by step solution 21

Internal problem ID [6106]
Internal file name [OUTPUT/5354_Sunday_June_05_2022_03_35_11_PM_70934078/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
x y^{\prime}-2 y=0
$$

1.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2}{x} d x \\
\ln (y) & =2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{2 \ln (x)+c_{1}} \\
& =c_{1} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Figure 2: Slope field plot

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

1.2.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =0
\end{aligned}
$$

Integrating gives

$$
\frac{y}{x^{2}}=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=c_{1} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Figure 3: Slope field plot
Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

1.2.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x\left(u^{\prime}(x) x+u(x)\right)-2 u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{1}{x} d x \\
\ln (u) & =\ln (x)+c_{2} \\
u & =\mathrm{e}^{\ln (x)+c_{2}} \\
& =c_{2} x
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =c_{2} x^{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
$$

Figure 4: Slope field plot

Verification of solutions

$$
y=c_{2} x^{2}
$$

Verified OK.

1.2.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 2: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 y}{x^{3}} \\
S_{y} & =\frac{1}{x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{y}{x^{2}}=c_{1}
$$

Which gives

$$
y=c_{1} x^{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 y}{x}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$
- 6 - 1.1		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow}$
	$R=x$	\rightarrow
	S y	
	$S=\frac{y}{x^{2}}$	
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
$$

Figure 5: Slope field plot

Verification of solutions

$$
y=c_{1} x^{2}
$$

Verified OK.

1.2.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{2 y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{2 y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{2 y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\frac{\ln (y)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\frac{\ln (y)}{2}
$$

The solution becomes

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{2 c_{1}} x^{2} \tag{1}
\end{equation*}
$$

Figure 6: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{2 c_{1}} x^{2}
$$

Verified OK.

1.2.6 Maple step by step solution

Let's solve
$x y^{\prime}-2 y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{2}{x}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{2}{x} d x+c_{1}$
- Evaluate integral
$\ln (y)=2 \ln (x)+c_{1}$
- \quad Solve for y
$y=x^{2} \mathrm{e}^{c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 9
dsolve($x * \operatorname{diff}(y(x), x)=2 * y(x), y(x)$, singsol=all)

$$
y(x)=c_{1} x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 16
DSolve $[\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]==2 * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x^{2} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.3 problem 1(c)

1.3.1 Solving as separable ode . 23
1.3.2 Solving as first order ode lie symmetry lookup ode 25
1.3.3 Solving as exact ode . 29
1.3.4 Maple step by step solution . 33

Internal problem ID [6107]
Internal file name [OUTPUT/5355_Sunday_June_05_2022_03_35_12_PM_30046570/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} y=\mathrm{e}^{2 x}
$$

1.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\mathrm{e}^{2 x}}{y}
\end{aligned}
$$

Where $f(x)=\mathrm{e}^{2 x}$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\frac{1}{\frac{1}{y}} d y=\mathrm{e}^{2 x} d x
$$

$$
\begin{aligned}
\int \frac{1}{\frac{1}{y}} d y & =\int \mathrm{e}^{2 x} d x \\
\frac{y^{2}}{2} & =\frac{\mathrm{e}^{2 x}}{2}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{\mathrm{e}^{2 x}+2 c_{1}} \\
& y=-\sqrt{\mathrm{e}^{2 x}+2 c_{1}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{\mathrm{e}^{2 x}+2 c_{1}} \tag{1}\\
& y=-\sqrt{\mathrm{e}^{2 x}+2 c_{1}} \tag{2}
\end{align*}
$$

Figure 7: Slope field plot

Verification of solutions

$$
y=\sqrt{\mathrm{e}^{2 x}+2 c_{1}}
$$

Verified OK.

$$
y=-\sqrt{\mathrm{e}^{2 x}+2 c_{1}}
$$

Verified OK.

1.3.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{\mathrm{e}^{2 x}}{y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 5: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	1	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\mathrm{e}^{-2 x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\mathrm{e}^{-2 x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{\mathrm{e}^{2 x}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{\mathrm{e}^{2 x}}{y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\mathrm{e}^{2 x} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=y \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\mathrm{e}^{2 x}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Which simplifies to

$$
\frac{\mathrm{e}^{2 x}}{2}=\frac{y^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{\mathrm{e}^{2 x}}{y}$		$\frac{d S}{d R}=R$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{\rightarrow \rightarrow \rightarrow}$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$		
	$R=y$	
	$\mathrm{e}^{2 x}$	
$\rightarrow \rightarrow \rightarrow$		
$\xrightarrow{\rightarrow \rightarrow \rightarrow}$		
$\rightarrow \rightarrow \rightarrow \rightarrow$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\mathrm{e}^{2 x}}{2}=\frac{y^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 8: Slope field plot

Verification of solutions

$$
\frac{\mathrm{e}^{2 x}}{2}=\frac{y^{2}}{2}+c_{1}
$$

Verified OK.

1.3.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y) \mathrm{d} y & =\left(\mathrm{e}^{2 x}\right) \mathrm{d} x \\
\left(-\mathrm{e}^{2 x}\right) \mathrm{d} x+(y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\mathrm{e}^{2 x} \\
N(x, y) & =y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\mathrm{e}^{2 x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{2 x} \mathrm{~d} x \\
\phi & =-\frac{\mathrm{e}^{2 x}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y$. Therefore equation (4) becomes

$$
\begin{equation*}
y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(y) \mathrm{d} y \\
f(y) & =\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\mathrm{e}^{2 x}}{2}+\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\mathrm{e}^{2 x}}{2}+\frac{y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\mathrm{e}^{2 x}}{2}+\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 9: Slope field plot
Verification of solutions

$$
-\frac{\mathrm{e}^{2 x}}{2}+\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

1.3.4 Maple step by step solution

Let's solve

$$
y^{\prime} y=\mathrm{e}^{2 x}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} y d x=\int \mathrm{e}^{2 x} d x+c_{1}
$$

- Evaluate integral

$$
\frac{y^{2}}{2}=\frac{\mathrm{e}^{2 x}}{2}+c_{1}
$$

- \quad Solve for y

$$
\left\{y=\sqrt{\mathrm{e}^{2 x}+2 c_{1}}, y=-\sqrt{\mathrm{e}^{2 x}+2 c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 25

```
dsolve(y(x)*diff(y(x),x)=exp(2*x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\mathrm{e}^{2 x}+c_{1}} \\
& y(x)=-\sqrt{\mathrm{e}^{2 x}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.658 (sec). Leaf size: 39
DSolve [y $[x] * y$ ' $[x]==\operatorname{Exp}[2 * x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{e^{2 x}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{e^{2 x}+2 c_{1}}
\end{aligned}
$$

1.4 problem 1(d)

1.4.1 Solving as quadrature ode . 35
1.4.2 Maple step by step solution . 36

Internal problem ID [6108]
Internal file name [OUTPUT/5356_Sunday_June_05_2022_03_35_14_PM_47845420/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}-y k=0
$$

1.4.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{y k} d y & =\int d x \\
\frac{\ln (y)}{k} & =x+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y)}{k}}=\mathrm{e}^{x+c_{1}}
$$

Which simplifies to

$$
y^{\frac{1}{k}}=c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(c_{2} \mathrm{e}^{x}\right)^{k} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\left(c_{2} \mathrm{e}^{x}\right)^{k}
$$

Verified OK.

1.4.2 Maple step by step solution

Let's solve
$y^{\prime}-y k=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y}=k$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int k d x+c_{1}$
- Evaluate integral
$\ln (y)=k x+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{k x+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})=\mathrm{k} * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=c_{1} \mathrm{e}^{k x}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 18
DSolve[y'[x]==k*y[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{k x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.5 problem 1(e)

1.5.1 Solving as second order linear constant coeff ode 38
1.5.2 Solving as second order ode can be made integrable ode 40
1.5.3 Solving using Kovacic algorithm 42
1.5.4 Maple step by step solution . 46

Internal problem ID [6109]
Internal file name [OUTPUT/5357_Sunday_June_05_2022_03_35_15_PM_52805837/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be__made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}+4 y=0
$$

1.5.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
$$

Since roots are complex conjugate of each others, then let the roots be

$$
\lambda_{1,2}=\alpha \pm i \beta
$$

Where $\alpha=0$ and $\beta=2$. Therefore the final solution, when using Euler relation, can be written as

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

Which becomes

$$
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
$$

Or

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x) \tag{1}
\end{equation*}
$$

Figure 10: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Verified OK.

1.5.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}+4 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+4 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\sqrt{-4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{2}+x
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{-4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =c_{2}+x \tag{1}\\
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2} & =x+c_{3} \tag{2}
\end{align*}
$$

Figure 11: Slope field plot

Verification of solutions

$$
\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=c_{2}+x
$$

Verified OK.

$$
-\frac{\arctan \left(\frac{2 y}{\sqrt{-4 y^{2}+2 c_{1}}}\right)}{2}=x+c_{3}
$$

Verified OK.

1.5.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 9: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=-4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\cos (2 x)
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\cos (2 x)
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2} \tag{1}
\end{equation*}
$$

Figure 12: Slope field plot

Verification of solutions

$$
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
$$

Verified OK.

1.5.4 Maple step by step solution

Let's solve

$$
y^{\prime \prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}+4=0
$$

- Use quadratic formula to solve for r
$r=\frac{0 \pm(\sqrt{-16})}{2}$
- Roots of the characteristic polynomial

$$
r=(-2 \mathrm{I}, 2 \mathrm{I})
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\cos (2 x)
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\sin (2 x)
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)+4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=c_{1} \sin (2 x)+c_{2} \cos (2 x)
$$

\checkmark Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20

```
DSolve[y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} \cos (2 x)+c_{2} \sin (2 x)
$$

1.6 problem $1(f)$

1.6.1 Solving as second order linear constant coeff ode 48
1.6.2 Solving as second order ode can be made integrable ode 50
1.6.3 Solving using Kovacic algorithm 52
1.6.4 Maple step by step solution . 56

Internal problem ID [6110]
Internal file name [OUTPUT/5358_Sunday_June_05_2022_03_35_16_PM_82047167/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]

$$
y^{\prime \prime}-4 y=0
$$

1.6.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=0, C=-4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=0, C=-4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
$$

Figure 13: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
$$

Verified OK.

1.6.2 Solving as second order ode can be made integrable ode

Multiplying the ode by y^{\prime} gives

$$
y^{\prime} y^{\prime \prime}-4 y^{\prime} y=0
$$

Integrating the above w.r.t x gives

$$
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}=c_{2}
\end{gathered}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
y^{\prime} & =\sqrt{4 y^{2}+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =c_{2}+x
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{c_{2}+x}
$$

Which simplifies to

$$
\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}=c_{3} \mathrm{e}^{x}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
$$

Which simplifies to

$$
\frac{1}{\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}}=c_{5} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}} \tag{2}
\end{align*}
$$

Figure 14: Slope field plot

Verification of solutions

$$
y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}}
$$

Verified OK.

$$
y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}}
$$

Verified OK.

1.6.3 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi- tion is satisfied. Hence the following set of pole orders are all allowed. $\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.	
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 11: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=4$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-2 x}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
$$

Since $B=0$ then the above reduces to

$$
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{-2 x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Since $B=0$ then the above becomes

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4} \tag{1}
\end{equation*}
$$

Figure 15: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
$$

Verified OK.

1.6.4 Maple step by step solution

Let's solve
$y^{\prime \prime}-4 y=0$

- Highest derivative means the order of the ODE is 2
$y^{\prime \prime}$
- Characteristic polynomial of ODE

$$
r^{2}-4=0
$$

- Factor the characteristic polynomial

$$
(r-2)(r+2)=0
$$

- Roots of the characteristic polynomial

$$
r=(-2,2)
$$

- $\quad 1$ st solution of the ODE

$$
y_{1}(x)=\mathrm{e}^{-2 x}
$$

- $\quad 2 n d$ solution of the ODE

$$
y_{2}(x)=\mathrm{e}^{2 x}
$$

- General solution of the ODE

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
$$

- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 17

```
dsolve(diff(y(x),x$2)-4*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22

```
DSolve[y''[x]-4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{-2 x}\left(c_{1} e^{4 x}+c_{2}\right)
$$

1.7 problem 1(h)

Internal problem ID [6111]
Internal file name [OUTPUT/5359_Sunday_June_05_2022_03_35_17_PM_19549517/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type

```
[_rational]
```

Unable to solve or complete the solution.

$$
x y^{\prime}+y-y^{\prime} \sqrt{1-y x^{2}}=0
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying an equivalence to an Abel ODE
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 2
`, `-> Computing symmetries using: way = 3
`, --> Computing symmetries using: way = 4
, `-> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple

```
dsolve(x*diff(y(x),x)+y(x)=diff(y(x),x)*sqrt(1-x^2*y(x)),y(x), singsol=all)
```

No solution found

X Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

```
DSolve[x*y'[x]+y[x]==y'[x]*Sqrt[1-x^2*y[x]],y[x],x,IncludeSingularSolutions ->> True]
```

Not solved

1.8 problem 1(i)

1.8.1 Solving as homogeneousTypeD2 ode 60
1.8.2 Solving as exact ode . 62
1.8.3 Solving as riccati ode . 67

Internal problem ID [6112]
Internal file name [OUTPUT/5360_Sunday_June_05_2022_03_35_19_PM_88813315/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "riccati", "exactByInspection", "homogeneousTypeD2"

Maple gives the following as the ode type
[[_homogeneous, `class D`], _rational, _Riccati]

$$
-y+x y^{\prime}-y^{2}=x^{2}
$$

1.8.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
-u(x) x+x\left(u^{\prime}(x) x+u(x)\right)-u(x)^{2} x^{2}=x^{2}
$$

Integrating both sides gives

$$
\begin{aligned}
\int \frac{1}{u^{2}+1} d u & =c_{2}+x \\
\arctan (u) & =c_{2}+x
\end{aligned}
$$

Solving for u gives these solutions

$$
u_{1}=\tan \left(c_{2}+x\right)
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x \tan \left(c_{2}+x\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tan \left(c_{2}+x\right) \tag{1}
\end{equation*}
$$

Figure 16: Slope field plot

Verification of solutions

$$
y=x \tan \left(c_{2}+x\right)
$$

Verified OK.

1.8.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(x^{2}+y^{2}+y\right) \mathrm{d} x \\
\left(-x^{2}-y^{2}-y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-x^{2}-y^{2}-y \\
& N(x, y)=x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-y^{2}-y\right) \\
& =-2 y-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2}+y^{2}}$ is an integrating factor. Therefore by multiplying $M=-y^{2}-x^{2}-y$ and $N=x$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =\frac{-y^{2}-x^{2}-y}{x^{2}+y^{2}} \\
N & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{x}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}} \\
N(x, y) & =\frac{x}{x^{2}+y^{2}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right) \\
& =\frac{-x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-y^{2}-y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =-x-\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{x}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{x^{2}+y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{x^{2}+y^{2}}=\frac{x}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\arctan \left(\frac{x}{y}\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\arctan \left(\frac{x}{y}\right)
$$

The solution becomes

$$
y=-\frac{x}{\tan \left(x+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x}{\tan \left(x+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 17: Slope field plot

Verification of solutions

$$
y=-\frac{x}{\tan \left(x+c_{1}\right)}
$$

Verified OK.

1.8.3 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}+y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=x+\frac{y^{2}}{x}+\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=x, f_{1}(x)=\frac{1}{x}$ and $f_{2}(x)=\frac{1}{x}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{\frac{u}{x}} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-\frac{1}{x^{2}} \\
f_{1} f_{2} & =\frac{1}{x^{2}} \\
f_{2}^{2} f_{0} & =\frac{1}{x}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
\frac{u^{\prime \prime}(x)}{x}+\frac{u(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=\sin (x) c_{1}+c_{2} \cos (x)
$$

The above shows that

$$
u^{\prime}(x)=\cos (x) c_{1}-c_{2} \sin (x)
$$

Using the above in (1) gives the solution

$$
y=-\frac{\left(\cos (x) c_{1}-c_{2} \sin (x)\right) x}{\sin (x) c_{1}+c_{2} \cos (x)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{x\left(-c_{3} \cos (x)+\sin (x)\right)}{c_{3} \sin (x)+\cos (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{x\left(-c_{3} \cos (x)+\sin (x)\right)}{c_{3} \sin (x)+\cos (x)} \tag{1}
\end{equation*}
$$

Figure 18: Slope field plot

Verification of solutions

$$
y=\frac{x\left(-c_{3} \cos (x)+\sin (x)\right)}{c_{3} \sin (x)+\cos (x)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 10

```
dsolve(x*diff(y(x),x)=y(x)+x^2+y(x)^2,y(x), singsol=all)
```

$$
y(x)=\tan \left(x+c_{1}\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 12
DSolve[x*y' $[x]==y[x]+x^{\wedge} 2+y[x] \sim 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow x \tan \left(x+c_{1}\right)
$$

1.9 problem $1(\mathrm{j})$

1.9.1 Solving as homogeneousTypeD2 ode 70
1.9.2 Solving as first order ode lie symmetry calculated ode 77
1.9.3 Solving as exact ode . 77

Internal problem ID [6113]
Internal file name [OUTPUT/5361_Sunday_June_05_2022_03_35_20_PM_40589996/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(j).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
y^{\prime}-\frac{x y}{x^{2}+y^{2}}=0
$$

1.9.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{x^{2} u(x)}{x^{2}+u(x)^{2} x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}}{x\left(u^{2}+1\right)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{3}}{u^{2}+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}}{u^{2}+1}} d u & =\int-\frac{1}{x} d x \\
\ln (u)-\frac{1}{2 u^{2}} & =-\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\ln (u(x))-\frac{1}{2 u(x)^{2}}+\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \ln \left(\frac{y}{x}\right)-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0 \\
& \ln \left(\frac{y}{x}\right)-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\ln \left(\frac{y}{x}\right)-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 19: Slope field plot

Verification of solutions

$$
\ln \left(\frac{y}{x}\right)-\frac{x^{2}}{2 y^{2}}+\ln (x)-c_{2}=0
$$

Verified OK.

1.9.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x y}{x^{2}+y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{x y\left(b_{3}-a_{2}\right)}{x^{2}+y^{2}}-\frac{x^{2} y^{2} a_{3}}{\left(x^{2}+y^{2}\right)^{2}}-\left(\frac{y}{x^{2}+y^{2}}-\frac{2 x^{2} y}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{x}{x^{2}+y^{2}}-\frac{2 x y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\frac{-3 x^{2} y^{2} b_{2}+2 x y^{3} a_{2}-2 x y^{3} b_{3}+y^{4} a_{3}-y^{4} b_{2}+x^{3} b_{1}-x^{2} y a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
3 x^{2} y^{2} b_{2}-2 x y^{3} a_{2}+2 x y^{3} b_{3}-y^{4} a_{3}+y^{4} b_{2}-x^{3} b_{1}+x^{2} y a_{1}+x y^{2} b_{1}-y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{2} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+3 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+2 b_{3} v_{1} v_{2}^{3}+a_{1} v_{1}^{2} v_{2}-a_{1} v_{2}^{3}-b_{1} v_{1}^{3}+b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
-b_{1} v_{1}^{3}+3 b_{2} v_{1}^{2} v_{2}^{2}+a_{1} v_{1}^{2} v_{2}+\left(-2 a_{2}+2 b_{3}\right) v_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+\left(-a_{3}+b_{2}\right) v_{2}^{4}-a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-2 a_{2}+2 b_{3} & =0 \\
-a_{3}+b_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{x y}{x^{2}+y^{2}}\right)(x) \\
& =\frac{y^{3}}{x^{2}+y^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y^{3}}{x^{2}+y^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\frac{x^{2}}{2 y^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x y}{x^{2}+y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{x}{y^{2}} \\
S_{y} & =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{2 y^{2} \ln (y)-x^{2}}{2 y^{2}}=c_{1}
$$

Which simplifies to

$$
\frac{2 y^{2} \ln (y)-x^{2}}{2 y^{2}}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{\frac{\text { Lambertw }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}{2}+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x y}{x^{2}+y^{2}}$		$\frac{d S}{d R}=0$
-		$\rightarrow \rightarrow \rightarrow$ 边
		$\rightarrow{ }^{-S}(\mathrm{R})_{l} \rightarrow$
\cdots		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$		
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+ \pm \rightarrow 0]{ } \rightarrow$	$S=\underline{2 \ln (y) y^{2}-x^{2}}$	
	$S=\frac{2 y^{2}}{}$	\xrightarrow{R}
		$\rightarrow \rightarrow \rightarrow \rightarrow{ }^{-2}$
-		\rightarrow
- シ		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(x^{2}-2 c_{1}\right)}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 20: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(x^{2}-2 c_{1}\right)}{2}+c_{1}}
$$

Verified OK.

1.9.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x^{2}+y^{2}\right) \mathrm{d} y & =(x y) \mathrm{d} x \\
(-x y) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x y \\
N(x, y) & =x^{2}+y^{2}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x y) \\
& =-x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) \\
& =2 x
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+y^{2}}((-x)-(2 x)) \\
& =-\frac{3 x}{x^{2}+y^{2}}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{y x}((2 x)-(-x)) \\
& =-\frac{3}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{3}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (y)} \\
& =\frac{1}{y^{3}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{3}}(-x y) \\
& =-\frac{x}{y^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{3}}\left(x^{2}+y^{2}\right) \\
& =\frac{x^{2}+y^{2}}{y^{3}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{x}{y^{2}}\right)+\left(\frac{x^{2}+y^{2}}{y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{y^{2}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2 y^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{2}+y^{2}}{y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{2}+y^{2}}{y^{3}}=\frac{x^{2}}{y^{3}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\ln (y)-\frac{x^{2}}{2 y^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\ln (y)-\frac{x^{2}}{2 y^{2}}
$$

The solution becomes

$$
y=\mathrm{e}^{\frac{\operatorname{LambertW}\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{\frac{\operatorname{Lambertw}\left(x^{2}-2 c_{1}\right)}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 21: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{\frac{\text { LambertW }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}{2}+c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve(diff $(y(x), x)=(x * y(x)) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right), y(x)$, singsol=all)

$$
y(x)=\sqrt{\frac{1}{\text { LambertW }\left(c_{1} x^{2}\right)}} x
$$

\checkmark Solution by Mathematica
Time used: 7.664 (sec). Leaf size: 49
DSolve[y' $[x]==(x * y[x]) /\left(x^{\wedge} 2+y[x] \wedge 2\right), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{\sqrt{W\left(e^{-2 c_{1}} x^{2}\right)}} \\
& y(x) \rightarrow \frac{x}{\sqrt{W\left(e^{-2 c_{1}} x^{2}\right)}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.10 problem 1(k)

$$
\text { 1.10.1 Solving as homogeneousTypeD2 ode } 84
$$

1.10.2 Solving as first order ode lie symmetry lookup ode 86
1.10.3 Solving as bernoulli ode 90
1.10.4 Solving as exact ode 94

Internal problem ID [6114]

Internal file name [OUTPUT/5362_Sunday_June_05_2022_03_35_22_PM_9672469/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(k).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
2 x y y^{\prime}-y^{2}=x^{2}
$$

1.10.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
2 x^{2} u(x)\left(u^{\prime}(x) x+u(x)\right)-u(x)^{2} x^{2}=x^{2}
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-1}{2 u x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{2 x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =-\frac{1}{2 x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int-\frac{1}{2 x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =-\frac{\ln (x)}{2}+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =-\frac{\ln (x)}{2}+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(-\frac{\ln (x)}{2}+2 c_{2}\right) \\
& =-\ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{-\ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =\frac{2 c_{2}}{x} \\
& =\frac{c_{3}}{x}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=\frac{c_{3}}{x}
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \\
& \frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x} \tag{1}
\end{equation*}
$$

Figure 22: Slope field plot

Verification of solutions

$$
\frac{y^{2}}{x^{2}}-1=\frac{c_{3}}{x}
$$

Verified OK.

1.10.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}+y^{2}}{2 x y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 13: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{x}{y} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x}{y}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{2}}{2 x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+y^{2}}{2 x y}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y^{2}}{2 x^{2}} \\
S_{y} & =\frac{y}{x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{2}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Which simplifies to

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}$		$\frac{d S}{d R}=\frac{1}{2}$
A		
	$R=x$	
	$S=\frac{y^{2}}{0}$	

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 23: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{2 x}=\frac{x}{2}+c_{1}
$$

Verified OK.

1.10.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{x^{2}+y^{2}}{2 x y}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=\frac{1}{2 x} y+\frac{x}{2} \frac{1}{y} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =\frac{1}{2 x} \\
f_{1}(x) & =\frac{x}{2} \\
n & =-1
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y}$ gives

$$
\begin{equation*}
y^{\prime} y=\frac{y^{2}}{2 x}+\frac{x}{2} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{w(x)}{2 x}+\frac{x}{2} \\
w^{\prime} & =\frac{w}{x}+x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(x) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int \mathrm{d} x \\
& \frac{w}{x}=x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=c_{1} x+x^{2}
$$

which simplifies to

$$
w(x)=x\left(x+c_{1}\right)
$$

Replacing w in the above by y^{2} using equation (5) gives the final solution.

$$
y^{2}=x\left(x+c_{1}\right)
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\sqrt{x\left(x+c_{1}\right)} \\
& y(x)=-\sqrt{x\left(x+c_{1}\right)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\sqrt{x\left(x+c_{1}\right)} \tag{1}\\
& y=-\sqrt{x\left(x+c_{1}\right)} \tag{2}
\end{align*}
$$

Figure 24: Slope field plot

Verification of solutions

$$
y=\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

$$
y=-\sqrt{x\left(x+c_{1}\right)}
$$

Verified OK.

1.10.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(2 x y) \mathrm{d} y & =\left(x^{2}+y^{2}\right) \mathrm{d} x \\
\left(-x^{2}-y^{2}\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{2}-y^{2} \\
N(x, y) & =2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y x}((-2 y)-(2 y)) \\
& =-\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}\left(-x^{2}-y^{2}\right) \\
& =\frac{-x^{2}-y^{2}}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(2 x y) \\
& =\frac{2 y}{x}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{2}-y^{2}}{x^{2}}\right)+\left(\frac{2 y}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{2}-y^{2}}{x^{2}} \mathrm{~d} x \\
\phi & =-x+\frac{y^{2}}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{2 y}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{2 y}{x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{2 y}{x}=\frac{2 y}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\frac{y^{2}}{x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\frac{y^{2}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x+\frac{y^{2}}{x}=c_{1} \tag{1}
\end{equation*}
$$

Figure 25: Slope field plot

Verification of solutions

$$
-x+\frac{y^{2}}{x}=c_{1}
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(2*x*y(x)*diff (y(x),x)=x^2+y(x)^2,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{\left(x+c_{1}\right) x} \\
& y(x)=-\sqrt{\left(x+c_{1}\right) x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.182 (sec). Leaf size: 38
DSolve[2*x*y[x]*y'[x]==x^2+y[x]^2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x} \sqrt{x+c_{1}} \\
& y(x) \rightarrow \sqrt{x} \sqrt{x+c_{1}}
\end{aligned}
$$

1.11 problem 1(L)

Internal problem ID [6115]
Internal file name [OUTPUT/5363_Sunday_June_05_2022_03_35_24_PM_66181348/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(L).
ODE order: 1.
ODE degree: 2 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]

$$
x y^{\prime}+y-x^{4} y^{\prime 2}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{1+\sqrt{1+4 y x^{2}}}{2 x^{3}} \tag{1}\\
& y^{\prime}=-\frac{-1+\sqrt{1+4 y x^{2}}}{2 x^{3}} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{1+\sqrt{4 y x^{2}+1}}{2 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(1+\sqrt{4 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{2 x^{3}}-\frac{\left(1+\sqrt{4 y x^{2}+1}\right)^{2} a_{3}}{4 x^{6}} \\
& -\left(-\frac{3\left(1+\sqrt{4 y x^{2}+1}\right)}{2 x^{4}}+\frac{2 y}{x^{2} \sqrt{4 y x^{2}+1}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{-4 b_{2} x^{6} \sqrt{4 y x^{2}+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3}+4 x^{5} b_{1}-16 x^{4} y a_{1}-4 \sqrt{4 y x^{2}+1} x^{3} a_{2}-2 \sqrt{ }}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3} \\
& \quad-4 x^{5} b_{1}+16 x^{4} y a_{1}+4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& +6 \sqrt{4 y x^{2}+1} x^{2} y a_{3}-\left(4 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1} \\
& +4 x^{3} a_{2}+2 x^{3} b_{3}-2 x^{2} y a_{3}+6 x^{2} a_{1}-a_{3} \sqrt{4 y x^{2}+1}-2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}-4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-8 x^{4} y^{2} a_{3}+4\left(4 y x^{2}+1\right) x^{3} a_{2} \\
& +2\left(4 y x^{2}+1\right) x^{3} b_{3}+6\left(4 y x^{2}+1\right) x^{2} y a_{3}-4 x^{5} b_{1}-8 x^{4} y a_{1}+6\left(4 y x^{2}+1\right) x^{2} a_{1} \tag{6E}\\
& +4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3}+6 \sqrt{4 y x^{2}+1} x^{2} y a_{3} \\
& \quad-\left(4 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1}-2\left(4 y x^{2}+1\right) a_{3}-a_{3} \sqrt{4 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3}-4 x^{5} b_{1}+16 x^{4} y a_{1} \\
& +4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3}+2 \sqrt{4 y x^{2}+1} x^{2} y a_{3}+4 x^{3} a_{2} \\
& +2 x^{3} b_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1}-2 x^{2} y a_{3}+6 x^{2} a_{1}-2 a_{3} \sqrt{4 y x^{2}+1}-2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}+8 v_{1}^{5} v_{2} a_{2}+16 v_{1}^{4} v_{2}^{2} a_{3}-4 v_{1}^{6} b_{2}+4 v_{1}^{5} v_{2} b_{3}+16 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& \quad-4 v_{1}^{5} b_{1}+4 v_{3} v_{1}^{3} a_{2}+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1} \\
& \quad+4 v_{1}^{3} a_{2}-2 v_{1}^{2} v_{2} a_{3}+2 v_{1}^{3} b_{3}+6 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}-4 v_{1}^{6} b_{2}+\left(8 a_{2}+4 b_{3}\right) v_{1}^{5} v_{2}-4 v_{1}^{5} b_{1}+16 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad+16 v_{1}^{4} v_{2} a_{1}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3} v_{3}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3}+2 v_{3} v_{1}^{2} v_{2} a_{3} \\
& \quad-2 v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}+6 v_{1}^{2} a_{1}-2 a_{3} v_{3}-2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
6 a_{1} & =0 \\
16 a_{1} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
16 a_{3} & =0 \\
-4 b_{1} & =0 \\
-4 b_{2} & =0 \\
4 b_{2} & =0 \\
4 a_{2}+2 b_{3} & =0 \\
8 a_{2}+4 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(\frac{1+\sqrt{4 y x^{2}+1}}{2 x^{3}}\right)(x) \\
& =\frac{-4 y x^{2}-\sqrt{4 y x^{2}+1}-1}{2 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-4 y x^{2}-\sqrt{4 y x^{2}+1}-1}{2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{4 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+\sqrt{4 y x^{2}+1}}{2 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{x \sqrt{4 y x^{2}+1}} \\
S_{y} & =\frac{-1+\frac{1}{\sqrt{4 y x^{2}+1}}}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1} \tag{1}
\end{equation*}
$$

$\underline{\text { Verification of solutions }}$

$$
-\frac{\ln (y)}{2}-\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Verified OK.
Solving equation (2)
Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{-1+\sqrt{4 y x^{2}+1}}{2 x^{3}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{\left(-1+\sqrt{4 y x^{2}+1}\right)\left(b_{3}-a_{2}\right)}{2 x^{3}}-\frac{\left(-1+\sqrt{4 y x^{2}+1}\right)^{2} a_{3}}{4 x^{6}} \tag{5E}\\
& -\left(-\frac{2 y}{x^{2} \sqrt{4 y x^{2}+1}}+\frac{-\frac{3}{2}+\frac{3 \sqrt{4 y x^{2}+1}}{2}}{x^{4}}\right)\left(x a_{2}+y a_{3}+a_{1}\right)+\frac{x b_{2}+y b_{3}+b_{1}}{x \sqrt{4 y x^{2}+1}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
-\underline{\left.-4 b_{2} x^{6} \sqrt{4 y x^{2}+1}-4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+16 x^{4} y^{2} a_{3}-4 x^{5} b_{1}+16 x^{4} y a_{1}-4 \sqrt{4 y x^{2}+1} x^{3} a_{2}-2 \sqrt{ }\right) .}
$$

$$
=0
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3} \\
& \quad+4 x^{5} b_{1}-16 x^{4} y a_{1}+4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3} \tag{6E}\\
& \quad+6 \sqrt{4 y x^{2}+1} x^{2} y a_{3}-\left(4 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1} \\
& \quad-4 x^{3} a_{2}-2 x^{3} b_{3}+2 x^{2} y a_{3}-6 x^{2} a_{1}-a_{3} \sqrt{4 y x^{2}+1}+2 a_{3}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}+4 x^{6} b_{2}+8 x^{5} y a_{2}+4 x^{5} y b_{3}+8 x^{4} y^{2} a_{3}-4\left(4 y x^{2}+1\right) x^{3} a_{2} \\
& \quad-2\left(4 y x^{2}+1\right) x^{3} b_{3}-6\left(4 y x^{2}+1\right) x^{2} y a_{3}+4 x^{5} b_{1}+8 x^{4} y a_{1}-6\left(4 y x^{2}+1\right) x^{2} a_{1} \tag{6E}\\
& +4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3}+6 \sqrt{4 y x^{2}+1} x^{2} y a_{3} \\
& \quad-\left(4 y x^{2}+1\right)^{\frac{3}{2}} a_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1}+2\left(4 y x^{2}+1\right) a_{3}-a_{3} \sqrt{4 y x^{2}+1}=0
\end{align*}
$$

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& 4 b_{2} x^{6} \sqrt{4 y x^{2}+1}+4 x^{6} b_{2}-8 x^{5} y a_{2}-4 x^{5} y b_{3}-16 x^{4} y^{2} a_{3}+4 x^{5} b_{1}-16 x^{4} y a_{1} \\
& +4 \sqrt{4 y x^{2}+1} x^{3} a_{2}+2 \sqrt{4 y x^{2}+1} x^{3} b_{3}+2 \sqrt{4 y x^{2}+1} x^{2} y a_{3}-4 x^{3} a_{2} \\
& -2 x^{3} b_{3}+6 \sqrt{4 y x^{2}+1} x^{2} a_{1}+2 x^{2} y a_{3}-6 x^{2} a_{1}-2 a_{3} \sqrt{4 y x^{2}+1}+2 a_{3}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{4 y x^{2}+1}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{4 y x^{2}+1}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}-8 v_{1}^{5} v_{2} a_{2}-16 v_{1}^{4} v_{2}^{2} a_{3}+4 v_{1}^{6} b_{2}-4 v_{1}^{5} v_{2} b_{3}-16 v_{1}^{4} v_{2} a_{1} \tag{7E}\\
& +4 v_{1}^{5} b_{1}+4 v_{3} v_{1}^{3} a_{2}+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{3} v_{1}^{3} b_{3}+6 v_{3} v_{1}^{2} a_{1} \\
& \quad-4 v_{1}^{3} a_{2}+2 v_{1}^{2} v_{2} a_{3}-2 v_{1}^{3} b_{3}-6 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 4 b_{2} v_{1}^{6} v_{3}+4 v_{1}^{6} b_{2}+\left(-8 a_{2}-4 b_{3}\right) v_{1}^{5} v_{2}+4 v_{1}^{5} b_{1}-16 v_{1}^{4} v_{2}^{2} a_{3} \tag{8E}\\
& \quad-16 v_{1}^{4} v_{2} a_{1}+\left(4 a_{2}+2 b_{3}\right) v_{1}^{3} v_{3}+\left(-4 a_{2}-2 b_{3}\right) v_{1}^{3} \\
& \quad+2 v_{3} v_{1}^{2} v_{2} a_{3}+2 v_{1}^{2} v_{2} a_{3}+6 v_{3} v_{1}^{2} a_{1}-6 v_{1}^{2} a_{1}-2 a_{3} v_{3}+2 a_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
-16 a_{1} & =0 \\
-6 a_{1} & =0 \\
6 a_{1} & =0 \\
-16 a_{3} & =0 \\
-2 a_{3} & =0 \\
2 a_{3} & =0 \\
4 b_{1} & =0 \\
4 b_{2} & =0 \\
-8 a_{2}-4 b_{3} & =0 \\
-4 a_{2}-2 b_{3} & =0 \\
4 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{-1+\sqrt{4 y x^{2}+1}}{2 x^{3}}\right)(x) \\
& =\frac{-4 y x^{2}+\sqrt{4 y x^{2}+1}-1}{2 x^{2}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-4 y x^{2}+\sqrt{4 y x^{2}+1}-1}{2 x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{4 y x^{2}+1}\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{-1+\sqrt{4 y x^{2}+1}}{2 x^{3}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{1}{x \sqrt{4 y x^{2}+1}} \\
& S_{y}=\frac{-\frac{1}{\sqrt{4 y x^{2}+1}}-1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
-\frac{\ln (y)}{2}+\operatorname{arctanh}\left(\sqrt{1+4 y x^{2}}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
    *** Sublevel 2 ***
    Methods for first order ODEs:
    -> Solving 1st order ODE of high degree, 1st attempt
    trying 1st order WeierstrassP solution for high degree ODE
    trying 1st order WeierstrassPPrime solution for high degree ODE
    trying 1st order JacobiSN solution for high degree ODE
    trying 1st order ODE linearizable_by_differentiation
    trying differential order: 1; missing variables
    trying dAlembert
    trying simple symmetries for implicit equations
    Successful isolation of dy/dx: 2 solutions were found. Trying to solve each resulting ODE
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful
    * Tackling next ODE.
        *** Sublevel 3 ***
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying homogeneous types:
        trying homogeneous G
        <- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 81
dsolve $\left(y(x)+x * \operatorname{diff}(y(x), x)=x^{\wedge} 4 *(\operatorname{diff}(y(x), x)) \wedge 2, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=-\frac{1}{4 x^{2}} \\
& y(x)=\frac{-c_{1} i-x}{c_{1}^{2} x} \\
& y(x)=\frac{c_{1} i-x}{x c_{1}^{2}} \\
& y(x)=\frac{c_{1} i-x}{x c_{1}^{2}} \\
& y(x)=\frac{-c_{1} i-x}{c_{1}^{2} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.5 (sec). Leaf size: 123
DSolve[y[x]+x*y'[x]==x^4*(y'[x])~2,y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& \text { Solve }\left[-\frac{x \sqrt{4 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{4 x^{2} y(x)+1}\right)}{\sqrt{4 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& \text { Solve }\left[\frac{x \sqrt{4 x^{2} y(x)+1} \operatorname{arctanh}\left(\sqrt{4 x^{2} y(x)+1}\right)}{\sqrt{4 x^{4} y(x)+x^{2}}}-\frac{1}{2} \log (y(x))=c_{1}, y(x)\right] \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.12 problem 1 (m)

1.12.1 Solving as homogeneousTypeD2 ode 112
1.12.2 Solving as first order ode lie symmetry calculated ode 114
1.12.3 Solving as exact ode . 119

Internal problem ID [6116]
Internal file name [OUTPUT/5364_Sunday_June_05_2022_03_35_28_PM_30647876/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(m).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_oorder_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`
    class B`]]
```

$$
y^{\prime}-\frac{y^{2}}{x y-x^{2}}=0
$$

1.12.1 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u^{\prime}(x) x+u(x)-\frac{u(x)^{2} x^{2}}{x^{2} u(x)-x^{2}}=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u}{x(u-1)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u}{u-1}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u}{u-1}} d u & =\int \frac{1}{x} d x \\
u-\ln (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
u(x)-\ln (u(x))-\ln (x)-c_{2}=0
$$

Replacing $u(x)$ in the above solution by $\frac{y}{x}$ results in the solution for y in implicit form

$$
\begin{aligned}
& \frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \\
& \frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 26: Slope field plot

Verification of solutions

$$
\frac{y}{x}-\ln \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.

1.12.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y^{2}}{x(-x+y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y^{2}\left(b_{3}-a_{2}\right)}{x(-x+y)}-\frac{y^{4} a_{3}}{x^{2}(-x+y)^{2}} \\
& -\left(-\frac{y^{2}}{x^{2}(-x+y)}+\frac{y^{2}}{x(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{2 y}{x(-x+y)}-\frac{y^{2}}{x(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\frac{x^{4} b_{2}-x^{2} y^{2} a_{2}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}+2 x^{2} y b_{1}-2 x y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}}{x^{2}(x-y)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
x^{4} b_{2}-x^{2} y^{2} a_{2}+x^{2} y^{2} b_{3}-2 x y^{3} a_{3}+2 x^{2} y b_{1}-2 x y^{2} a_{1}-x y^{2} b_{1}+y^{3} a_{1}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-a_{2} v_{1}^{2} v_{2}^{2}-2 a_{3} v_{1} v_{2}^{3}+b_{2} v_{1}^{4}+b_{3} v_{1}^{2} v_{2}^{2}-2 a_{1} v_{1} v_{2}^{2}+a_{1} v_{2}^{3}+2 b_{1} v_{1}^{2} v_{2}-b_{1} v_{1} v_{2}^{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
b_{2} v_{1}^{4}+\left(b_{3}-a_{2}\right) v_{1}^{2} v_{2}^{2}+2 b_{1} v_{1}^{2} v_{2}-2 a_{3} v_{1} v_{2}^{3}+\left(-2 a_{1}-b_{1}\right) v_{1} v_{2}^{2}+a_{1} v_{2}^{3}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{2} & =0 \\
-2 a_{3} & =0 \\
2 b_{1} & =0 \\
-2 a_{1}-b_{1} & =0 \\
b_{3}-a_{2} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(\frac{y^{2}}{x(-x+y)}\right)(x) \\
& =\frac{y x}{x-y} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y x}{x-y}} d y
\end{aligned}
$$

Which results in

$$
S=\ln (y)-\frac{y}{x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y^{2}}{x(-x+y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{x^{2}} \\
S_{y} & =\frac{x-y}{x y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x \ln (y)-y}{x}=c_{1}
$$

Which simplifies to

$$
\frac{x \ln (y)-y}{x}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{e^{c_{1}}}{x}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y^{2}}{x(-x+y)}$		$\frac{d S}{d R}=0$
		$\underset{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }$
$\rightarrow+\infty$		$\rightarrow 2$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+]{ }+{ }_{\square}^{+} \xrightarrow{+}$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
	$S=\underline{\ln (y) x-y}$	
	x	$\xrightarrow{\rightarrow-2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{c_{1}}}{x}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 27: Slope field plot
Verification of solutions

$$
\left.y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}}{x}\right.} \frac{c_{1}}{x}\right)+c_{1}
$$

Verified OK.

1.12.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x(-x+y)) \mathrm{d} y & =\left(y^{2}\right) \mathrm{d} x \\
\left(-y^{2}\right) \mathrm{d} x+(x(-x+y)) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2} \\
N(x, y) & =x(-x+y)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x(-x+y)) \\
& =-2 x+y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. By inspection $\frac{1}{x^{2} y}$ is an integrating factor. Therefore by multiplying $M=-y^{2}$ and $N=x(-x+y)$ by this integrating factor the ode becomes exact. The new M, N are

$$
\begin{aligned}
M & =-\frac{y}{x^{2}} \\
N & =\frac{-x+y}{x y}
\end{aligned}
$$

To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{-x+y}{x y}\right) \mathrm{d} y & =\left(\frac{y}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{y}{x^{2}}\right) \mathrm{d} x+\left(\frac{-x+y}{x y}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{y}{x^{2}} \\
N(x, y) & =\frac{-x+y}{x y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x^{2}}\right) \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-x+y}{x y}\right) \\
& =-\frac{1}{x^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{y}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{y}{x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x+y}{x y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x+y}{x y}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{y}{x}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{y}{x}-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-c_{1}}}{x}\right)-c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\frac{\mathrm{e}^{-c_{1}}}{x}\right)-c_{1}} \tag{1}
\end{equation*}
$$

Figure 28: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{- \text {LambertW }\left(-\frac{\mathrm{e}^{-c_{1}}}{x}\right)-c_{1}}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve(diff $(y(x), x)=y(x) \wedge 2 /\left(x * y(x)-x^{\wedge} 2\right), y(x)$, singsol=all)

$$
y(x)=-x \text { LambertW }\left(-\frac{\mathrm{e}^{-c_{1}}}{x}\right)
$$

\checkmark Solution by Mathematica
Time used: 2.335 (sec). Leaf size: 25
DSolve[y'[x]==y[x]~2/(x*y[x]-x^2),y[x],x,IncludeSingularSolutions -> True]

$$
\begin{aligned}
& y(x) \rightarrow-x W\left(-\frac{e^{-c_{1}}}{x}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.13 problem 1(n)

1.13.1 Solving as first order ode lie symmetry calculated ode 126
1.13.2 Solving as exact ode . 132

Internal problem ID [6117]
Internal file name [OUTPUT/5365_Sunday_June_05_2022_03_35_29_PM_26351614/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(n).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
(y \cos (y)-\sin (y)+x) y^{\prime}-y=0
$$

1.13.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y}{y \cos (y)-\sin (y)+x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{y\left(b_{3}-a_{2}\right)}{y \cos (y)-\sin (y)+x} \\
& -\frac{y^{2} a_{3}}{(y \cos (y)-\sin (y)+x)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{(y \cos (y)-\sin (y)+x)^{2}} \tag{5E}\\
& -\left(\frac{1}{y \cos (y)-\sin (y)+x}+\frac{y^{2} \sin (y)}{(y \cos (y)-\sin (y)+x)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\cos (y)^{2} y^{2} b_{2}-\sin (y) x y^{2} b_{2}-\sin (y) y^{3} b_{3}-2 \cos (y) \sin (y) y b_{2}+\cos (y) x y b_{2}-\cos (y) y^{2} a_{2}-\sin (y) y^{2} b_{1}}{(y \cos (y)-\sin (y)+x)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& \cos (y)^{2} y^{2} b_{2}-\sin (y) x y^{2} b_{2}-\sin (y) y^{3} b_{3}-2 \cos (y) \sin (y) y b_{2} \tag{6E}\\
& +\cos (y) x y b_{2}-\cos (y) y^{2} a_{2}-\sin (y) y^{2} b_{1}-\cos (y) y b_{1} \\
& +\sin (y)^{2} b_{2}-\sin (y) x b_{2}+\sin (y) y a_{2}+\sin (y) b_{1}-x b_{1}+y a_{1}=0
\end{align*}
$$

Simplifying the above gives

$$
\begin{align*}
& -x b_{1}+y a_{1}+\frac{y^{2} b_{2}}{2}+\frac{b_{2}}{2}+\frac{y^{2} b_{2} \cos (2 y)}{2}-\sin (y) x y^{2} b_{2}-\sin (y) y^{3} b_{3} \tag{6E}\\
& -y b_{2} \sin (2 y)+\cos (y) x y b_{2}-\cos (y) y^{2} a_{2}-\sin (y) y^{2} b_{1} \\
& -\cos (y) y b_{1}-\frac{b_{2} \cos (2 y)}{2}-\sin (y) x b_{2}+\sin (y) y a_{2}+\sin (y) b_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y, \cos (y), \cos (2 y), \sin (y), \sin (2 y)\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \cos (y)=v_{3}, \cos (2 y)=v_{4}, \sin (y)=v_{5}, \sin (2 y)=v_{6}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -v_{1} b_{1}+v_{2} a_{1}+\frac{1}{2} v_{2}^{2} b_{2}+\frac{1}{2} b_{2}+\frac{1}{2} v_{2}^{2} b_{2} v_{4}-v_{5} v_{1} v_{2}^{2} b_{2}-v_{5} v_{2}^{3} b_{3}-v_{2} b_{2} v_{6} \tag{7E}\\
& +v_{3} v_{1} v_{2} b_{2}-v_{3} v_{2}^{2} a_{2}-v_{5} v_{2}^{2} b_{1}-v_{3} v_{2} b_{1}-\frac{1}{2} b_{2} v_{4}-v_{5} v_{1} b_{2}+v_{5} v_{2} a_{2}+v_{5} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& -v_{1} b_{1}+v_{2} a_{1}+\frac{1}{2} v_{2}^{2} b_{2}+\frac{1}{2} b_{2}+\frac{1}{2} v_{2}^{2} b_{2} v_{4}-v_{5} v_{1} v_{2}^{2} b_{2}-v_{5} v_{2}^{3} b_{3}-v_{2} b_{2} v_{6} \tag{8E}\\
& +v_{3} v_{1} v_{2} b_{2}-v_{3} v_{2}^{2} a_{2}-v_{5} v_{2}^{2} b_{1}-v_{3} v_{2} b_{1}-\frac{1}{2} b_{2} v_{4}-v_{5} v_{1} b_{2}+v_{5} v_{2} a_{2}+v_{5} b_{1}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
-a_{2} & =0 \\
-b_{1} & =0 \\
-b_{2} & =0 \\
-\frac{b_{2}}{2} & =0 \\
\frac{b_{2}}{2} & =0 \\
-b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=y \\
& \eta=0
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =0-\left(\frac{y}{y \cos (y)-\sin (y)+x}\right)(y) \\
& =-\frac{y^{2}}{y \cos (y)-\sin (y)+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y^{2}}{y \cos (y)-\sin (y)+x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\sin (y)}{y}+\frac{x}{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y \cos (y)-\sin (y)+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y} \\
S_{y} & =\frac{-y \cos (y)+\sin (y)-x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-\sin (y)+x}{y}=c_{1}
$$

Which simplifies to

$$
\frac{-\sin (y)+x}{y}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{y \cos (y)-\sin (y)+x}$		$\frac{d S}{d R}=0$
		\rightarrow
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow}$
-		
\therefore cow	$R=x$	
$\xrightarrow[\rightarrow]{\rightarrow \rightarrow+\rightarrow+\infty}$	$S=-\sin (y)+x$	
	y	$\xrightarrow{\dot{L} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow{-2 \rightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow}$
		$\xrightarrow{\bullet \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}$
		\rightarrow

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{-\sin (y)+x}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 29: Slope field plot

Verification of solutions

$$
\frac{-\sin (y)+x}{y}=c_{1}
$$

Verified OK.

1.13.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(y \cos (y)-\sin (y)+x) \mathrm{d} y & =(y) \mathrm{d} x \\
(-y) \mathrm{d} x+(y \cos (y)-\sin (y)+x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y \\
N(x, y) & =y \cos (y)-\sin (y)+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-y) \\
& =-1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(y \cos (y)-\sin (y)+x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y \cos (y)-\sin (y)+x}((-1)-(1)) \\
& =-\frac{2}{y \cos (y)-\sin (y)+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{y}((1)-(-1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(-y) \\
& =-\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}(y \cos (y)-\sin (y)+x) \\
& =\frac{y \cos (y)-\sin (y)+x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\frac{1}{y}\right)+\left(\frac{y \cos (y)-\sin (y)+x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{y} \mathrm{~d} x \\
\phi & =-\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y \cos (y)-\sin (y)+x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y \cos (y)-\sin (y)+x}{y^{2}}=\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{y \cos (y)-\sin (y)}{y^{2}}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{y \cos (y)-\sin (y)}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{\sin (y)}{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x}{y}+\frac{\sin (y)}{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x}{y}+\frac{\sin (y)}{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x}{y}+\frac{\sin (y)}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 30: Slope field plot

Verification of solutions

$$
-\frac{x}{y}+\frac{\sin (y)}{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve $((y(x) * \cos (y(x))-\sin (y(x))+x) * \operatorname{diff}(y(x), x)=y(x), y(x), \quad$ singsol=all)

$$
x-c_{1} y(x)-\sin (y(x))=0
$$

\checkmark Solution by Mathematica
Time used: 0.245 (sec). Leaf size: 14
DSolve $\left[(y[x] * \operatorname{Cos}[y[x]]-\operatorname{Sin}[y[x]]+x) * y{ }^{\prime}[x]==y[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=\sin (y(x))+c_{1} y(x), y(x)\right]
$$

1.14 problem 1(o)

1.14.1 Solving as quadrature ode . 139
1.14.2 Maple step by step solution . 140

Internal problem ID [6118]
Internal file name [OUTPUT/5366_Sunday_June_05_2022_03_35_32_PM_75099697/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 1(o).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{2}+y^{\prime} y^{2}=-1
$$

1.14.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
\int-\frac{y^{2}}{y^{2}+1} d y & =\int d x \\
\int^{y}-\frac{-a^{2}}{-a^{2}+1} d _a & =x+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y}-\frac{-a^{2}}{-a^{2}+1} d _a=x+c_{1} \tag{1}
\end{equation*}
$$

Figure 31: Slope field plot
Verification of solutions

$$
\int^{y}-\frac{-a^{2}}{-a^{2}+1} d _a=x+c_{1}
$$

Verified OK.

1.14.2 Maple step by step solution

Let's solve
$y^{2}+y^{\prime} y^{2}=-1$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y^{2}}{-1-y^{2}}=1
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} y^{2}}{-1-y^{2}} d x=\int 1 d x+c_{1}$
- Evaluate integral

$$
-y+\arctan (y)=x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.031 (sec). Leaf size: 14

```
dsolve(1+y(x)^2+y(x)^2*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\tan \left(\operatorname{RootOf}\left(-_Z+x+c_{1}+\tan \left(_Z\right)\right)\right)
$$

\checkmark Solution by Mathematica
Time used: 0.186 (sec). Leaf size: 35

```
DSolve[1+y[x]^2+y[x]^2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }[\# 1-\arctan (\# 1) \&]\left[-x+c_{1}\right] \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

1.15 problem 2(a)

1.15.1 Solving as quadrature ode . 142
1.15.2 Maple step by step solution . 143

Internal problem ID [6119]
Internal file name [OUTPUT/5367_Sunday_June_05_2022_03_35_33_PM_12539902/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\mathrm{e}^{3 x}-x
$$

1.15.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \mathrm{e}^{3 x}-x \mathrm{~d} x \\
& =-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 32: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1}
$$

Verified OK.

1.15.2 Maple step by step solution

Let's solve

$$
y^{\prime}=\mathrm{e}^{3 x}-x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int\left(\mathrm{e}^{3 x}-x\right) d x+c_{1}
$$

- Evaluate integral

$$
y=-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(diff(y(x),x)=exp(3*x)-x,y(x), singsol=all)
```

$$
y(x)=-\frac{x^{2}}{2}+\frac{\mathrm{e}^{3 x}}{3}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 24
DSolve [y' $[x]==\operatorname{Exp}[3 * x]-x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{x^{2}}{2}+\frac{e^{3 x}}{3}+c_{1}
$$

1.16 problem 2(b)

> 1.16.1 Solving as quadrature ode
1.16.2 Maple step by step solution . 146

Internal problem ID [6120]
Internal file name [OUTPUT/5368_Sunday_June_05_2022_03_35_34_PM_99531044/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x \mathrm{e}^{x^{2}}
$$

1.16.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x^{2}} \mathrm{~d} x \\
& =\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 33: Slope field plot
Verification of solutions

$$
y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Verified OK.

1.16.2 Maple step by step solution

Let's solve
$y^{\prime}=x \mathrm{e}^{x^{2}}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int x \mathrm{e}^{x^{2}} d x+c_{1}
$$

- Evaluate integral
$y=\frac{e^{x^{2}}}{2}+c_{1}$
- Solve for y

$$
y=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=x*exp(x^2),y(x), singsol=all)
```

$$
y(x)=\frac{\mathrm{e}^{x^{2}}}{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 17
DSolve[y' $[\mathrm{x}]==\mathrm{x} * \operatorname{Exp}[\mathrm{x} \wedge 2], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{e^{x^{2}}}{2}+c_{1}
$$

1.17 problem 2(c)

1.17.1 Solving as quadrature ode . 148
1.17.2 Maple step by step solution . 149

Internal problem ID [6121]
Internal file name [OUTPUT/5369_Sunday_June_05_2022_03_35_35_PM_66222368/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
(1+x) y^{\prime}=x
$$

1.17.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x}{1+x} \mathrm{~d} x \\
& =x-\ln (1+x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x-\ln (1+x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 34: Slope field plot
Verification of solutions

$$
y=x-\ln (1+x)+c_{1}
$$

Verified OK.

1.17.2 Maple step by step solution

Let's solve

$$
(1+x) y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
y^{\prime}=\frac{x}{1+x}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{x}{1+x} d x+c_{1}$
- Evaluate integral

$$
y=x-\ln (1+x)+c_{1}
$$

- \quad Solve for y

$$
y=x-\ln (1+x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve((1+x)*diff (y (x), x)=x,y(x), singsol=all)
```

$$
y(x)=x-\ln (x+1)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 15
DSolve[(1+x)*y'[x]==x,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x-\log (x+1)+c_{1}
$$

1.18 problem 2(d)

1.18.1 Solving as quadrature ode . 151
1.18.2 Maple step by step solution . 152

Internal problem ID [6122]
Internal file name [OUTPUT/5370_Sunday_June_05_2022_03_35_36_PM_57886836/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(x^{2}+1\right) y^{\prime}=x
$$

1.18.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x}{x^{2}+1} \mathrm{~d} x \\
& =\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 35: Slope field plot
Verification of solutions

$$
y=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

Verified OK.

1.18.2 Maple step by step solution

Let's solve
$\left(x^{2}+1\right) y^{\prime}=x$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime}=\frac{x}{x^{2}+1}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{x}{x^{2}+1} d x+c_{1}$
- Evaluate integral

$$
y=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve ($\left(1+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=x, y(x), \quad$ singsol=all $)$

$$
y(x)=\frac{\ln \left(x^{2}+1\right)}{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 18
DSolve $\left[\left(1+x^{\wedge} 2\right) * y^{\prime}[x]==x, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2} \log \left(x^{2}+1\right)+c_{1}
$$

1.19 problem 2(e)

1.19.1 Solving as quadrature ode . 154
1.19.2 Maple step by step solution . 155

Internal problem ID [6123]
Internal file name [OUTPUT/5371_Sunday_June_05_2022_03_35_37_PM_74157158/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(x^{2}+1\right) y^{\prime}=\arctan (x)
$$

1.19.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\arctan (x)}{x^{2}+1} \mathrm{~d} x \\
& =\frac{\arctan (x)^{2}}{2}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\arctan (x)^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 36: Slope field plot

Verification of solutions

$$
y=\frac{\arctan (x)^{2}}{2}+c_{1}
$$

Verified OK.

1.19.2 Maple step by step solution

Let's solve

$$
\left(x^{2}+1\right) y^{\prime}=\arctan (x)
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime}=\frac{\arctan (x)}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{\arctan (x)}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{\arctan (x)^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\arctan (x)^{2}}{2}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve($\left(1+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=\arctan (x), y(x)$, singsol=all)

$$
y(x)=\frac{\arctan (x)^{2}}{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 16
DSolve[(1+x^2)*y'[x]==ArcTan[x],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\arctan (x)^{2}}{2}+c_{1}
$$

1.20 problem 2(f)

1.20.1 Solving as quadrature ode . 157
1.20.2 Maple step by step solution . 158

Internal problem ID [6124]
Internal file name [OUTPUT/5372_Sunday_June_05_2022_03_35_38_PM_11524109/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x y^{\prime}=1
$$

1.20.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x} \mathrm{~d} x \\
& =\ln (x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 37: Slope field plot
Verification of solutions

$$
y=\ln (x)+c_{1}
$$

Verified OK.

1.20.2 Maple step by step solution

Let's solve
$x y^{\prime}=1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
y^{\prime}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
y=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\ln (x)+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 8

```
dsolve(x*diff(y(x),x)=1,y(x), singsol=all)
```

$$
y(x)=\ln (x)+c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 10

```
DSolve[x*y'[x]==1,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \log (x)+c_{1}
$$

1.21 problem 2(g)

1.21.1 Solving as quadrature ode . 160
1.21.2 Maple step by step solution . 161

Internal problem ID [6125]
Internal file name [OUTPUT/5373_Sunday_June_05_2022_03_35_39_PM_21493951/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\arcsin (x)
$$

1.21.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \arcsin (x) \mathrm{d} x \\
& =x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1} \tag{1}
\end{equation*}
$$

Figure 38: Slope field plot

Verification of solutions

$$
y=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}
$$

Verified OK.

1.21.2 Maple step by step solution

Let's solve
$y^{\prime}=\arcsin (x)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \arcsin (x) d x+c_{1}$
- Evaluate integral
$y=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}$
- \quad Solve for y

$$
y=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19

```
dsolve(diff (y(x),x)=arcsin}(x),y(x), singsol=all)
```

$$
y(x)=x \arcsin (x)+\sqrt{-x^{2}+1}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 23
DSolve[y'[x]==ArcSin $[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \arcsin (x)+\sqrt{1-x^{2}}+c_{1}
$$

1.22 problem 2(h)

1.22.1 Solving as quadrature ode . 163
1.22.2 Maple step by step solution . 164

Internal problem ID [6126]
Internal file name [OUTPUT/5374_Sunday_June_05_2022_03_35_40_PM_19514843/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\sin (x) y^{\prime}=1
$$

1.22.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{\sin (x)} \mathrm{d} x \\
& =\ln (\csc (x)-\cot (x))+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (\csc (x)-\cot (x))+c_{1} \tag{1}
\end{equation*}
$$

Figure 39: Slope field plot
Verification of solutions

$$
y=\ln (\csc (x)-\cot (x))+c_{1}
$$

Verified OK.

1.22.2 Maple step by step solution

Let's solve

$$
\sin (x) y^{\prime}=1
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
y^{\prime}=\frac{1}{\sin (x)}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{\sin (x)} d x+c_{1}$
- Evaluate integral

$$
y=\ln (\csc (x)-\cot (x))+c_{1}
$$

- \quad Solve for y

$$
y=\ln (\csc (x)-\cot (x))+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(sin}(\textrm{x})*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})=1,y(x), singsol=all
```

$$
y(x)=-\ln (\csc (x)+\cot (x))+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 13
DSolve[Sin $[x] * y^{\prime}[x]==1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\operatorname{arctanh}(\cos (x))+c_{1}
$$

1.23 problem 2(i)

1.23.1 Solving as quadrature ode . 166
1.23.2 Maple step by step solution . 167

Internal problem ID [6127]
Internal file name [OUTPUT/5375_Sunday_June_05_2022_03_35_41_PM_50895992/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(x^{3}+1\right) y^{\prime}=x
$$

1.23.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x}{x^{3}+1} \mathrm{~d} x \\
& =\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (1+x)}{3}+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (1+x)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 40: Slope field plot

Verification of solutions

$$
y=\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (1+x)}{3}+c_{1}
$$

Verified OK.

1.23.2 Maple step by step solution

Let's solve

$$
\left(x^{3}+1\right) y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
y^{\prime}=\frac{x}{x^{3}+1}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{x}{x^{3}+1} d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (1+x)}{3}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (1+x)}{3}+c_{1}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
dsolve($\left(1+x^{\wedge} 3\right) * \operatorname{diff}(y(x), x)=x, y(x)$, singsol=all)

$$
y(x)=\frac{\ln \left(x^{2}-x+1\right)}{6}+\frac{\sqrt{3} \arctan \left(\frac{(2 x-1) \sqrt{3}}{3}\right)}{3}-\frac{\ln (x+1)}{3}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 48
DSolve[(1+ $\left.x^{\wedge} 3\right) * y '[x]==x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{6}\left(2 \sqrt{3} \arctan \left(\frac{2 x-1}{\sqrt{3}}\right)+\log \left(x^{2}-x+1\right)-2 \log (x+1)+6 c_{1}\right)
$$

1.24 problem 2(j)

> 1.24.1 Solving as quadrature ode
1.24.2 Maple step by step solution . 170

Internal problem ID [6128]
Internal file name [OUTPUT/5376_Sunday_June_05_2022_03_35_43_PM_51844411/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 2(j).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(x^{2}-3 x+2\right) y^{\prime}=x
$$

1.24.1 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x}{x^{2}-3 x+2} \mathrm{~d} x \\
& =-\ln (x-1)+2 \ln (-2+x)+c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\ln (x-1)+2 \ln (-2+x)+c_{1} \tag{1}
\end{equation*}
$$

Figure 41: Slope field plot
Verification of solutions

$$
y=-\ln (x-1)+2 \ln (-2+x)+c_{1}
$$

Verified OK.

1.24.2 Maple step by step solution

Let's solve

$$
\left(x^{2}-3 x+2\right) y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1

```
y'
```

- \quad Separate variables

$$
y^{\prime}=\frac{x}{x^{2}-3 x+2}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{x}{x^{2}-3 x+2} d x+c_{1}
$$

- Evaluate integral

$$
y=-\ln (x-1)+2 \ln (-2+x)+c_{1}
$$

- \quad Solve for y

$$
y=-\ln (x-1)+2 \ln (-2+x)+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 18

```
dsolve((x^2-3*x+2)*diff(y(x), x)=x,y(x), singsol=all)
```

$$
y(x)=2 \ln (-2+x)-\ln (x-1)+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 24
DSolve $\left[\left(x^{\wedge} 2-3 * x+2\right) * y\right.$ ' $[x]==x, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\log (1-x)+2 \log (2-x)+c_{1}
$$

1.25 problem 3(a)

1.25.1 Existence and uniqueness analysis 172
1.25.2 Solving as quadrature ode . 173
1.25.3 Maple step by step solution . 174

Internal problem ID [6129]
Internal file name [OUTPUT/5377_Sunday_June_05_2022_03_35_44_PM_61552955/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=x \mathrm{e}^{x}
$$

With initial conditions

$$
[y(1)=3]
$$

1.25.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =x \mathrm{e}^{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=x \mathrm{e}^{x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=x \mathrm{e}^{x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.25.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int x \mathrm{e}^{x} \mathrm{~d} x \\
& =(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 3=c_{1} \\
& c_{1}=3
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=x \mathrm{e}^{x}-\mathrm{e}^{x}+3
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{x}-\mathrm{e}^{x}+3 \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{x}-\mathrm{e}^{x}+3
$$

Verified OK.

1.25.3 Maple step by step solution

Let's solve
$\left[y^{\prime}=x \mathrm{e}^{x}, y(1)=3\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int x \mathrm{e}^{x} d x+c_{1}$
- Evaluate integral

$$
y=(x-1) \mathrm{e}^{x}+c_{1}
$$

- \quad Solve for y

$$
y=x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}
$$

- Use initial condition $y(1)=3$

$$
3=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=3
$$

- Substitute $c_{1}=3$ into general solution and simplify

$$
y=3+(x-1) \mathrm{e}^{x}
$$

- \quad Solution to the IVP

$$
y=3+(x-1) \mathrm{e}^{x}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=x*exp(x),y(1) = 3],y(x), singsol=all)
```

$$
y(x)=(x-1) \mathrm{e}^{x}+3
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 14

```
DSolve[{y'[x]==x*Exp[x],{y[1]==3}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow e^{x}(x-1)+3
$$

1.26 problem 3(b)

1.26.1 Existence and uniqueness analysis 176
1.26.2 Solving as quadrature ode . 177
1.26.3 Maple step by step solution . 178

Internal problem ID [6130]
Internal file name [OUTPUT/5378_Sunday_June_05_2022_03_35_45_PM_64565389/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=2 \cos (x) \sin (x)
$$

With initial conditions

$$
[y(0)=1]
$$

1.26.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\sin (2 x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\sin (2 x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\sin (2 x)$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.26.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int 2 \cos (x) \sin (x) \mathrm{d} x \\
& =\sin (x)^{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=1+\sin (x)^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+\sin (x)^{2} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=1+\sin (x)^{2}
$$

Verified OK.

1.26.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=2 \cos (x) \sin (x), y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int 2 \cos (x) \sin (x) d x+c_{1}$
- Evaluate integral
$y=\sin (x)^{2}+c_{1}$
- Solve for y

$$
y=\sin (x)^{2}+c_{1}
$$

- Use initial condition $y(0)=1$

$$
1=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=1
$$

- \quad Substitute $c_{1}=1$ into general solution and simplify

$$
y=-\cos (x)^{2}+2
$$

- \quad Solution to the IVP

$$
y=-\cos (x)^{2}+2
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)=2*Sin(x)*\operatorname{cos}(x),y(0)=1],y(x), singsol=all)
```

$$
y(x)=-\frac{\cos (2 x)}{2}+\frac{3}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 17
DSolve[\{y' $[x]==2 * \operatorname{Sin}[x] * \operatorname{Cos}[x],\{y[0]==1\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{2}(3-\cos (2 x))
$$

1.27 problem 3(c)

1.27.1 Existence and uniqueness analysis 180
1.27.2 Solving as quadrature ode . 181
1.27.3 Maple step by step solution . 182

Internal problem ID [6131]
Internal file name [OUTPUT/5379_Sunday_June_05_2022_03_35_46_PM_85888940/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
y^{\prime}=\ln (x)
$$

With initial conditions

$$
[y(\mathrm{e})=0]
$$

1.27.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\ln (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\ln (x)
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=\mathrm{e}$ is inside this domain. The domain of $q(x)=\ln (x)$ is

$$
\{0<x\}
$$

And the point $x_{0}=\mathrm{e}$ is also inside this domain. Hence solution exists and is unique.

1.27.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \ln (x) \mathrm{d} x \\
& =\ln (x) x-x+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=\mathrm{e}$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\ln (x) x-x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\ln (x) x-x \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\ln (x) x-x
$$

Verified OK.

1.27.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}=\ln (x), y(\mathrm{e})=0\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \ln (x) d x+c_{1}$
- Evaluate integral

$$
y=\ln (x) x-x+c_{1}
$$

- \quad Solve for y

$$
y=\ln (x) x-x+c_{1}
$$

- Use initial condition $y(\mathrm{e})=0$

$$
0=c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=0
$$

- \quad Substitute $c_{1}=0$ into general solution and simplify
$y=x(\ln (x)-1)$
- \quad Solution to the IVP

$$
y=x(\ln (x)-1)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 10

```
dsolve([diff(y(x),x)=ln(x),y(exp(1)) = 0],y(x), singsol=all)
```

$$
y(x)=x(\ln (x)-1)
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 11

```
DSolve[{y'[x]==Log[x],{y[Exp[1]]==0}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x(\log (x)-1)
$$

1.28 problem 3(d)

1.28.1 Existence and uniqueness analysis 184
1.28.2 Solving as quadrature ode . 185
1.28.3 Maple step by step solution . 186

Internal problem ID [6132]
Internal file name [OUTPUT/5380_Sunday_June_05_2022_03_35_47_PM_40340673/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
\left(x^{2}-1\right) y^{\prime}=1
$$

With initial conditions

$$
[y(2)=0]
$$

1.28.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1}{x^{2}-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=2$ is inside this domain. The domain of $q(x)=\frac{1}{x^{2}-1}$ is

$$
\{-\infty \leq x<-1,-1<x<1,1<x \leq \infty\}
$$

And the point $x_{0}=2$ is also inside this domain. Hence solution exists and is unique.

1.28.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x^{2}-1} \mathrm{~d} x \\
& =-\operatorname{arctanh}(x)+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=2$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=-\operatorname{arccoth}(2)+\frac{i \pi}{2}+c_{1} \\
c_{1}=\operatorname{arccoth}(2)-\frac{i \pi}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\operatorname{arctanh}(x)+\operatorname{arccoth}(2)-\frac{i \pi}{2}
$$

Verified OK.

1.28.3 Maple step by step solution

Let's solve
$\left[\left(x^{2}-1\right) y^{\prime}=1, y(2)=0\right]$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
y^{\prime}=\frac{1}{x^{2}-1}
$$

- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x^{2}-1} d x+c_{1}$
- Evaluate integral

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- \quad Solve for y

$$
y=-\operatorname{arctanh}(x)+c_{1}
$$

- Use initial condition $y(2)=0$
$0=-\operatorname{arctanh}\left(\frac{1}{2}\right)+\frac{\mathrm{I} \pi}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}$
- \quad Substitute $c_{1}=\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}$ into general solution and simplify $y=-\operatorname{arctanh}(x)+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}$
- \quad Solution to the IVP $y=-\operatorname{arctanh}(x)+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{\mathrm{I} \pi}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 15
dsolve $\left(\left[\left(x^{\wedge} 2-1\right) * \operatorname{diff}(y(x), x)=1, y(2)=0\right], y(x)\right.$, singsol=all)

$$
y(x)=-\operatorname{arctanh}(x)+\operatorname{arctanh}\left(\frac{1}{2}\right)-\frac{i \pi}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 27
DSolve[\{($\left.\left.x^{\wedge} 2-1\right) * y^{\prime}[x]==1,\{y[2]==0\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2}(\log (3-3 x)-\log (x+1)-i \pi)
$$

1.29 problem 3(e)

1.29.1 Existence and uniqueness analysis 188
1.29.2 Solving as quadrature ode . 189
1.29.3 Maple step by step solution . 190

Internal problem ID [6133]
Internal file name [OUTPUT/5381_Sunday_June_05_2022_03_35_49_PM_75045527/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
x\left(x^{2}-4\right) y^{\prime}=1
$$

With initial conditions

$$
[y(1)=0]
$$

1.29.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{1}{x^{3}-4 x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{1}{x^{3}-4 x}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{1}{x^{3}-4 x}$ is

$$
\{-\infty \leq x<-2,-2<x<0,0<x<2,2<x \leq \infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

1.29.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{1}{x\left(x^{2}-4\right)} \mathrm{d} x \\
& =-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{\ln (3)}{8}+\frac{i \pi}{8}+c_{1} \\
c_{1}=-\frac{\ln (3)}{8}-\frac{i \pi}{8}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (3)}{8}-\frac{i \pi}{8}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (3)}{8}-\frac{i \pi}{8} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (3)}{8}-\frac{i \pi}{8}
$$

Verified OK.

1.29.3 Maple step by step solution

Let's solve

$$
\left[x\left(x^{2}-4\right) y^{\prime}=1, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1

y^{\prime}

- Separate variables
$y^{\prime}=\frac{1}{x\left(x^{2}-4\right)}$
- Integrate both sides with respect to x
$\int y^{\prime} d x=\int \frac{1}{x\left(x^{2}-4\right)} d x+c_{1}$
- Evaluate integral
$y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}+c_{1}$
- \quad Solve for y
$y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}+c_{1}$
- Use initial condition $y(1)=0$
$0=\frac{\ln (3)}{8}+\frac{\mathrm{I} \pi}{8}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{\ln (3)}{8}-\frac{\mathrm{I} \pi}{8}$
- Substitute $c_{1}=-\frac{\ln (3)}{8}-\frac{\mathrm{I} \pi}{8}$ into general solution and simplify $y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (3)}{8}-\frac{\mathrm{I} \pi}{8}$
- \quad Solution to the IVP
$y=-\frac{\ln (x)}{4}+\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (3)}{8}-\frac{\mathrm{I} \pi}{8}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 29
dsolve([x*($\left.\left.x^{\wedge} 2-4\right) * \operatorname{diff}(y(x), x)=1, y(1)=0\right], y(x)$, singsol=all)

$$
y(x)=\frac{\ln (x+2)}{8}+\frac{\ln (-2+x)}{8}-\frac{\ln (x)}{4}-\frac{\ln (3)}{8}-\frac{i \pi}{8}
$$

\checkmark Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 26
DSolve[\{x*($\left.\left.x^{\wedge} 2-4\right) * y^{\prime}[x]==1,\{y[1]==0\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{8}\left(\log \left(\frac{1}{3}\left(4-x^{2}\right)\right)-2 \log (x)\right)
$$

1.30 problem 3(f)

1.30.1 Existence and uniqueness analysis 192
1.30.2 Solving as quadrature ode . 193
1.30.3 Maple step by step solution . 194

Internal problem ID [6134]
Internal file name [OUTPUT/5382_Sunday_June_05_2022_03_35_50_PM_41186660/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 3(f).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]

$$
(1+x)\left(x^{2}+1\right) y^{\prime}=2 x^{2}+x
$$

With initial conditions

$$
[y(0)=1]
$$

1.30.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=0 \\
& q(x)=\frac{2 x^{2}+x}{(1+x)\left(x^{2}+1\right)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}=\frac{2 x^{2}+x}{(1+x)\left(x^{2}+1\right)}
$$

The domain of $p(x)=0$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\frac{2 x^{2}+x}{(1+x)\left(x^{2}+1\right)}$ is

$$
\{x<-1 \vee-1<x\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

1.30.2 Solving as quadrature ode

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{x(1+2 x)}{(1+x)\left(x^{2}+1\right)} \mathrm{d} x \\
& =\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+c_{1}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{aligned}
& 1=c_{1} \\
& c_{1}=1
\end{aligned}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+1 \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+1
$$

Verified OK.

1.30.3 Maple step by step solution

Let's solve

$$
\left[(1+x)\left(x^{2}+1\right) y^{\prime}=2 x^{2}+x, y(0)=1\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
y^{\prime}=\frac{2 x^{2}+x}{(1+x)\left(x^{2}+1\right)}
$$

- Integrate both sides with respect to x

$$
\int y^{\prime} d x=\int \frac{2 x^{2}+x}{(1+x)\left(x^{2}+1\right)} d x+c_{1}
$$

- Evaluate integral

$$
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+c_{1}
$$

- Use initial condition $y(0)=1$
$1=c_{1}$
- \quad Solve for c_{1}
$c_{1}=1$
- \quad Substitute $c_{1}=1$ into general solution and simplify
$y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+1$
- Solution to the IVP

$$
y=\frac{\ln (1+x)}{2}+\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+1
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 24

```
dsolve([(x+1)*(x^2+1)*\operatorname{diff}(y(x),x)=2*x^2+x,y(0) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{3 \ln \left(x^{2}+1\right)}{4}-\frac{\arctan (x)}{2}+\frac{\ln (x+1)}{2}+1
$$

\checkmark Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 29

```
DSolve[{(x+1)*(x^2+1)*y'[x]==2*x^2+x,{y[0]==1}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \frac{1}{4}\left(-2 \arctan (x)+3 \log \left(x^{2}+1\right)+2 \log (x+1)+4\right)
$$

1.31 problem 4

1.31.1 Solving as linear ode . 196
1.31.2 Solving as first order ode lie symmetry lookup ode 198
1.31.3 Solving as exact ode . 202
1.31.4 Maple step by step solution . 206

Internal problem ID [6135]
Internal file name [OUTPUT/5383_Sunday_June_05_2022_03_35_51_PM_88971099/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-2 x y+y^{\prime}=1
$$

1.31.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
-2 x y+y^{\prime}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =\mathrm{e}^{-x^{2}} \\
\mathrm{~d}\left(\mathrm{e}^{-x^{2}} y\right) & =\mathrm{e}^{-x^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} y=\int \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
& \mathrm{e}^{-x^{2}} y=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
y=\frac{\mathrm{e}^{x^{2}} \sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{x^{2}}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 46: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{x^{2}}\left(\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}\right)
$$

Verified OK.

1.31.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =2 x y+1 \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 32: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=2 x y+1
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 x \mathrm{e}^{-x^{2}} y \\
S_{y} & =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-x^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\mathrm{e}^{-R^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\sqrt{\pi} \operatorname{erf}(R)}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
\mathrm{e}^{-x^{2}} y=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x^{2}} y=\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}
$$

Which gives

$$
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=2 x y+1$		$\frac{d S}{d R}=\mathrm{e}^{-R^{2}}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow+ \pm]{ }$
		－＞，
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty}$
	$S=\mathrm{e}^{-x^{2}} y$	
		\rightarrow 边，
－11．1．：		
－4，		，
＋99＋9 9－1．1．1．1．		\rightarrow リタッ $\rightarrow \rightarrow \rightarrow \rightarrow$

Summary
The solution（s）found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 47: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Verified OK.

1.31.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathrm{d} y & =(2 x y+1) \mathrm{d} x \\
(-2 x y-1) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-2 x y-1 \\
& N(x, y)=1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 x y-1) \\
& =-2 x
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-2 x)-(0)) \\
& =-2 x
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 x \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-x^{2}} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x^{2}}(-2 x y-1) \\
& =(-2 x y-1) \mathrm{e}^{-x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x^{2}}(1) \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((-2 x y-1) \mathrm{e}^{-x^{2}}\right)+\left(\mathrm{e}^{-x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(-2 x y-1) \mathrm{e}^{-x^{2}} \mathrm{~d} x \\
\phi & =-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{-x^{2}} y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{-x^{2}}=\mathrm{e}^{-x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{-x^{2}} y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+\mathrm{e}^{-x^{2}} y
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
$$

Figure 48: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}
$$

Verified OK.

1.31.4 Maple step by step solution

Let's solve
$-2 x y+y^{\prime}=1$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=1+2 x y$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-2 x y+y^{\prime}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(-2 x y+y^{\prime}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(-2 x y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x) x$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x^{2}}$
$y=\frac{\int \mathrm{e}^{-x^{2}} d x+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\sqrt{\pi} \operatorname{erf}(x)}{2}+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Simplify
$y=\frac{\mathrm{e}^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20

```
dsolve(diff (y(x),x)=2*x*y(x)+1,y(x), singsol=all)
```

$$
y(x)=\frac{\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right) \mathrm{e}^{x^{2}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 27
DSolve $[y$ ' $[x]==2 * x * y[x]+1, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} e^{x^{2}}\left(\sqrt{\pi} \operatorname{erf}(x)+2 c_{1}\right)
$$

1.32 problem 5

1.32.1 Solving as second order linear constant coeff ode 209
1.32.2 Solving using Kovacic algorithm 211
1.32.3 Maple step by step solution . 215

Internal problem ID [6136]
Internal file name [OUTPUT/5384_Sunday_June_05_2022_03_35_53_PM_83939676/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_x]]
```

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

1.32.1 Solving as second order linear constant coeff ode

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is

$$
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
$$

Where in the above $A=1, B=-5, C=4$. Let the solution be $y=e^{\lambda x}$. Substituting this into the ODE gives

$$
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
$$

Since exponential function is never zero, then dividing $\operatorname{Eq}(2)$ throughout by $e^{\lambda x}$ gives

$$
\begin{equation*}
\lambda^{2}-5 \lambda+4=0 \tag{2}
\end{equation*}
$$

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula

$$
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
$$

Substituting $A=1, B=-5, C=4$ into the above gives

$$
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(4)} \\
& =\frac{5}{2} \pm \frac{3}{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lambda_{1} & =\frac{5}{2}+\frac{3}{2} \\
\lambda_{2} & =\frac{5}{2}-\frac{3}{2}
\end{aligned}
$$

Which simplifies to

$$
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=1
\end{aligned}
$$

Since roots are real and distinct, then the solution is

$$
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(4) x}+c_{2} e^{(1) x}
\end{aligned}
$$

Or

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
$$

Figure 49: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{x}
$$

Verified OK.

1.32.2 Solving using Kovacic algorithm

Writing the ode as

$$
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
$$

Comparing (1) and (2) shows that

$$
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=4
\end{align*}
$$

Applying the Liouville transformation on the dependent variable gives

$$
z(x)=y e^{\int \frac{B}{2 A} d x}
$$

Then (2) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
$$

Where r is given by

$$
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
$$

Substituting the values of A, B, C from (3) in the above and simplifying gives

$$
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
$$

Comparing the above to (5) shows that

$$
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
$$

Therefore eq. (4) becomes

$$
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
$$

Equation (7) is now solved. After finding $z(x)$ then y is found using the inverse transformation

$$
y=z(x) e^{-\int \frac{B}{2 A} d x}
$$

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of r and the order of r at ∞. The following table summarizes these cases.

Case	Allowed pole order for r	Allowed value for $\mathcal{O}(\infty)$
1	$\{0,1,2,4,6,8, \cdots\}$	$\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}$
2	Need to have at least one pole that is either order 2 or odd order greater than 2. Any other pole order is allowed as long as the above condi-	no condition
tion is satisfied. Hence the following		
set of pole orders are all allowed.		
$\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}$.		
3	$\{1,2\}$	$\{2,3,4,5,6,7, \cdots\}$

Table 35: Necessary conditions for each Kovacic case

The order of r at ∞ is the degree of t minus the degree of s. Therefore

$$
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
$$

There are no poles in r. Therefore the set of poles Γ is empty. Since there is no odd order pole larger than 2 and the order at ∞ is 0 then the necessary conditions for case one are met. Therefore

$$
L=[1]
$$

Since $r=\frac{9}{4}$ is not a function of x, then there is no need run Kovacic algorithm to obtain a solution for transformed ode $z^{\prime \prime}=r z$ as one solution is

$$
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
$$

Using the above, the solution for the original ode can now be found. The first solution to the original ode in y is found from

$$
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(e^{\frac{5 x}{2}}\right)
\end{aligned}
$$

Which simplifies to

$$
y_{1}=\mathrm{e}^{x}
$$

The second solution y_{2} to the original ode is found using reduction of order

$$
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
$$

Substituting gives

$$
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
$$

Therefore the solution is

$$
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{4 x}}{3} \tag{1}
\end{equation*}
$$

Figure 50: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{4 x}}{3}
$$

Verified OK.

1.32.3 Maple step by step solution

Let's solve

$$
y^{\prime \prime}-5 y^{\prime}+4 y=0
$$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Characteristic polynomial of ODE

$$
r^{2}-5 r+4=0
$$

- Factor the characteristic polynomial

$$
(r-1)(r-4)=0
$$

- Roots of the characteristic polynomial
$r=(1,4)$
- $\quad 1$ st solution of the ODE
$y_{1}(x)=\mathrm{e}^{x}$
- $\quad 2 n d$ solution of the ODE
$y_{2}(x)=\mathrm{e}^{4 x}$
- General solution of the ODE
$y=c_{1} y_{1}(x)+c_{2} y_{2}(x)$
- Substitute in solutions

$$
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{4 x}
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15
dsolve(diff $(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(x)$, singsol=all)

$$
y(x)=\mathrm{e}^{4 x} c_{1}+\mathrm{e}^{x} c_{2}
$$

\checkmark Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve[y''[x]-5*y'[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x}\left(c_{2} e^{3 x}+c_{1}\right)
$$

1.33 problem 6

1.33.1 Solving as first order ode lie symmetry calculated ode 217
1.33.2 Solving as exact ode . 223

Internal problem ID [6137]
Internal file name [OUTPUT/5385_Sunday_June_05_2022_03_35_54_PM_77836984/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, ` class B`]]

$$
y^{\prime}-\frac{2 x y^{2}}{1-y x^{2}}=0
$$

1.33.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{2 y^{2} x}{y x^{2}-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2 E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{2 y^{2} x\left(b_{3}-a_{2}\right)}{y x^{2}-1}-\frac{4 y^{4} x^{2} a_{3}}{\left(y x^{2}-1\right)^{2}}-\left(-\frac{2 y^{2}}{y x^{2}-1}+\frac{4 y^{3} x^{2}}{\left(y x^{2}-1\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4 x y}{y x^{2}-1}+\frac{2 y^{2} x^{3}}{\left(y x^{2}-1\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{3 x^{4} y^{2} b_{2}-6 y^{4} x^{2} a_{3}+2 x^{3} y^{2} b_{1}-2 x^{2} y^{3} a_{1}-6 x^{2} y b_{2}-4 x y^{2} a_{2}-2 x y^{2} b_{3}-2 y^{3} a_{3}-4 x y b_{1}-2 y^{2} a_{1}+b_{2}}{\left(y x^{2}-1\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 3 x^{4} y^{2} b_{2}-6 y^{4} x^{2} a_{3}+2 x^{3} y^{2} b_{1}-2 x^{2} y^{3} a_{1}-6 x^{2} y b_{2} \tag{6E}\\
& \quad-4 x y^{2} a_{2}-2 x y^{2} b_{3}-2 y^{3} a_{3}-4 x y b_{1}-2 y^{2} a_{1}+b_{2}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -6 a_{3} v_{1}^{2} v_{2}^{4}+3 b_{2} v_{1}^{4} v_{2}^{2}-2 a_{1} v_{1}^{2} v_{2}^{3}+2 b_{1} v_{1}^{3} v_{2}^{2}-4 a_{2} v_{1} v_{2}^{2} \tag{7E}\\
& \quad-2 a_{3} v_{2}^{3}-6 b_{2} v_{1}^{2} v_{2}-2 b_{3} v_{1} v_{2}^{2}-2 a_{1} v_{2}^{2}-4 b_{1} v_{1} v_{2}+b_{2}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 b_{2} v_{1}^{4} v_{2}^{2}+2 b_{1} v_{1}^{3} v_{2}^{2}-6 a_{3} v_{1}^{2} v_{2}^{4}-2 a_{1} v_{1}^{2} v_{2}^{3}-6 b_{2} v_{1}^{2} v_{2} \tag{8E}\\
& \quad+\left(-4 a_{2}-2 b_{3}\right) v_{1} v_{2}^{2}-4 b_{1} v_{1} v_{2}-2 a_{3} v_{2}^{3}-2 a_{1} v_{2}^{2}+b_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{2} & =0 \\
-2 a_{1} & =0 \\
-6 a_{3} & =0 \\
-2 a_{3} & =0 \\
-4 b_{1} & =0 \\
2 b_{1} & =0 \\
-6 b_{2} & =0 \\
3 b_{2} & =0 \\
-4 a_{2}-2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =-2 a_{2}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x \\
& \eta=-2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-2 y-\left(-\frac{2 y^{2} x}{y x^{2}-1}\right)(x) \\
& =\frac{2 y}{y x^{2}-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y}{y x^{2}-1}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y x^{2}}{2}-\frac{\ln (y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{2 y^{2} x}{y x^{2}-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =x y \\
S_{y} & =\frac{y x^{2}-1}{2 y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y x^{2}}{2}-\frac{\ln (y)}{2}=c_{1}
$$

Which simplifies to

$$
\frac{y x^{2}}{2}-\frac{\ln (y)}{2}=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{- \text {LambertW }\left(-x^{2} \mathrm{e}^{-2 c_{1}}\right)-2 c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{2 y^{2} x}{y x^{2}-1}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
		$\xrightarrow{\rightarrow \rightarrow S(R) \rightarrow \rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2^{2} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
	$R=x$	\rightarrow
$\xrightarrow{\rightarrow \rightarrow \rightarrow-4} \rightarrow$	$y x^{2} \quad \ln (y)$	
$\therefore 0610$	$=\frac{2}{2}-\frac{1}{2}$	$\xrightarrow[\rightarrow \rightarrow \rightarrow-R^{2 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}]{ }$
		$\xrightarrow{\rightarrow-2} \rightarrow$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
为		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(-x^{2} \mathrm{e}^{-2 c_{1}}\right)-2 c_{1}} \tag{1}
\end{equation*}
$$

Figure 51: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-x^{2} \mathrm{e}^{-2 c_{1}}\right)-2 c_{1}}
$$

Verified OK.

1.33.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y x^{2}-1\right) \mathrm{d} y & =\left(-2 y^{2} x\right) \mathrm{d} x \\
\left(2 y^{2} x\right) \mathrm{d} x+\left(y x^{2}-1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y^{2} x \\
N(x, y) & =y x^{2}-1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{2} x\right) \\
& =4 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y x^{2}-1\right) \\
& =2 x y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y x^{2}-1}((4 x y)-(2 x y)) \\
& =\frac{2 x y}{y x^{2}-1}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{2 y^{2} x}((2 x y)-(4 x y)) \\
& =-\frac{1}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-\ln (y)} \\
& =\frac{1}{y}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y}\left(2 y^{2} x\right) \\
& =2 x y
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y}\left(y x^{2}-1\right) \\
& =\frac{y x^{2}-1}{y}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
(2 x y)+\left(\frac{y x^{2}-1}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y \mathrm{~d} x \\
\phi & =y x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x^{2}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{y x^{2}-1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{y x^{2}-1}{y}=x^{2}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=y x^{2}-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y x^{2}-\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-c_{1}} x^{2}\right)-c_{1}}
$$

Summary

The solution(s) found are the following

Figure 52: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(-\mathrm{e}^{-c_{1}} x^{2}\right)-c_{1}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 19

```
dsolve(diff(y(x),x)=2*x*y(x)^2/(1-x^2*y(x)),y(x), singsol=all)
```

$$
y(x)=-\frac{\text { LambertW }\left(-x^{2} \mathrm{e}^{-2 c_{1}}\right)}{x^{2}}
$$

$\sqrt{\text { Solution by Mathematica }}$
Time used: 4.457 (sec). Leaf size: 27
DSolve[y' $[x]==2 * x * y[x] \sim 2 /\left(1-x^{\wedge} 2 * y[x]\right), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{W\left(-e^{-1+c_{1}} x^{2}\right)}{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

1.34 problem 7

1.34.1 Maple step by step solution 230

Internal problem ID [6138]
Internal file name [OUTPUT/5386_Sunday_June_05_2022_03_35_56_PM_8521084/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.2 THE NATURE OF SOLUTIONS. Page 9
Problem number: 7 .
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]

$$
2 y^{\prime \prime \prime}+y^{\prime \prime}-5 y^{\prime}+2 y=0
$$

The characteristic equation is

$$
2 \lambda^{3}+\lambda^{2}-5 \lambda+2=0
$$

The roots of the above equation are

$$
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =\frac{1}{2} \\
\lambda_{3} & =-2
\end{aligned}
$$

Therefore the homogeneous solution is

$$
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{\frac{x}{2}}
$$

The fundamental set of solutions for the homogeneous solution are the following

$$
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{\frac{x}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{\frac{x}{2}} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{x}+c_{3} \mathrm{e}^{\frac{x}{2}}
$$

Verified OK.

1.34.1 Maple step by step solution

Let's solve

$$
2 y^{\prime \prime \prime}+y^{\prime \prime}-5 y^{\prime}+2 y=0
$$

- Highest derivative means the order of the ODE is 3

$$
y^{\prime \prime \prime}
$$

- Isolate 3rd derivative

$$
y^{\prime \prime \prime}=-\frac{y^{\prime \prime}}{2}+\frac{5 y^{\prime}}{2}-y
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear

$$
y^{\prime \prime \prime}+\frac{y^{\prime \prime}}{2}-\frac{5 y^{\prime}}{2}+y=0
$$

Convert linear ODE into a system of first order ODEs

- Define new variable $y_{1}(x)$

$$
y_{1}(x)=y
$$

- Define new variable $y_{2}(x)$

$$
y_{2}(x)=y^{\prime}
$$

- Define new variable $y_{3}(x)$

$$
y_{3}(x)=y^{\prime \prime}
$$

- Isolate for $y_{3}^{\prime}(x)$ using original ODE

$$
y_{3}^{\prime}(x)=-\frac{y_{3}(x)}{2}+\frac{5 y_{2}(x)}{2}-y_{1}(x)
$$

Convert linear ODE into a system of first order ODEs

$$
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-\frac{y_{3}(x)}{2}+\frac{5 y_{2}(x)}{2}-y_{1}(x)\right]
$$

- Define vector

$$
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
$$

- \quad System to solve

$$
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & \frac{5}{2} & -\frac{1}{2}
\end{array}\right] \cdot \vec{y}(x)
$$

- Define the coefficient matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & \frac{5}{2} & -\frac{1}{2}
\end{array}\right]
$$

- Rewrite the system as
$\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)$
- \quad To solve the system, find the eigenvalues and eigenvectors of A
- \quad Eigenpairs of A
$\left[\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right],\left[\frac{1}{2},\left[\begin{array}{l}4 \\ 2 \\ 1\end{array}\right]\right],\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]\right]$
- Consider eigenpair
$\left[-2,\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair
$\vec{y}_{1}=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}\frac{1}{4} \\ -\frac{1}{2} \\ 1\end{array}\right]$
- Consider eigenpair

$$
\left[\frac{1}{2},\left[\begin{array}{c}
4 \\
2 \\
1
\end{array}\right]\right]
$$

- Solution to homogeneous system from eigenpair

$$
\vec{y}_{2}=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

- Consider eigenpair
$\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]$
- Solution to homogeneous system from eigenpair

$$
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- General solution to the system of ODEs

$$
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
$$

- \quad Substitute solutions into the general solution

$$
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

- First component of the vector is the solution to the ODE
$y=\frac{\left(4 c_{3} \mathrm{e}^{3 x}+16 c_{2} \mathrm{e}^{\frac{5 x}{2}}+c_{1}\right) \mathrm{e}^{-2 x}}{4}$

Maple trace

```
`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 23

```
dsolve(2*diff(y(x), x$3)+diff (y (x), x$2)-5*diff (y (x),x)+2*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\left(c_{3} \mathrm{e}^{3 x}+c_{1} \mathrm{e}^{\frac{5 x}{2}}+c_{2}\right) \mathrm{e}^{-2 x}
$$

\checkmark Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30

```
DSolve[2*y'''[x]+y''[x]-5*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow c_{1} e^{x / 2}+c_{2} e^{-2 x}+c_{3} e^{x}
$$

2 Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS. Page 12
2.1 problem 1(a) 235
2.2 problem 1(b) 239
2.3 problem 1(c) 242
2.4 problem 1(d) 245
2.5 problem 1(e) 249
2.6 problem 1(f) 253
2.7 problem 1(g) 257
2.8 problem 1(h) 261
2.9 problem 1(i) 264
2.10 problem $1(\mathrm{j})$ 268
2.11 problem 2(a) 272
2.12 problem 2(b) 277
2.13 problem 2(c) 281
2.14 problem 2(d) 287
2.15 problem 2(e) 292
2.16 problem 2(e) 297
2.17 problem 3 302
2.18 problem 4 308

2.1 problem 1(a)

2.1.1 Solving as separable ode . 235
2.1.2 Maple step by step solution . 237

Internal problem ID [6139]
Internal file name [OUTPUT/5387_Sunday_June_05_2022_03_35_57_PM_84684605/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime} x^{5}+y^{5}=0
$$

2.1.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y^{5}}{x^{5}}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x^{5}}$ and $g(y)=y^{5}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{5}} d y & =-\frac{1}{x^{5}} d x \\
\int \frac{1}{y^{5}} d y & =\int-\frac{1}{x^{5}} d x \\
-\frac{1}{4 y^{4}} & =\frac{1}{4 x^{4}}+c_{1}
\end{aligned}
$$

The solution is

$$
-\frac{1}{4 y^{4}}-\frac{1}{4 x^{4}}-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{4 y^{4}}-\frac{1}{4 x^{4}}-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 53: Slope field plot

Verification of solutions

$$
-\frac{1}{4 y^{4}}-\frac{1}{4 x^{4}}-c_{1}=0
$$

Verified OK.

2.1.2 Maple step by step solution

Let's solve

$$
y^{\prime} x^{5}+y^{5}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y^{5}}=-\frac{1}{x^{5}}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{5}} d x=\int-\frac{1}{x^{5}} d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{4 y^{4}}=\frac{1}{4 x^{4}}+c_{1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 67

```
dsolve(x^5*diff(y(x),x)+y(x)^5=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{x}{\left(c_{1} x^{4}-1\right)^{\frac{1}{4}}} \\
& y(x)=-\frac{x}{\left(c_{1} x^{4}-1\right)^{\frac{1}{4}}} \\
& y(x)=\frac{x}{\sqrt{-\sqrt{c_{1} x^{4}-1}}} \\
& y(x)=-\frac{x}{\sqrt{-\sqrt{c_{1} x^{4}-1}}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.489 (sec). Leaf size: 145
DSolve $\left[x^{\wedge}{ }^{-} 5 * y^{\prime}[x]+y[x] \sim 5==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x}{\sqrt[4]{-1-4 c_{1} x^{4}}} \\
& y(x) \rightarrow-\frac{i x}{\sqrt[4]{-1-4 c_{1} x^{4}}} \\
& y(x) \rightarrow \frac{i x}{\sqrt[4]{-1-4 c_{1} x^{4}}} \\
& y(x) \rightarrow \frac{x}{\sqrt[4]{-1-4 c_{1} x^{4}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow-\frac{(1+i) x}{\sqrt{2}} \\
& y(x) \rightarrow-\frac{(1-i) x}{\sqrt{2}} \\
& y(x) \rightarrow \frac{(1-i) x}{\sqrt{2}} \\
& y(x) \rightarrow \frac{(1+i) x}{\sqrt{2}}
\end{aligned}
$$

2.2 problem 1(b)

> 2.2.1 Solving as separable ode
2.2.2 Maple step by step solution . 240

Internal problem ID [6140]
Internal file name [OUTPUT/5388_Sunday_June_05_2022_03_35_59_PM_76582465/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-4 x y=0
$$

2.2.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =4 x y
\end{aligned}
$$

Where $f(x)=4 x$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =4 x d x \\
\int \frac{1}{y} d y & =\int 4 x d x \\
\ln (y) & =2 x^{2}+c_{1} \\
y & =\mathrm{e}^{2 x^{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{2 x^{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x^{2}} \tag{1}
\end{equation*}
$$

Figure 54: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{2 x^{2}}
$$

Verified OK.

2.2.2 Maple step by step solution

Let's solve
$y^{\prime}-4 x y=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=4 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int 4 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=2 x^{2}+c_{1}
$$

- \quad Solve for y
$y=\mathrm{e}^{2 x^{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)=4*x*y(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{2 x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 20
DSolve[y' x$]==4 * \mathrm{x} * \mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{2 x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.3 problem 1(c)

2.3.1 Solving as separable ode . 242
2.3.2 Maple step by step solution . [243]

Internal problem ID [6141]
Internal file name [OUTPUT/5389_Sunday_June_05_2022_03_36_01_PM_92610766/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+y \tan (x)=0
$$

2.3.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-y \tan (x)
\end{aligned}
$$

Where $f(x)=-\tan (x)$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\tan (x) d x \\
\int \frac{1}{y} d y & =\int-\tan (x) d x \\
\ln (y) & =\ln (\cos (x))+c_{1} \\
y & =\mathrm{e}^{\ln (\cos (x))+c_{1}} \\
& =\cos (x) c_{1}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\cos (x) c_{1} \tag{1}
\end{equation*}
$$

Figure 55: Slope field plot

Verification of solutions

$$
y=\cos (x) c_{1}
$$

Verified OK.

2.3.2 Maple step by step solution

Let's solve

$$
y^{\prime}+y \tan (x)=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Separate variables

$$
\frac{y^{\prime}}{y}=-\tan (x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-\tan (x) d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\ln (\cos (x))+c_{1}
$$

- \quad Solve for y

$$
y=\cos (x) \mathrm{e}^{c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 8
dsolve(diff $(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x}) * \tan (\mathrm{x})=0, \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\cos (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 15
DSolve [y' $[\mathrm{x}]+\mathrm{y}[\mathrm{x}] * \operatorname{Tan}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \cos (x) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.4 problem 1(d)

$$
\text { 2.4.1 Solving as separable ode . } 245
$$

2.4.2 Maple step by step solution [247]

Internal problem ID [6142]
Internal file name [OUTPUT/5390_Sunday_June_05_2022_03_36_02_PM_91456469/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
\left(x^{2}+1\right) y^{\prime}+y^{2}=-1
$$

2.4.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-y^{2}-1}{x^{2}+1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}+1}$ and $g(y)=-y^{2}-1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{-y^{2}-1} d y & =\frac{1}{x^{2}+1} d x \\
\int \frac{1}{-y^{2}-1} d y & =\int \frac{1}{x^{2}+1} d x \\
-\arctan (y) & =\arctan (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\tan \left(\arctan (x)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\tan \left(\arctan (x)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 56: Slope field plot

Verification of solutions

$$
y=-\tan \left(\arctan (x)+c_{1}\right)
$$

Verified OK.

2.4.2 Maple step by step solution

Let's solve

$$
\left(x^{2}+1\right) y^{\prime}+y^{2}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{-1-y^{2}}=\frac{1}{x^{2}+1}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-1-y^{2}} d x=\int \frac{1}{x^{2}+1} d x+c_{1}
$$

- Evaluate integral
$-\arctan (y)=\arctan (x)+c_{1}$
- \quad Solve for y

$$
y=-\tan \left(\arctan (x)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((1+x^2)*diff(y(x),x)+1+y(x)^2=0,y(x), singsol=all)
```

$$
y(x)=-\tan \left(\arctan (x)+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.233 (sec). Leaf size: 29
DSolve[(1+x^2)*y'[x]+1+y[x]^2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\tan \left(\arctan (x)-c_{1}\right) \\
& y(x) \rightarrow-i \\
& y(x) \rightarrow i
\end{aligned}
$$

2.5 problem 1(e)

2.5.1 Solving as separable ode . 249
2.5.2 Maple step by step solution . 251

Internal problem ID [6143]
Internal file name [OUTPUT/5391_Sunday_June_05_2022_03_36_04_PM_1499382/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(e).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y \ln (y)-x y^{\prime}=0
$$

2.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y \ln (y)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\ln (y) y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\ln (y) y} d y & =\frac{1}{x} d x \\
\int \frac{1}{\ln (y) y} d y & =\int \frac{1}{x} d x \\
\ln (\ln (y)) & =\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\ln (y)=\mathrm{e}^{\ln (x)+c_{1}}
$$

Which simplifies to

$$
\ln (y)=c_{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{c_{2} x \mathrm{e}^{c_{1}}} \tag{1}
\end{equation*}
$$

Figure 57: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{c_{2} x \mathrm{e}^{c_{1}}}
$$

Verified OK.

2.5.2 Maple step by step solution

Let's solve

$$
y \ln (y)-x y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y \ln (y)}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y \ln (y)} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (\ln (y))=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x \mathrm{e}^{c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

Solution by Maple
Time used: 0.015 (sec). Leaf size: 8

```
dsolve(y(x)*ln(y(x))-x*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{c_{1} x}
$$

\checkmark Solution by Mathematica
Time used: 0.172 (sec). Leaf size: 18
DSolve[y[x]*Log[y[x]]-x*y'[x]==0,y[x],x,IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow e^{e^{c_{1}} x} \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.6 problem 1(f)

2.6.1 Solving as separable ode . 253
2.6.2 Maple step by step solution . 255

Internal problem ID [6144]
Internal file name [OUTPUT/5392_Sunday_June_05_2022_03_36_06_PM_57599098/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x y^{\prime}-\left(-4 x^{2}+1\right) \tan (y)=0
$$

2.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\tan (y)\left(4 x^{2}-1\right)}{x}
\end{aligned}
$$

Where $f(x)=-\frac{4 x^{2}-1}{x}$ and $g(y)=\tan (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\tan (y)} d y & =-\frac{4 x^{2}-1}{x} d x \\
\int \frac{1}{\tan (y)} d y & =\int-\frac{4 x^{2}-1}{x} d x \\
\ln (\sin (y)) & =-2 x^{2}+\ln (x)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sin (y)=\mathrm{e}^{-2 x^{2}+\ln (x)+c_{1}}
$$

Which simplifies to

$$
\sin (y)=c_{2} \mathrm{e}^{-2 x^{2}+\ln (x)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\arcsin \left(c_{2} \mathrm{e}^{-2 x^{2}+c_{1}} x\right) \tag{1}
\end{equation*}
$$

Figure 58: Slope field plot

Verification of solutions

$$
y=\arcsin \left(c_{2} \mathrm{e}^{-2 x^{2}+c_{1}} x\right)
$$

Verified OK.

2.6.2 Maple step by step solution

Let's solve

$$
x y^{\prime}-\left(-4 x^{2}+1\right) \tan (y)=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{\tan (y)}=\frac{-4 x^{2}+1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{\tan (y)} d x=\int \frac{-4 x^{2}+1}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (\sin (y))=-2 x^{2}+\ln (x)+c_{1}
$$

- \quad Solve for y
$y=\arcsin \left(\frac{x}{\mathrm{e}^{2 x^{2}-c_{1}}}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve(x*diff (y(x),x)=(1-4*x^2)*\operatorname{tan}(y(x)),y(x), singsol=all)
```

$$
y(x)=\arcsin \left(\frac{x \mathrm{e}^{-2 x^{2}}}{c_{1}}\right)
$$

\checkmark Solution by Mathematica
Time used: 53.453 (sec). Leaf size: 23
DSolve[x*y'[x]==(1-4*x^2)*Tan[y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \arcsin \left(x e^{-2 x^{2}+c_{1}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.7 problem 1(g)

2.7.1 Solving as separable ode . 257
2.7.2 Maple step by step solution . 259]

Internal problem ID [6145]
Internal file name [OUTPUT/5393_Sunday_June_05_2022_03_36_07_PM_45941527/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime} \sin (y)=x^{2}
$$

2.7.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x^{2}}{\sin (y)}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=\frac{1}{\sin (y)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{\sin (y)}} d y & =x^{2} d x \\
\int \frac{1}{\frac{1}{\sin (y)}} d y & =\int x^{2} d x \\
-\cos (y) & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
y=\pi-\arccos \left(\frac{x^{3}}{3}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\pi-\arccos \left(\frac{x^{3}}{3}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 59: Slope field plot

Verification of solutions

$$
y=\pi-\arccos \left(\frac{x^{3}}{3}+c_{1}\right)
$$

Verified OK.

2.7.2 Maple step by step solution

Let's solve

$$
y^{\prime} \sin (y)=x^{2}
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} \sin (y) d x=\int x^{2} d x+c_{1}$
- Evaluate integral
$-\cos (y)=\frac{x^{3}}{3}+c_{1}$
- \quad Solve for y

$$
y=\pi-\arccos \left(\frac{x^{3}}{3}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 16

```
dsolve(diff(y(x),x)*sin(y(x))=x^2,y(x), singsol=all)
```

$$
y(x)=\frac{\pi}{2}+\arcsin \left(\frac{x^{3}}{3}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.499 (sec). Leaf size: 37
DSolve[y' $[x] * \operatorname{Sin}[y[x]]==x^{\wedge} 2, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\arccos \left(-\frac{x^{3}}{3}-c_{1}\right) \\
& y(x) \rightarrow \arccos \left(-\frac{x^{3}}{3}-c_{1}\right)
\end{aligned}
$$

2.8 problem 1(h)

2.8.1 Solving as separable ode . 261
2.8.2 Maple step by step solution . 262

Internal problem ID [6146]
Internal file name [OUTPUT/5394_Sunday_June_05_2022_03_36_09_PM_7071013/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y \tan (x)=0
$$

2.8.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y \tan (x)
\end{aligned}
$$

Where $f(x)=\tan (x)$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\tan (x) d x \\
\int \frac{1}{y} d y & =\int \tan (x) d x \\
\ln (y) & =-\ln (\cos (x))+c_{1} \\
y & =\mathrm{e}^{-\ln (\cos (x))+c_{1}} \\
& =\frac{c_{1}}{\cos (x)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{\cos (x)} \tag{1}
\end{equation*}
$$

Figure 60: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{\cos (x)}
$$

Verified OK.

2.8.2 Maple step by step solution

Let's solve

$$
y^{\prime}-y \tan (x)=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\tan (x)
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \tan (x) d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-\ln (\cos (x))+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\mathrm{e}^{c_{1}}}{\cos (x)}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 8

```
dsolve(diff(y(x),x)-y(x)*tan(x)=0,y(x), singsol=all)
```

$$
y(x)=\sec (x) c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.034 (sec). Leaf size: 15

```
DSolve[y'[x]-y[x]*Tan[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow c_{1} \sec (x) \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.9 problem 1(i)

2.9.1 Solving as separable ode . 264
2.9.2 Maple step by step solution . 266

Internal problem ID [6147]
Internal file name [OUTPUT/5395_Sunday_June_05_2022_03_36_10_PM_98519124/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x y y^{\prime}-y=-1
$$

2.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y-1}{x y}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=\frac{y-1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{y-1}{y}} d y & =\frac{1}{x} d x \\
\int \frac{1}{\frac{y-1}{y}} d y & =\int \frac{1}{x} d x \\
y+\ln (y-1) & =\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=\operatorname{LambertW}\left(x \mathrm{e}^{-1+c_{1}}\right)+1
$$

Since c_{1} is constant, then exponential powers of this constant are constants also, and these can be simplified to just c_{1} in the above solution. Which simplifies to

$$
y=\operatorname{LambertW}\left(x \mathrm{e}^{-1+c_{1}}\right)+1
$$

gives

$$
y=\text { LambertW }\left(x \mathrm{e}^{-1} c_{1}\right)+1
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{LambertW}\left(x \mathrm{e}^{-1} c_{1}\right)+1 \tag{1}
\end{equation*}
$$

Figure 61: Slope field plot

Verification of solutions

$$
y=\operatorname{LambertW}\left(x \mathrm{e}^{-1} c_{1}\right)+1
$$

Verified OK.

2.9.2 Maple step by step solution

Let's solve

$$
x y y^{\prime}-y=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime} y}{y-1}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime} y}{y-1} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
y+\ln (y-1)=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{Lambert} W\left(x \mathrm{e}^{-1+c_{1}}\right)+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 12

```
dsolve(x*y(x)*diff(y(x),x)=y(x)-1,y(x), singsol=all)
```

$$
y(x)=\text { LambertW }\left(x c_{1} \mathrm{e}^{-1}\right)+1
$$

\checkmark Solution by Mathematica
Time used: 3.215 (sec). Leaf size: 21
DSolve[x*y[x]*y'[x]==y[x]-1,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow 1+W\left(e^{-1+c_{1}} x\right) \\
& y(x) \rightarrow 1
\end{aligned}
$$

2.10 problem 1(j)

2.10.1 Solving as separable ode . 268
2.10.2 Maple step by step solution . 270

Internal problem ID [6148]
Internal file name [OUTPUT/5396_Sunday_June_05_2022_03_36_12_PM_71582804/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 1(j).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
x y^{2}-x^{2} y^{\prime}=0
$$

2.10.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y^{2}}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =\frac{1}{x} d x \\
\int \frac{1}{y^{2}} d y & =\int \frac{1}{x} d x \\
-\frac{1}{y} & =\ln (x)+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{1}{\ln (x)+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{\ln (x)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 62: Slope field plot

Verification of solutions

$$
y=-\frac{1}{\ln (x)+c_{1}}
$$

Verified OK.

2.10.2 Maple step by step solution

Let's solve

$$
x y^{2}-x^{2} y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y^{2}}=\frac{1}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int \frac{1}{x} d x+c_{1}
$$

- Evaluate integral

$$
-\frac{1}{y}=\ln (x)+c_{1}
$$

- \quad Solve for y

$$
y=-\frac{1}{\ln (x)+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 12

```
dsolve(x*y(x)^2-diff(y(x),x)*x^2=0,y(x), singsol=all)
```

$$
y(x)=\frac{1}{-\ln (x)+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.107 (sec). Leaf size: 19
DSolve[x*y[x] $2-y$ ' $[x] * x^{\wedge} 2==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\log (x)+c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

2.11 problem 2(a)

2.11.1 Existence and uniqueness analysis 272
2.11.2 Solving as separable ode . 273
2.11.3 Maple step by step solution . 275

Internal problem ID [6149]
Internal file name [OUTPUT/5397_Sunday_June_05_2022_03_36_14_PM_99221309/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} y=1+x
$$

With initial conditions

$$
[y(1)=3]
$$

2.11.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{1+x}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{1+x}{y}\right) \\
& =-\frac{1+x}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

2.11.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1+x}{y}
\end{aligned}
$$

Where $f(x)=1+x$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =1+x d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int 1+x d x \\
\frac{y^{2}}{2} & =\frac{1}{2} x^{2}+x+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\sqrt{x^{2}+2 c_{1}+2 x} \\
& y=-\sqrt{x^{2}+2 c_{1}+2 x}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=-\sqrt{3+2 c_{1}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\sqrt{3+2 c_{1}} \\
c_{1}=3
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\sqrt{x^{2}+2 x+6}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\sqrt{x^{2}+2 x+6} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\sqrt{x^{2}+2 x+6}
$$

Verified OK.

2.11.3 Maple step by step solution

Let's solve
$\left[y^{\prime} y=1+x, y(1)=3\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} y d x=\int(1+x) d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=\frac{1}{2} x^{2}+x+c_{1}$
- \quad Solve for y
$\left\{y=\sqrt{x^{2}+2 c_{1}+2 x}, y=-\sqrt{x^{2}+2 c_{1}+2 x}\right\}$
- Use initial condition $y(1)=3$
$3=\sqrt{3+2 c_{1}}$
- \quad Solve for c_{1}
$c_{1}=3$
- \quad Substitute $c_{1}=3$ into general solution and simplify
$y=\sqrt{x^{2}+2 x+6}$
- Use initial condition $y(1)=3$
$3=-\sqrt{3+2 c_{1}}$
- Solution does not satisfy initial condition
- \quad Solution to the IVP
$y=\sqrt{x^{2}+2 x+6}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.078 (sec). Leaf size: 14

```
dsolve([diff(y(x),x)*y(x)=x+1,y(1) = 3],y(x), singsol=all)
```

$$
y(x)=\sqrt{x^{2}+2 x+6}
$$

\checkmark Solution by Mathematica
Time used: 0.097 (sec). Leaf size: 17
DSolve[\{y' $[x] * y[x]==x+1,\{y[1]==3\}\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sqrt{x^{2}+2 x+6}
$$

2.12 problem 2(b)

2.12.1 Existence and uniqueness analysis 277
2.12.2 Solving as separable ode . 278
2.12.3 Maple step by step solution . 279

Internal problem ID [6150]
Internal file name [OUTPUT/5398_Sunday_June_05_2022_03_36_15_PM_15070873/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(b).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime}-y=0
$$

With initial conditions

$$
[y(1)=0]
$$

2.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-\frac{1}{x^{2}} \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x^{2}}=0
$$

The domain of $p(x)=-\frac{1}{x^{2}}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

2.12.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x^{2}}
\end{aligned}
$$

Where $f(x)=\frac{1}{x^{2}}$ and $g(y)=y$. Since unique solution exists and $g(y)$ evaluated at $y_{0}=0$ is zero, then the solution is

$$
\begin{aligned}
y & =y_{0} \\
& =0
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=0 \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=0
$$

Verified OK.

2.12.3 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime}-y=0, y(1)=0\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=\frac{1}{x^{2}}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x^{2}} d x+c_{1}$
- Evaluate integral
$\ln (y)=c_{1}-\frac{1}{x}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{c_{1} x-1}{x}}$
- Use initial condition $y(1)=0$
$0=\mathrm{e}^{-1+c_{1}}$
- Solution does not satisfy initial condition

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 5
dsolve([diff $\left.(y(x), x) * x^{\wedge} 2=y(x), y(1)=0\right], y(x)$, singsol=all)

$$
y(x)=0
$$

\checkmark Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 6
DSolve[\{y' $\left.[x] * x^{\wedge} 2==y[x],\{y[1]==0\}\right\}, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow 0
$$

2.13 problem 2(c)

2.13.1 Existence and uniqueness analysis 281
2.13.2 Solving as separable ode . 282
2.13.3 Maple step by step solution . 284

Internal problem ID [6151]
Internal file name [OUTPUT/5399_Sunday_June_05_2022_03_36_17_PM_95195842/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_oorder_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\frac{y^{\prime}}{x^{2}+1}-\frac{x}{y}=0
$$

With initial conditions

$$
[y(1)=3]
$$

2.13.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x\left(x^{2}+1\right)}{y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $f(x, y)$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=3$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x\left(x^{2}+1\right)}{y}\right) \\
& =-\frac{x\left(x^{2}+1\right)}{y^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=3$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=1$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=3$ is inside this domain. Therefore solution exists and is unique.

2.13.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x\left(x^{2}+1\right)}{y}
\end{aligned}
$$

Where $f(x)=x\left(x^{2}+1\right)$ and $g(y)=\frac{1}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y}} d y & =x\left(x^{2}+1\right) d x \\
\int \frac{1}{\frac{1}{y}} d y & =\int x\left(x^{2}+1\right) d x \\
\frac{y^{2}}{2} & =\frac{\left(x^{2}+1\right)^{2}}{4}+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\sqrt{2 x^{4}+4 x^{2}+8 c_{1}+2}}{2} \\
& y=-\frac{\sqrt{2 x^{4}+4 x^{2}+8 c_{1}+2}}{2}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
3=-\sqrt{2+2 c_{1}}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\sqrt{2+2 c_{1}} \\
c_{1}=\frac{7}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2}
$$

Verified OK.

2.13.3 Maple step by step solution

Let's solve
$\left[\frac{y^{\prime}}{x^{2}+1}-\frac{x}{y}=0, y(1)=3\right]$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
y^{\prime} y=x\left(x^{2}+1\right)
$$

- Integrate both sides with respect to x
$\int y^{\prime} y d x=\int x\left(x^{2}+1\right) d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}=\frac{\left(x^{2}+1\right)^{2}}{4}+c_{1}$
- \quad Solve for y

$$
\left\{y=-\frac{\sqrt{2 x^{4}+4 x^{2}+8 c_{1}+2}}{2}, y=\frac{\sqrt{2 x^{4}+4 x^{2}+8 c_{1}+2}}{2}\right\}
$$

- Use initial condition $y(1)=3$
$3=-\frac{\sqrt{8+8 c_{1}}}{2}$
- Solution does not satisfy initial condition
- Use initial condition $y(1)=3$
$3=\frac{\sqrt{8+8 c_{1}}}{2}$
- \quad Solve for c_{1}
$c_{1}=\frac{7}{2}$
- \quad Substitute $c_{1}=\frac{7}{2}$ into general solution and simplify $y=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2}$
- \quad Solution to the IVP
$y=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 20
dsolve([diff $\left.(y(x), x) /\left(1+x^{\wedge} 2\right)=x / y(x), y(1)=3\right], y(x)$, singsol=all)

$$
y(x)=\frac{\sqrt{2 x^{4}+4 x^{2}+30}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.104 (sec). Leaf size: 25
DSolve $\left[\left\{y^{\prime}[x] /\left(1+x^{\wedge} 2\right)==x / y[x],\{y[1]==3\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{\sqrt{x^{4}+2 x^{2}+15}}{\sqrt{2}}
$$

2.14 problem 2(d)

2.14.1 Existence and uniqueness analysis 287
2.14.2 Solving as separable ode . 288
2.14.3 Maple step by step solution . 290

Internal problem ID [6152]
Internal file name [OUTPUT/5400_Sunday_June_05_2022_03_36_18_PM_50028180/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_oorder_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime} y^{2}=x+2
$$

With initial conditions

$$
[y(0)=4]
$$

2.14.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x+2}{y^{2}}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $f(x, y)$ when $x=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=4$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x+2}{y^{2}}\right) \\
& =-\frac{2(x+2)}{y^{3}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=0$ is

$$
\{y<0 \vee 0<y\}
$$

And the point $y_{0}=4$ is inside this domain. Therefore solution exists and is unique.

2.14.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x+2}{y^{2}}
\end{aligned}
$$

Where $f(x)=x+2$ and $g(y)=\frac{1}{y^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{y^{2}}} d y & =x+2 d x \\
\int \frac{1}{\frac{1}{y^{2}}} d y & =\int x+2 d x \\
\frac{y^{3}}{3} & =\frac{1}{2} x^{2}+2 x+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=\frac{\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{2} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{4} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{4}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
4=-\frac{i c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}} \sqrt{3}}{4}-\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{4}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
4=\frac{i c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}} \sqrt{3}}{4}-\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{4}
$$

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=4$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
4=\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{2} \\
c_{1}=\frac{64}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2} \tag{1}
\end{equation*}
$$

(a) Solution plot

(b) Slope field plot

Verification of solutions

$$
y=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2}
$$

Verified OK.

2.14.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime} y^{2}=x+2, y(0)=4\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime} y^{2} d x=\int(x+2) d x+c_{1}$
- Evaluate integral

$$
\frac{y^{3}}{3}=\frac{1}{2} x^{2}+2 x+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(12 x^{2}+24 c_{1}+48 x\right)^{\frac{1}{3}}}{2}
$$

- Use initial condition $y(0)=4$

$$
4=\frac{c_{1}^{\frac{1}{3}} 24^{\frac{1}{3}}}{2}
$$

- \quad Solve for c_{1}

$$
c_{1}=\frac{64}{3}
$$

- Substitute $c_{1}=\frac{64}{3}$ into general solution and simplify

$$
y=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2}
$$

- \quad Solution to the IVP

$$
y=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

Solution by Maple
Time used: 0.141 (sec). Leaf size: 18

```
dsolve([y(x)^2*diff(y(x),x)=x+2,y(0) = 4],y(x), singsol=all)
```

$$
y(x)=\frac{\left(12 x^{2}+48 x+512\right)^{\frac{1}{3}}}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.211 (sec). Leaf size: 21

```
DSolve[{y[x]~2*y'[x]==x+2,{y[0]==4}},y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow \sqrt[3]{\frac{3 x^{2}}{2}+6 x+64}
$$

2.15 problem 2(e)

$$
\text { 2.15.1 Existence and uniqueness analysis } 292
$$

2.15.2 Solving as separable ode 293
2.15.3 Maple step by step solution 295

Internal problem ID [6153]
Internal file name [OUTPUT/5401_Sunday_June_05_2022_03_36_20_PM_57043492/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-y^{2} x^{2}=0
$$

With initial conditions

$$
[y(-1)=2]
$$

2.15.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =y^{2} x^{2}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2} x^{2}\right) \\
& =2 y x^{2}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=2$ is inside this domain. Therefore solution exists and is unique.

2.15.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =y^{2} x^{2}
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(y)=y^{2}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y^{2}} d y & =x^{2} d x \\
\int \frac{1}{y^{2}} d y & =\int x^{2} d x \\
-\frac{1}{y} & =\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which results in

$$
y=-\frac{3}{x^{3}+3 c_{1}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
2=-\frac{3}{3 c_{1}-1} \\
c_{1}=-\frac{1}{6}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-\frac{6}{2 x^{3}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{6}{2 x^{3}-1} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=-\frac{6}{2 x^{3}-1}
$$

Verified OK.

2.15.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-y^{2} x^{2}=0, y(-1)=2\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y^{2}}=x^{2}$
- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y^{2}} d x=\int x^{2} d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{y}=\frac{x^{3}}{3}+c_{1}$
- \quad Solve for y
$y=-\frac{3}{x^{3}+3 c_{1}}$
- Use initial condition $y(-1)=2$
$2=-\frac{3}{3 c_{1}-1}$
- \quad Solve for c_{1}
$c_{1}=-\frac{1}{6}$
- Substitute $c_{1}=-\frac{1}{6}$ into general solution and simplify
$y=-\frac{6}{2 x^{3}-1}$
- Solution to the IVP
$y=-\frac{6}{2 x^{3}-1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15
dsolve([diff $\left.(y(x), x)=x^{\wedge} 2 * y(x)^{\wedge} 2, y(-1)=2\right], y(x)$, singsol=all)

$$
y(x)=-\frac{6}{2 x^{3}-1}
$$

\checkmark Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 16
DSolve[\{y' $\left.[x]==x^{\wedge} 2 * y[x] \wedge 2,\{y[-1]==2\}\right\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{6}{1-2 x^{3}}
$$

2.16 problem 2(e)

2.16.1 Existence and uniqueness analysis 297
2.16.2 Solving as separable ode . 298
2.16.3 Maple step by step solution . 300

Internal problem ID [6154]
Internal file name [OUTPUT/5402_Sunday_June_05_2022_03_36_21_PM_69555050/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 2(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}(1+y)=-x^{2}+1
$$

With initial conditions

$$
[y(-1)=-2]
$$

2.16.1 Existence and uniqueness analysis

This is non linear first order ODE. In canonical form it is written as

$$
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x^{2}-1}{1+y}
\end{aligned}
$$

The x domain of $f(x, y)$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $f(x, y)$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Now we will look at the continuity of

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x^{2}-1}{1+y}\right) \\
& =\frac{x^{2}-1}{(1+y)^{2}}
\end{aligned}
$$

The x domain of $\frac{\partial f}{\partial y}$ when $y=-2$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=-1$ is inside this domain. The y domain of $\frac{\partial f}{\partial y}$ when $x=-1$ is

$$
\{-\infty<y<\infty\}
$$

And the point $y_{0}=-2$ is inside this domain. Therefore solution exists and is unique.

2.16.2 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{-x^{2}+1}{1+y}
\end{aligned}
$$

Where $f(x)=-x^{2}+1$ and $g(y)=\frac{1}{1+y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{1+y}} d y & =-x^{2}+1 d x \\
\int \frac{1}{\frac{1}{1+y}} d y & =\int-x^{2}+1 d x \\
y+\frac{1}{2} y^{2} & =-\frac{1}{3} x^{3}+x+c_{1}
\end{aligned}
$$

Which results in

$$
\begin{aligned}
& y=-1+\frac{\sqrt{-6 x^{3}+18 c_{1}+18 x+9}}{3} \\
& y=-1-\frac{\sqrt{-6 x^{3}+18 c_{1}+18 x+9}}{3}
\end{aligned}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
-2=-1-\frac{\sqrt{-3+18 c_{1}}}{3} \\
c_{1}=\frac{2}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=-1-\frac{\sqrt{-6 x^{3}+18 x+21}}{3}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=-1$ and $y=-2$ in the above solution gives an equation to solve for the constant of integration.

$$
-2=-1+\frac{\sqrt{-3+18 c_{1}}}{3}
$$

Summary
The solution(s) found are the following
Warning: Unable to solve for constant of integration.

$$
y=-1-\frac{\sqrt{-6 x^{3}+18 x}}{3}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=-1-\frac{\sqrt{-6 x^{3}+18 x+21}}{3}
$$

Verified OK.

2.16.3 Maple step by step solution

Let's solve
$\left[y^{\prime}(1+y)=-x^{2}+1, y(-1)=-2\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Integrate both sides with respect to x
$\int y^{\prime}(1+y) d x=\int\left(-x^{2}+1\right) d x+c_{1}$
- Evaluate integral
$\frac{y^{2}}{2}+y=-\frac{1}{3} x^{3}+x+c_{1}$
- \quad Solve for y
$\left\{y=-1-\frac{\sqrt{-6 x^{3}+18 c_{1}+18 x+9}}{3}, y=-1+\frac{\sqrt{-6 x^{3}+18 c_{1}+18 x+9}}{3}\right\}$
- Use initial condition $y(-1)=-2$
$-2=-1-\frac{\sqrt{-3+18 c_{1}}}{3}$
- \quad Solve for c_{1}
$c_{1}=\frac{2}{3}$
- \quad Substitute $c_{1}=\frac{2}{3}$ into general solution and simplify
$y=-1-\frac{\sqrt{-6 x^{3}+18 x+21}}{3}$
- Use initial condition $y(-1)=-2$
$-2=-1+\frac{\sqrt{-3+18 c_{1}}}{3}$
- Solution does not satisfy initial condition
- Solution to the IVP
$y=-1-\frac{\sqrt{-6 x^{3}+18 x+21}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 20

```
dsolve([diff (y(x),x)*(1+y(x))=1-x^2,y(-1) = -2],y(x), singsol=all)
```

$$
y(x)=-1-\frac{\sqrt{-6 x^{3}+18 x+21}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.151 (sec). Leaf size: 28
DSolve $\left[\left\{y^{\prime}[x] *(1+y[x])==1-x^{\wedge} 2,\{y[-1]==-2\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow-\frac{\sqrt{-2 x^{3}+6 x+7}}{\sqrt{3}}-1
$$

2.17 problem 3

2.17.1 Solving as second order integrable as is ode 302
2.17.2 Solving as second order ode missing y ode 303
2.17.3 Solving as exact nonlinear second order ode ode 304
2.17.4 Maple step by step solution . 305

Internal problem ID [6155]
Internal file name [OUTPUT/5403_Sunday_June_05_2022_03_36_23_PM_21409840/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_y", "exact nonlinear second order ode"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]

$$
0=-\frac{y^{\prime \prime}}{y^{\prime}}+x^{2}
$$

2.17.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int-\frac{y^{\prime \prime}}{y^{\prime}} d x=\int-x^{2} d x \\
-\ln \left(y^{\prime}\right)=- & -\frac{x^{3}}{3}+c_{1}
\end{aligned}
$$

Which is now solved for y. Integrating both sides gives

$$
\begin{aligned}
y & =\int \mathrm{e}^{\frac{x^{3}}{3}-c_{1}} \mathrm{~d} x \\
& =-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
\end{aligned}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
$$

Verified OK.

2.17.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
-\frac{p^{\prime}(x)}{p(x)}+x^{2}=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =x^{2} p
\end{aligned}
$$

Where $f(x)=x^{2}$ and $g(p)=p$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{p} d p & =x^{2} d x \\
\int \frac{1}{p} d p & =\int x^{2} d x \\
\ln (p) & =\frac{x^{3}}{3}+c_{1} \\
p & =\mathrm{e}^{\frac{x^{3}}{3}+c_{1}} \\
& =c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
\end{aligned}
$$

Since $p=y^{\prime}$ then the new first order ode to solve is

$$
y^{\prime}=c_{1} \mathrm{e}^{\frac{x^{3}}{3}}
$$

Integrating both sides gives

$$
\begin{aligned}
y & =\int c_{1} \mathrm{e}^{\frac{x^{3}}{3}} \mathrm{~d} x \\
& =-\frac{c_{1} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{c_{1} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{c_{1} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
$$

Verified OK.

2.17.3 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

$$
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
$$

Where the following conditions are satisfied

$$
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
$$

Looking at the the ode given we see that

$$
\begin{aligned}
& a_{2}=-\frac{1}{y^{\prime}} \\
& a_{1}=0 \\
& a_{0}=x^{2}
\end{aligned}
$$

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by

$$
\begin{aligned}
& \int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
& \int-\frac{1}{y^{\prime}} d y^{\prime}+\int 0 d y+\int x^{2} d x=c_{1}
\end{aligned}
$$

Which results in

$$
\frac{x^{3}}{3}-\ln \left(y^{\prime}\right)=c_{1}
$$

Which is now solved Integrating both sides gives

$$
\begin{aligned}
& y=\int \mathrm{e}^{\mathrm{x}^{3}}-c_{1} \\
& \mathrm{~d} x \\
&=-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2} \tag{1}
\end{equation*}
$$

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-c_{1}} 3^{\frac{1}{3}}(-1)^{\frac{2}{3}}\left(\frac{2 x \sqrt{3}(-1)^{\frac{1}{3}} \pi}{3 \Gamma\left(\frac{2}{3}\right)\left(-x^{3}\right)^{\frac{1}{3}}}-\frac{x(-1)^{\frac{1}{3}} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{\left(-x^{3}\right)^{\frac{1}{3}}}\right)}{3}+c_{2}
$$

Verified OK.

2.17.4 Maple step by step solution

Let's solve
$-\frac{y^{\prime \prime}}{y^{\prime}}=-x^{2}$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Isolate 2nd derivative

$$
y^{\prime \prime}=x^{2} y^{\prime}
$$

- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear $-x^{2} y^{\prime}+y^{\prime \prime}=0$
- Assume series solution for y
$y=\sum_{k=0}^{\infty} a_{k} x^{k}$
Rewrite ODE with series expansions
- Convert $x^{2} \cdot y^{\prime}$ to series expansion
$x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k+1}$
- Shift index using $k->k-1$
$x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1) x^{k}$
- Convert $y^{\prime \prime}$ to series expansion

$$
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
$$

- Shift index using $k->k+2$
$y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}$
Rewrite ODE with series expansions
$2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k-1}(k-1)\right) x^{k}\right)=0$
- Each term must be 0
$2 a_{2}=0$
- Each term in the series must be 0 , giving the recursion relation
$\left(k^{2}+3 k+2\right) a_{k+2}-a_{k-1}(k-1)=0$
- \quad Shift index using $k->k+1$
$\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k} k=0$
- Recursion relation that defines the series solution to the ODE

$$
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k} k}{k^{2}+5 k+6}, 2 a_{2}=0\right]
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
<- LODE missing y successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 25

```
dsolve(diff(y(x),x$2)/diff(y(x),x)=x^2,y(x), singsol=all)
```

$$
y(x)=-3 \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right) c_{2} \Gamma\left(\frac{2}{3}\right)+2 \sqrt{3} \pi c_{2}+c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 39
DSolve[y''[x]/y'[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

$$
y(x) \rightarrow \frac{c_{1}\left(-x^{3}\right)^{2 / 3} \Gamma\left(\frac{1}{3},-\frac{x^{3}}{3}\right)}{3^{2 / 3} x^{2}}+c_{2}
$$

2.18 problem 4

2.18.1 Solving as second order integrable as is ode 308
2.18.2 Solving as second order ode missing y ode 310
2.18.3 Solving as exact nonlinear second order ode ode 312
2.18.4 Maple step by step solution . 313

Internal problem ID [6156]
Internal file name [OUTPUT/5404_Sunday_June_05_2022_03_36_24_PM_12653789/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.3 SEPARABLE EQUATIONS.
Page 12
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_y", "exact nonlinear second order ode"

Maple gives the following as the ode type

```
[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [
    _2nd_order, _reducible, _mu_y_y1], [_2nd_order, _reducible,
    _mu_poly_yn]]
```

$$
y^{\prime \prime} y^{\prime}=x(1+x)
$$

2.18.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t x gives

$$
\begin{aligned}
& \int y^{\prime \prime} y^{\prime} d x=\int\left(x^{2}+x\right) d x \\
& \frac{y^{\prime 2}}{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

Which is now solved for y. Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2} \tag{1}\\
& y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
$$

Verified OK.

$$
y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
$$

Verified OK.

2.18.2 Solving as second order ode missing y ode

This is second order ode with missing dependent variable y. Let

$$
p(x)=y^{\prime}
$$

Then

$$
p^{\prime}(x)=y^{\prime \prime}
$$

Hence the ode becomes

$$
p(x) p^{\prime}(x)-x^{2}-x=0
$$

Which is now solve for $p(x)$ as first order ode. In canonical form the ODE is

$$
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =\frac{x(1+x)}{p}
\end{aligned}
$$

Where $f(x)=x(1+x)$ and $g(p)=\frac{1}{p}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =x(1+x) d x \\
\int \frac{1}{\frac{1}{p}} d p & =\int x(1+x) d x \\
\frac{p^{2}}{2} & =\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+c_{1}
\end{aligned}
$$

The solution is

$$
\frac{p(x)^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{2}}{2}-c_{1}=0
$$

For solution (1) found earlier, since $p=y^{\prime}$ then we now have a new first order ode to solve which is

$$
\frac{y^{\prime 2}}{2}-\frac{x^{3}}{3}-\frac{x^{2}}{2}-c_{1}=0
$$

Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2} \tag{1}\\
& y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
$$

Verified OK.

$$
y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
$$

Verified OK.

2.18.3 Solving as exact nonlinear second order ode ode

An exact non-linear second order ode has the form

$$
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
$$

Where the following conditions are satisfied

$$
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
$$

Looking at the the ode given we see that

$$
\begin{aligned}
& a_{2}=y^{\prime} \\
& a_{1}=0 \\
& a_{0}=-x^{2}-x
\end{aligned}
$$

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by

$$
\begin{aligned}
\int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x & =c_{1} \\
\int y^{\prime} d y^{\prime}+\int 0 d y+\int-x^{2}-x d x & =c_{1}
\end{aligned}
$$

Which results in

$$
-\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{y^{\prime 2}}{2}=c_{1}
$$

Which is now solved Solving the given ode for y^{\prime} results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are

$$
\begin{align*}
& y^{\prime}=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{1}\\
& y^{\prime}=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \tag{2}
\end{align*}
$$

Now each one of the above ODE is solved.
Solving equation (1)

Integrating both sides gives

$$
\begin{aligned}
y & =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
\end{aligned}
$$

Solving equation (2)
Integrating both sides gives

$$
\begin{aligned}
y & =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} \mathrm{~d} x \\
& =\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2} \tag{1}\\
& y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3} \tag{2}
\end{align*}
$$

Verification of solutions

$$
y=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}
$$

Verified OK.

$$
y=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{3}
$$

Verified OK.

2.18.4 Maple step by step solution

Let's solve
$y^{\prime} y^{\prime \prime}=x^{2}+x$

- Highest derivative means the order of the ODE is 2

$$
y^{\prime \prime}
$$

- Make substitution $u=y^{\prime}$ to reduce order of ODE
$u(x) u^{\prime}(x)=x^{2}+x$
- Integrate both sides with respect to x
$\int u(x) u^{\prime}(x) d x=\int\left(x^{2}+x\right) d x+c_{1}$
- Evaluate integral
$\frac{u(x)^{2}}{2}=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+c_{1}$
- \quad Solve for $u(x)$
$\left\{u(x)=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}, u(x)=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}\right\}$
- \quad Solve 1st ODE for $u(x)$
$u(x)=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}$
- Compute integrals

12 $\operatorname{Ic}_{1} \sqrt{3}\left(\frac{\left(-1-12 c_{1}+2 \sqrt{36 c_{1}^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{1}{2\left(-1-12 c_{1}+2 \sqrt{36 c_{1}^{2}+6 c_{1}}\right)^{\frac{1}{3}}}\right)$
$y=-\frac{2 x \sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{15}-\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{15}$

- \quad Solve 2nd ODE for $u(x)$
$u(x)=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}$
- Make substitution $u=y^{\prime}$
$y^{\prime}=\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3}$
- Integrate both sides to solve for y
$\int y^{\prime} d x=\int \frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{3} d x+c_{2}$
- Compute integrals

$$
12 \mathrm{Ic} 1 \sqrt{3}\left(\frac{\left(-1-12 c_{1}+2 \sqrt{36 c_{1}^{2}+6 c_{1}}\right)^{\frac{1}{3}}}{2}-\frac{1}{2\left(-1-12 c_{1}+2 \sqrt{36 c_{1}^{2}+6 c_{1}}\right)^{\frac{1}{3}}}\right)
$$

$$
y=\frac{2 x \sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{15}+\frac{\sqrt{6 x^{3}+9 x^{2}+18 c_{1}}}{15}+
$$

Maple trace

```
`Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = exp_sym
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = _a*(_a+1)/_b(_a), _b(_a)
    Methods for first order ODEs:
    --- Trying classification methods ---
    trying a quadrature
    trying 1st order linear
    trying Bernoulli
    <- Bernoulli successful
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`
```

\checkmark Solution by Maple
Time used: 0.094 (sec). Leaf size: 51

```
dsolve(diff(y(x),x$2)*diff(y(x),x)=x*(1+x),y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=-\frac{\left(\int \sqrt{6 x^{3}+9 x^{2}+9 c_{1}} d x\right)}{3}+c_{2} \\
& y(x)=\frac{\left(\int \sqrt{6 x^{3}+9 x^{2}+9 c_{1}} d x\right)}{3}+c_{2}
\end{aligned}
$$

Solution by Mathematica
Time used: 61.466 (sec). Leaf size: 12885

```
DSolve[y''[x]*y'[x]==x*(1+x),y[x],x,IncludeSingularSolutions -> True]
```

Too large to display
3 Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page15
3.1 problem 1(a) 318
3.2 problem 1(b) 322
3.3 problem 1(c) 326
3.4 problem 1(d) 331
3.5 problem 1(e) 335
3.6 problem 1(f) 339
3.7 problem 1(g) 343
3.8 problem 1(h) [347]
3.9 problem 1(i) 352
3.10 problem 1(j) 356
3.11 problem 2(a) 361
3.12 problem 2(b) 365
3.13 problem 2(c) 370
3.14 problem 2(d) 373
3.15 problem 2(e) 378
3.16 problem 2(f) 383
3.17 problem 3(a) 388
3.18 problem 3(b) 402
3.19 problem 3(c) 416
3.20 problem 3(d) 433
3.21 problem 4(a) 449
3.22 problem 4(b) 455
3.23 problem 4(c) 467
3.24 problem 6 478
3.25 problem 7 493

3.1 problem 1(a)

> 3.1.1 Solving as linear ode
3.1.2 Maple step by step solution . 320

Internal problem ID [6157]
Internal file name [OUTPUT/5405_Sunday_June_05_2022_03_36_26_PM_99668702/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x y=0
$$

3.1.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =-x \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-x y=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 69: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.1.2 Maple step by step solution

Let's solve

$$
y^{\prime}-x y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)-x*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{\frac{x^{2}}{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 22
DSolve [y' $[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{\frac{x^{2}}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.2 problem 1(b)

> 3.2.1 Solving as linear ode
3.2.2 Maple step by step solution . 324

Internal problem ID [6158]
Internal file name [OUTPUT/5406_Sunday_June_05_2022_03_36_27_PM_50883306/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+x y=x
$$

3.2.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=x \\
& q(x)=x
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+x y=x
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int x d x} \\
=\mathrm{e}^{\frac{x^{2}}{2}}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right) & =\left(\mathrm{e}^{\frac{x^{2}}{2}}\right)(x) \\
\mathrm{d}\left(\mathrm{e}^{\frac{x^{2}}{2}} y\right) & =\left(\mathrm{e}^{\frac{x^{2}}{2}} x\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{\frac{x^{2}}{2}} y=\int \mathrm{e}^{\frac{x^{2}}{2}} x \mathrm{~d} x \\
& \mathrm{e}^{\frac{x^{2}}{2}} y=\mathrm{e}^{\frac{x^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{\frac{x^{2}}{2}}$ results in

$$
y=\mathrm{e}^{-\frac{x^{2}}{2}} \mathrm{e}^{\frac{x^{2}}{2}}+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

which simplifies to

$$
y=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 70: Slope field plot
Verification of solutions

$$
y=1+c_{1} \mathrm{e}^{-\frac{x^{2}}{2}}
$$

Verified OK.

3.2.2 Maple step by step solution

Let's solve

$$
y^{\prime}+x y=x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y-1}=-x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y-1} d x=\int-x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y-1)=-\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\frac{x^{2}}{2}+c_{1}}+1
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 14

```
dsolve(diff(y(x),x)+x*y(x)=x,y(x), singsol=all)
```

$$
y(x)=1+\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 24
DSolve[y' $[x]+x * y[x]==x, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow 1+c_{1} e^{-\frac{x^{2}}{2}} \\
& y(x) \rightarrow 1
\end{aligned}
$$

3.3 problem 1(c)

> 3.3.1 Solving as linear ode
3.3.2 Maple step by step solution . 328

Internal problem ID [6159]
Internal file name [OUTPUT/5407_Sunday_June_05_2022_03_36_28_PM_85180385/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y+y^{\prime}=\frac{1}{\mathrm{e}^{2 x}+1}
$$

3.3.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{1}{\mathrm{e}^{2 x}+1}
\end{aligned}
$$

Hence the ode is

$$
y+y^{\prime}=\frac{1}{\mathrm{e}^{2 x}+1}
$$

The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{\mathrm{e}^{2 x}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(\frac{1}{\mathrm{e}^{2 x}+1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{x}=\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\arctan \left(\mathrm{e}^{x}\right)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x} \arctan \left(\mathrm{e}^{x}\right)+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\mathrm{e}^{-x}\left(\arctan \left(\mathrm{e}^{x}\right)+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-x}\left(\arctan \left(\mathrm{e}^{x}\right)+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 71: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-x}\left(\arctan \left(\mathrm{e}^{x}\right)+c_{1}\right)
$$

Verified OK.

3.3.2 Maple step by step solution

Let's solve
$y+y^{\prime}=\frac{1}{\mathrm{e}^{2 x}+1}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+\frac{1}{\mathrm{e}^{2 x}+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y+y^{\prime}=\frac{1}{\mathrm{e}^{2 x}+1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y+y^{\prime}\right)=\frac{\mu(x)}{\mathrm{e}^{2 x}+1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)}{\mathrm{e}^{2 x}+1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x)}{\mathrm{e}^{2 x}+1} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x)}{e^{2 x}+1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \frac{\mathrm{e}^{x}}{\mathrm{e}^{2 x}+1} d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs
$y=\frac{\arctan \left(\mathrm{e}^{x}\right)+c_{1}}{\mathrm{e}^{x}}$
- Simplify

$$
y=\mathrm{e}^{-x}\left(\arctan \left(\mathrm{e}^{x}\right)+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 14
dsolve(diff $(y(x), x)+y(x)=1 /(1+\exp (2 * x)), y(x)$, singsol=all)

$$
y(x)=\left(\arctan \left(\mathrm{e}^{x}\right)+c_{1}\right) \mathrm{e}^{-x}
$$

\checkmark Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 18
DSolve $[y '[x]+y[x]==1 /(1+\operatorname{Exp}[2 * x]), y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow e^{-x}\left(\arctan \left(e^{x}\right)+c_{1}\right)
$$

3.4 problem 1(d)

> 3.4.1 Solving as linear ode
3.4.2 Maple step by step solution . 333

Internal problem ID [6160]
Internal file name [OUTPUT/5408_Sunday_June_05_2022_03_36_30_PM_7315470/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_linear, `class A`]]

$$
y+y^{\prime}=2 x \mathrm{e}^{-x}+x^{2}
$$

3.4.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=1 \\
& q(x)=x\left(2 \mathrm{e}^{-x}+x\right)
\end{aligned}
$$

Hence the ode is

$$
y+y^{\prime}=x\left(2 \mathrm{e}^{-x}+x\right)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x\left(2 \mathrm{e}^{-x}+x\right)\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(x\left(2 \mathrm{e}^{-x}+x\right)\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(x\left(x \mathrm{e}^{x}+2\right)\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \mathrm{e}^{x}=\int x\left(x \mathrm{e}^{x}+2\right) \mathrm{d} x \\
& y \mathrm{e}^{x}=x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x}$ results in

$$
y=\mathrm{e}^{-x}\left(x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+x^{2}\right)+c_{1} \mathrm{e}^{-x}
$$

which simplifies to

$$
y=\left(x^{2}+c_{1}\right) \mathrm{e}^{-x}+x^{2}-2 x+2
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\left(x^{2}+c_{1}\right) \mathrm{e}^{-x}+x^{2}-2 x+2 \tag{1}
\end{equation*}
$$

Figure 72: Slope field plot

Verification of solutions

$$
y=\left(x^{2}+c_{1}\right) \mathrm{e}^{-x}+x^{2}-2 x+2
$$

Verified OK.

3.4.2 Maple step by step solution

Let's solve
$y+y^{\prime}=2 x \mathrm{e}^{-x}+x^{2}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y+2 x \mathrm{e}^{-x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y+y^{\prime}=2 x \mathrm{e}^{-x}+x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y+y^{\prime}\right)=\mu(x)\left(2 x \mathrm{e}^{-x}+x^{2}\right)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x)\left(2 x \mathrm{e}^{-x}+x^{2}\right) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x)\left(2 x \mathrm{e}^{-x}+x^{2}\right) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x)\left(2 x \mathrm{e}^{-x}+x^{2}\right) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{x}$
$y=\frac{\int \mathrm{e}^{x}\left(2 x \mathrm{e}^{-x}+x^{2}\right) d x+c_{1}}{\mathrm{e}^{x}}$
- Evaluate the integrals on the rhs

$$
y=\frac{x^{2} \mathrm{e}^{x}-2 x \mathrm{e}^{x}+2 \mathrm{e}^{x}+x^{2}+c_{1}}{\mathrm{e}^{x}}
$$

- Simplify

$$
y=\left(x^{2}+c_{1}\right) \mathrm{e}^{-x}+x^{2}-2 x+2
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 22

```
dsolve(diff(y(x),x)+y(x)=2*x*exp(-x)+x^2,y(x), singsol=all)
```

$$
y(x)=\left(x^{2}+c_{1}\right) \mathrm{e}^{-x}+x^{2}-2 x+2
$$

\checkmark Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 29
DSolve[y' $[x]+y[x]==2 * x * \operatorname{Exp}[-x]+x \wedge 2, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{-x}\left(x^{2}+e^{x}\left(x^{2}-2 x+2\right)+c_{1}\right)
$$

3.5 problem 1(e)

> 3.5.1 Solving as linear ode
3.5.2 Maple step by step solution . 337

Internal problem ID [6161]
Internal file name [OUTPUT/5409_Sunday_June_05_2022_03_36_31_PM_35181252/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
-x y^{\prime}+2 y=x^{3}
$$

3.5.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{2 y}{x}=-x^{2}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(-x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x^{2}}\right) & =-1 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{2}} & =\int-1 \mathrm{~d} x \\
\frac{y}{x^{2}} & =-x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
y=c_{1} x^{2}-x^{3}
$$

which simplifies to

$$
y=x^{2}\left(-x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{2}\left(-x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 73: Slope field plot

Verification of solutions

$$
y=x^{2}\left(-x+c_{1}\right)
$$

Verified OK.

3.5.2 Maple step by step solution

Let's solve
$-x y^{\prime}+2 y=x^{3}$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{2 y}{x}-x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{x}=-x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=-\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int-\mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int-\mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int-\mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{2}}$
$y=x^{2}\left(\int(-1) d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=x^{2}\left(-x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(2*y(x)-x^3=x*diff(y(x),x),y(x), singsol=all)
```

$$
y(x)=\left(-x+c_{1}\right) x^{2}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 15

```
DSolve[2*y[x]-x^3==x*y'[x],y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow x^{2}\left(-x+c_{1}\right)
$$

3.6 problem 1(f)

3.6.1 Solving as linear ode . 339
3.6.2 Maple step by step solution . 341

Internal problem ID [6162]
Internal file name [OUTPUT/5410_Sunday_June_05_2022_03_36_32_PM_80153340/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+2 x y=0
$$

3.6.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =2 x \\
q(x) & =0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+2 x y=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 2 x d x} \\
& =\mathrm{e}^{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{x^{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{x^{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{x^{2}}$ results in

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{-x^{2}} \tag{1}
\end{equation*}
$$

Figure 74: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{-x^{2}}
$$

Verified OK.

3.6.2 Maple step by step solution

Let's solve

$$
y^{\prime}+2 x y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y}=-2 x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int-2 x d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=-x^{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-x^{2}+c_{1}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x),x)+2*x*y(x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-x^{2}} c_{1}
$$

\checkmark Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 20
DSolve[y'[x] $+2 * x * y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.7 problem 1(g)

> 3.7.1 Solving as linear ode
3.7.2 Maple step by step solution . 345

Internal problem ID [6163]
Internal file name [OUTPUT/5411_Sunday_June_05_2022_03_36_33_PM_54552225/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
x y^{\prime}-3 y=x^{4}
$$

3.7.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=x^{3}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{3 y}{x}=x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)\left(x^{3}\right) \\
\mathrm{d}\left(\frac{y}{x^{3}}\right) & =\mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x^{3}} & =\int \mathrm{d} x \\
\frac{y}{x^{3}} & =x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{3}}$ results in

$$
y=c_{1} x^{3}+x^{4}
$$

which simplifies to

$$
y=x^{3}\left(x+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x^{3}\left(x+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 75: Slope field plot

Verification of solutions

$$
y=x^{3}\left(x+c_{1}\right)
$$

Verified OK.

3.7.2 Maple step by step solution

Let's solve
$x y^{\prime}-3 y=x^{4}$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{3 y}{x}+x^{3}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{3 y}{x}=x^{3}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu(x) x^{3}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{3 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{3 \mu(x)}{x}$
- Solve to find the integrating factor
$\mu(x)=\frac{1}{x^{3}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{3} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{3} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{3} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x^{3}}$
$y=x^{3}\left(\int 1 d x+c_{1}\right)$
- Evaluate the integrals on the rhs

$$
y=x^{3}\left(x+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve(x*diff(y(x),x)-3*y(x)=x^4,y(x), singsol=all)
```

$$
y(x)=\left(x+c_{1}\right) x^{3}
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 13
DSolve[$\mathrm{x} * \mathrm{y}$ ' $[\mathrm{x}]-3 * \mathrm{y}[\mathrm{x}]==\mathrm{x}^{\wedge} 4, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x^{3}\left(x+c_{1}\right)
$$

3.8 problem 1(h)

$$
\text { 3.8.1 Solving as linear ode . } 347
$$

3.8.2 Maple step by step solution . 349

Internal problem ID [6164]
Internal file name [OUTPUT/5412_Sunday_June_05_2022_03_36_35_PM_43760870/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

[_linear]

$$
\left(x^{2}+1\right) y^{\prime}+2 x y=\cot (x)
$$

3.8.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{2 x}{x^{2}+1} \\
& q(x)=\frac{\cot (x)}{x^{2}+1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{\cot (x)}{x^{2}+1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2 x}{x^{2}+1} d x} \\
& =x^{2}+1
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{\cot (x)}{x^{2}+1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\left(x^{2}+1\right) y\right) & =\left(x^{2}+1\right)\left(\frac{\cot (x)}{x^{2}+1}\right) \\
\mathrm{d}\left(\left(x^{2}+1\right) y\right) & =\cot (x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \left(x^{2}+1\right) y=\int \cot (x) \mathrm{d} x \\
& \left(x^{2}+1\right) y=\ln (\sin (x))+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{2}+1$ results in

$$
y=\frac{\ln (\sin (x))}{x^{2}+1}+\frac{c_{1}}{x^{2}+1}
$$

which simplifies to

$$
y=\frac{\ln (\sin (x))+c_{1}}{x^{2}+1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\ln (\sin (x))+c_{1}}{x^{2}+1} \tag{1}
\end{equation*}
$$

Figure 76: Slope field plot

Verification of solutions

$$
y=\frac{\ln (\sin (x))+c_{1}}{x^{2}+1}
$$

Verified OK.

3.8.2 Maple step by step solution

Let's solve

$$
\left(x^{2}+1\right) y^{\prime}+2 x y=\cot (x)
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-\frac{2 x y}{x^{2}+1}+\frac{\cot (x)}{x^{2}+1}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{2 x y}{x^{2}+1}=\frac{\cot (x)}{x^{2}+1}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{2 x y}{x^{2}+1}\right)=\frac{\mu(x) \cot (x)}{x^{2}+1}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{2 x y}{x^{2}+1}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{2 \mu(x) x}{x^{2}+1}$
- Solve to find the integrating factor

$$
\mu(x)=x^{2}+1
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x) \cot (x)}{x^{2}+1} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{\mu(x) \cot (x)}{x^{2}+1} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{\mu(x) \cot (x)}{x^{2}+1} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{2}+1$
$y=\frac{\int \cot (x) d x+c_{1}}{x^{2}+1}$
- Evaluate the integrals on the rhs
$y=\frac{\ln (\sin (x))+c_{1}}{x^{2}+1}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve ($\left(1+x^{\wedge} 2\right) * \operatorname{diff}(y(x), x)+2 * x * y(x)=\cot (x), y(x)$, singsol=all)

$$
y(x)=\frac{\ln (\sin (x))+c_{1}}{x^{2}+1}
$$

\checkmark Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 19
DSolve $\left[\left(1+x^{\wedge} 2\right) * y{ }^{\prime}[x]+2 * x * y[x]==\operatorname{Cot}[x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{\log (\sin (x))+c_{1}}{x^{2}+1}
$$

3.9 problem 1(i)

3.9.1 Solving as linear ode . 352
3.9.2 Maple step by step solution . 354]

Internal problem ID [6165]
Internal file name [OUTPUT/5413_Sunday_June_05_2022_03_36_36_PM_27167940/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y^{\prime}+y \cot (x)=2 x \csc (x)
$$

3.9.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\cot (x) \\
& q(x)=2 x \csc (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+y \cot (x)=2 x \csc (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \cot (x) d x} \\
& =\sin (x)
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2 x \csc (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(y \sin (x)) & =(\sin (x))(2 x \csc (x)) \\
\mathrm{d}(y \sin (x)) & =(2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& y \sin (x)=\int 2 x \mathrm{~d} x \\
& y \sin (x)=x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x)$ results in

$$
y=\csc (x) x^{2}+c_{1} \csc (x)
$$

which simplifies to

$$
y=\csc (x)\left(x^{2}+c_{1}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\csc (x)\left(x^{2}+c_{1}\right) \tag{1}
\end{equation*}
$$

Figure 77: Slope field plot

Verification of solutions

$$
y=\csc (x)\left(x^{2}+c_{1}\right)
$$

Verified OK.

3.9.2 Maple step by step solution

Let's solve
$y^{\prime}+y \cot (x)=2 x \csc (x)$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=-y \cot (x)+2 x \csc (x)$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+y \cot (x)=2 x \csc (x)$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=2 \mu(x) x \csc (x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+y \cot (x)\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\mu(x) \cot (x)$
- Solve to find the integrating factor
$\mu(x)=\sin (x)$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) x \csc (x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) x \csc (x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) x \csc (x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sin (x)$
$y=\frac{\int 2 x \csc (x) \sin (x) d x+c_{1}}{\sin (x)}$
- Evaluate the integrals on the rhs

$$
y=\frac{x^{2}+c_{1}}{\sin (x)}
$$

- Simplify

$$
y=\csc (x)\left(x^{2}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve(diff(y(x), x)+y(x)*\operatorname{cot}(x)=2*x*\operatorname{csc}(\textrm{x}),\textrm{y}(\textrm{x}),}\mathrm{ , singsol=all)
```

$$
y(x)=\csc (x)\left(x^{2}+c_{1}\right)
$$

\checkmark Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 14
DSolve $[y '[x]+y[x] * \operatorname{Cot}[x]==2 * x * \operatorname{Csc}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow\left(x^{2}+c_{1}\right) \csc (x)
$$

3.10 problem 1(j)

3.10.1 Solving as linear ode . 356
3.10.2 Maple step by step solution . 358

Internal problem ID [6166]
Internal file name [OUTPUT/5414_Sunday_June_05_2022_03_36_37_PM_36928189/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 1(j).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[_linear]

$$
y+x y \cot (x)+x y^{\prime}=x
$$

3.10.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{-x \cot (x)-1}{x} \\
& q(x)=1
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{(-x \cot (x)-1) y}{x}=1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{-x \cot (x)-1}{x} d x} \\
& =\mathrm{e}^{\ln (\sin (x))+\ln (x)}
\end{aligned}
$$

Which simplifies to

$$
\mu=\sin (x) x
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\sin (x) x y) & =\sin (x) x \\
\mathrm{~d}(\sin (x) x y) & =\sin (x) x \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \sin (x) x y=\int \sin (x) x \mathrm{~d} x \\
& \sin (x) x y=\sin (x)-\cos (x) x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\sin (x) x$ results in

$$
y=\frac{\csc (x)(\sin (x)-\cos (x) x)}{x}+\frac{c_{1} \csc (x)}{x}
$$

which simplifies to

$$
y=\frac{1-x \cot (x)+c_{1} \csc (x)}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1-x \cot (x)+c_{1} \csc (x)}{x} \tag{1}
\end{equation*}
$$

Figure 78: Slope field plot

Verification of solutions

$$
y=\frac{1-x \cot (x)+c_{1} \csc (x)}{x}
$$

Verified OK.

3.10.2 Maple step by step solution

Let's solve

$$
y+x y \cot (x)+x y^{\prime}=x
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=1-\frac{(x \cot (x)+1) y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}+\frac{(x \cot (x)+1) y}{x}=1$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{(x \cot (x)+1) y}{x}\right)=\mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{(x \cot (x)+1) y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{\mu(x)(x \cot (x)+1)}{x}$
- Solve to find the integrating factor
$\mu(x)=\sin (x) x$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\sin (x) x$
$y=\frac{\int \sin (x) x d x+c_{1}}{\sin (x) x}$
- Evaluate the integrals on the rhs
$y=\frac{\sin (x)-\cos (x) x+c_{1}}{\sin (x) x}$
- Simplify
$y=\frac{1-x \cot (x)+c_{1} \csc (x)}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve $(y(x)-x+x * y(x) * \cot (x)+x * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
y(x)=\frac{-\cot (x) x+1+\csc (x) c_{1}}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.072 (sec). Leaf size: 21
DSolve $[y[x]-x+x * y[x] * \operatorname{Cot}[x]+x * y '[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{-x \cot (x)+c_{1} \csc (x)+1}{x}
$$

3.11 problem 2(a)

3.11.1 Existence and uniqueness analysis 361
3.11.2 Solving as linear ode . 362
3.11.3 Maple step by step solution . 363

Internal problem ID [6167]
Internal file name [OUTPUT/5415_Sunday_June_05_2022_03_36_39_PM_42878629/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y^{\prime}-x y=0
$$

With initial conditions

$$
[y(1)=3]
$$

3.11.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-x \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-x y=0
$$

The domain of $p(x)=-x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. Hence solution exists and is unique.

3.11.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-x d x} \\
& =\mathrm{e}^{-\frac{x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{x^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-\frac{x^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{x^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=c_{1} \mathrm{e}^{\frac{1}{2}} \\
c_{1}=3 \mathrm{e}^{-\frac{1}{2}}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 \mathrm{e}^{\frac{(x-1)(1+x)}{2}}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=3 \mathrm{e}^{\frac{(x-1)(1+x)}{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=3 \mathrm{e}^{\frac{(x-1)(1+x)}{2}}
$$

Verified OK.

3.11.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-x y=0, y(1)=3\right]
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime}}{y}=x
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y} d x=\int x d x+c_{1}$
- Evaluate integral
$\ln (y)=\frac{x^{2}}{2}+c_{1}$
- \quad Solve for y
$y=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}$
- Use initial condition $y(1)=3$

$$
3=\mathrm{e}^{\frac{1}{2}+c_{1}}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{1}{2}+\ln (3)
$$

- \quad Substitute $c_{1}=-\frac{1}{2}+\ln (3)$ into general solution and simplify

$$
y=3 \mathrm{e}^{\frac{(x-1)(1+x)}{2}}
$$

- Solution to the IVP

$$
y=3 \mathrm{e}^{\frac{(x-1)(1+x)}{2}}
$$

Maple trace

```
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 15

```
dsolve([diff(y(x),x)-x*y(x)=0,y(1) = 3],y(x), singsol=all)
```

$$
y(x)=3 \mathrm{e}^{\frac{(x-1)(x+1)}{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 18
DSolve[\{y' $[x]-x * y[x]==0,\{y[1]==3\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 3 e^{\frac{1}{2}\left(x^{2}-1\right)}
$$

3.12 problem 2(b)

3.12.1 Existence and uniqueness analysis 365
3.12.2 Solving as linear ode . 366
3.12.3 Maple step by step solution . 368

Internal problem ID [6168]
Internal file name [OUTPUT/5416_Sunday_June_05_2022_03_36_41_PM_87143776/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
-2 x y+y^{\prime}=6 x \mathrm{e}^{x^{2}}
$$

With initial conditions

$$
[y(1)=1]
$$

3.12.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 x \\
& q(x)=6 x \mathrm{e}^{x^{2}}
\end{aligned}
$$

Hence the ode is

$$
-2 x y+y^{\prime}=6 x \mathrm{e}^{x^{2}}
$$

The domain of $p(x)=-2 x$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=6 x \mathrm{e}^{x^{2}}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.12.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(6 x \mathrm{e}^{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =\left(\mathrm{e}^{-x^{2}}\right)\left(6 x \mathrm{e}^{x^{2}}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x^{2}} y\right) & =(6 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-x^{2}} y=\int 6 x \mathrm{~d} x \\
& \mathrm{e}^{-x^{2}} y=3 x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}}$ results in

$$
y=3 x^{2} \mathrm{e}^{x^{2}}+c_{1} \mathrm{e}^{x^{2}}
$$

which simplifies to

$$
y=\mathrm{e}^{x^{2}}\left(3 x^{2}+c_{1}\right)
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
1=\mathrm{e}\left(c_{1}+3\right) \\
c_{1}=-(3 \mathrm{e}-1) \mathrm{e}^{-1}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=3 x^{2} \mathrm{e}^{x^{2}}+\mathrm{e}^{(x-1)(1+x)}-3 \mathrm{e}^{x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=3 x^{2} \mathrm{e}^{x^{2}}+\mathrm{e}^{(x-1)(1+x)}-3 \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=3 x^{2} \mathrm{e}^{x^{2}}+\mathrm{e}^{(x-1)(1+x)}-3 \mathrm{e}^{x^{2}}
$$

Verified OK.

3.12.3 Maple step by step solution

Let's solve
$\left[-2 x y+y^{\prime}=6 x \mathrm{e}^{x^{2}}, y(1)=1\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=2 x y+6 x \mathrm{e}^{x^{2}}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $-2 x y+y^{\prime}=6 x \mathrm{e}^{x^{2}}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(-2 x y+y^{\prime}\right)=6 \mu(x) x \mathrm{e}^{x^{2}}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(-2 x y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-2 \mu(x) x$
- Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{-x^{2}}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 6 \mu(x) x \mathrm{e}^{x^{2}} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 6 \mu(x) x \mathrm{e}^{x^{2}} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 6 \mu(x) x \mathrm{e}^{x^{2}} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{-x^{2}}$
$y=\frac{\int 6 x \mathrm{e}^{-x^{2}} \mathrm{e}^{x^{2}} d x+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Evaluate the integrals on the rhs
$y=\frac{3 x^{2}+c_{1}}{\mathrm{e}^{-x^{2}}}$
- Simplify

$$
y=\mathrm{e}^{x^{2}}\left(3 x^{2}+c_{1}\right)
$$

- Use initial condition $y(1)=1$
$1=\mathrm{e}\left(c_{1}+3\right)$
- \quad Solve for c_{1}
$c_{1}=-\frac{3 \mathrm{e}-1}{\mathrm{e}}$
- Substitute $c_{1}=-\frac{3 e-1}{\mathrm{e}}$ into general solution and simplify
$y=\left(-3+3 x^{2}+\mathrm{e}^{-1}\right) \mathrm{e}^{x^{2}}$
- Solution to the IVP
$y=\left(-3+3 x^{2}+\mathrm{e}^{-1}\right) \mathrm{e}^{x^{2}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

Solution by Maple
Time used: 0.063 (sec). Leaf size: 18

```
dsolve([diff(y(x),x)-2*x*y(x)=6*x*exp(x^2),y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\left(3 x^{2}-3+\mathrm{e}^{-1}\right) \mathrm{e}^{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 23
DSolve[\{y'[x]-2*x*y[x]==6*x*Exp[x^2],\{y[1]==1\}\},y[x],x,IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow e^{x^{2}-1}\left(3 e\left(x^{2}-1\right)+1\right)
$$

3.13 problem 2(c)

3.13.1 Existence and uniqueness analysis 370
3.13.2 Solving as linear ode . 371

Internal problem ID [6169]
Internal file name [OUTPUT/5417_Sunday_June_05_2022_03_36_43_PM_66708007/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
$\underline{\text { Unable to solve or complete the solution. }}$

$$
x \ln (x) y^{\prime}+y=3 x^{3}
$$

With initial conditions

$$
[y(1)=0]
$$

3.13.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x \ln (x)} \\
q(x) & =\frac{3 x^{2}}{\ln (x)}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x \ln (x)}=\frac{3 x^{2}}{\ln (x)}
$$

The domain of $p(x)=\frac{1}{x \ln (x)}$ is

$$
\{0<x<1,1<x \leq \infty\}
$$

But the point $x_{0}=1$ is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

3.13.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x \ln (x)} d x} \\
=\ln (x)
\end{gathered}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{3 x^{2}}{\ln (x)}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(\ln (x) y) & =(\ln (x))\left(\frac{3 x^{2}}{\ln (x)}\right) \\
\mathrm{d}(\ln (x) y) & =\left(3 x^{2}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \ln (x) y=\int 3 x^{2} \mathrm{~d} x \\
& \ln (x) y=x^{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\ln (x)$ results in

$$
y=\frac{x^{3}}{\ln (x)}+\frac{c_{1}}{\ln (x)}
$$

which simplifies to

$$
y=\frac{x^{3}+c_{1}}{\ln (x)}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=0$ in the above solution gives an equation to solve for the constant of integration. Warning: Unable to solve for constant of integration.

Verification of solutions N/A
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

X Solution by Maple

```
dsolve([(x*ln(x))*diff(y(x),x)+y(x)=3*x^3,y(1) = 0],y(x), singsol=all)
```

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0

```
DSolve[{(x*Log[x])*y'[x]+y[x]==3*x^3,{y[1]==0}},y[x],x, IncludeSingularSolutions -> True]
```

Not solved

3.14 problem 2(d)

3.14.1 Existence and uniqueness analysis 373
3.14.2 Solving as linear ode . 374
3.14.3 Maple step by step solution . 376

Internal problem ID [6170]
Internal file name [OUTPUT/5418_Sunday_June_05_2022_03_36_44_PM_70578026/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime}-\frac{y}{x}=x^{2}
$$

With initial conditions

$$
[y(1)=3]
$$

3.14.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x^{2}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x}=x^{2}
$$

The domain of $p(x)=-\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=x^{2}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.14.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =x \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{x}=\int x \mathrm{~d} x \\
& \frac{y}{x}=\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
y=\frac{1}{2} x^{3}+c_{1} x
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=3$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
3=\frac{1}{2}+c_{1} \\
c_{1}=\frac{5}{2}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{1}{2} x^{3}+\frac{5}{2} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{2} x^{3}+\frac{5}{2} x \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{1}{2} x^{3}+\frac{5}{2} x
$$

Verified OK.

3.14.3 Maple step by step solution

Let's solve

$$
\left[y^{\prime}-\frac{y}{x}=x^{2}, y(1)=3\right]
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=\frac{y}{x}+x^{2}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{y}{x}=x^{2}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) x^{2}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{\mu(x)}{x}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) x^{2} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{x}$
$y=x\left(\int x d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=x\left(\frac{x^{2}}{2}+c_{1}\right)$
- Simplify

$$
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
$$

- Use initial condition $y(1)=3$
$3=\frac{1}{2}+c_{1}$
- \quad Solve for c_{1}
$c_{1}=\frac{5}{2}$
- \quad Substitute $c_{1}=\frac{5}{2}$ into general solution and simplify
$y=\frac{x\left(x^{2}+5\right)}{2}$
- Solution to the IVP
$y=\frac{x\left(x^{2}+5\right)}{2}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 12

```
dsolve([diff(y(x),x)-y(x)/x=x^2,y(1) = 3],y(x), singsol=all)
```

$$
y(x)=\frac{\left(x^{2}+5\right) x}{2}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 15
DSolve[\{y'[x]-y[x]/x==x^2,\{y[1]==3\}\},y[x],x,IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{2} x\left(x^{2}+5\right)
$$

3.15 problem 2(e)

3.15.1 Existence and uniqueness analysis 378
3.15.2 Solving as linear ode . 379
3.15.3 Maple step by step solution . 381

Internal problem ID [6171]
Internal file name [OUTPUT/5419_Sunday_June_05_2022_03_36_46_PM_67387346/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]

$$
4 y+y^{\prime}=\mathrm{e}^{-x}
$$

With initial conditions

$$
[y(0)=0]
$$

3.15.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =4 \\
q(x) & =\mathrm{e}^{-x}
\end{aligned}
$$

Hence the ode is

$$
4 y+y^{\prime}=\mathrm{e}^{-x}
$$

The domain of $p(x)=4$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is inside this domain. The domain of $q(x)=\mathrm{e}^{-x}$ is

$$
\{-\infty<x<\infty\}
$$

And the point $x_{0}=0$ is also inside this domain. Hence solution exists and is unique.

3.15.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int 4 d x} \\
& =\mathrm{e}^{4 x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\mathrm{e}^{-x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{4 x} y\right) & =\left(\mathrm{e}^{4 x}\right)\left(\mathrm{e}^{-x}\right) \\
\mathrm{d}\left(\mathrm{e}^{4 x} y\right) & =\mathrm{e}^{3 x} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{4 x} y=\int \mathrm{e}^{3 x} \mathrm{~d} x \\
& \mathrm{e}^{4 x} y=\frac{\mathrm{e}^{3 x}}{3}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{4 x}$ results in

$$
y=\frac{\mathrm{e}^{-4 x} \mathrm{e}^{3 x}}{3}+c_{1} \mathrm{e}^{-4 x}
$$

which simplifies to

$$
y=\frac{\mathrm{e}^{-x}}{3}+c_{1} \mathrm{e}^{-4 x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=0$ and $y=0$ in the above solution gives an equation to solve for the constant of integration.

$$
\begin{gathered}
0=\frac{1}{3}+c_{1} \\
c_{1}=-\frac{1}{3}
\end{gathered}
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{\mathrm{e}^{-x}}{3}-\frac{\mathrm{e}^{-4 x}}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-x}}{3}-\frac{\mathrm{e}^{-4 x}}{3} \tag{1}
\end{equation*}
$$

(a) Solution plot
(b) Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-x}}{3}-\frac{\mathrm{e}^{-4 x}}{3}
$$

Verified OK.

3.15.3 Maple step by step solution

Let's solve
$\left[4 y+y^{\prime}=\mathrm{e}^{-x}, y(0)=0\right]$

- Highest derivative means the order of the ODE is 1
y^{\prime}
- Isolate the derivative
$y^{\prime}=-4 y+\mathrm{e}^{-x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $4 y+y^{\prime}=\mathrm{e}^{-x}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(4 y+y^{\prime}\right)=\mu(x) \mathrm{e}^{-x}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(4 y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=4 \mu(x)$
- \quad Solve to find the integrating factor
$\mu(x)=\mathrm{e}^{4 x}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \mathrm{e}^{-x} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \mu(x) \mathrm{e}^{-x} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \mu(x) \mathrm{e}^{-x} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\mathrm{e}^{4 x}$
$y=\frac{\int \mathrm{e}^{-x} \mathrm{e}^{4 x} d x+c_{1}}{\mathrm{e}^{4 x}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{\mathrm{e}^{3 x}}{3}+c_{1}}{\mathrm{e}^{4 x}}$
- Simplify
$y=\frac{\left(e^{3 x}+3 c_{1}\right) \mathrm{e}^{-4 x}}{3}$
- Use initial condition $y(0)=0$

$$
0=\frac{1}{3}+c_{1}
$$

- \quad Solve for c_{1}

$$
c_{1}=-\frac{1}{3}
$$

- Substitute $c_{1}=-\frac{1}{3}$ into general solution and simplify
$y=\frac{\left(\mathrm{e}^{3 x}-1\right) \mathrm{e}^{-4 x}}{3}$
- Solution to the IVP
$y=\frac{\left(\mathrm{e}^{3 x}-1\right) \mathrm{e}^{-4 x}}{3}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16

```
dsolve([diff(y(x),x)+4*y(x)=exp(-x),y(0) = 0],y(x), singsol=all)
```

$$
y(x)=\frac{\left(\mathrm{e}^{3 x}-1\right) \mathrm{e}^{-4 x}}{3}
$$

\checkmark Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 21
DSolve[\{y' $[x]+4 * y[x]==\operatorname{Exp}[-x],\{y[0]==0\}\}, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{1}{3} e^{-4 x}\left(e^{3 x}-1\right)
$$

3.16 problem 2(f)

3.16.1 Existence and uniqueness analysis 383
3.16.2 Solving as linear ode . 384
3.16.3 Maple step by step solution . 385

Internal problem ID [6172]
Internal file name [OUTPUT/5420_Sunday_June_05_2022_03_36_48_PM_64201154/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 2(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "differentialType", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x^{2} y^{\prime}+x y=2 x
$$

With initial conditions

$$
[y(1)=1]
$$

3.16.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2}{x}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=\frac{2}{x}
$$

The domain of $p(x)=\frac{1}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is inside this domain. The domain of $q(x)=\frac{2}{x}$ is

$$
\{x<0 \vee 0<x\}
$$

And the point $x_{0}=1$ is also inside this domain. Hence solution exists and is unique.

3.16.2 Solving as linear ode

Entering Linear first order ODE solver. The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2}{x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{2}{x}\right) \\
\mathrm{d}(x y) & =2 \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x y=\int 2 \mathrm{~d} x \\
& x y=2 x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=2+\frac{c_{1}}{x}
$$

Initial conditions are used to solve for c_{1}. Substituting $x=1$ and $y=1$ in the above solution gives an equation to solve for the constant of integration.

$$
1=2+c_{1}
$$

$$
c_{1}=-1
$$

Substituting c_{1} found above in the general solution gives

$$
y=\frac{2 x-1}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{2 x-1}{x} \tag{1}
\end{equation*}
$$

(a) Solution plot (b) Slope field plot

Verification of solutions

$$
y=\frac{2 x-1}{x}
$$

Verified OK.

3.16.3 Maple step by step solution

Let's solve

$$
\left[x^{2} y^{\prime}+x y=2 x, y(1)=1\right]
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables
$\frac{y^{\prime}}{y-2}=-\frac{1}{x}$
- Integrate both sides with respect to x
$\int \frac{y^{\prime}}{y-2} d x=\int-\frac{1}{x} d x+c_{1}$
- Evaluate integral
$\ln (y-2)=-\ln (x)+c_{1}$
- Solve for y
$y=\frac{\mathrm{e}^{c_{1}}+2 x}{x}$
- Use initial condition $y(1)=1$
$1=\mathrm{e}^{c_{1}}+2$
- \quad Solve for c_{1}
$c_{1}=\mathrm{I} \pi$
- Substitute $c_{1}=\mathrm{I} \pi$ into general solution and simplify

$$
y=\frac{2 x-1}{x}
$$

- Solution to the IVP
$y=\frac{2 x-1}{x}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

$\sqrt{ }$ Solution by Maple
Time used: 0.016 (sec). Leaf size: 13

```
dsolve([x^2*diff(y(x),x)+x*y(x)=2*x,y(1) = 1],y(x), singsol=all)
```

$$
y(x)=\frac{2 x-1}{x}
$$

\checkmark Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 12
DSolve $\left[\left\{x^{\wedge} 2 * y{ }^{\prime}[x]+x * y[x]==2 * x,\{y[1]==1\}\right\}, y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow 2-\frac{1}{x}
$$

3.17 problem 3(a)

3.17.1 Solving as first order ode lie symmetry lookup ode 388
3.17.2 Solving as bernoulli ode . 392
3.17.3 Solving as exact ode . 396

Internal problem ID [6173]
Internal file name [OUTPUT/5421_Sunday_June_05_2022_03_36_49_PM_92467487/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 3(a).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _rational, _Bernoulli]
```

$$
x y^{\prime}+y-y^{3} x^{4}=0
$$

3.17.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y\left(y^{2} x^{4}-1\right)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 71: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{3} x^{2} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{3} x^{2}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{2 y^{2} x^{2}}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(y^{2} x^{4}-1\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y^{2} x^{3}} \\
S_{y} & =\frac{1}{y^{3} x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=R
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{2 y^{2} x^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Which simplifies to

$$
-\frac{1}{2 y^{2} x^{2}}=\frac{x^{2}}{2}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(y^{2} x^{4}-1\right)}{x}$		$\frac{d S}{d R}=R$
		: H_{1}
	$R=x$	
	$S=-1$	
	$S=-\overline{1} 2 y^{2} x^{2}$	
d		

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{1}{2 y^{2} x^{2}}=\frac{x^{2}}{2}+c_{1} \tag{1}
\end{equation*}
$$

Figure 84: Slope field plot
Verification of solutions

$$
-\frac{1}{2 y^{2} x^{2}}=\frac{x^{2}}{2}+c_{1}
$$

Verified OK.

3.17.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y\left(y^{2} x^{4}-1\right)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+x^{3} y^{3} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =x^{3} \\
n & =3
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{3}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{3}}=-\frac{1}{y^{2} x}+x^{3} \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{2}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{2}{y^{3}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{x}+x^{3} \\
w^{\prime} & =\frac{2 w}{x}-2 x^{3} \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=-2 x^{3}
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{2 w(x)}{x}=-2 x^{3}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(-2 x^{3}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{2}}\right) & =\left(\frac{1}{x^{2}}\right)\left(-2 x^{3}\right) \\
\mathrm{d}\left(\frac{w}{x^{2}}\right) & =(-2 x) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x^{2}}=\int-2 x \mathrm{~d} x \\
& \frac{w}{x^{2}}=-x^{2}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x^{2}}$ results in

$$
w(x)=-x^{4}+c_{1} x^{2}
$$

Replacing w in the above by $\frac{1}{y^{2}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{2}}=-x^{4}+c_{1} x^{2}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{-x^{2}+c_{1} x}} \\
& y(x)=-\frac{1}{\sqrt{-x^{2}+c_{1}} x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\sqrt{-x^{2}+c_{1} x}} \tag{1}\\
& y=-\frac{1}{\sqrt{-x^{2}+c_{1}} x} \tag{2}
\end{align*}
$$

Figure 85: Slope field plot

Verification of solutions

$$
y=\frac{1}{\sqrt{-x^{2}+c_{1} x}}
$$

Verified OK.

$$
y=-\frac{1}{\sqrt{-x^{2}+c_{1}} x}
$$

Verified OK.

3.17.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(y^{3} x^{4}-y\right) \mathrm{d} x \\
\left(-y^{3} x^{4}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{3} x^{4}+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{3} x^{4}+y\right) \\
& =-3 y^{2} x^{4}+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}\left(\left(-3 y^{2} x^{4}+1\right)-(1)\right) \\
& =-3 y^{2} x^{3}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-y^{3} x^{4}+y}\left((1)-\left(-3 y^{2} x^{4}+1\right)\right) \\
& =-\frac{3 y x^{4}}{y^{2} x^{4}-1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-\left(-3 y^{2} x^{4}+1\right)}{x\left(-y^{3} x^{4}+y\right)-y(x)} \\
& =-\frac{3}{y x}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{3}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{3}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-3 \ln (t)} \\
& =\frac{1}{t^{3}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{x^{3} y^{3}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3} y^{3}}\left(-y^{3} x^{4}+y\right) \\
& =\frac{-y^{2} x^{4}+1}{y^{2} x^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3} y^{3}}(x) \\
& =\frac{1}{y^{3} x^{2}}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-y^{2} x^{4}+1}{y^{2} x^{3}}\right)+\left(\frac{1}{y^{3} x^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-y^{2} x^{4}+1}{y^{2} x^{3}} \mathrm{~d} x \\
\phi & =\frac{-y^{2} x^{4}-1}{2 y^{2} x^{2}}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{x^{2}}{y}-\frac{-y^{2} x^{4}-1}{y^{3} x^{2}}+f^{\prime}(y) \tag{4}\\
& =\frac{1}{y^{3} x^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{3} x^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{3} x^{2}}=\frac{1}{y^{3} x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{-y^{2} x^{4}-1}{2 y^{2} x^{2}}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{-y^{2} x^{4}-1}{2 y^{2} x^{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{-y^{2} x^{4}-1}{2 y^{2} x^{2}}=c_{1} \tag{1}
\end{equation*}
$$

Figure 86: Slope field plot

Verification of solutions

$$
\frac{-y^{2} x^{4}-1}{2 y^{2} x^{2}}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve($x * \operatorname{diff}(y(x), x)+y(x)=x \wedge 4 * y(x) \wedge 3, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\sqrt{-x^{2}+c_{1}} x} \\
& y(x)=-\frac{1}{\sqrt{-x^{2}+c_{1}} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.414 (sec). Leaf size: 48
DSolve $\left[x * y '[x]+y[x]==x^{\wedge} 4 * y[x] \sim 3, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{1}{\sqrt{-x^{4}+c_{1} x^{2}}} \\
& y(x) \rightarrow \frac{1}{\sqrt{-x^{4}+c_{1} x^{2}}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.18 problem 3(b)

3.18.1 Solving as first order ode lie symmetry lookup ode 402
3.18.2 Solving as bernoulli ode . 406
3.18.3 Solving as exact ode . 410

Internal problem ID [6174]
Internal file name [OUTPUT/5422_Sunday_June_05_2022_03_36_51_PM_7313356/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 3(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_Bernoulli]
```

$$
x y^{2} y^{\prime}+y^{3}=\cos (x) x
$$

3.18.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{-y^{3}+\cos (x) x}{x y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 73: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	$y^{2}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
\xi(x, y) & =0 \\
\eta(x, y) & =\frac{1}{y^{2} x^{3}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y^{2} x^{3}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y^{3} x^{3}}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{-y^{3}+\cos (x) x}{x y^{2}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y^{3} x^{2} \\
S_{y} & =y^{2} x^{3}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\cos (x) x^{3} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\cos (R) R^{3}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\sin (R) R^{3}+3 \cos (R) R^{2}-6 \cos (R)-6 \sin (R) R+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{3} y^{3}}{3}=\sin (x) x^{3}+3 \cos (x) x^{2}-6 \cos (x)-6 \sin (x) x+c_{1}
$$

Which simplifies to

$$
\frac{x^{3} y^{3}}{3}=\sin (x) x^{3}+3 \cos (x) x^{2}-6 \cos (x)-6 \sin (x) x+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{-y^{3}+\cos (x) x}{x y^{2}}$		$\frac{d S}{d R}=\cos (R) R^{3}$
		+11919
		+ ${ }^{+}$
		$1+1+S^{1} R+\rightarrow \rightarrow$
$\rightarrow \vec{\rightarrow} \rightarrow{ }_{\text {a }}$	$R=x$	$\mathrm{S}_{1}+1+1$
	$R=x$	
	$S=\frac{y^{3} x^{3}}{3}$	
	$S=\frac{y^{3}}{3}$	
		+ $4 \rightarrow+0$
		\rightarrow

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{3} y^{3}}{3}=\sin (x) x^{3}+3 \cos (x) x^{2}-6 \cos (x)-6 \sin (x) x+c_{1} \tag{1}
\end{equation*}
$$

Figure 87: Slope field plot

Verification of solutions

$$
\frac{x^{3} y^{3}}{3}=\sin (x) x^{3}+3 \cos (x) x^{2}-6 \cos (x)-6 \sin (x) x+c_{1}
$$

Verified OK.

3.18.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{-y^{3}+\cos (x) x}{x y^{2}}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+\cos (x) \frac{1}{y^{2}} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =\cos (x) \\
n & =-2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=\frac{1}{y^{2}}$ gives

$$
\begin{equation*}
y^{\prime} y^{2}=-\frac{y^{3}}{x}+\cos (x) \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =y^{3} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=3 y^{2} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
\frac{w^{\prime}(x)}{3} & =-\frac{w(x)}{x}+\cos (x) \\
w^{\prime} & =-\frac{3 w}{x}+3 \cos (x) \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
p(x) & =\frac{3}{x} \\
q(x) & =3 \cos (x)
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)+\frac{3 w(x)}{x}=3 \cos (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{3}{x} d x} \\
& =x^{3}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(3 \cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{3} w\right) & =\left(x^{3}\right)(3 \cos (x)) \\
\mathrm{d}\left(x^{3} w\right) & =\left(3 \cos (x) x^{3}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& x^{3} w=\int 3 \cos (x) x^{3} \mathrm{~d} x \\
& x^{3} w=3 \sin (x) x^{3}+9 \cos (x) x^{2}-18 \cos (x)-18 \sin (x) x+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=x^{3}$ results in

$$
w(x)=\frac{3 \sin (x) x^{3}+9 \cos (x) x^{2}-18 \cos (x)-18 \sin (x) x}{x^{3}}+\frac{c_{1}}{x^{3}}
$$

which simplifies to

$$
w(x)=\frac{9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}}{x^{3}}
$$

Replacing w in the above by y^{3} using equation (5) gives the final solution.

$$
y^{3}=\frac{9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}}{x^{3}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}}{x} \\
& y(x)=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x} \\
& y(x)=-\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}}{x} \tag{1}\\
& y=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x} \tag{2}\\
& y=-\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x} \tag{3}
\end{align*}
$$

Figure 88: Slope field plot

Verification of solutions

$$
y=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}}{x}
$$

Verified OK.

$$
y=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x}
$$

Verified OK.

$$
y=-\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x}
$$

Verified OK.

3.18.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition
$\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{2} x\right) \mathrm{d} y & =\left(-y^{3}+\cos (x) x\right) \mathrm{d} x \\
\left(y^{3}-\cos (x) x\right) \mathrm{d} x+\left(y^{2} x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{3}-\cos (x) x \\
N(x, y) & =y^{2} x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{3}-\cos (x) x\right) \\
& =3 y^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2} x\right) \\
& =y^{2}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{y^{2} x}\left(\left(3 y^{2}\right)-\left(y^{2}\right)\right) \\
& =\frac{2}{x}
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(y^{3}-\cos (x) x\right) \\
& =\left(y^{3}-\cos (x) x\right) x^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}\left(y^{2} x\right) \\
& =y^{2} x^{3}
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\left(y^{3}-\cos (x) x\right) x^{2}\right)+\left(y^{2} x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(y^{3}-\cos (x) x\right) x^{2} \mathrm{~d} x \\
\phi & =\frac{\left(-3 x^{3}+18 x\right) \sin (x)}{3}+\frac{y^{3} x^{3}}{3}-3 \cos (x) x^{2}+6 \cos (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=y^{2} x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{2} x^{3}$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{2} x^{3}=y^{2} x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(-3 x^{3}+18 x\right) \sin (x)}{3}+\frac{y^{3} x^{3}}{3}-3 \cos (x) x^{2}+6 \cos (x)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(-3 x^{3}+18 x\right) \sin (x)}{3}+\frac{y^{3} x^{3}}{3}-3 \cos (x) x^{2}+6 \cos (x)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\left(-3 x^{3}+18 x\right) \sin (x)}{3}+\frac{x^{3} y^{3}}{3}-3 \cos (x) x^{2}+6 \cos (x)=c_{1} \tag{1}
\end{equation*}
$$

Figure 89: Slope field plot

Verification of solutions

$$
\frac{\left(-3 x^{3}+18 x\right) \sin (x)}{3}+\frac{x^{3} y^{3}}{3}-3 \cos (x) x^{2}+6 \cos (x)=c_{1}
$$

Verified OK.
Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.063 (sec). Leaf size: 112
dsolve ($x * y(x) \wedge 2 * \operatorname{diff}(y(x), x)+y(x) \wedge 3=x * \cos (x), y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}}{x} \\
& y(x)=-\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2 x} \\
& y(x)=\frac{\left(9\left(x^{2}-2\right) \cos (x)+3\left(x^{3}-6 x\right) \sin (x)+c_{1}\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2 x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.513 (sec). Leaf size: 114
DSolve $[x * y[x] \sim 2 * y$ ' $[x]+y[x] \leadsto 3==x * \operatorname{Cos}[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{\sqrt[3]{3 x\left(x^{2}-6\right) \sin (x)+9\left(x^{2}-2\right) \cos (x)+c_{1}}}{x} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1} \sqrt[3]{3 x\left(x^{2}-6\right) \sin (x)+9\left(x^{2}-2\right) \cos (x)+c_{1}}}{x} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3} \sqrt[3]{3 x\left(x^{2}-6\right) \sin (x)+9\left(x^{2}-2\right) \cos (x)+c_{1}}}{x}
\end{aligned}
$$

3.19 problem 3(c)

3.19.1 Solving as first order ode lie symmetry lookup ode 416
3.19.2 Solving as bernoulli ode . 420
3.19.3 Solving as exact ode . 424
3.19.4 Solving as riccati ode . 429

Internal problem ID [6175]
Internal file name [OUTPUT/5423_Sunday_June_05_2022_03_36_55_PM_77365129/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 3(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "riccati", "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]

$$
x y^{\prime}+y-x y^{2}=0
$$

3.19.1 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y(x y-1)}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 75: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=y^{2} x \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{y^{2} x} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{1}{y x}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y(x y-1)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y x^{2}} \\
S_{y} & =\frac{1}{y^{2} x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{x} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{1}{x y}=\ln (x)+c_{1}
$$

Which simplifies to

$$
-\frac{1}{x y}=\ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y(x y-1)}{x}$		$\frac{d S}{d R}=\frac{1}{R}$
		$\rightarrow \rightarrow \rightarrow$
	$R=x$	
$\rightarrow \rightarrow$ 为	$S=-\frac{1}{y x}$	$\rightarrow \rightarrow$ 连
	$y x$	$\cdots \times \rightarrow+\infty$
		\rightarrow avivip
¢		$\cdots \times$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 90: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)}
$$

Verified OK.

3.19.2 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x y-1)}{x}
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-\frac{1}{x} y+y^{2} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-\frac{1}{x} \\
f_{1}(x) & =1 \\
n & =2
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{2}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{2}}=-\frac{1}{y x}+1 \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{1}{y^{2}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-w^{\prime}(x) & =-\frac{w(x)}{x}+1 \\
w^{\prime} & =\frac{w}{x}-1 \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=-1
\end{aligned}
$$

Hence the ode is

$$
w^{\prime}(x)-\frac{w(x)}{x}=-1
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-1) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x}\right) & =\left(\frac{1}{x}\right)(-1) \\
\mathrm{d}\left(\frac{w}{x}\right) & =\left(-\frac{1}{x}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{w}{x}=\int-\frac{1}{x} \mathrm{~d} x \\
& \frac{w}{x}=-\ln (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x}$ results in

$$
w(x)=-\ln (x) x+c_{1} x
$$

which simplifies to

$$
w(x)=x\left(-\ln (x)+c_{1}\right)
$$

Replacing w in the above by $\frac{1}{y}$ using equation (5) gives the final solution.

$$
\frac{1}{y}=x\left(-\ln (x)+c_{1}\right)
$$

Or

$$
y=\frac{1}{x\left(-\ln (x)+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{1}{x\left(-\ln (x)+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 91: Slope field plot

Verification of solutions

$$
y=\frac{1}{x\left(-\ln (x)+c_{1}\right)}
$$

Verified OK.

3.19.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(x) \mathrm{d} y & =\left(y^{2} x-y\right) \mathrm{d} x \\
\left(-y^{2} x+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2} x+y \\
N(x, y) & =x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2} x+y\right) \\
& =-2 x y+1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-2 x y+1)-(1)) \\
& =-2 y
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{-y^{2} x+y}((1)-(-2 x y+1)) \\
& =-\frac{2 x}{x y-1}
\end{aligned}
$$

Since B depends on x, it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let

$$
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
$$

R is now checked to see if it is a function of only $t=x y$. Therefore

$$
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(1)-(-2 x y+1)}{x\left(-y^{2} x+y\right)-y(x)} \\
& =-\frac{2}{y x}
\end{aligned}
$$

Replacing all powers of terms $x y$ by t gives

$$
R=-\frac{2}{t}
$$

Since R depends on t only, then it can be used to find an integrating factor. Let the integrating factor be μ then

$$
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
$$

Now t is replaced back with $x y$ giving

$$
\mu=\frac{1}{y^{2} x^{2}}
$$

Multiplying M and N by this integrating factor gives new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2} x^{2}}\left(-y^{2} x+y\right) \\
& =\frac{-x y+1}{y x^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2} x^{2}}(x) \\
& =\frac{1}{y^{2} x}
\end{aligned}
$$

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is

$$
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x y+1}{y x^{2}}\right)+\left(\frac{1}{y^{2} x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x y+1}{y x^{2}} \mathrm{~d} x \\
\phi & =-\ln (x)-\frac{1}{y x}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{y^{2} x}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{2} x}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{2} x}=\frac{1}{y^{2} x}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\frac{1}{y x}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\frac{1}{y x}
$$

The solution becomes

$$
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)} \tag{1}
\end{equation*}
$$

Figure 92: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x\left(\ln (x)+c_{1}\right)}
$$

Verified OK.

3.19.4 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y(x y-1)}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2}-\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=0, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=1$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =0 \\
f_{1} f_{2} & =-\frac{1}{x} \\
f_{2}^{2} f_{0} & =0
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
u^{\prime \prime}(x)+\frac{u^{\prime}(x)}{x}=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1}+c_{2} \ln (x)
$$

The above shows that

$$
u^{\prime}(x)=\frac{c_{2}}{x}
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{2}}{x\left(c_{1}+c_{2} \ln (x)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=-\frac{1}{x\left(c_{3}+\ln (x)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{1}{x\left(c_{3}+\ln (x)\right)} \tag{1}
\end{equation*}
$$

Figure 93: Slope field plot

Verification of solutions

$$
y=-\frac{1}{x\left(c_{3}+\ln (x)\right)}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
dsolve($x * \operatorname{diff}(y(x), x)+y(x)=x * y(x) \sim 2, y(x)$, singsol=all)

$$
y(x)=\frac{1}{\left(-\ln (x)+c_{1}\right) x}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.128 (sec). Leaf size: 22
DSolve $\left[x * y{ }^{\prime}[x]+y[x]==x * y[x] \sim 2, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{-x \log (x)+c_{1} x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.20 problem 3(d)

> 3.20.1 Solving as separable ode
3.20.2 Solving as first order ode lie symmetry lookup ode 435
3.20.3 Solving as bernoulli ode
3.20.4 Solving as exact ode . 443
3.20.5 Maple step by step solution 447

Internal problem ID [6176]
Internal file name [OUTPUT/5424_Sunday_June_05_2022_03_36_57_PM_49217883/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 3(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "bernoulli", "separable", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[_separable]

$$
y^{\prime}+x y-x y^{4}=0
$$

3.20.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =x\left(y^{4}-y\right)
\end{aligned}
$$

Where $f(x)=x$ and $g(y)=y^{4}-y$. Integrating both sides gives

$$
\frac{1}{y^{4}-y} d y=x d x
$$

$$
\begin{aligned}
\int \frac{1}{y^{4}-y} d y & =\int x d x \\
\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}}=\mathrm{e}^{\frac{x^{2}}{2}+c_{1}}
$$

Which simplifies to

$$
\frac{(y-1)^{\frac{1}{3}}\left(y^{2}+y+1\right)^{\frac{1}{3}}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

The solution is

$$
\frac{(y-1)^{\frac{1}{3}}\left(y^{2}+y+1\right)^{\frac{1}{3}}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{(y-1)^{\frac{1}{3}}\left(y^{2}+y+1\right)^{\frac{1}{3}}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 94: Slope field plot

Verification of solutions

$$
\frac{(y-1)^{\frac{1}{3}}\left(y^{2}+y+1\right)^{\frac{1}{3}}}{y}=c_{2} \mathrm{e}^{\frac{x^{2}}{2}}
$$

Verified OK.

3.20.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =y^{4} x-x y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 77: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\frac{x^{2}}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=y^{4} x-x y
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{y^{4}-y} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{R^{4}-R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=\frac{\ln (R-1)}{3}-\ln (R)+\frac{\ln \left(R^{2}+R+1\right)}{3}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x^{2}}{2}=\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1}
$$

Which simplifies to

$$
\frac{x^{2}}{2}=\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=y^{4} x-x y$		$\frac{d S}{d R}=\frac{1}{R^{4}-R}$
		$\rightarrow \rightarrow$
$1+1$ +1		
+		
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 为 }]{ }$
	$R=y$	
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow->+1}+$
${ }^{4}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{x^{2}}{2}=\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1} \tag{1}
\end{equation*}
$$

Figure 95: Slope field plot

Verification of solutions

$$
\frac{x^{2}}{2}=\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1}
$$

Verified OK.

3.20.3 Solving as bernoulli ode

In canonical form, the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =y^{4} x-x y
\end{aligned}
$$

This is a Bernoulli ODE.

$$
\begin{equation*}
y^{\prime}=-x y+x y^{4} \tag{1}
\end{equation*}
$$

The standard Bernoulli ODE has the form

$$
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
$$

The first step is to divide the above equation by y^{n} which gives

$$
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
$$

The next step is use the substitution $w=y^{1-n}$ in equation (3) which generates a new ODE in $w(x)$ which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution $y(x)$ which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that

$$
\begin{aligned}
f_{0}(x) & =-x \\
f_{1}(x) & =x \\
n & =4
\end{aligned}
$$

Dividing both sides of ODE (1) by $y^{n}=y^{4}$ gives

$$
\begin{equation*}
y^{\prime} \frac{1}{y^{4}}=-\frac{x}{y^{3}}+x \tag{4}
\end{equation*}
$$

Let

$$
\begin{align*}
w & =y^{1-n} \\
& =\frac{1}{y^{3}} \tag{5}
\end{align*}
$$

Taking derivative of equation (5) w.r.t x gives

$$
\begin{equation*}
w^{\prime}=-\frac{3}{y^{4}} y^{\prime} \tag{6}
\end{equation*}
$$

Substituting equations (5) and (6) into equation (4) gives

$$
\begin{align*}
-\frac{w^{\prime}(x)}{3} & =-w(x) x+x \\
w^{\prime} & =3 x w-3 x \tag{7}
\end{align*}
$$

The above now is a linear ODE in $w(x)$ which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is

$$
w^{\prime}(x)+p(x) w(x)=q(x)
$$

Where here

$$
\begin{gathered}
p(x)=-3 x \\
q(x)=-3 x
\end{gathered}
$$

Hence the ode is

$$
w^{\prime}(x)-3 w(x) x=-3 x
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-3 x d x} \\
& =\mathrm{e}^{-\frac{3 x^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)(-3 x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{3 x^{2}}{2}} w\right) & =\left(\mathrm{e}^{-\frac{3 x^{2}}{2}}\right)(-3 x) \\
\mathrm{d}\left(\mathrm{e}^{-\frac{3 x^{2}}{2}} w\right) & =\left(-3 x \mathrm{e}^{-\frac{3 x^{2}}{2}}\right) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \mathrm{e}^{-\frac{3 x^{2}}{2}} w=\int-3 x \mathrm{e}^{-\frac{3 x^{2}}{2}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{3 x^{2}}{2}} w=\mathrm{e}^{-\frac{3 x^{2}}{2}}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-\frac{3 x^{2}}{2}}$ results in

$$
w(x)=\mathrm{e}^{\frac{3 x^{2}}{2}} \mathrm{e}^{-\frac{3 x^{2}}{2}}+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}
$$

which simplifies to

$$
w(x)=1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}
$$

Replacing w in the above by $\frac{1}{y^{3}}$ using equation (5) gives the final solution.

$$
\frac{1}{y^{3}}=1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}
$$

Solving for y gives

$$
\begin{aligned}
& y(x)=\frac{1}{\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{align*}
& y=\frac{1}{\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}} \tag{1}\\
& y=\frac{i \sqrt{3}-1}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}} \tag{2}\\
& y=-\frac{1+i \sqrt{3}}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}} \tag{3}
\end{align*}
$$

Figure 96: Slope field plot

Verification of solutions

$$
y=\frac{1}{\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}}
$$

Verified OK.

$$
y=\frac{i \sqrt{3}-1}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}}
$$

Verified OK.

$$
y=-\frac{1+i \sqrt{3}}{2\left(1+c_{1} \mathrm{e}^{\frac{3 x^{2}}{2}}\right)^{\frac{1}{3}}}
$$

Verified OK.

3.20.4 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y^{4}-y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{y^{4}-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =\frac{1}{y^{4}-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y^{4}-y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y^{4}-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y^{4}-y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =\frac{1}{y\left(y^{3}-1\right)} \\
& =\frac{1}{y^{4}-y}
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y^{4}-y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}+\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}+\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}+\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 97: Slope field plot

Verification of solutions

$$
-\frac{x^{2}}{2}+\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}=c_{1}
$$

Verified OK.

3.20.5 Maple step by step solution

Let's solve

$$
y^{\prime}+x y-x y^{4}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{y(y-1)\left(y^{2}+y+1\right)}=x
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y(y-1)\left(y^{2}+y+1\right)} d x=\int x d x+c_{1}
$$

- Evaluate integral

$$
\frac{\ln (y-1)}{3}-\ln (y)+\frac{\ln \left(y^{2}+y+1\right)}{3}=\frac{x^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\frac{\left(-\left(\mathrm{e}^{\frac{3 x^{2}}{2}+3 c_{1}}-1\right)^{2}\right)^{\frac{1}{3}}}{\mathrm{e}^{\frac{3 x^{2}}{2}+3 c_{1}}-1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 66
dsolve(diff $(y(x), x)+x * y(x)=x * y(x) \sim 4, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{1}{\left(\mathrm{e}^{\frac{3 x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}}} \\
& y(x)=-\frac{1+i \sqrt{3}}{2\left(\mathrm{e}^{\frac{3 x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}}} \\
& y(x)=\frac{i \sqrt{3}-1}{2\left(\mathrm{e}^{\frac{3 x^{2}}{2}} c_{1}+1\right)^{\frac{1}{3}}}
\end{aligned}
$$

$\sqrt{\checkmark}$ Solution by Mathematica
Time used: 1.97 (sec). Leaf size: 116
DSolve[y' $[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==\mathrm{x} * \mathrm{y}[\mathrm{x}] \sim 4, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{\sqrt[3]{1+e^{\frac{3 x^{2}}{2}+3 c_{1}}}} \\
& y(x) \rightarrow-\frac{\sqrt[3]{-1}}{\sqrt[3]{1+e^{\frac{3 x^{2}}{2}+3 c_{1}}}} \\
& y(x) \rightarrow \frac{(-1)^{2 / 3}}{\sqrt[3]{1+e^{\frac{3 x^{2}}{2}+3 c_{1}}}} \\
& y(x) \rightarrow 0 \\
& y(x) \rightarrow 1 \\
& y(x) \rightarrow-\sqrt[3]{-1} \\
& y(x) \rightarrow(-1)^{2 / 3}
\end{aligned}
$$

3.21 problem 4(a)

3.21.1 Solving as exact ode . 449
3.21.2 Maple step by step solution . 453

Internal problem ID [6177]
Internal file name [OUTPUT/5425_Sunday_June_05_2022_03_36_59_PM_41933859/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 4(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, [_1st_order, - _with_symmetry_[F(x)*G(y),0]`]

$$
\left(\mathrm{e}^{y}-2 x y\right) y^{\prime}-y^{2}=0
$$

3.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\mathrm{e}^{y}-2 x y\right) \mathrm{d} y & =\left(y^{2}\right) \mathrm{d} x \\
\left(-y^{2}\right) \mathrm{d} x+\left(\mathrm{e}^{y}-2 x y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-y^{2} \\
N(x, y) & =\mathrm{e}^{y}-2 x y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-y^{2}\right) \\
& =-2 y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{y}-2 x y\right) \\
& =-2 y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-y^{2} \mathrm{~d} x \\
\phi & =-y^{2} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\mathrm{e}^{y}-2 x y$. Therefore equation (4) becomes

$$
\begin{equation*}
\mathrm{e}^{y}-2 x y=-2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-y^{2} x+\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-y^{2} x+\mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x y^{2}+\mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 98: Slope field plot

Verification of solutions

$$
-x y^{2}+\mathrm{e}^{y}=c_{1}
$$

Verified OK.

3.21.2 Maple step by step solution

Let's solve

$$
\left(\mathrm{e}^{y}-2 x y\right) y^{\prime}-y^{2}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-2 y=-2 y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int-y^{2} d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=-y^{2} x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative
$\mathrm{e}^{y}-2 x y=-2 x y+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\mathrm{e}^{y}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=\mathrm{e}^{y}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-y^{2} x+\mathrm{e}^{y}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-y^{2} x+\mathrm{e}^{y}=c_{1}
$$

- \quad Solve for y

$$
y=\operatorname{RootOf}\left(_Z^{2} x-\mathrm{e}^{Z}+c_{1}\right)
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 23

```
dsolve((exp(y(x))-2*x*y(x))*diff(y(x),x)=y(x)^2,y(x), singsol=all)
```

$$
\frac{x y(x)^{2}-\mathrm{e}^{y(x)}-c_{1}}{y(x)^{2}}=0
$$

\checkmark Solution by Mathematica
Time used: 0.236 (sec). Leaf size: 22

```
DSolve[(Exp[y[x]]-2*x*y[x])*y'[x]==y[x]^2,y[x],x,IncludeSingularSolutions -> True]
```

$$
\text { Solve }\left[x=\frac{e^{y(x)}}{y(x)^{2}}+\frac{c_{1}}{y(x)^{2}}, y(x)\right]
$$

3.22 problem 4(b)

3.22.1 Solving as first order ode lie symmetry calculated ode 455
3.22.2 Solving as exact ode . 460

Internal problem ID [6178]
Internal file name [OUTPUT/5426_Sunday_June_05_2022_03_37_00_PM_28995455/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 4(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries]]

$$
-x y^{\prime}+y-y^{\prime} y^{2} \mathrm{e}^{y}=0
$$

3.22.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{y}{y^{2} \mathrm{e}^{y}+x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& b_{2}+\frac{y\left(b_{3}-a_{2}\right)}{y^{2} \mathrm{e}^{y}+x}-\frac{y^{2} a_{3}}{\left(y^{2} \mathrm{e}^{y}+x\right)^{2}}+\frac{y\left(x a_{2}+y a_{3}+a_{1}\right)}{\left(y^{2} \mathrm{e}^{y}+x\right)^{2}} \tag{5E}\\
& \quad-\left(\frac{1}{y^{2} \mathrm{e}^{y}+x}-\frac{y\left(2 \mathrm{e}^{y} y+y^{2} \mathrm{e}^{y}\right)}{\left(y^{2} \mathrm{e}^{y}+x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& \frac{\mathrm{e}^{2 y} y^{4} b_{2}+\mathrm{e}^{y} x y^{3} b_{2}+\mathrm{e}^{y} y^{4} b_{3}+3 \mathrm{e}^{y} x y^{2} b_{2}-\mathrm{e}^{y} y^{3} a_{2}+\mathrm{e}^{y} y^{3} b_{1}+2 \mathrm{e}^{y} y^{3} b_{3}+\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}}{\left(y^{2} \mathrm{e}^{y}+x\right)^{2}} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{gather*}
\mathrm{e}^{2 y} y^{4} b_{2}+\mathrm{e}^{y} x y^{3} b_{2}+\mathrm{e}^{y} y^{4} b_{3}+3 \mathrm{e}^{y} x y^{2} b_{2}-\mathrm{e}^{y} y^{3} a_{2} \tag{6E}\\
+\mathrm{e}^{y} y^{3} b_{1}+2 \mathrm{e}^{y} y^{3} b_{3}+\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}=0
\end{gather*}
$$

Simplifying the above gives

$$
\begin{gather*}
\mathrm{e}^{2 y} y^{4} b_{2}+\mathrm{e}^{y} x y^{3} b_{2}+\mathrm{e}^{y} y^{4} b_{3}+3 \mathrm{e}^{y} x y^{2} b_{2}-\mathrm{e}^{y} y^{3} a_{2} \tag{6E}\\
+\mathrm{e}^{y} y^{3} b_{1}+2 \mathrm{e}^{y} y^{3} b_{3}+\mathrm{e}^{y} y^{2} b_{1}-x b_{1}+y a_{1}=0
\end{gather*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \mathrm{e}^{y}, \mathrm{e}^{2 y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \mathrm{e}^{y}=v_{3}, \mathrm{e}^{2 y}=v_{4}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& v_{3} v_{1} v_{2}^{3} b_{2}+v_{4} v_{2}^{4} b_{2}+v_{3} v_{2}^{4} b_{3}-v_{3} v_{2}^{3} a_{2}+v_{3} v_{2}^{3} b_{1} \tag{7E}\\
& \quad+3 v_{3} v_{1} v_{2}^{2} b_{2}+2 v_{3} v_{2}^{3} b_{3}+v_{3} v_{2}^{2} b_{1}+v_{2} a_{1}-v_{1} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}
$$

Equation (7E) now becomes
$v_{3} v_{1} v_{2}^{3} b_{2}+3 v_{3} v_{1} v_{2}^{2} b_{2}-v_{1} b_{1}+v_{3} v_{2}^{4} b_{3}+v_{4} v_{2}^{4} b_{2}+\left(-a_{2}+b_{1}+2 b_{3}\right) v_{2}^{3} v_{3}+v_{3} v_{2}^{2} b_{1}+v_{2} a_{1}=0$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =0 \\
-b_{1} & =0 \\
3 b_{2} & =0 \\
-a_{2}+b_{1}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =a_{3} \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=y \\
& \eta=0
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =0-\left(\frac{y}{y^{2} \mathrm{e}^{y}+x}\right)(y) \\
& =-\frac{y^{2}}{y^{2} \mathrm{e}^{y}+x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{-\frac{y^{2}}{y^{2} \mathrm{e}^{y}+x}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x}{y}-\mathrm{e}^{y}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y}{y^{2} \mathrm{e}^{y}+x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{1}{y} \\
S_{y} & =\frac{-y^{2} \mathrm{e}^{y}-x}{y^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{-\mathrm{e}^{y} y+x}{y}=c_{1}
$$

Which simplifies to

$$
\frac{-\mathrm{e}^{y} y+x}{y}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y}{y^{2} \mathrm{e}^{y}+x}$		$\frac{d S}{d R}=0$
$\rightarrow \rightarrow$ 他		
$\rightarrow \rightarrow \rightarrow$		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ 遇
$\vec{\triangle} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty$		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow{ }^{20} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow+}$	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
	$S=\underline{-\mathrm{e}^{y} y+x}$	
	$S=\frac{y}{y}$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{2 \rightarrow \rightarrow \rightarrow \rightarrow}}$
		\rightarrow
		$\xrightarrow{\rightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{-\mathrm{e}^{y} y+x}{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 99: Slope field plot
Verification of solutions

$$
\frac{-\mathrm{e}^{y} y+x}{y}=c_{1}
$$

Verified OK.

3.22.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-y^{2} \mathrm{e}^{y}-x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(-y^{2} \mathrm{e}^{y}-x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =-y^{2} \mathrm{e}^{y}-x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-y^{2} \mathrm{e}^{y}-x\right) \\
& =-1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =-\frac{1}{y^{2} \mathrm{e}^{y}+x}((1)-(-1)) \\
& =-\frac{2}{y^{2} \mathrm{e}^{y}+x}
\end{aligned}
$$

Since A depends on y, it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let

$$
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((-1)-(1)) \\
& =-\frac{2}{y}
\end{aligned}
$$

Since B does not depend on x, it can be used to obtain an integrating factor. Let the integrating factor be μ. Then

$$
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{2}{y} \mathrm{~d} y}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{-2 \ln (y)} \\
& =\frac{1}{y^{2}}
\end{aligned}
$$

M and N are now multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2}}(y) \\
& =\frac{1}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2}}\left(-y^{2} \mathrm{e}^{y}-x\right) \\
& =\frac{-y^{2} \mathrm{e}^{y}-x}{y^{2}}
\end{aligned}
$$

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{1}{y}\right)+\left(\frac{-y^{2} \mathrm{e}^{y}-x}{y^{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{y} \mathrm{~d} x \\
\phi & =\frac{x}{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-y^{2} \mathrm{e}^{y}-x}{y^{2}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-y^{2} \mathrm{e}^{y}-x}{y^{2}}=-\frac{x}{y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\mathrm{e}^{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =-\mathrm{e}^{y}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x}{y}-\mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x}{y}-\mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{x}{y}-\mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 100: Slope field plot

Verification of solutions

$$
\frac{x}{y}-\mathrm{e}^{y}=c_{1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 17
dsolve $(y(x)-x * \operatorname{diff}(y(x), x)=\operatorname{diff}(y(x), x) * y(x) \sim 2 * \exp (y(x)), y(x)$, singsol=all)

$$
-y(x) \mathrm{e}^{y(x)}-c_{1} y(x)+x=0
$$

\checkmark Solution by Mathematica
Time used: 0.203 (sec). Leaf size: 18
DSolve[y[x]-x*y'[x]==y'[x]*y[x]~2*Exp[y[x]],y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\text { Solve }\left[x=e^{y(x)} y(x)+c_{1} y(x), y(x)\right]
$$

3.23 problem 4(c)

3.23.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [6179]
Internal file name [OUTPUT/5427_Sunday_June_05_2022_03_37_03_PM_5587567/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 4(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`], [_Abel, `2nd
    type`, `class C`]]
```

$$
x y^{\prime}-x^{3}(y-1) y^{\prime}=-2
$$

3.23.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{2}{x\left(y x^{2}-x^{2}-1\right)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 3 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{3} a_{7}+y x^{2} a_{8}+y^{2} x a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{3} b_{7}+y x^{2} b_{8}+y^{2} x b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}, b_{8}, b_{9}, b_{10}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 3 x^{2} b_{7}+2 x y b_{8}+y^{2} b_{9}+2 x b_{4}+y b_{5}+b_{2} \tag{5E}\\
& +\frac{-6 x^{2} a_{7}+2 x^{2} b_{8}-4 x y a_{8}+4 x y b_{9}-2 y^{2} a_{9}+6 y^{2} b_{10}-4 x a_{4}+2 x b_{5}-2 y a_{5}+4 y b_{6}-2 a_{2}+2 b_{3}}{x\left(y x^{2}-x^{2}-1\right)} \\
& -\frac{4\left(x^{2} a_{8}+2 x y a_{9}+3 y^{2} a_{10}+x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}\left(y x^{2}-x^{2}-1\right)^{2}} \\
& -\left(-\frac{2}{x^{2}\left(y x^{2}-x^{2}-1\right)}-\frac{2(2 x y-2 x)}{x\left(y x^{2}-x^{2}-1\right)^{2}}\right)\left(x^{3} a_{7}+y x^{2} a_{8}\right. \\
& \left.+y^{2} x a_{9}+y^{3} a_{10}+x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& +\frac{2 x\left(x^{3} b_{7}+y x^{2} b_{8}+y^{2} x b_{9}+y^{3} b_{10}+x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)}{\left(y x^{2}-x^{2}-1\right)^{2}}=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& 2 x^{3} y b_{8}+y^{2} b_{9} x^{2}-2 a_{1}-4 a_{3}+y b_{5} x^{2}+2 x^{4} y a_{4}+4 x^{3} y^{2} a_{5}+6 x^{3} y^{2} b_{6}-4 x^{3} y a_{5}-4 x^{3} y b_{6}-4 x y b_{6}+6 x^{2} y^{3} a \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& 2 x^{3} y b_{8}+y^{2} b_{9} x^{2}-2 a_{1}-4 a_{3}+y b_{5} x^{2}+2 x^{4} y a_{4}+4 x^{3} y^{2} a_{5} \\
& +6 x^{3} y^{2} b_{6}-4 x^{3} y a_{5}-4 x^{3} y b_{6}-4 x y b_{6}+6 x^{2} y^{3} a_{6}-6 x^{2} y^{2} a_{6}+x^{6} b_{2} \\
& +4 x^{4} b_{2}-4 x^{3} a_{2}-2 x^{3} b_{3}-2 x b_{3}-6 x^{2} a_{1}+2 x^{3} b_{1}+2 x^{3} b_{4}+2 x^{7} y^{2} b_{4} \\
& -4 x^{7} y b_{4}-4 x^{5} y b_{4}+x^{6} y^{3} b_{5}-2 x^{6} y^{2} b_{5}+x^{6} y b_{5}-2 x^{4} y^{2} b_{5}+6 x^{4} y b_{5} \\
& -4 x^{2} a_{8}-12 y^{2} a_{10}+3 x^{8} b_{7}+8 x^{6} b_{7}-2 x^{5} b_{8}-2 x^{3} b_{8}-4 x a_{5}-8 y a_{6} \\
& +2 x^{7} b_{4}+6 x^{5} b_{4}-2 x^{4} a_{4}-2 x^{4} b_{5}-2 x^{2} b_{5}+b_{2} x^{2}+x^{6} y^{2} b_{2}-2 x^{6} y b_{2} \tag{6E}\\
& -2 x^{4} y b_{2}+4 x^{3} y a_{2}+4 x^{3} y b_{3}+6 x^{2} y^{2} a_{3}+6 x^{2} y a_{1}-8 x y a_{9}+3 x^{4} b_{7} \\
& +3 x^{8} y^{2} b_{7}-6 x^{8} y b_{7}-6 x^{6} y b_{7}+2 y x^{2} a_{8}+2 x^{3} y^{3} b_{8}-4 x^{7} y^{2} b_{8} \\
& +2 x^{7} y b_{8}-4 x^{5} y^{2} b_{8}+8 x^{5} y b_{8}+x^{6} y^{4} b_{9}-2 x^{6} y^{3} b_{9}+x^{6} y^{2} b_{9} \\
& -2 x^{4} y^{3} b_{9}+8 x^{4} y^{2} b_{9}+2 x^{4} y^{2} a_{8}+4 x^{3} y^{3} a_{9}+8 x^{3} y^{3} b_{10}-2 x^{4} y a_{8} \\
& -4 x^{4} y b_{9}-4 x^{3} y^{2} a_{9}-6 x^{3} y^{2} b_{10}-4 x^{2} y b_{9}-6 x y^{2} b_{10}+6 x^{2} y^{4} a_{10} \\
& -6 x^{2} y^{3} a_{10}-6 x^{2} y a_{3}-2 y a_{3}+2 x^{2} a_{4}-2 y^{2} a_{6}+4 x^{3} a_{7}-2 y^{3} a_{10}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& 4 v_{1}^{3} v_{2} b_{3}+6 v_{1}^{2} v_{2}^{2} a_{3}+6 v_{1}^{2} v_{2} a_{1}-8 v_{1} v_{2} a_{9}+3 v_{1}^{8} v_{2}^{2} b_{7}-6 v_{1}^{8} v_{2} b_{7} \\
& -6 v_{1}^{6} v_{2} b_{7}+2 v_{2} v_{1}^{2} a_{8}+2 v_{1}^{7} v_{2}^{3} b_{8}-4 v_{1}^{7} v_{2}^{2} b_{8}+2 v_{1}^{7} v_{2} b_{8}-4 v_{1}^{5} v_{2}^{2} b_{8} \\
& +8 v_{1}^{5} v_{2} b_{8}+v_{1}^{6} v_{2}^{4} b_{9}-2 v_{1}^{6} v_{2}^{3} b_{9}+v_{1}^{6} v_{2}^{2} b_{9}-2 v_{1}^{4} v_{2}^{3} b_{9}+8 v_{1}^{4} v_{2}^{2} b_{9} \\
& +2 v_{1}^{4} v_{2}^{2} a_{8}+4 v_{1}^{3} v_{2}^{3} a_{9}+8 v_{1}^{3} v_{2}^{3} b_{10}-2 v_{1}^{4} v_{2} a_{8}-4 v_{1}^{4} v_{2} b_{9}-4 v_{1}^{3} v_{2}^{2} a_{9} \\
& -6 v_{1}^{3} v_{2}^{2} b_{10}-4 v_{1}^{2} v_{2} b_{9}-6 v_{1} v_{2}^{2} b_{10}+6 v_{1}^{2} v_{2}^{4} a_{10}-6 v_{1}^{2} v_{2}^{3} a_{10}-6 v_{1}^{2} v_{2} a_{3} \\
& -2 a_{1}-4 a_{3}+2 v_{1}^{3} v_{2} b_{8}+v_{2}^{2} b_{9} v_{1}^{2}+v_{2} b_{5} v_{1}^{2}+2 v_{1}^{4} v_{2} a_{4}+4 v_{1}^{3} v_{2}^{2} a_{5} \tag{7E}\\
& +6 v_{1}^{3} v_{2}^{2} b_{6}-4 v_{1}^{3} v_{2} a_{5}-4 v_{1}^{3} v_{2} b_{6}-4 v_{1} v_{2} b_{6}+6 v_{1}^{2} v_{2}^{3} a_{6}-6 v_{1}^{2} v_{2}^{2} a_{6} \\
& +2 v_{1}^{7} v_{2}^{2} b_{4}-4 v_{1}^{7} v_{2} b_{4}-4 v_{1}^{5} v_{2} b_{4}+v_{1}^{6} v_{2}^{3} b_{5}-2 v_{1}^{6} v_{2}^{2} b_{5}+v_{1}^{6} v_{2} b_{5} \\
& -2 v_{1}^{4} v_{2}^{2} b_{5}+6 v_{1}^{4} v_{2} b_{5}+v_{1}^{6} v_{2}^{2} b_{2}-2 v_{1}^{6} v_{2} b_{2}-2 v_{1}^{4} v_{2} b_{2}+4 v_{1}^{3} v_{2} a_{2} \\
& +v_{1}^{6} b_{2}+4 v_{1}^{4} b_{2}-4 v_{1}^{3} a_{2}-2 v_{1}^{3} b_{3}-2 v_{1} b_{3}-6 v_{1}^{2} a_{1}+2 v_{1}^{3} b_{1} \\
& +2 v_{1}^{3} b_{4}-4 v_{1}^{2} a_{8}-12 v_{2}^{2} a_{10}+3 v_{1}^{8} b_{7}+8 v_{1}^{6} b_{7}-2 v_{1}^{5} b_{8}-2 v_{1}^{3} b_{8} \\
& -4 v_{1} a_{5}-8 v_{2} a_{6}+2 v_{1}^{7} b_{4}+6 v_{1}^{5} b_{4}-2 v_{1}^{4} a_{4}-2 v_{1}^{4} b_{5}-2 v_{1}^{2} b_{5} \\
& +b_{2} v_{1}^{2}+3 v_{1}^{4} b_{7}-2 v_{2} a_{3}+2 v_{1}^{2} a_{4}-2 v_{2}^{2} a_{6}+4 v_{1}^{3} a_{7}-2 v_{2}^{3} a_{10}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 3 v_{1}^{8} v_{2}^{2} b_{7}-6 v_{1}^{8} v_{2} b_{7}+2 v_{1}^{7} v_{2}^{3} b_{8}-4 v_{1}^{5} v_{2}^{2} b_{8}+v_{1}^{6} v_{2}^{4} b_{9}-2 v_{1}^{4} v_{2}^{3} b_{9}-6 v_{1} v_{2}^{2} b_{10} \\
& +6 v_{1}^{2} v_{2}^{4} a_{10}-2 a_{1}-4 a_{3}+\left(8 b_{9}+2 a_{8}-2 b_{5}\right) v_{2}^{2} v_{1}^{4}+\left(4 a_{9}+8 b_{10}\right) v_{2}^{3} v_{1}^{3} \\
& +\left(-2 a_{8}-4 b_{9}+2 a_{4}+6 b_{5}-2 b_{2}\right) v_{2} v_{1}^{4}+\left(-4 a_{9}-6 b_{10}+4 a_{5}+6 b_{6}\right) v_{2}^{2} v_{1}^{3} \\
& +\left(-6 a_{10}+6 a_{6}\right) v_{2}^{3} v_{1}^{2}+\left(4 b_{3}+2 b_{8}-4 a_{5}-4 b_{6}+4 a_{2}\right) v_{2} v_{1}^{3} \\
& +\left(6 a_{3}+b_{9}-6 a_{6}\right) v_{2}^{2} v_{1}^{2}+\left(6 a_{1}+2 a_{8}-4 b_{9}-6 a_{3}+b_{5}\right) v_{2} v_{1}^{2} \\
& +\left(-8 a_{9}-4 b_{6}\right) v_{2} v_{1}+\left(-6 b_{7}+b_{5}-2 b_{2}\right) v_{2} v_{1}^{6} \tag{8E}\\
& +\left(-4 b_{8}+2 b_{4}\right) v_{2}^{2} v_{1}^{7}+\left(2 b_{8}-4 b_{4}\right) v_{2} v_{1}^{7}+\left(8 b_{8}-4 b_{4}\right) v_{2} v_{1}^{5} \\
& +\left(-2 b_{9}+b_{5}\right) v_{2}^{3} v_{1}^{6}+\left(b_{9}-2 b_{5}+b_{2}\right) v_{2}^{2} v_{1}^{6}+\left(-4 a_{5}-2 b_{3}\right) v_{1} \\
& +\left(-2 a_{3}-8 a_{6}\right) v_{2}+\left(-4 a_{2}-2 b_{3}+2 b_{1}+2 b_{4}-2 b_{8}+4 a_{7}\right) v_{1}^{3} \\
& +\left(-6 a_{1}-4 a_{8}-2 b_{5}+b_{2}+2 a_{4}\right) v_{1}^{2} \\
& +\left(-12 a_{10}-2 a_{6}\right) v_{2}^{2}+\left(b_{2}+8 b_{7}\right) v_{1}^{6}+\left(-2 b_{8}+6 b_{4}\right) v_{1}^{5} \\
& +\left(4 b_{2}-2 a_{4}-2 b_{5}+3 b_{7}\right) v_{1}^{4}+3 v_{1}^{8} b_{7}+2 v_{1}^{7} b_{4}-2 v_{2}^{3} a_{10}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& b_{9}=0 \\
&-2 a_{10}=0 \\
& 6 a_{10}=0 \\
& 2 b_{4}=0 \\
&-6 b_{7}=0 \\
& 3 b_{7}=0 \\
&-4 b_{8}=0 \\
& 2 b_{8}=0 \\
&-2 b_{9}=0 \\
&-6 b_{10}=0 \\
&-2 a_{1}-4 a_{3}=0 \\
&-2 a_{3}-8 a_{6}=0 \\
&-4 a_{5}-2 b_{3}=0 \\
&-8 a_{9}-4 b_{6}=0 \\
& 4 a_{9}+8 b_{10}=0 \\
&-12 a_{10}-2 a_{6}=0 \\
&-6 a_{10}+6 a_{6}=0 \\
& b_{2}+8 b_{7}=0 \\
&-4 b_{8}+2 b_{4}=0 \\
&-2 b_{8}+6 b_{4}=0 \\
& 2 b_{8}-4 b_{4}=0 \\
& 8 b_{8}-4 b_{4}=0 \\
&-2 b_{9}+b_{5}=0 \\
&-4 a_{2}-2 b_{3}+2 b_{1}+2 b_{4}-2 b_{8}+4 a_{7}=0 \\
& 471=0 \\
& 4 a_{3}+b_{9}-6 a_{6}=0 \\
&-6 b_{7}+b_{5}-2 b_{2}=0 \\
& b_{9}-2 b_{5}+b_{2}=0 \\
& 8 b_{9}+2 a_{8}-2 b_{5}=0 \\
&-6 a_{1}-4 a_{1}+2 a_{8}-4 a_{8}-2 b_{5}+b_{2}+2 a_{4}-6 a_{3}+b_{5}=0 \\
& 4 b_{2}-2 a_{4}-2 b_{5}+3 b_{7}=0 \\
&-4 a_{9}-6 b_{10}+4 a_{5}+6 b_{3}=0 \\
& \hline 2 a_{5}-2 b_{2}=0 \\
& \hline
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =0 \\
a_{3} & =0 \\
a_{4} & =0 \\
a_{5} & =0 \\
a_{6} & =0 \\
a_{7} & =-\frac{b_{1}}{2} \\
a_{8} & =0 \\
a_{9} & =0 \\
a_{10} & =0 \\
b_{1} & =b_{1} \\
b_{2} & =0 \\
b_{3} & =0 \\
b_{4} & =0 \\
b_{5} & =0 \\
b_{6} & =0 \\
b_{7} & =0 \\
b_{8} & =0 \\
b_{9} & =0 \\
b_{10} & =0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-\frac{x^{3}}{2} \\
& \eta=1
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{2}{x\left(y x^{2}-x^{2}-1\right)}\right)\left(-\frac{x^{3}}{2}\right) \\
& =\frac{y x^{2}-1}{y x^{2}-x^{2}-1} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{y x^{2}-1}{y x^{2}-x^{2}-1}} d y
\end{aligned}
$$

Which results in

$$
S=y-\ln \left(y x^{2}-1\right)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2}{x\left(y x^{2}-x^{2}-1\right)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{2 x y}{y x^{2}-1} \\
S_{y} & =1-\frac{x^{2}}{y x^{2}-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=-\frac{2}{x} \tag{2A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=-\frac{2}{R}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-2 \ln (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
y-\ln \left(y x^{2}-1\right)=-2 \ln (x)+c_{1}
$$

Which simplifies to

$$
y-\ln \left(y x^{2}-1\right)=-2 \ln (x)+c_{1}
$$

Which gives

$$
y=-\frac{\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{2 \ln (x) x^{2}-c_{1} x^{2}+1}{x^{2}}}}{x^{2}}\right) x^{2}-1}{x^{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2}{x\left(y x^{2}-x^{2}-1\right)}$		$\frac{d S}{d R}=-\frac{2}{R}$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \infty]{ } \xrightarrow{\text { a }}$		
	$R=x$	
	$S=y-\ln \left(y x^{2}-1\right)$	
	$S=y-\ln \left(y x^{2}-1\right)$	
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \text { 何 }}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\text { LambertW }\left(-\frac{\mathrm{e}^{\frac{2 \ln (x) x^{2}-c_{1} x^{2}+1}{x^{2}}}}{x^{2}}\right) x^{2}-1}{x^{2}} \tag{1}
\end{equation*}
$$

Figure 101: Slope field plot

Verification of solutions

$$
y=-\frac{\operatorname{LambertW}\left(-\frac{\mathrm{e}^{\frac{2 \ln (x) x^{2}-c_{1} x^{2}+1}{x^{2}}}}{x^{2}}\right) x^{2}-1}{x^{2}}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
<- Abel AIR successful: ODE belongs to the 1F1 1-parameter class`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 22
dsolve($x * \operatorname{diff}(y(x), x)+2=x^{\wedge} 3 *(y(x)-1) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
y(x)=\frac{- \text { LambertW }\left(c_{1} \mathrm{e}^{\frac{1}{x^{2}}}\right) x^{2}+1}{x^{2}}
$$

\checkmark Solution by Mathematica
Time used: 0.405 (sec). Leaf size: 33
DSolve $\left[x * y{ }^{\prime}[x]+2==x^{\wedge} 3 *(y[x]-1) * y^{\prime}[x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \frac{1}{x^{2}}-W\left(e^{\frac{1}{x^{2}}+\frac{1}{2}\left(-2-9 \sqrt[3]{-2} c_{1}\right)}\right)
$$

3.24 problem 6

$$
\text { 3.24.1 Solving as separable ode . } 478
$$

3.24.2 Solving as linear ode 480
3.24.3 Solving as homogeneousTypeD2 ode 481
3.24.4 Solving as first order ode lie symmetry lookup ode 483
3.24.5 Solving as exact ode 487
3.24.6 Maple step by step solution 491

Internal problem ID [6180]

Internal file name [OUTPUT/5428_Sunday_June_05_2022_03_37_04_PM_41613258/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations. Page 15
Problem number: 6.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
x y^{\prime}-2 y x^{2}-\ln (x) y=0
$$

3.24.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y\left(2 x^{2}+\ln (x)\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{2 x^{2}+\ln (x)}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =\frac{2 x^{2}+\ln (x)}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{2 x^{2}+\ln (x)}{x} d x \\
\ln (y) & =x^{2}+\frac{\ln (x)^{2}}{2}+c_{1} \\
y & =\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 102: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
$$

Verified OK.

3.24.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{2 x^{2}+\ln (x)}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y\left(2 x^{2}+\ln (x)\right)}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2 x^{2}+\ln (x)}{x} d x} \\
& =\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y\right) & =0
\end{aligned}
$$

Integrating gives

$$
\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}}$ results in

$$
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 103: Slope field plot
Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
$$

Verified OK.

3.24.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
x\left(u^{\prime}(x) x+u(x)\right)-2 u(x) x^{3}-\ln (x) u(x) x=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(2 x^{2}+\ln (x)-1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{2 x^{2}+\ln (x)-1}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =\frac{2 x^{2}+\ln (x)-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{2 x^{2}+\ln (x)-1}{x} d x \\
\ln (u) & =x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =x u \\
& =x c_{2} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x c_{2} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)} \tag{1}
\end{equation*}
$$

Figure 104: Slope field plot

Verification of solutions

$$
y=x c_{2} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}-\ln (x)}
$$

Verified OK.

3.24.4 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{y\left(2 x^{2}+\ln (x)\right)}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 81: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}} d y
\end{aligned}
$$

Which results in

$$
S=\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{y\left(2 x^{2}+\ln (x)\right)}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\left(2 x^{2}+\ln (x)\right) \mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y}{x} \\
& S_{y}=\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y=c_{1}
$$

Which simplifies to

$$
\mathrm{e}^{-x^{2}-\frac{\ln (x)^{2}}{2}} y=c_{1}
$$

Which gives

$$
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{y\left(2 x^{2}+\ln (x)\right)}{x}$		$\frac{d S}{d R}=0$
Wat111111		
$y(x)$: $1+1+1+1+$		
		$\xrightarrow{+\rightarrow \rightarrow 27} \rightarrow$
	$R=x$	\cdots
	$S=\mathrm{e}^{-x^{2}-\frac{\ln (x){ }^{2}}{2}} y$	
$\ldots \ldots$		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }$
-4 4 +1.1.1.1.		$\xrightarrow[\rightarrow-\rightarrow+\rightarrow \rightarrow 也 \rightarrow 也 \rightarrow]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}} \tag{1}
\end{equation*}
$$

Figure 105: Slope field plot

Verification of solutions

$$
y=c_{1} \mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}}
$$

Verified OK.

3.24.5 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{2 x^{2}+\ln (x)}{x}\right) \mathrm{d} x \\
\left(-\frac{2 x^{2}+\ln (x)}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{2 x^{2}+\ln (x)}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{2 x^{2}+\ln (x)}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x^{2}+\ln (x)}{x} \mathrm{~d} x \\
\phi & =-x^{2}-\frac{\ln (x)^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x^{2}-\frac{\ln (x)^{2}}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x^{2}-\frac{\ln (x)^{2}}{2}+\ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}} \tag{1}
\end{equation*}
$$

Figure 106: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}}
$$

Verified OK.

3.24.6 Maple step by step solution

Let's solve
$x y^{\prime}-2 y x^{2}-\ln (x) y=0$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- \quad Separate variables

$$
\frac{y^{\prime}}{y}=\frac{2 x^{2}+\ln (x)}{x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{y} d x=\int \frac{2 x^{2}+\ln (x)}{x} d x+c_{1}
$$

- Evaluate integral

$$
\ln (y)=x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{x^{2}+\frac{\ln (x)^{2}}{2}+c_{1}}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful'
\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17

```
dsolve(x*diff (y(x), x)=2*x^2*y(x)+y(x)*\operatorname{ln}(x),y(x), singsol=all)
```

$$
y(x)=c_{1} \mathrm{e}^{\frac{\ln (x)^{2}}{2}+x^{2}}
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 27
DSolve $\left[x * y y^{\prime}[x]==2 * x^{\wedge} 2 * y[x]+y[x] * \log [x], y[x], x\right.$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x^{2}+\frac{\log ^{2}(x)}{2}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

3.25 problem 7

3.25.1 Solving as linear ode . 493
3.25.2 Solving as first order ode lie symmetry lookup ode 495
3.25.3 Solving as exact ode . 499
3.25.4 Maple step by step solution . 503

Internal problem ID [6181]
Internal file name [OUTPUT/5429_Sunday_June_05_2022_03_37_05_PM_32380097/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.4 First Order Linear Equations.
Page 15
Problem number: 7.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]

$$
y^{\prime} \sin (2 x)-2 y=2 \cos (x)
$$

3.25.1 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-2 \csc (2 x) \\
& q(x)=\csc (x)
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-2 \csc (2 x) y=\csc (x)
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 \csc (2 x) d x} \\
& =\frac{1}{\csc (2 x)-\cot (2 x)}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\csc (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{\csc (2 x)-\cot (2 x)}\right) & =\left(\frac{1}{\csc (2 x)-\cot (2 x)}\right)(\csc (x)) \\
\mathrm{d}\left(\frac{y}{\csc (2 x)-\cot (2 x)}\right) & =(\csc (x) \cot (x)) \mathrm{d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
& \frac{y}{\csc (2 x)-\cot (2 x)}=\int \csc (x) \cot (x) \mathrm{d} x \\
& \frac{y}{\csc (2 x)-\cot (2 x)}=-\csc (x)+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{\csc (2 x)-\cot (2 x)}$ results in

$$
y=-(\csc (2 x)-\cot (2 x)) \csc (x)+c_{1}(\csc (2 x)-\cot (2 x))
$$

which simplifies to

$$
y=c_{1} \tan (x)-\sec (x)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} \tan (x)-\sec (x) \tag{1}
\end{equation*}
$$

Figure 107: Slope field plot

Verification of solutions

$$
y=c_{1} \tan (x)-\sec (x)
$$

Verified OK.

3.25.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 y+2 \cos (x)}{\sin (2 x)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 84: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{\csc (2 x)+\cot (2 x)} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{\csc (2 x)+\cot (2 x)}} d y
\end{aligned}
$$

Which results in

$$
S=(\csc (2 x)+\cot (2 x)) y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 y+2 \cos (x)}{\sin (2 x)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-2 y(1+\cos (2 x)) \csc (2 x)^{2} \\
& S_{y}=\csc (2 x)+\cot (2 x)
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\csc (x) \cot (x) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\csc (R) \cot (R)
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\csc (R)+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
(\csc (2 x)+\cot (2 x)) y=-\csc (x)+c_{1}
$$

Which simplifies to

$$
y \cot (x)-c_{1}+\csc (x)=0
$$

Which gives

$$
y=-\frac{\csc (x)-c_{1}}{\cot (x)}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 y+2 \cos (x)}{\sin (2 x)}$		$\frac{d S}{d R}=\csc (R) \cot (R)$
	$R=x$	
$\overrightarrow{4}$	$S=(\csc (2 x)+\cot (2 x))$	
4ttodatadot		
${ }_{4}{ }^{1}$		

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\csc (x)-c_{1}}{\cot (x)} \tag{1}
\end{equation*}
$$

Figure 108: Slope field plot

Verification of solutions

$$
y=-\frac{\csc (x)-c_{1}}{\cot (x)}
$$

Verified OK.

3.25.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(\sin (2 x)) \mathrm{d} y & =(2 y+2 \cos (x)) \mathrm{d} x \\
(-2 y-2 \cos (x)) \mathrm{d} x+(\sin (2 x)) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-2 y-2 \cos (x) \\
N(x, y) & =\sin (2 x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 y-2 \cos (x)) \\
& =-2
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(\sin (2 x)) \\
& =2 \cos (2 x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$, then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let

$$
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\csc (2 x)((-2)-(2 \cos (2 x))) \\
& =-2 \csc (2 x)-2 \cot (2 x)
\end{aligned}
$$

Since A does not depend on y, then it can be used to find an integrating factor. The integrating factor μ is

$$
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-2 \csc (2 x)-2 \cot (2 x) \mathrm{d} x}
\end{aligned}
$$

The result of integrating gives

$$
\begin{aligned}
\mu & =e^{\frac{\ln \left(\cot (2 x)^{2}+1\right)}{2}+\ln (\csc (2 x)+\cot (2 x))} \\
& =\operatorname{csgn}(\csc (2 x)) \csc (2 x)(\csc (2 x)+\cot (2 x))
\end{aligned}
$$

M and N are multiplied by this integrating factor, giving new M and new N which are called \bar{M} and \bar{N} for now so not to confuse them with the original M and N.

$$
\begin{aligned}
\bar{M} & =\mu M \\
& =\operatorname{csgn}(\csc (2 x)) \csc (2 x)(\csc (2 x)+\cot (2 x))(-2 y-2 \cos (x)) \\
& =(-y-\cos (x)) \operatorname{csgn}(\csc (2 x)) \csc (x)^{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\bar{N} & =\mu N \\
& =\operatorname{csgn}(\csc (2 x)) \csc (2 x)(\csc (2 x)+\cot (2 x))(\sin (2 x)) \\
& =\operatorname{csgn}(\csc (2 x))(\csc (2 x)+\cot (2 x))
\end{aligned}
$$

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is

$$
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left((-y-\cos (x)) \operatorname{csgn}(\csc (2 x)) \csc (x)^{2}\right)+(\operatorname{csgn}(\csc (2 x))(\csc (2 x)+\cot (2 x))) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
$$

The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(-y-\cos (x)) \operatorname{csgn}(\csc (2 x)) \csc (x)^{2} \mathrm{~d} x \\
\phi & =\operatorname{csgn}(\csc (2 x))(y \cot (x)+\csc (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\operatorname{csgn}(\csc (2 x)) \cot (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\operatorname{csgn}(\csc (2 x))(\csc (2 x)+\cot (2 x))$. Therefore equation (4) becomes

$$
\begin{equation*}
\operatorname{csgn}(\csc (2 x))(\csc (2 x)+\cot (2 x))=\operatorname{csgn}(\csc (2 x)) \cot (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\operatorname{csgn}(\csc (2 x))(y \cot (x)+\csc (x))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\operatorname{csgn}(\csc (2 x))(y \cot (x)+\csc (x))
$$

The solution becomes

$$
y=-\frac{\csc (x) \operatorname{csgn}(\csc (2 x))-c_{1}}{\operatorname{csgn}(\csc (2 x)) \cot (x)}
$$

Summary

The solution(s) found are the followin
Simplifying the solution $y=-\frac{\csc (x) \operatorname{csgn}(\csc (2 x))-c_{1}}{\operatorname{csgn}(\csc (2 x)) \cot (x)}$ to $y=-\frac{\csc (x)-c_{1}}{\cot (x)}$

Figure 109: Slope field plot

Verification of solutions

$$
y=-\frac{\csc (x)-c_{1}}{\cot (x)}
$$

Verified OK.

3.25.4 Maple step by step solution

Let's solve
$y^{\prime} \sin (2 x)-2 y=2 \cos (x)$

- Highest derivative means the order of the ODE is 1

```
y
```

- Isolate the derivative
$y^{\prime}=\frac{2 y}{\sin (2 x)}+\frac{2 \cos (x)}{\sin (2 x)}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE $y^{\prime}-\frac{2 y}{\sin (2 x)}=\frac{2 \cos (x)}{\sin (2 x)}$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{\sin (2 x)}\right)=\frac{2 \mu(x) \cos (x)}{\sin (2 x)}$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}-\frac{2 y}{\sin (2 x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=-\frac{2 \mu(x)}{\sin (2 x)}$
- \quad Solve to find the integrating factor
$\mu(x)=\frac{1}{\tan (x)}$
- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{2 \mu(x) \cos (x)}{\sin (2 x)} d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int \frac{2 \mu(x) \cos (x)}{\sin (2 x)} d x+c_{1}$
- \quad Solve for y
$y=\frac{\int \frac{2 \mu(x) \cos (x)}{\sin (2 x x)} d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=\frac{1}{\tan (x)}$
$y=\tan (x)\left(\int \frac{2 \cos (x)}{\tan (x) \sin (2 x)} d x+c_{1}\right)$
- Evaluate the integrals on the rhs
$y=\tan (x)\left(-\csc (x)+c_{1}\right)$
- Simplify
$y=c_{1} \tan (x)-\sec (x)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 13

```
dsolve(diff (y(x),x)*sin(2*x)=2*y(x)+2*\operatorname{cos}(x),y(x), singsol=all)
```

$$
y(x)=\tan (x) c_{1}-\sec (x)
$$

$\sqrt{ }$ Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 15
DSolve $\left[y^{\prime}[x] * \operatorname{Sin}[2 * x]==2 * y[x]+2 * \operatorname{Cos}[x], y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
y(x) \rightarrow \sec (x)\left(-1+c_{1} \sin (x)\right)
$$

4 Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20
4.1 problem 1 507
4.2 problem 2 519
4.3 problem 3 522
4.4 problem 4 531
4.5 problem 5 534
4.6 problem 6 550
4.7 problem 7 562
4.8 problem 8 568
4.9 problem 9 574
4.10 problem 10 592
4.11 problem 11 599
4.12 problem 12 608
4.13 problem 13 614
4.14 problem 14 623
4.15 problem 15 637
4.16 problem 16 646
4.17 problem 17 652
4.18 problem 18 658
4.19 problem 19 664
4.20 problem 20 671
4.21 problem 21 685

4.1 problem 1

4.1.1 Solving as first order ode lie symmetry calculated ode 507
4.1.2 Solving as exact ode . 512
4.1.3 Maple step by step solution . 516

Internal problem ID [6182]
Internal file name [OUTPUT/5430_Sunday_June_05_2022_03_37_07_PM_5121642/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class G`], _exact, _rational, [_Abel, `2nd
    type`, `class B`]]
```

$$
\left(x+\frac{2}{y}\right) y^{\prime}+y=0
$$

4.1.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y^{2}}{x y+2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E, 2E) and ω into (A) gives

$$
\begin{gather*}
b_{2}-\frac{y^{2}\left(b_{3}-a_{2}\right)}{x y+2}-\frac{y^{4} a_{3}}{(x y+2)^{2}}-\frac{y^{3}\left(x a_{2}+y a_{3}+a_{1}\right)}{(x y+2)^{2}} \tag{5E}\\
\quad-\left(-\frac{2 y}{x y+2}+\frac{y^{2} x}{(x y+2)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{gather*}
$$

Putting the above in normal form gives

$$
\frac{2 x^{2} y^{2} b_{2}-2 y^{4} a_{3}+x y^{2} b_{1}-y^{3} a_{1}+8 x y b_{2}+2 y^{2} a_{2}+2 y^{2} b_{3}+4 y b_{1}+4 b_{2}}{(x y+2)^{2}}=0
$$

Setting the numerator to zero gives

$$
\begin{equation*}
2 x^{2} y^{2} b_{2}-2 y^{4} a_{3}+x y^{2} b_{1}-y^{3} a_{1}+8 x y b_{2}+2 y^{2} a_{2}+2 y^{2} b_{3}+4 y b_{1}+4 b_{2}=0 \tag{6E}
\end{equation*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{equation*}
-2 a_{3} v_{2}^{4}+2 b_{2} v_{1}^{2} v_{2}^{2}-a_{1} v_{2}^{3}+b_{1} v_{1} v_{2}^{2}+2 a_{2} v_{2}^{2}+8 b_{2} v_{1} v_{2}+2 b_{3} v_{2}^{2}+4 b_{1} v_{2}+4 b_{2}=0 \tag{7E}
\end{equation*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{equation*}
2 b_{2} v_{1}^{2} v_{2}^{2}+b_{1} v_{1} v_{2}^{2}+8 b_{2} v_{1} v_{2}-2 a_{3} v_{2}^{4}-a_{1} v_{2}^{3}+\left(2 a_{2}+2 b_{3}\right) v_{2}^{2}+4 b_{1} v_{2}+4 b_{2}=0 \tag{8E}
\end{equation*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
b_{1} & =0 \\
-a_{1} & =0 \\
-2 a_{3} & =0 \\
4 b_{1} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
8 b_{2} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
a_{1} & =0 \\
a_{2} & =-b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y^{2}}{x y+2}\right)(-x) \\
& =\frac{2 y}{x y+2} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y}{x y+2}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{x y}{2}+\ln (y)
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y^{2}}{x y+2}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{2} \\
S_{y} & =\frac{x}{2}+\frac{1}{y}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{x y}{2}+\ln (y)=c_{1}
$$

Which simplifies to

$$
\frac{x y}{2}+\ln (y)=c_{1}
$$

Which gives

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{c_{1}}}{2}\right)+c_{1}}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y^{2}}{x y+2}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 2 \rightarrow \rightarrow \rightarrow]{\text { a }}$
\rightarrow -		\rightarrow
$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2}$ -		
	$S=\frac{x y}{2}+\ln (y)$	
		\rightarrow
		\rightarrow

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{c_{1}}}{2}\right)+c_{1}} \tag{1}
\end{equation*}
$$

Figure 110: Slope field plot
Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{c_{1}}}{2}\right)+c_{1}}
$$

Verified OK.

4.1.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(x+\frac{2}{y}\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(x+\frac{2}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=y \\
& N(x, y)=x+\frac{2}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x+\frac{2}{y}\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y \mathrm{~d} x \\
\phi & =x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=x+\frac{2}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
x+\frac{2}{y}=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{2}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{2}{y}\right) \mathrm{d} y \\
f(y) & =2 \ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x y+2 \ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x y+2 \ln (y)
$$

The solution becomes

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}} \tag{1}
\end{equation*}
$$

Figure 111: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x \mathrm{e}^{\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}}
$$

Verified OK.

4.1.3 Maple step by step solution

Let's solve

$$
\left(x+\frac{2}{y}\right) y^{\prime}+y=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
1=1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int y d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
x+\frac{2}{y}=x+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{2}{y}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=2 \ln (y)$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x y+2 \ln (y)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x y+2 \ln (y)=c_{1}
$$

- \quad Solve for y

$$
y=\mathrm{e}^{-\operatorname{LambertW}\left(\frac{x e^{\frac{c_{1}}{2}}}{2}\right)+\frac{c_{1}}{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
<- 1st order linear successful
<- inverse linear successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 17

```
dsolve((x+2/y(x))*diff(y(x),x)+y(x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{2 \text { LambertW }\left(\frac{x \mathrm{e}^{\frac{c_{1}}{2}}}{2}\right)}{x}
$$

\checkmark Solution by Mathematica
Time used: 17.046 (sec). Leaf size: 58
DSolve $[(x+2 / y[x]) * y$ ' $[x]+y[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{2 W\left(-\frac{1}{2} \sqrt{e^{c_{1}} x^{2}}\right)}{x} \\
& y(x) \rightarrow \frac{2 W\left(\frac{1}{2} \sqrt{e^{c_{1}} x^{2}}\right)}{x} \\
& y(x) \rightarrow 0
\end{aligned}
$$

4.2 problem 2

Internal problem ID [6183]
Internal file name [OUTPUT/5431_Sunday_June_05_2022_03_37_08_PM_33515694/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 2.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
$\left[\begin{array}{l}x \\ = \\ = \\ G\left(y, y^{\prime}\right)\end{array}\right]$
Unable to solve or complete the solution.

$$
\sin (x) \tan (y)+\cos (x) \sec (x)^{2} y y^{\prime}=-1
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, --> Computing symmetries using: way = 3
, `-> Computing symmetries using: way = 4
`, --> Computing symmetries using: way = 5
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
`, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)-2*y(x)*(tan(x)*\operatorname{sin}(2*x)-1)/\operatorname{sin}(2*x),y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
    -> Calling odsolve with the ODE`, diff(y(x), x)-y(x)*(2*\operatorname{cos}(x)*\operatorname{tan}(\textrm{x})-\operatorname{sin}(\textrm{x}))/\operatorname{cos}(\textrm{x}),\textrm{y}(\textrm{x}
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
, `-> Computing symmetries using: way = HINT
    -> Calling odsolve with the ODE`, diff(y(x), x)+y(x)/x, y(x)` *** Sublevel 2 ***
        Methods for first order ODEs:
            520
        --- Trying classification methods ---
        trying a quadrature
```

X Solution by Maple
dsolve $((\sin (x) * \tan (y(x))+1)+(\cos (x) * \sec (x) \wedge 2 * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[(\operatorname{Sin}[x] * \operatorname{Tan}[y[x]]+1)+(\operatorname{Cos}[x] * \operatorname{Sec}[x] \sim 2 * y[x]) * y '[x]==0, y[x], x$, IncludeSingularSolutions

Not solved

4.3 problem 3

4.3.1 Solving as differentialType ode 522
4.3.2 Solving as exact ode . 524
4.3.3 Maple step by step solution . 527

Internal problem ID [6184]
Internal file name [OUTPUT/5432_Sunday_June_05_2022_03_37_56_PM_80988887/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "differentialType"
Maple gives the following as the ode type
[_exact, _rational]

$$
y+\left(x+y^{3}\right) y^{\prime}=x^{3}
$$

4.3.1 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-y+x^{3}}{x+y^{3}} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
\left(y^{3}\right) d y=(-x) d y+\left(x^{3}-y\right) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+\left(x^{3}-y\right) d x=d\left(\frac{1}{4} x^{4}-x y\right)
$$

Hence (2) becomes

$$
\left(y^{3}\right) d y=d\left(\frac{1}{4} x^{4}-x y\right)
$$

Integrating both sides gives gives the solution as

$$
\frac{y^{4}}{4}=\frac{x^{4}}{4}-x y+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{4}}{4}=\frac{x^{4}}{4}-x y+c_{1} \tag{1}
\end{equation*}
$$

Figure 112: Slope field plot

Verification of solutions

$$
\frac{y^{4}}{4}=\frac{x^{4}}{4}-x y+c_{1}
$$

Verified OK.

4.3.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(y^{3}+x\right) \mathrm{d} y & =\left(x^{3}-y\right) \mathrm{d} x \\
\left(-x^{3}+y\right) \mathrm{d} x+\left(y^{3}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x^{3}+y \\
N(x, y) & =y^{3}+x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{3}+y\right) \\
& =1
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{3}+x\right) \\
& =1
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{3}+y \mathrm{~d} x \\
\phi & =-\frac{1}{4} x^{4}+x y+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=y^{3}+x$. Therefore equation (4) becomes

$$
\begin{equation*}
y^{3}+x=x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=y^{3}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{3}\right) \mathrm{d} y \\
f(y) & =\frac{y^{4}}{4}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{1}{4} x^{4}+x y+\frac{1}{4} y^{4}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{1}{4} x^{4}+x y+\frac{1}{4} y^{4}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{4}}{4}-\frac{x^{4}}{4}+x y=c_{1} \tag{1}
\end{equation*}
$$

Figure 113: Slope field plot
Verification of solutions

$$
\frac{y^{4}}{4}-\frac{x^{4}}{4}+x y=c_{1}
$$

Verified OK.

4.3.3 Maple step by step solution

Let's solve

$$
y+\left(x+y^{3}\right) y^{\prime}=x^{3}
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
1=1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(-x^{3}+y\right) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=-\frac{x^{4}}{4}+x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
y^{3}+x=x+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=y^{3}
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=\frac{y^{4}}{4}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\frac{1}{4} x^{4}+x y+\frac{1}{4} y^{4}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-\frac{1}{4} x^{4}+x y+\frac{1}{4} y^{4}=c_{1}
$$

- \quad Solve for y
$y=\operatorname{RootOf}\left(_Z^{4}-x^{4}+4 x _Z-4 c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
dsolve($\left(y(x)-x^{\wedge} 3\right)+(x+y(x) \wedge 3) * \operatorname{diff}(y(x), x)=0, y(x), \quad$ singsol=all)

$$
-\frac{x^{4}}{4}+x y(x)+\frac{y(x)^{4}}{4}+c_{1}=0
$$

Solution by Mathematic

Time used: 60.218 (sec). Leaf size: 1210

```
DSolve[(y[x]-x^3)+(x+y[x]^3)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
\begin{aligned}
& y(x) \rightarrow \\
& \quad \sqrt{\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}+\left(x^{4}+4 c_{1}\right)^{3}}}-\frac{\sqrt[3]{3}\left(x^{4}+4 c_{1}\right)}{\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}+\left(x^{4}+4 c_{1}\right)^{3}}}}}+\sqrt{\frac{\sqrt{\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}}}}}{}} .
\end{aligned}
$$

$y(x)$
$\rightarrow \sqrt{\frac{6 \sqrt{2} x}{\sqrt{\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}+\left(x^{4}+4 c_{1}\right)^{3}}}-\frac{\sqrt[3]{3}\left(x^{4}+4 c_{1}\right)}{\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}+\left(x^{4}+4 c_{1}\right)^{3}}}}}}-\sqrt[3]{9 x^{2}+\sqrt{3} \sqrt{27 x^{4}+\left(x^{4}\right.}} ⿻}$

$$
y(x)
$$

$$
y(x)
$$

4.4 problem 4

Internal problem ID [6185]
Internal file name [OUTPUT/5433_Sunday_June_05_2022_03_37_57_PM_4773145/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 4.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]
Unable to solve or complete the solution.

$$
2 y^{2}-(4-2 y+4 x y) y^{\prime}=4 x-5
$$

Unable to determine ODE type.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
trying Abel
Looking for potential symmetries
Looking for potential symmetries
Looking for potential symmetries
trying inverse_Riccati
trying an equivalence to an Abel ODE
differential order: 1; trying a linearization to 2nd order
--- trying a change of variables {x -> y(x), y(x) -> x}
differential order: 1; trying a linearization to 2nd order
trying 1st order ODE linearizable_by_differentiation
--- Trying Lie symmetry methods, 1st order ---
`, `-> Computing symmetries using: way = 3
`, `-> Computing symmetries using: way = 4
`, `-> Computing symmetries using: way = 2
trying symmetry patterns for 1st order ODEs
-> trying a symmetry pattern of the form [F(x)*G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)*G(y)]
-> trying symmetry patterns of the forms [F(x),G(y)] and [G(y),F(x)]
-> trying a symmetry pattern of the form [F(x),G(x)]
-> trying a symmetry pattern of the form [F(y),G(y)]
-> trying a symmetry pattern of the form [F(x)+G(y), 0]
-> trying a symmetry pattern of the form [0, F(x)+G(y)]
-> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)]
-> trying a symmetry pattern of conformal type`
```

X Solution by Maple
dsolve $((2 * y(x) \wedge 2-4 * x+5)=(4-2 * y(x)+4 * x * y(x)) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

No solution found
X Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve $[(2 * y[x] \sim 2-4 * x+5)==(4-2 * y[x]+4 * x * y[x]) * y '[x], y[x], x$, IncludeSingularSolutions $->$ True $]$

Not solved

4.5 problem 5

4.5.1 Solving as separable ode 534
4.5.2 Solving as linear ode 536
4.5.3 Solving as homogeneousTypeD2 ode 537
4.5.4 Solving as differentialType ode 539
4.5.5 Solving as first order ode lie symmetry lookup ode 540
4.5.6 Solving as exact ode 544
4.5.7 Maple step by step solution 548
Internal problem ID [6186]
Internal file name [OUTPUT/5434_Sunday_June_05_2022_03_38_01_PM_47822472/index.tex]

Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "differentialType", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type

```
[_separable]
```

$$
y+y \cos (x y)+(x+x \cos (x y)) y^{\prime}=0
$$

4.5.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{y}{x}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(y)=y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{y} d y & =-\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int-\frac{1}{x} d x \\
\ln (y) & =-\ln (x)+c_{1} \\
y & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 114: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

4.5.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=0
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}+\frac{y}{x}=0
$$

The integrating factor μ is

$$
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(x y) & =0
\end{aligned}
$$

Integrating gives

$$
x y=c_{1}
$$

Dividing both sides by the integrating factor $\mu=x$ results in

$$
y=\frac{c_{1}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 115: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

4.5.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+u(x) x \cos \left(x^{2} u(x)\right)+\left(x+x \cos \left(x^{2} u(x)\right)\right)\left(u^{\prime}(x) x+u(x)\right)=0
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
$$

Where $f(x)=-\frac{2}{x}$ and $g(u)=u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{2} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{2}} \\
& =\frac{c_{2}}{x^{2}}
\end{aligned}
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =\frac{c_{2}}{x}
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{2}}{x} \tag{1}
\end{equation*}
$$

Figure 116: Slope field plot

Verification of solutions

$$
y=\frac{c_{2}}{x}
$$

Verified OK.

4.5.4 Solving as differentialType ode

Writing the ode as

$$
\begin{equation*}
y^{\prime}=\frac{-y-y \cos (x y)}{x+x \cos (x y)} \tag{1}
\end{equation*}
$$

Which becomes

$$
\begin{equation*}
0=(-x) d y+(-y) d x \tag{2}
\end{equation*}
$$

But the RHS is complete differential because

$$
(-x) d y+(-y) d x=d(-x y)
$$

Hence (2) becomes

$$
0=d(-x y)
$$

Integrating both sides gives gives these solutions

$$
y=\frac{c_{1}}{x}+c_{1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x}+c_{1} \tag{1}
\end{equation*}
$$

Figure 117: Slope field plot

Verification of solutions

$$
y=\frac{c_{1}}{x}+c_{1}
$$

Verified OK.

4.5.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 89: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
$$

Which results in

$$
S=x y
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{y}{x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
x y=c_{1}
$$

Which simplifies to

$$
x y=c_{1}
$$

Which gives

$$
y=\frac{c_{1}}{x}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{y}{x}$		$\frac{d S}{d R}=0$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+4 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-3(R)}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }$
$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$	$R=x$	
	$S=x y$	
$\rightarrow \rightarrow$ ardil		$\xrightarrow[\rightarrow \rightarrow \rightarrow]{\rightarrow}$
		$\xrightarrow{\rightarrow \rightarrow \longrightarrow \rightarrow}$
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{c_{1}}{x} \tag{1}
\end{equation*}
$$

Figure 118: Slope field plot
Verification of solutions

$$
y=\frac{c_{1}}{x}
$$

Verified OK.

4.5.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =-\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)-\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)-\ln (y)
$$

The solution becomes

$$
y=\frac{\mathrm{e}^{-c_{1}}}{x}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\mathrm{e}^{-c_{1}}}{x} \tag{1}
\end{equation*}
$$

Figure 119: Slope field plot

Verification of solutions

$$
y=\frac{\mathrm{e}^{-c_{1}}}{x}
$$

Verified OK.

4.5.7 Maple step by step solution

Let's solve

$$
y+y \cos (x y)+(x+x \cos (x y)) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x
$\int\left(y+y \cos (x y)+(x+x \cos (x y)) y^{\prime}\right) d x=\int 0 d x+c_{1}$
- Evaluate integral
$x y+\sin (x y)=c_{1}$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 17

```
dsolve((y(x)+y(x)*\operatorname{cos}(x*y(x)))+(x+x*\operatorname{cos}(x*y(x)))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\pi}{x} \\
& y(x)=\frac{c_{1}}{x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 49
DSolve $[(y[x]+y[x] * \operatorname{Cos}[x * y[x]])+(x+x * \operatorname{Cos}[x * y[x]]) * y '[x]==0, y[x], x$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\pi}{x} \\
& y(x) \rightarrow \frac{\pi}{x} \\
& y(x) \rightarrow \frac{c_{1}}{x} \\
& y(x) \rightarrow-\frac{\pi}{x} \\
& y(x) \rightarrow \frac{\pi}{x}
\end{aligned}
$$

4.6 problem 6

4.6.1 Solving as separable ode . 550
4.6.2 Solving as first order ode lie symmetry lookup ode 552
4.6.3 Solving as exact ode . 556
4.6.4 Maple step by step solution . 560

Internal problem ID [6187]
Internal file name [OUTPUT/5435_Sunday_June_05_2022_03_38_03_PM_36685332/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 6.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
\cos (x) \cos (y)^{2}+2 \sin (x) \sin (y) \cos (y) y^{\prime}=0
$$

4.6.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{\cos (x) \cot (y)}{2 \sin (x)}
\end{aligned}
$$

Where $f(x)=-\frac{\cos (x)}{2 \sin (x)}$ and $g(y)=\cot (y)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\cot (y)} d y & =-\frac{\cos (x)}{2 \sin (x)} d x \\
\int \frac{1}{\cot (y)} d y & =\int-\frac{\cos (x)}{2 \sin (x)} d x
\end{aligned}
$$

$$
-\ln (\cos (y))=-\frac{\ln (\sin (x))}{2}+c_{1}
$$

Raising both side to exponential gives

$$
\frac{1}{\cos (y)}=\mathrm{e}^{-\frac{\ln (\sin (x))}{2}+c_{1}}
$$

Which simplifies to

$$
\sec (y)=\frac{c_{2}}{\sqrt{\sin (x)}}
$$

Which simplifies to

$$
y=\operatorname{arcsec}\left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{\sin (x)}}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\operatorname{arcsec}\left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{\sin (x)}}\right) \tag{1}
\end{equation*}
$$

Figure 120: Slope field plot

Verification of solutions

$$
y=\operatorname{arcsec}\left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\sqrt{\sin (x)}}\right)
$$

Verified OK.

4.6.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=-\frac{\cos (x) \cos (y)}{2 \sin (x) \sin (y)} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(\mathrm{A})$, and can just use the lookup table shown below to find ξ, η

Table 92: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{2 \sin (x)}{\cos (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the
canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{2 \sin (x)}{\cos (x)}} d x
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (\sin (x))}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{\cos (x) \cos (y)}{2 \sin (x) \sin (y)}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =-\frac{\cot (x)}{2} \\
S_{y} & =0
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\tan (y) \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\tan (R)
$$

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates R, S ．Integrating the above gives

$$
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution，we just need to transform（4）back to x, y coordinates．This results in

$$
-\frac{\ln (\sin (x))}{2}=-\ln (\cos (y))+c_{1}
$$

Which simplifies to

$$
-\frac{\ln (\sin (x))}{2}=-\ln (\cos (y))+c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．

Original ode in x, y coordinates	$\begin{gathered} \text { Canonical } \\ \text { coordinates } \\ \text { transformation } \end{gathered}$	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=-\frac{\cos (x) \cos (y)}{2 \sin (x) \sin (y)}$		$\frac{d S}{d R}=\tan (R)$
	$R=y$	
	$S=-\frac{\ln (\sin (x))}{2}$	
$\rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow+$	2	
$\rightarrow A \rightarrow \rightarrow \rightarrow{ }^{-2}$		
バイ		
，		

Summary

The solution（s）found are the following

$$
\begin{equation*}
-\frac{\ln (\sin (x))}{2}=-\ln (\cos (y))+c_{1} \tag{1}
\end{equation*}
$$

Figure 121: Slope field plot

Verification of solutions

$$
-\frac{\ln (\sin (x))}{2}=-\ln (\cos (y))+c_{1}
$$

Verified OK.

4.6.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{2 \sin (y)}{\cos (y)}\right) \mathrm{d} y & =\left(\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x \\
\left(-\frac{\cos (x)}{\sin (x)}\right) \mathrm{d} x+\left(-\frac{2 \sin (y)}{\cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{\cos (x)}{\sin (x)} \\
& N(x, y)=-\frac{2 \sin (y)}{\cos (y)}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\cos (x)}{\sin (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{2 \sin (y)}{\cos (y)}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\cos (x)}{\sin (x)} \mathrm{d} x \\
\phi & =-\ln (\sin (x))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{2 \sin (y)}{\cos (y)}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{2 \sin (y)}{\cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-\frac{2 \sin (y)}{\cos (y)} \\
& =-2 \tan (y)
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2 \tan (y)) \mathrm{d} y \\
f(y) & =2 \ln (\cos (y))+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (\sin (x))+2 \ln (\cos (y))+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (\sin (x))+2 \ln (\cos (y))
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\ln (\sin (x))+2 \ln (\cos (y))=c_{1} \tag{1}
\end{equation*}
$$

Figure 122: Slope field plot

Verification of solutions

$$
-\ln (\sin (x))+2 \ln (\cos (y))=c_{1}
$$

Verified OK.

4.6.4 Maple step by step solution

Let's solve

$$
\cos (x) \cos (y)^{2}+2 \sin (x) \sin (y) \cos (y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- \quad Separate variables

$$
\frac{y^{\prime} \sin (y)}{\cos (y)}=-\frac{\cos (x)}{2 \sin (x)}
$$

- Integrate both sides with respect to x
$\int \frac{y^{\prime} \sin (y)}{\cos (y)} d x=\int-\frac{\cos (x)}{2 \sin (x)} d x+c_{1}$
- Evaluate integral
$-\ln (\cos (y))=-\frac{\ln (\sin (x))}{2}+c_{1}$
- \quad Solve for y

$$
\left\{y=\pi-\arccos \left(\frac{\sqrt{\mathrm{e}^{2 c_{1}} \sin (x)}}{\mathrm{e}^{2 c_{1}}}\right), y=\arccos \left(\frac{\sqrt{\mathrm{e}^{2 c_{1}} \sin (x)}}{\mathrm{e}^{2 c_{1}}}\right)\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.25 (sec). Leaf size: 31
dsolve $((\cos (x) * \cos (y(x)) \wedge 2)+(2 * \sin (x) * \sin (y(x)) * \cos (y(x))) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\frac{\pi}{2} \\
& y(x)=\arccos \left(\sqrt{c_{1} \sin (x)}\right) \\
& y(x)=\frac{\pi}{2}+\arcsin \left(\sqrt{c_{1} \sin (x)}\right)
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 5.453 (sec). Leaf size: 73
DSolve $\left[\left(\operatorname{Cos}[x] * \operatorname{Cos}[y[x]]^{\sim} 2\right)+(2 * \operatorname{Sin}[x] * \operatorname{Sin}[y[x]] * \operatorname{Cos}[y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSo

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2} \\
& y(x) \rightarrow-\arccos \left(-\frac{1}{4} c_{1} \sqrt{\sin (x)}\right) \\
& y(x) \rightarrow \arccos \left(-\frac{1}{4} c_{1} \sqrt{\sin (x)}\right) \\
& y(x) \rightarrow-\frac{\pi}{2} \\
& y(x) \rightarrow \frac{\pi}{2}
\end{aligned}
$$

4.7 problem 7

4.7.1 Solving as exact ode
4.7.2 Maple step by step solution 565

Internal problem ID [6188]
Internal file name [OUTPUT/5436_Sunday_June_05_2022_03_38_05_PM_34313907/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 7.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
\left(\sin (x) \sin (y)-x \mathrm{e}^{y}\right) y^{\prime}-\mathrm{e}^{y}-\cos (x) \cos (y)=0
$$

4.7.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\sin (x) \sin (y)-x \mathrm{e}^{y}\right) \mathrm{d} y & =\left(\mathrm{e}^{y}+\cos (x) \cos (y)\right) \mathrm{d} x \\
\left(-\cos (x) \cos (y)-\mathrm{e}^{y}\right) \mathrm{d} x+\left(\sin (x) \sin (y)-x \mathrm{e}^{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\cos (x) \cos (y)-\mathrm{e}^{y} \\
N(x, y) & =\sin (x) \sin (y)-x \mathrm{e}^{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\cos (x) \cos (y)-\mathrm{e}^{y}\right) \\
& =\cos (x) \sin (y)-\mathrm{e}^{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\sin (x) \sin (y)-x \mathrm{e}^{y}\right) \\
& =\cos (x) \sin (y)-\mathrm{e}^{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\cos (x) \cos (y)-\mathrm{e}^{y} \mathrm{~d} x \\
\phi & =-\sin (x) \cos (y)-x \mathrm{e}^{y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\sin (x) \sin (y)-x \mathrm{e}^{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\sin (x) \sin (y)-x \mathrm{e}^{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\sin (x) \sin (y)-x \mathrm{e}^{y}=\sin (x) \sin (y)-x \mathrm{e}^{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\sin (x) \cos (y)-x \mathrm{e}^{y}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\sin (x) \cos (y)-x \mathrm{e}^{y}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\sin (x) \cos (y)-x \mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
$$

Figure 123: Slope field plot
Verification of solutions

$$
-\sin (x) \cos (y)-x \mathrm{e}^{y}=c_{1}
$$

Verified OK.

4.7.2 Maple step by step solution

Let's solve
$\left(\sin (x) \sin (y)-x \mathrm{e}^{y}\right) y^{\prime}-\mathrm{e}^{y}-\cos (x) \cos (y)=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
$\square \quad$ Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\cos (x) \sin (y)-\mathrm{e}^{y}=\cos (x) \sin (y)-\mathrm{e}^{y}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(-\cos (x) \cos (y)-\mathrm{e}^{y}\right) d x+f_{1}(y)
$$

- \quad Evaluate integral

$$
F(x, y)=-\sin (x) \cos (y)-x \mathrm{e}^{y}+f_{1}(y)
$$

- Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\sin (x) \sin (y)-x \mathrm{e}^{y}=\sin (x) \sin (y)-x \mathrm{e}^{y}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=-\sin (x) \cos (y)-x \mathrm{e}^{y}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-\sin (x) \cos (y)-x \mathrm{e}^{y}=c_{1}
$$

- \quad Solve for y
$y=\operatorname{RootOf}\left(-Z-\ln \left(-\frac{\sin (x) \cos \left(_Z\right)+c_{1}}{x}\right)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.047 (sec). Leaf size: 16
dsolve $((\sin (x) * \sin (y(x))-x * \exp (y(x))) * \operatorname{diff}(y(x), x)=\exp (y(x))+\cos (x) * \cos (y(x)), y(x)$, singsol $=$

$$
c_{1}+\sin (x) \cos (y(x))+x \mathrm{e}^{y(x)}=0
$$

\checkmark Solution by Mathematica
Time used: 0.594 (sec). Leaf size: 21
DSolve $[(\operatorname{Sin}[x] * \operatorname{Sin}[y[x]]-x * \operatorname{Exp}[y[x]]) * y '[x]==\operatorname{Exp}[y[x]]+\operatorname{Cos}[x] * \operatorname{Cos}[y[x]], y[x], x$, IncludeSingul

Solve $\left[2\left(x e^{y(x)}+\sin (x) \cos (y(x))\right)=c_{1}, y(x)\right]$

4.8 problem 8

> 4.8.1 Solving as exact ode
4.8.2 Maple step by step solution 572

Internal problem ID [6189]
Internal file name [OUTPUT/5437_Sunday_June_05_2022_03_38_09_PM_22462015/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 8.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_separable]

$$
-\frac{\sin \left(\frac{x}{y}\right)}{y}+\frac{x \sin \left(\frac{x}{y}\right) y^{\prime}}{y^{2}}=0
$$

4.8.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x)+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x)+\ln (y)
$$

The solution becomes

$$
y=x \mathrm{e}^{c_{1}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{c_{1}} \tag{1}
\end{equation*}
$$

Figure 124: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{c_{1}}
$$

Verified OK.

4.8.2 Maple step by step solution

Let's solve

$$
-\frac{\sin \left(\frac{x}{y}\right)}{y}+\frac{x \sin \left(\frac{x}{y}\right) y^{\prime}}{y^{2}}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

- Integrate both sides with respect to x

$$
\int\left(-\frac{\sin \left(\frac{x}{y}\right)}{y}+\frac{x \sin \left(\frac{x}{y}\right) y^{\prime}}{y^{2}}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral

$$
\cos \left(\frac{x}{y}\right)=c_{1}
$$

- \quad Solve for y

$$
y=\frac{x}{\arccos \left(c_{1}\right)}
$$

Maple trace

```
`Classification methods on request
Methods to be used are: [exact]
* Tackling ODE using method: exact
--- Trying classification methods ---
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 13

```
dsolve(-1/y(x)*\operatorname{sin}(x/y(x))+(x/y(x)~2*\operatorname{sin}(x/y(x)))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\frac{x}{\pi-c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 19
DSolve $\left[-1 / y[x] * \operatorname{Sin}[x / y[x]]+(x / y[x] \sim 2 * \operatorname{Sin}[x / y[x]]) * y{ }^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions

$$
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow \text { ComplexInfinity } \\
& y(x) \rightarrow \text { ComplexInfinity }
\end{aligned}
$$

4.9 problem 9

4.9.1 Solving as separable ode 574
4.9.2 Solving as linear ode 576
4.9.3 Solving as homogeneousTypeD2 ode 578
4.9.4 Solving as homogeneousTypeMapleC ode 579
4.9.5 Solving as first order ode lie symmetry lookup ode 582
4.9.6 Solving as exact ode 586
4.9.7 Maple step by step solution 590

Internal problem ID [6190]
Internal file name [OUTPUT/5438_Sunday_June_05_2022_03_38_11_PM_5955005/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 9.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "homogeneousTypeMapleC", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
y+(1-x) y^{\prime}=-1
$$

4.9.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{1+y}{x-1}
\end{aligned}
$$

Where $f(x)=\frac{1}{x-1}$ and $g(y)=1+y$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{1+y} d y & =\frac{1}{x-1} d x \\
\int \frac{1}{1+y} d y & =\int \frac{1}{x-1} d x \\
\ln (1+y) & =\ln (x-1)+c_{1}
\end{aligned}
$$

Raising both side to exponential gives

$$
1+y=\mathrm{e}^{\ln (x-1)+c_{1}}
$$

Which simplifies to

$$
1+y=c_{2}(x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{2} \mathrm{e}^{\ln (x-1)+c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 125: Slope field plot

Verification of solutions

$$
y=c_{2} \mathrm{e}^{\ln (x-1)+c_{1}}-1
$$

Verified OK.

4.9.2 Solving as linear ode

Entering Linear first order ODE solver. In canonical form a linear first order is

$$
y^{\prime}+p(x) y=q(x)
$$

Where here

$$
\begin{aligned}
& p(x)=-\frac{1}{x-1} \\
& q(x)=\frac{1}{x-1}
\end{aligned}
$$

Hence the ode is

$$
y^{\prime}-\frac{y}{x-1}=\frac{1}{x-1}
$$

The integrating factor μ is

$$
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x-1} d x} \\
& =\frac{1}{x-1}
\end{aligned}
$$

The ode becomes

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{1}{x-1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x-1}\right) & =\left(\frac{1}{x-1}\right)\left(\frac{1}{x-1}\right) \\
\mathrm{d}\left(\frac{y}{x-1}\right) & =\frac{1}{(x-1)^{2}} \mathrm{~d} x
\end{aligned}
$$

Integrating gives

$$
\begin{aligned}
\frac{y}{x-1} & =\int \frac{1}{(x-1)^{2}} \mathrm{~d} x \\
\frac{y}{x-1} & =-\frac{1}{x-1}+c_{1}
\end{aligned}
$$

Dividing both sides by the integrating factor $\mu=\frac{1}{x-1}$ results in

$$
y=-1+c_{1}(x-1)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
y=-1+c_{1}(x-1) \tag{1}
\end{equation*}
$$

Figure 126: Slope field plot

Verification of solutions

$$
y=-1+c_{1}(x-1)
$$

Verified OK.

4.9.3 Solving as homogeneousTypeD2 ode

Using the change of variables $y=u(x) x$ on the above ode results in new ode in $u(x)$

$$
u(x) x+(1-x)\left(u^{\prime}(x) x+u(x)\right)=-1
$$

In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u+1}{x(x-1)}
\end{aligned}
$$

Where $f(x)=\frac{1}{x(x-1)}$ and $g(u)=u+1$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u+1} d u & =\frac{1}{x(x-1)} d x \\
\int \frac{1}{u+1} d u & =\int \frac{1}{x(x-1)} d x \\
\ln (u+1) & =\ln (x-1)-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
u+1=\mathrm{e}^{\ln (x-1)-\ln (x)+c_{2}}
$$

Which simplifies to

$$
u+1=c_{3} \mathrm{e}^{\ln (x-1)-\ln (x)}
$$

Which simplifies to

$$
u(x)=c_{3}\left(\mathrm{e}^{c_{2}}-\frac{\mathrm{e}^{c_{2}}}{x}\right)-1
$$

Therefore the solution y is

$$
\begin{aligned}
y & =u x \\
& =x\left(c_{3}\left(\mathrm{e}^{c_{2}}-\frac{\mathrm{e}^{c_{2}}}{x}\right)-1\right)
\end{aligned}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x\left(c_{3}\left(\mathrm{e}^{c_{2}}-\frac{\mathrm{e}^{c_{2}}}{x}\right)-1\right) \tag{1}
\end{equation*}
$$

Figure 127: Slope field plot
Verification of solutions

$$
y=x\left(c_{3}\left(\mathrm{e}^{c_{2}}-\frac{\mathrm{e}^{c_{2}}}{x}\right)-1\right)
$$

Verified OK.

4.9.4 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=\frac{1+Y(X)+y_{0}}{X+x_{0}-1}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
& x_{0}=1 \\
& y_{0}=-1
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=\frac{Y(X)}{X}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{Y}{X} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=Y$ and $N=X$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =u \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =0
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. Integrating both sides gives

$$
\begin{aligned}
u(X) & =\int 0 \mathrm{~d} X \\
& =c_{2}
\end{aligned}
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
Y(X)=X c_{2}
$$

Using the solution for $Y(X)$

$$
Y(X)=X c_{2}
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-1 \\
& X=1+x
\end{aligned}
$$

Then the solution in y becomes

$$
1+y=c_{2}(x-1)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
1+y=c_{2}(x-1) \tag{1}
\end{equation*}
$$

Figure 128: Slope field plot
Verification of solutions

$$
1+y=c_{2}(x-1)
$$

Verified OK.

4.9.5 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{1+y}{x-1} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find ξ, η

Table 97: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order special form ID 1	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int f_{1} d x}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x-1 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x-1} d y
\end{aligned}
$$

Which results in

$$
S=\frac{y}{x-1}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{1+y}{x-1}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{(x-1)^{2}} \\
S_{y} & =\frac{1}{x-1}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=\frac{1}{(x-1)^{2}} \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=\frac{1}{(R-1)^{2}}
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=-\frac{1}{R-1}+c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{y}{x-1}=-\frac{1}{x-1}+c_{1}
$$

Which simplifies to

$$
\frac{-c_{1} x+c_{1}+y+1}{x-1}=0
$$

Which gives

$$
y=c_{1} x-c_{1}-1
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{1+y}{x-1}$		$\frac{d S}{d R}=\frac{1}{(R-1)^{2}}$
		$\rightarrow \rightarrow$ - ¢ ¢ ¢
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty]{ }{ }^{\text {a }}$ ¢ \uparrow ¢
		$\xrightarrow[{\rightarrow \rightarrow-S[R}]]{ } \rightarrow 1$ ¢ \uparrow
		$\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0$
\cdots	$R=x$	$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }$
$\xrightarrow[\rightarrow \rightarrow-4 \rightarrow-2]{ } \rightarrow \rightarrow \rightarrow \rightarrow$	y	
$\rightarrow \rightarrow \rightarrow \rightarrow-\infty$	$x-1$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=c_{1} x-c_{1}-1 \tag{1}
\end{equation*}
$$

Figure 129: Slope field plot

Verification of solutions

$$
y=c_{1} x-c_{1}-1
$$

Verified OK.

4.9.6 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{1}{1+y}\right) \mathrm{d} y & =\left(\frac{1}{x-1}\right) \mathrm{d} x \\
\left(-\frac{1}{x-1}\right) \mathrm{d} x+\left(\frac{1}{1+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-\frac{1}{x-1} \\
N(x, y) & =\frac{1}{1+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x-1}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{1+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x-1} \mathrm{~d} x \\
\phi & =-\ln (x-1)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{1}{1+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{1}{1+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{1+y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{1+y}\right) \mathrm{d} y \\
f(y) & =\ln (1+y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\ln (x-1)+\ln (1+y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\ln (x-1)+\ln (1+y)
$$

The solution becomes

$$
y=x \mathrm{e}^{c_{1}}-\mathrm{e}^{c_{1}}-1
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \mathrm{e}^{c_{1}}-\mathrm{e}^{c_{1}}-1 \tag{1}
\end{equation*}
$$

Figure 130: Slope field plot

Verification of solutions

$$
y=x \mathrm{e}^{c_{1}}-\mathrm{e}^{c_{1}}-1
$$

Verified OK.

4.9.7 Maple step by step solution

Let's solve

$$
y+(1-x) y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Separate variables

$$
\frac{y^{\prime}}{-1-y}=\frac{1}{1-x}
$$

- Integrate both sides with respect to x

$$
\int \frac{y^{\prime}}{-1-y} d x=\int \frac{1}{1-x} d x+c_{1}
$$

- Evaluate integral
$-\ln (-1-y)=-\ln (1-x)+c_{1}$
- \quad Solve for y

$$
y=-\frac{\mathrm{e}^{c_{1}-x+1}}{\mathrm{e}^{c_{1}}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 11

```
dsolve((1+y(x))+(1-x)*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=-1+c_{1}(x-1)
$$

\checkmark Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 18
DSolve[(1+y[x])+(1-x)*y'[x]==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-1+c_{1}(x-1) \\
& y(x) \rightarrow-1
\end{aligned}
$$

4.10 problem 10

4.10.1 Solving as exact ode
4.10.2 Maple step by step solution 595

Internal problem ID [6191]
Internal file name [OUTPUT/5439_Sunday_June_05_2022_03_38_12_PM_82103197/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 10.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact, [_1st_order, ` _with_symmetry_[F(x),G(x)*y+H(x)]`]]
```

$$
2 y^{3} x+y \cos (x)+\left(3 y^{2} x^{2}+\sin (x)\right) y^{\prime}=0
$$

4.10.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(3 y^{2} x^{2}+\sin (x)\right) \mathrm{d} y & =\left(-2 x y^{3}-y \cos (x)\right) \mathrm{d} x \\
\left(2 x y^{3}+y \cos (x)\right) \mathrm{d} x+\left(3 y^{2} x^{2}+\sin (x)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1 A) and (2 A) shows that

$$
\begin{aligned}
M(x, y) & =2 x y^{3}+y \cos (x) \\
N(x, y) & =3 y^{2} x^{2}+\sin (x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x y^{3}+y \cos (x)\right) \\
& =6 y^{2} x+\cos (x)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{2} x^{2}+\sin (x)\right) \\
& =6 y^{2} x+\cos (x)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x y^{3}+y \cos (x) \mathrm{d} x \\
\phi & =y\left(y^{2} x^{2}+\sin (x)\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 y^{2} x^{2}+\sin (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=3 y^{2} x^{2}+\sin (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
3 y^{2} x^{2}+\sin (x)=3 y^{2} x^{2}+\sin (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=y\left(y^{2} x^{2}+\sin (x)\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=y\left(y^{2} x^{2}+\sin (x)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y\left(y^{2} x^{2}+\sin (x)\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 131: Slope field plot

Verification of solutions

$$
y\left(y^{2} x^{2}+\sin (x)\right)=c_{1}
$$

Verified OK.

4.10.2 Maple step by step solution

Let's solve

$$
2 y^{3} x+y \cos (x)+\left(3 y^{2} x^{2}+\sin (x)\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
6 y^{2} x+\cos (x)=6 y^{2} x+\cos (x)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 x y^{3}+y \cos (x)\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y \sin (x)+y^{3} x^{2}+f_{1}(y)
$$

- Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
3 y^{2} x^{2}+\sin (x)=\sin (x)+3 y^{2} x^{2}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=y \sin (x)+y^{3} x^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y \sin (x)+y^{3} x^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}+108 c_{1} x\right)^{\frac{1}{3}}}{6 x}-\frac{2 \sin (x)}{x\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}+108 c_{1} x\right)^{\frac{1}{3}}}, y=-\frac{\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}\right.}{12 x}\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 302

```
dsolve((2*x*y(x)^ 3+y(x)*\operatorname{cos}(x))+(3*x^2*y(x)^2+\operatorname{sin}(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{2}{3}}-12 \sin (x)}{6 x\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{1}{3}}} \\
& y(x)= \\
& -\frac{i \sqrt{3}\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{2}{3}}+12 i \sin (x) \sqrt{3}+\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108\right.}{12 x\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{1}{3}}}
\end{aligned}
$$

$y(x)$

$$
=\frac{i \sqrt{3}\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{2}{3}}+12 i \sin (x) \sqrt{3}-\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right.}{12 x\left(12 \sqrt{3} \sqrt{27 x^{2} c_{1}^{2}+4 \sin (x)^{3}}-108 c_{1} x\right)^{\frac{1}{3}}}
$$

Solution by Mathematica

Time used: 34.571 (sec). Leaf size: 339
DSolve $\left[(2 * x * y[x] \leadsto 3+y[x] * \operatorname{Cos}[x])+\left(3 * x^{\wedge} 2 * y[x] \sim 2+\operatorname{Sin}[x]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolutio

$$
\begin{aligned}
y(x) & \rightarrow \frac{\sqrt[3]{9 c_{1} x^{4}+\sqrt{12 x^{6} \sin ^{3}(x)+81 c_{1}{ }^{2} x^{8}}}}{\sqrt[3]{23^{2 / 3} x^{2}}}-\frac{\sqrt[3]{\frac{2}{3}} \sin (x)}{\sqrt[3]{9 c_{1} x^{4}+\sqrt{12 x^{6} \sin ^{3}(x)+81 c_{1}^{2} x^{8}}}} \\
y(x) \rightarrow & \frac{(1+i \sqrt{3}) \sin (x)}{2^{2 / 3} \sqrt[3]{27 c_{1} x^{4}+3 \sqrt{12 x^{6} \sin ^{3}(x)+81 c_{1}^{2} x^{8}}}} \\
& -\frac{(1-i \sqrt{3}) \sqrt[3]{27 c_{1} x^{4}+\sqrt{108 x^{6} \sin ^{3}(x)+729 c_{1}^{2} x^{8}}}}{6 \sqrt[3]{2} x^{2}} \\
y(x) \rightarrow & \frac{(1-i \sqrt{3}) \sin (x)}{2^{2 / 3} \sqrt[3]{27 c_{1} x^{4}+3 \sqrt{12 x^{6} \sin ^{3}(x)+81 c_{1}^{2} x^{8}}}} \\
& -\frac{(1+i \sqrt{3}) \sqrt[3]{27 c_{1} x^{4}+\sqrt{108 x^{6} \sin ^{3}(x)+729 c_{1}^{2} x^{8}}}}{6 \sqrt[3]{2 x^{2}}}
\end{aligned}
$$

4.11 problem 11

4.11.1 Solving as exact ode . 599
4.11.2 Solving as riccati ode . 603
4.11.3 Maple step by step solution . 605

Internal problem ID [6192]
Internal file name [OUTPUT/5440_Sunday_June_05_2022_03_38_16_PM_44427014/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 11.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati"
Maple gives the following as the ode type
[_exact, _rational, _Riccati]

$$
\frac{y}{1-y^{2} x^{2}}+\frac{x y^{\prime}}{1-y^{2} x^{2}}=1
$$

4.11.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{-y^{2} x^{2}+1}\right) \mathrm{d} y & =\left(-\frac{y}{-y^{2} x^{2}+1}+1\right) \mathrm{d} x \\
\left(\frac{y}{-y^{2} x^{2}+1}-1\right) \mathrm{d} x+\left(\frac{x}{-y^{2} x^{2}+1}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{-y^{2} x^{2}+1}-1 \\
& N(x, y)=\frac{x}{-y^{2} x^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{-y^{2} x^{2}+1}-1\right) \\
& =\frac{y^{2} x^{2}+1}{\left(y^{2} x^{2}-1\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{-y^{2} x^{2}+1}\right) \\
& =\frac{y^{2} x^{2}+1}{\left(y^{2} x^{2}-1\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{-y^{2} x^{2}+1}-1 \mathrm{~d} x \\
\phi & =-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{2 x y+2}-\frac{x}{2(x y-1)}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{y^{2} x^{2}-1}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{-y^{2} x^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{-y^{2} x^{2}+1}=-\frac{x}{y^{2} x^{2}-1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{-2 c_{1}-2 x}+1}{x\left(\mathrm{e}^{-2 c_{1}-2 x}-1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{-2 c_{1}-2 x}+1}{x\left(\mathrm{e}^{-2 c_{1}-2 x}-1\right)} \tag{1}
\end{equation*}
$$

Figure 132: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{-2 c_{1}-2 x}+1}{x\left(\mathrm{e}^{-2 c_{1}-2 x}-1\right)}
$$

Verified OK.

4.11.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} x^{2}+y-1}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=-y^{2} x-\frac{y}{x}+\frac{1}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=\frac{1}{x}, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=-x$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{-x u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =-1 \\
f_{1} f_{2} & =1 \\
f_{2}^{2} f_{0} & =x
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
-x u^{\prime \prime}(x)+x u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
$$

The above shows that

$$
u^{\prime}(x)=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}
$$

Using the above in (1) gives the solution

$$
y=\frac{c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}}{x\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-1+\mathrm{e}^{2 x} c_{3}}{x\left(\mathrm{e}^{2 x} c_{3}+1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-1+\mathrm{e}^{2 x} c_{3}}{x\left(\mathrm{e}^{2 x} c_{3}+1\right)} \tag{1}
\end{equation*}
$$

Figure 133: Slope field plot
Verification of solutions

$$
y=\frac{-1+\mathrm{e}^{2 x} c_{3}}{x\left(\mathrm{e}^{2 x} c_{3}+1\right)}
$$

Verified OK.

4.11.3 Maple step by step solution

Let's solve

$$
\frac{y}{1-y^{2} x^{2}}+\frac{x y^{\prime}}{1-y^{2} x^{2}}=1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{1}{-y^{2} x^{2}+1}+\frac{2 y^{2} x^{2}}{\left(-y^{2} x^{2}+1\right)^{2}}=\frac{1}{-y^{2} x^{2}+1}+\frac{2 y^{2} x^{2}}{\left(-y^{2} x^{2}+1\right)^{2}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\frac{y}{-y^{2} x^{2}+1}-1\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
\frac{x}{-y^{2} x^{2}+1}=\frac{x}{2(x y+1)}-\frac{x}{2(x y-1)}+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\frac{x}{-y^{2} x^{2}+1}-\frac{x}{2(x y+1)}+\frac{x}{2(x y-1)}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE
$-x+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}=c_{1}$
- \quad Solve for y
$y=-\frac{\mathrm{e}^{-2 c_{1}-2 x}+1}{x\left(\mathrm{e}^{-2 c_{1}-2 x}-1\right)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve $\left(y(x) /\left(1-x^{\wedge} 2 * y(x)^{\wedge} 2\right)+x /\left(1-x^{\wedge} 2 * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=1, y(x)\right.$, singsol=all)

$$
y(x)=\frac{\mathrm{e}^{2 x}+c_{1}}{x\left(\mathrm{e}^{2 x}-c_{1}\right)}
$$

\checkmark Solution by Mathematica
Time used: 0.16 (sec). Leaf size: 18
DSolve $\left[y[x] /\left(1-x^{\wedge} 2 * y[x] \sim 2\right)+x /\left(1-x^{\wedge} 2 * y[x] \sim 2\right) * y^{\prime}[x]==1, y[x], x\right.$, IncludeSingularSolutions \rightarrow True

$$
y(x) \rightarrow \frac{\tanh \left(x+i c_{1}\right)}{x}
$$

4.12 problem 12

4.12.1 Solving as exact ode . 608
4.12.2 Maple step by step solution . 611

Internal problem ID [6193]
Internal file name [OUTPUT/5441_Sunday_June_05_2022_03_38_19_PM_43906110/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 12.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact]

$$
2 x y^{4}+\sin (y)+\left(4 y^{3} x^{2}+\cos (y) x\right) y^{\prime}=0
$$

4.12.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(4 y^{3} x^{2}+\cos (y) x\right) \mathrm{d} y & =\left(-2 y^{4} x-\sin (y)\right) \mathrm{d} x \\
\left(2 y^{4} x+\sin (y)\right) \mathrm{d} x+\left(4 y^{3} x^{2}+\cos (y) x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 y^{4} x+\sin (y) \\
N(x, y) & =4 y^{3} x^{2}+\cos (y) x
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 y^{4} x+\sin (y)\right) \\
& =8 x y^{3}+\cos (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 y^{3} x^{2}+\cos (y) x\right) \\
& =8 x y^{3}+\cos (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 y^{4} x+\sin (y) \mathrm{d} x \\
\phi & =x\left(y^{4} x+\sin (y)\right)+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=x\left(4 x y^{3}+\cos (y)\right)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=4 y^{3} x^{2}+\cos (y) x$. Therefore equation (4) becomes

$$
\begin{equation*}
4 y^{3} x^{2}+\cos (y) x=4 y^{3} x^{2}+\cos (y) x+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=x\left(y^{4} x+\sin (y)\right)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x\left(y^{4} x+\sin (y)\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x\left(x y^{4}+\sin (y)\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 134: Slope field plot
Verification of solutions

$$
x\left(x y^{4}+\sin (y)\right)=c_{1}
$$

Verified OK.

4.12.2 Maple step by step solution

Let's solve
$2 x y^{4}+\sin (y)+\left(4 y^{3} x^{2}+\cos (y) x\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
8 x y^{3}+\cos (y)=8 x y^{3}+\cos (y)
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(2 y^{4} x+\sin (y)\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=y^{4} x^{2}+\sin (y) x+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
4 y^{3} x^{2}+\cos (y) x=4 y^{3} x^{2}+\cos (y) x+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=0
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=y^{4} x^{2}+\sin (y) x$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
y^{4} x^{2}+\sin (y) x=c_{1}
$$

- \quad Solve for y
$y=\operatorname{Root} O f\left(-x^{2} _Z^{4}-\sin \left(_Z\right) x+c_{1}\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 18
dsolve $\left((2 * x * y(x) \wedge 4+\sin (y(x)))+\left(4 * x^{\wedge} 2 * y(x) \wedge 3+x * \cos (y(x))\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
x^{2} y(x)^{4}+x \sin (y(x))+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.227 (sec). Leaf size: 20
DSolve $\left[(2 * x * y[x] \wedge 4+\operatorname{Sin}[y[x]])+\left(4 * x^{\wedge} 2 * y[x] \wedge 3+x * \operatorname{Cos}[y[x]]\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolu

$$
\text { Solve }\left[x^{2} y(x)^{4}+x \sin (y(x))=c_{1}, y(x)\right]
$$

4.13 problem 13

4.13.1 Solving as exact ode . 614
4.13.2 Solving as riccati ode . 618
4.13.3 Maple step by step solution . 620

Internal problem ID [6194]
Internal file name [OUTPUT/5442_Sunday_June_05_2022_03_38_24_PM_56095593/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20
Problem number: 13.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "riccati"
Maple gives the following as the ode type
[_exact, _rational, _Riccati]

$$
\frac{x y^{\prime}+y}{1-y^{2} x^{2}}=-x
$$

4.13.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x}{-y^{2} x^{2}+1}\right) \mathrm{d} y & =\left(-\frac{y}{-y^{2} x^{2}+1}-x\right) \mathrm{d} x \\
\left(\frac{y}{-y^{2} x^{2}+1}+x\right) \mathrm{d} x+\left(\frac{x}{-y^{2} x^{2}+1}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{-y^{2} x^{2}+1}+x \\
& N(x, y)=\frac{x}{-y^{2} x^{2}+1}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{-y^{2} x^{2}+1}+x\right) \\
& =\frac{y^{2} x^{2}+1}{\left(y^{2} x^{2}-1\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x}{-y^{2} x^{2}+1}\right) \\
& =\frac{y^{2} x^{2}+1}{\left(y^{2} x^{2}-1\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{-y^{2} x^{2}+1}+x \mathrm{~d} x \\
\phi & =\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x}{2 x y+2}-\frac{x}{2(x y-1)}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{y^{2} x^{2}-1}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x}{-y^{2} x^{2}+1}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x}{-y^{2} x^{2}+1}=-\frac{x}{y^{2} x^{2}-1}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}
$$

The solution becomes

$$
y=-\frac{\mathrm{e}^{x^{2}-2 c_{1}}+1}{x\left(\mathrm{e}^{x^{2}-2 c_{1}}-1\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{\mathrm{e}^{x^{2}-2 c_{1}}+1}{x\left(\mathrm{e}^{x^{2}-2 c_{1}}-1\right)} \tag{1}
\end{equation*}
$$

Figure 135: Slope field plot

Verification of solutions

$$
y=-\frac{\mathrm{e}^{x^{2}-2 c_{1}}+1}{x\left(\mathrm{e}^{x^{2}-2 c_{1}}-1\right)}
$$

Verified OK.

4.13.2 Solving as riccati ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{y^{2} x^{3}-x-y}{x}
\end{aligned}
$$

This is a Riccati ODE. Comparing the ODE to solve

$$
y^{\prime}=y^{2} x^{2}-1-\frac{y}{x}
$$

With Riccati ODE standard form

$$
y^{\prime}=f_{0}(x)+f_{1}(x) y+f_{2}(x) y^{2}
$$

Shows that $f_{0}(x)=-1, f_{1}(x)=-\frac{1}{x}$ and $f_{2}(x)=x^{2}$. Let

$$
\begin{align*}
y & =\frac{-u^{\prime}}{f_{2} u} \\
& =\frac{-u^{\prime}}{x^{2} u} \tag{1}
\end{align*}
$$

Using the above substitution in the given ODE results (after some simplification)in a second order ODE to solve for $u(x)$ which is

$$
\begin{equation*}
f_{2} u^{\prime \prime}(x)-\left(f_{2}^{\prime}+f_{1} f_{2}\right) u^{\prime}(x)+f_{2}^{2} f_{0} u(x)=0 \tag{2}
\end{equation*}
$$

But

$$
\begin{aligned}
f_{2}^{\prime} & =2 x \\
f_{1} f_{2} & =-x \\
f_{2}^{2} f_{0} & =-x^{4}
\end{aligned}
$$

Substituting the above terms back in equation (2) gives

$$
x^{2} u^{\prime \prime}(x)-x u^{\prime}(x)-x^{4} u(x)=0
$$

Solving the above ODE (this ode solved using Maple, not this program), gives

$$
u(x)=c_{1} \sinh \left(\frac{x^{2}}{2}\right)+c_{2} \cosh \left(\frac{x^{2}}{2}\right)
$$

The above shows that

$$
u^{\prime}(x)=x\left(c_{1} \cosh \left(\frac{x^{2}}{2}\right)+c_{2} \sinh \left(\frac{x^{2}}{2}\right)\right)
$$

Using the above in (1) gives the solution

$$
y=-\frac{c_{1} \cosh \left(\frac{x^{2}}{2}\right)+c_{2} \sinh \left(\frac{x^{2}}{2}\right)}{x\left(c_{1} \sinh \left(\frac{x^{2}}{2}\right)+c_{2} \cosh \left(\frac{x^{2}}{2}\right)\right)}
$$

Dividing both numerator and denominator by c_{1} gives, after renaming the constant $\frac{c_{2}}{c_{1}}=c_{3}$ the following solution

$$
y=\frac{-c_{3} \cosh \left(\frac{x^{2}}{2}\right)-\sinh \left(\frac{x^{2}}{2}\right)}{x\left(c_{3} \sinh \left(\frac{x^{2}}{2}\right)+\cosh \left(\frac{x^{2}}{2}\right)\right)}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{-c_{3} \cosh \left(\frac{x^{2}}{2}\right)-\sinh \left(\frac{x^{2}}{2}\right)}{x\left(c_{3} \sinh \left(\frac{x^{2}}{2}\right)+\cosh \left(\frac{x^{2}}{2}\right)\right)} \tag{1}
\end{equation*}
$$

Figure 136: Slope field plot
Verification of solutions

$$
y=\frac{-c_{3} \cosh \left(\frac{x^{2}}{2}\right)-\sinh \left(\frac{x^{2}}{2}\right)}{x\left(c_{3} \sinh \left(\frac{x^{2}}{2}\right)+\cosh \left(\frac{x^{2}}{2}\right)\right)}
$$

Verified OK.

4.13.3 Maple step by step solution

Let's solve
$\frac{x y^{\prime}+y}{1-y^{2} x^{2}}=-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
\frac{1}{-y^{2} x^{2}+1}+\frac{2 y^{2} x^{2}}{\left(-y^{2} x^{2}+1\right)^{2}}=\frac{1}{-y^{2} x^{2}+1}+\frac{2 y^{2} x^{2}}{\left(-y^{2} x^{2}+1\right)^{2}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(\frac{y}{-y^{2} x^{2}+1}+x\right) d x+f_{1}(y)
$$

- Evaluate integral
$F(x, y)=\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
\frac{x}{-y^{2} x^{2}+1}=\frac{x}{2(x y+1)}-\frac{x}{2(x y-1)}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=\frac{x}{-y^{2} x^{2}+1}-\frac{x}{2(x y+1)}+\frac{x}{2(x y-1)}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}$
- \quad Substitute $F(x, y)$ into the solution of the ODE $\frac{x^{2}}{2}+\frac{\ln (x y+1)}{2}-\frac{\ln (x y-1)}{2}=c_{1}$
- \quad Solve for y
$y=-\frac{\mathrm{e}^{x^{2}-2 c_{1}}+1}{x\left(\mathrm{e}^{x^{2}-2 c_{1}}-1\right)}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
<- Chini successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 19

```
dsolve((y(x)+x*diff (y(x),x))/(1-x^2*y(x)^2)+x=0,y(x), singsol=all)
```

$$
y(x)=\frac{i \tan \left(\frac{i x^{2}}{2}+c_{1}\right)}{x}
$$

Solution by Mathematica
Time used: 0.142 (sec). Leaf size: 25

```
DSolve[(y[x]+x*y'[x])/(1-\mp@subsup{x}{}{\wedge}2*y[x]~2)+x==0,y[x],x,IncludeSingularSolutions -> True]
```

$$
y(x) \rightarrow-\frac{\tanh \left(\frac{1}{2}\left(x^{2}-2 i c_{1}\right)\right)}{x}
$$

4.14 problem 14

4.14.1 Solving as first order ode lie symmetry calculated ode 623
4.14.2 Solving as exact ode . 631
4.14.3 Maple step by step solution . 635

Internal problem ID [6195]
Internal file name [OUTPUT/5443_Sunday_June_05_2022_03_38_25_PM_23417214/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 14.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[_exact, [_1st_order, ` _with_symmetry_[F(x), G(y)]`]

$$
2 x\left(1+\sqrt{x^{2}-y}\right)-\sqrt{x^{2}-y} y^{\prime}=0
$$

4.14.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
& y^{\prime}=\frac{2 x\left(1+\sqrt{x^{2}-y}\right)}{\sqrt{x^{2}-y}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 2 to use as anstaz gives

$$
\begin{align*}
& \xi=x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
& 2 x b_{4}+y b_{5}+b_{2}+\frac{2 x\left(1+\sqrt{x^{2}-y}\right)\left(-2 x a_{4}+x b_{5}-y a_{5}+2 y b_{6}-a_{2}+b_{3}\right)}{\sqrt{x^{2}-y}} \\
& -\frac{4 x^{2}\left(1+\sqrt{x^{2}-y}\right)^{2}\left(x a_{5}+2 y a_{6}+a_{3}\right)}{x^{2}-y}-\left(\frac{2+2 \sqrt{x^{2}-y}}{\sqrt{x^{2}-y}}+\frac{2 x^{2}}{x^{2}-y}\right. \tag{5E}\\
& \left.-\frac{2 x^{2}\left(1+\sqrt{x^{2}-y}\right)}{\left(x^{2}-y\right)^{\frac{3}{2}}}\right)\left(x^{2} a_{4}+x y a_{5}+y^{2} a_{6}+x a_{2}+y a_{3}+a_{1}\right) \\
& -\left(-\frac{x}{x^{2}-y}+\frac{x\left(1+\sqrt{x^{2}-y}\right)}{\left(x^{2}-y\right)^{\frac{3}{2}}}\right)\left(x^{2} b_{4}+x y b_{5}+y^{2} b_{6}+x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

> Expression too large to display

Setting the numerator to zero gives

> Expression too large to display

Simplifying the above gives
Expression too large to display

Since the PDE has radicals, simplifying gives

$$
\begin{aligned}
& -2 \sqrt{x^{2}-y} x^{4} a_{1}-2 \sqrt{x^{2}-y} y^{4} a_{6}-8 x^{6} \sqrt{x^{2}-y} y a_{6} \\
& +4 x^{5} \sqrt{x^{2}-y} y b_{6}-8 x^{4} \sqrt{x^{2}-y} y a_{6}+4 \sqrt{x^{2}-y} x^{3} y a_{5} \\
& -6 x^{2} \sqrt{x^{2}-y} y^{2} a_{4}+8 \sqrt{x^{2}-y} x^{2} y^{2} a_{6}-4 x \sqrt{x^{2}-y} y^{3} a_{5} \\
& +6 \sqrt{x^{2}-y} x^{4} y a_{3}+8 \sqrt{x^{2}-y} x^{3} y a_{2}-4 \sqrt{x^{2}-y} x^{3} y b_{3} \\
& +4 \sqrt{x^{2}-y} x^{2} y a_{1}-2 \sqrt{x^{2}-y} x^{2} y b_{2}+2 \sqrt{x^{2}-y} x y^{2} b_{3} \\
& +4 \sqrt{x^{2}-y} x^{5} y a_{5}+14 \sqrt{x^{2}-y} x^{4} y^{2} a_{6}+12 \sqrt{x^{2}-y} x^{4} y a_{4} \\
& -3 \sqrt{x^{2}-y} x^{4} y b_{5}+4 \sqrt{x^{2}-y} x^{3} y^{2} a_{5}-8 \sqrt{x^{2}-y} x^{3} y^{2} b_{6} \\
& -4 \sqrt{x^{2}-y} x^{2} y^{3} a_{6}-4 \sqrt{x^{2}-y} x^{3} y b_{4}+4 \sqrt{x^{2}-y} x y^{3} b_{6}-8 x^{6} a_{3} \\
& +2 x^{5} b_{3}-2 y^{3} a_{3}-2 y^{2} a_{1}+4 \sqrt{x^{2}-y} x^{2} y a_{3}-4 x \sqrt{x^{2}-y} y^{2} a_{2} \\
& +2 x \sqrt{x^{2}-y} y^{2} b_{4}-2 x^{5} a_{2}-x^{4} b_{2}-x^{3} b_{1}+\sqrt{x^{2}-y} x^{4} b_{2}-4 x^{6} a_{4} \\
& -x^{5} b_{4}-8 x^{7} a_{5}+2 x^{6} b_{5}-2 y^{4} a_{6}-4 \sqrt{x^{2}-y} x^{5} a_{2}+\sqrt{x^{2}-y} y^{3} b_{5} \\
& +14 x^{5} y a_{5}+32 x^{4} y^{2} a_{6}+10 x^{4} y a_{4}-5 x^{4} y b_{5}-2 x^{3} y^{2} a_{5}-4 x y^{2} a_{2} \\
& +2 x^{2} y a_{1}+x_{2}+3 x y^{2} b_{3}+x y b_{1}-9 x^{3} y^{2} b_{6}-14 x^{2} y^{3} a_{6} \\
& +x^{3} y b_{4}+3 x^{2} y^{2} b_{5}+5 x y^{3} b_{6}-6 \sqrt{x^{2}-y} x^{6} a_{4}+2 \sqrt{x^{2}-y} x^{5} b_{4} \\
& -16 x^{6} y a_{6}+4 x^{5} y b_{6}-6 x^{2} y^{2} a_{4}-4 x y^{3} a_{5}-4 x^{7} \sqrt{x^{2}-y} a_{5} \\
& +2 x^{6} \sqrt{x^{2}-y} b_{5}-4 x^{5} \sqrt{x^{2}-y} a_{5}+6 x^{3} y a_{2}-5 x^{3} y b_{3}-6 x^{2} y^{2} a_{3} \\
& +16 x^{4} y a_{3}-4 x^{6} \sqrt{x^{2}-y} a_{3}+2 x^{5} \sqrt{x^{2}-y} b_{3}-4 x^{4} \sqrt{x^{2}-y} a_{3} \\
& -2 \sqrt{x^{2}-y} y^{3} a_{3}-2 \sqrt{x^{2}-y} y^{2} a_{1}+\sqrt{x^{2}-y} y^{2} b_{2}=0
\end{aligned}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\left\{x, y, \sqrt{x^{2}-y}\right\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}, \sqrt{x^{2}-y}=v_{3}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -4 v_{1}^{7} v_{3} a_{5}-8 v_{1}^{6} v_{3} v_{2} a_{6}-4 v_{1}^{6} v_{3} a_{3}-6 v_{3} v_{1}^{6} a_{4}-8 v_{1}^{7} a_{5}+4 v_{3} v_{1}^{5} v_{2} a_{5} \\
& -16 v_{1}^{6} v_{2} a_{6}+14 v_{3} v_{1}^{4} v_{2}^{2} a_{6}+2 v_{1}^{6} v_{3} b_{5}+4 v_{1}^{5} v_{3} v_{2} b_{6}-4 v_{3} v_{1}^{5} a_{2} \\
& -8 v_{1}^{6} a_{3}+6 v_{3} v_{1}^{4} v_{2} a_{3}-4 v_{1}^{6} a_{4}+12 v_{3} v_{1}^{4} v_{2} a_{4}+14 v_{1}^{5} v_{2} a_{5}-4 v_{1}^{5} v_{3} a_{5} \\
& +4 v_{3} v_{1}^{3} v_{2}^{2} a_{5}+32 v_{1}^{4} v_{2}^{2} a_{6}-8 v_{1}^{4} v_{3} v_{2} a_{6}-4 v_{3} v_{1}^{2} v_{2}^{3} a_{6}+2 v_{1}^{5} v_{3} b_{3} \\
& +2 v_{3} v_{1}^{5} b_{4}+2 v_{1}^{6} b_{5}-3 v_{3} v_{1}^{4} v_{2} b_{5}+4 v_{1}^{5} v_{2} b_{6}-8 v_{3} v_{1}^{3} v_{2}^{2} b_{6}-2 v_{3} v_{1}^{4} a_{1} \\
& -2 v_{1}^{5} a_{2}+8 v_{3} v_{1}^{3} v_{2} a_{2}+16 v_{1}^{4} v_{2} a_{3}-4 v_{1}^{4} v_{3} a_{3}+10 v_{1}^{4} v_{2} a_{4}-6 v_{1}^{2} v_{3} v_{2}^{2} a_{4} \tag{7E}\\
& -2 v_{1}^{3} v_{2}^{2} a_{5}+4 v_{3} v_{1}^{3} v_{2} a_{5}-4 v_{1} v_{3} v_{2}^{3} a_{5}-14 v_{1}^{2} v_{2}^{3} a_{6}+8 v_{3} v_{1}^{2} v_{2}^{2} a_{6} \\
& -2 v_{3} v_{2}^{4} v_{3} v_{1}^{5} b_{1}^{5} b_{3}-4 v_{3} v_{1}^{3} v_{2} b_{3}-v_{1}^{5} b_{4}-4 v_{3} v_{1}^{3} v_{2} b_{4} \\
& -5 v_{1}^{4} v_{2} b_{5}-9 v_{1}^{3} v_{2}^{2} b_{6}+4 v_{3} v_{1} v_{2}^{3} b_{6}+4 v_{3} v_{1}^{2} v_{2} a_{1}+6 v_{1}^{3} v_{2} a_{2}-4 v_{1} v_{3} v_{2}^{2} a_{2} \\
& -6 v_{1}^{2} v_{2}^{2} a_{3}+4 v_{3} v_{1}^{2} v_{2} a_{3}-2 v_{3} v_{2}^{3} a_{3}-6 v_{1}^{2} v_{2}^{2} a_{4}-4 v_{1} v_{2}^{3} a_{5}-2 v_{2}^{4} a_{6} \\
& -v_{1}^{4} b_{2}-2 v_{3} v_{1}^{2} v_{2} b_{2}-5 v_{1}^{3} v_{2} b_{3} v_{2}^{2} b_{3}+v_{1}^{3} v_{2} b_{4}+2 v_{1} v_{3} v_{2}^{2} b_{4} \\
& +3 v_{1}^{2} v_{2}^{2} b_{5}+v_{3}^{3} v_{2}^{3} b_{5}+5 v_{1} v_{2}^{3} b_{6}+2 v_{1}^{2} v_{2} a_{1}-2 v_{3} v_{2}^{2} a_{1}-4 v_{1} v_{2} a_{2} \\
& -2 v_{2}^{3} a_{3}-v_{1}^{3} b_{1}+v_{2}^{2} v_{2} b_{2}+v_{3} v_{2}^{2} b_{2}+3 v_{1} v_{2}^{2} b_{3}-2 v_{2}^{2} a_{1}+v_{1} v_{2} b_{1}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}, v_{3}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& 14 v_{3} v_{1}^{4} v_{2}^{2} a_{6}-4 v_{3} v_{1}^{2} v_{2}^{3} a_{6}+\left(-4 a_{3}-6 a_{4}+2 b_{5}\right) v_{1}^{6} v_{3}+\left(14 a_{5}+4 b_{6}\right) v_{1}^{5} v_{2} \\
& +\left(-4 a_{2}-4 a_{5}+2 b_{3}+2 b_{4}\right) v_{1}^{5} v_{3}+\left(16 a_{3}+10 a_{4}-5 b_{5}\right) v_{1}^{4} v_{2} \\
& +\left(-2 a_{1}-4 a_{3}+b_{2}\right) v_{1}^{4} v_{3}+\left(-2 a_{5}-9 b_{6}\right) v_{1}^{3} v_{2}^{2}+\left(6 a_{2}-5 b_{3}+b_{4}\right) v_{1}^{3} v_{2} \\
& \quad-8 v_{1}^{6} v_{3} v_{2} a_{6}+\left(4 a_{5}+4 b_{6}\right) v_{1}^{5} v_{2} v_{3}+\left(6 a_{3}+12 a_{4}-8 a_{6}-3 b_{5}\right) v_{1}^{4} v_{2} v_{3} \\
& +\left(4 a_{5}-8 b_{6}\right) v_{1}^{3} v_{2}^{2} v_{3}+\left(8 a_{2}+4 a_{5}-4 b_{3}-4 b_{4}\right) v_{1}^{3} v_{2} v_{3} \\
& +\left(-6 a_{4}+8 a_{6}\right) v_{1}^{2} v_{2}^{2} v_{3}+\left(4 a_{1}+4 a_{3}-2 b_{2}\right) v_{1}^{2} v_{2} v_{3} \tag{8E}\\
& +\left(-4 a_{5}+4 b_{6}\right) v_{1} v_{2}^{3} v_{3}+\left(-4 a_{2}+2 b_{3}+2 b_{4}\right) v_{1} v_{2}^{2} v_{3} \\
& +\left(-6 a_{3}-6 a_{4}+3 b_{5}\right) v_{1}^{2} v_{2}^{2}+\left(2 a_{1}+b_{2}\right) v_{1}^{2} v_{2}+\left(-4 a_{5}+5 b_{6}\right) v_{1} v_{2}^{3} \\
& +\left(-4 a_{2}+3 b_{3}\right) v_{1} v_{2}^{2}+\left(-2 a_{3}+b_{5}\right) v_{2}^{3} v_{3}+\left(-2 a_{1}+b_{2}\right) v_{2}^{2} v_{3} \\
& \quad-2 v_{3} v_{2}^{4} a_{6}+32 v_{1}^{4} v_{2}^{2} a_{6}+v_{1} v_{2} b_{1}-14 v_{1}^{2} v_{2}^{3} a_{6}-16 v_{1}^{6} v_{2} a_{6} \\
& -4 v_{1}^{7} v_{3} a_{5}+\left(-8 a_{3}-4 a_{4}+2 b_{5}\right) v_{1}^{6}+\left(-2 a_{2}+2 b_{3}-b_{4}\right) v_{1}^{5} \\
& -2 v_{2}^{3} a_{3}-2 v_{2}^{2} a_{1}-v_{1}^{4} b_{2}-v_{1}^{3} b_{1}-8 v_{1}^{7} a_{5}-2 v_{2}^{4} a_{6}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
& b_{1}=0 \\
& -2 a_{1}=0 \\
& -2 a_{3}=0 \\
& -8 a_{5}=0 \\
& -4 a_{5}=0 \\
& -16 a_{6}=0 \\
& -14 a_{6}=0 \\
& -8 a_{6}=0 \\
& -4 a_{6}=0 \\
& -2 a_{6}=0 \\
& 14 a_{6}=0 \\
& 32 a_{6}=0 \\
& -b_{1}=0 \\
& -b_{2}=0 \\
& -2 a_{1}+b_{2}=0 \\
& 2 a_{1}+b_{2}=0 \\
& -4 a_{2}+3 b_{3}=0 \\
& -2 a_{3}+b_{5}=0 \\
& -6 a_{4}+8 a_{6}=0 \\
& -4 a_{5}+4 b_{6}=0 \\
& -4 a_{5}+5 b_{6}=0 \\
& -2 a_{5}-9 b_{6}=0 \\
& 4 a_{5}-8 b_{6}=0 \\
& 4 a_{5}+4 b_{6}=0 \\
& 14 a_{5}+4 b_{6}=0 \\
& -2 a_{1}-4 a_{3}+b_{2}=0 \\
& 4 a_{1}+4 a_{3}-2 b_{2}=0 \\
& -4 a_{2}+2 b_{3}+2 b_{4}=0 \\
& -2 a_{2}+2 b_{3}-b_{4}=0 \\
& 6 a_{2}-5 b_{3}+b_{4}=0 \\
& -8 a_{3}-4 a_{4}+2 b_{5}=0 \\
& -6 a_{3}-6 a_{4}+3 b_{5}=0 \\
& -4 a_{3}-6 a_{4}+2 b_{5}=0 \\
& 16 a_{3}+10 a_{4}-5 b_{5}=0 \\
& -4 a_{2}-4 a_{5}{ }^{62} 2 b^{2} b_{3}+2 b_{4}=0 \\
& 8 a_{2}+4 a_{5}-4 b_{3}-4 b_{4}=0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=\frac{3 b_{4}}{2} \\
& a_{3}=0 \\
& a_{4}=0 \\
& a_{5}=0 \\
& a_{6}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=2 b_{4} \\
& b_{4}=b_{4} \\
& b_{5}=0 \\
& b_{6}=0
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=\frac{3 x}{2} \\
& \eta=x^{2}+2 y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =x^{2}+2 y-\left(\frac{2 x\left(1+\sqrt{x^{2}-y}\right)}{\sqrt{x^{2}-y}}\right)\left(\frac{3 x}{2}\right) \\
& =\frac{-2 x^{2} \sqrt{x^{2}-y}+2 \sqrt{x^{2}-y} y-3 x^{2}}{\sqrt{x^{2}-y}} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{2} \sqrt{x^{2}-y}+2 \sqrt{x^{2}-y} y-3 x^{2}}{\sqrt{x^{2}-y}}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(2\left(x^{2}-y\right)^{\frac{3}{2}}+3 x^{2}\right)}{3}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{2 x\left(1+\sqrt{x^{2}-y}\right)}{\sqrt{x^{2}-y}}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{2 x\left(x^{2}+\sqrt{x^{2}-y}-y\right)}{\sqrt{x^{2}-y}\left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}\right)} \\
& S_{y}=-\frac{\sqrt{x^{2}-y}}{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}\right)}{3}=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}\right)}{3}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Original ode in x, y coordinates	Canonical coordinates transformation	ODE in canonical coordinates (R, S)
$\frac{d y}{d x}=\frac{2 x\left(1+\sqrt{x^{2}-y}\right)}{\sqrt{x^{2}-y}}$		$\frac{d S}{d R}=0$
		$\rightarrow \rightarrow \rightarrow$ -
$4 . \quad 10+14$.		
		$\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}$ S (R)
	$R=x$	$\xrightarrow{\rightarrow \rightarrow \rightarrow+}$
	$S=\frac{\ln \left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-}\right.}{0}$	
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-2 \rightarrow \rightarrow]{\text { P }}$
		$\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }$
		$\rightarrow \rightarrow+$
		$\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}\right)}{3}=c_{1} \tag{1}
\end{equation*}
$$

Figure 137: Slope field plot
Verification of solutions

$$
\frac{\ln \left(\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}+3 x^{2}\right)}{3}=c_{1}
$$

Verified OK.

4.14.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\sqrt{x^{2}-y}\right) \mathrm{d} y & =\left(-2 x\left(1+\sqrt{x^{2}-y}\right)\right) \mathrm{d} x \\
\left(2 x\left(1+\sqrt{x^{2}-y}\right)\right) \mathrm{d} x+\left(-\sqrt{x^{2}-y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =2 x\left(1+\sqrt{x^{2}-y}\right) \\
N(x, y) & =-\sqrt{x^{2}-y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(2 x\left(1+\sqrt{x^{2}-y}\right)\right) \\
& =-\frac{x}{\sqrt{x^{2}-y}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\sqrt{x^{2}-y}\right) \\
& =-\frac{x}{\sqrt{x^{2}-y}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 2 x\left(1+\sqrt{x^{2}-y}\right) \mathrm{d} x \\
\phi & =\frac{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}}{3}+x^{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{2 \sqrt{x^{2}-y}}{3}-\frac{2 x^{2}-2 y}{6 \sqrt{x^{2}-y}}+f^{\prime}(y) \tag{4}\\
& =-\sqrt{x^{2}-y}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\sqrt{x^{2}-y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\sqrt{x^{2}-y}=-\sqrt{x^{2}-y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}}{3}+x^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}}{3}+x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}}{3}+x^{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 138: Slope field plot

Verification of solutions

$$
\frac{\left(2 x^{2}-2 y\right) \sqrt{x^{2}-y}}{3}+x^{2}=c_{1}
$$

Verified OK.

4.14.3 Maple step by step solution

Let's solve
$2 x\left(1+\sqrt{x^{2}-y}\right)-\sqrt{x^{2}-y} y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
-\frac{x}{\sqrt{x^{2}-y}}=-\frac{x}{\sqrt{x^{2}-y}}
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int 2 x\left(1+\sqrt{x^{2}-y}\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{2\left(x^{2}-y\right)^{\frac{3}{2}}}{3}+x^{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$-\sqrt{x^{2}-y}=-\sqrt{x^{2}-y}+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{2\left(x^{2}-y\right)^{\frac{3}{2}}}{3}+x^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{2\left(x^{2}-y\right)^{\frac{3}{2}}}{3}+x^{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=x^{2}-\left(-\frac{\left(-12 x^{2}+12 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{\mathrm{I} \sqrt{3}\left(-12 x^{2}+12 c_{1}\right)^{\frac{1}{3}}}{4}\right)^{2}, y=x^{2}-\left(-\frac{\left(-12 x^{2}+12 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{\mathrm{I} \sqrt{3}\left(-12 x^{2}+12 c_{1}\right)^{\frac{1}{3}}}{4}\right)\right.
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30
dsolve ((2*x*(1+sqrt $\left.\left.\left(x^{\wedge} 2-y(x)\right)\right)\right)=\operatorname{sqrt}\left(x^{\wedge} 2-y(x)\right) * \operatorname{diff}(y(x), x), y(x)$, singsol=all)

$$
\frac{\left(2 x^{2}-2 y(x)\right) \sqrt{x^{2}-y(x)}}{3}+x^{2}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 0.898 (sec). Leaf size: 121
DSolve $\left[2 * x *\left(1+\operatorname{Sqrt}\left[x^{\wedge} 2-y[x]\right]\right)==\operatorname{Sqrt}\left[x^{\wedge} 2-y[x]\right] * y{ }^{\prime}[x], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow x^{2}+\left(\frac{3}{2}\right)^{2 / 3} \sqrt[3]{-\left(x^{2}+c_{1}\right)^{2}} \\
& y(x) \rightarrow x^{2}-\frac{\sqrt[6]{3}(\sqrt{3}-3 i) \sqrt[3]{-\left(x^{2}+c_{1}\right)^{2}}}{22^{2 / 3}} \\
& y(x) \rightarrow x^{2}-\frac{\sqrt[6]{3}(\sqrt{3}+3 i) \sqrt[3]{-\left(x^{2}+c_{1}\right)^{2}}}{22^{2 / 3}}
\end{aligned}
$$

4.15 problem 15

4.15.1 Solving as separable ode 637
4.15.2 Solving as first order ode lie symmetry lookup ode 639
4.15.3 Solving as exact ode . 640
4.15.4 Maple step by step solution . 644

Internal problem ID [6196]
Internal file name [OUTPUT/5444_Sunday_June_05_2022_03_38_28_PM_66698641/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 15.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first__order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]

$$
x \ln (y)+x y+(\ln (x) y+x y) y^{\prime}=0
$$

4.15.1 Solving as separable ode

In canonical form the ODE is

$$
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{x(\ln (y)+y)}{y(x+\ln (x))}
\end{aligned}
$$

Where $f(x)=-\frac{x}{x+\ln (x)}$ and $g(y)=\frac{\ln (y)+y}{y}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{\ln (y)+y}{y}} d y & =-\frac{x}{x+\ln (x)} d x \\
\int \frac{1}{\frac{\ln (y)+y}{y}} d y & =\int-\frac{x}{x+\ln (x)} d x
\end{aligned}
$$

$$
\int^{y} \frac{-^{a}}{\ln \left(_a\right)+_a} d _a=\int-\frac{x}{x+\ln (x)} d x+c_{1}
$$

Which results in

$$
\int^{y} \frac{-^{a}}{\ln \left(_a\right)+_a} d _a=\int-\frac{x}{x+\ln (x)} d x+c_{1}
$$

The solution is

$$
\int^{y} \frac{_^{a}}{\ln \left(_a\right)+_a} d _a-\left(\int-\frac{x}{x+\ln (x)} d x\right)-c_{1}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{y} \frac{-^{a}}{\ln \left(_a\right)+_a} d _a-\left(\int-\frac{x}{x+\ln (x)} d x\right)-c_{1}=0 \tag{1}
\end{equation*}
$$

Figure 139: Slope field plot
Verification of solutions

$$
\int^{y} \frac{_^{a}}{\ln \left(_a\right)+_a} d _a-\left(\int-\frac{x}{x+\ln (x)} d x\right)-c_{1}=0
$$

Verified OK.

4.15.2 Solving as first order ode lie symmetry lookup ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x(\ln (y)+y)}{y(x+\ln (x))} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is known. It is of type separable. Therefore we do not need to solve the $\operatorname{PDE}(A)$, and can just use the lookup table shown below to find ξ, η

Table 105: Lie symmetry infinitesimal lookup table for known first order ODE's

ODE class	Form	ξ	η
linear ode	$y^{\prime}=f(x) y(x)+g(x)$	0	$e^{\int f d x}$
separable ode	$y^{\prime}=f(x) g(y)$	$\frac{1}{f}$	0
quadrature ode	$y^{\prime}=f(x)$	0	1
quadrature ode	$y^{\prime}=g(y)$	1	0
homogeneous ODEs of Class A	$y^{\prime}=f\left(\frac{y}{x}\right)$	x	y
homogeneous ODEs of Class C	$y^{\prime}=(a+b x+c y)^{\frac{n}{m}}$	1	$-\frac{b}{c}$
homogeneous class D	$y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)$	x^{2}	$x y$
First order form ID 1	special	$y^{\prime}=g(x) e^{h(x)+b y}+f(x)$	$\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}$
polynomial type ode	$y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}$	$\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}$	
Bernoulli ode	$y^{\prime}=f(x) y+g(x) y^{n}$	0	$a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}$
$a_{1} b_{2}-a_{2} b_{1}$	$\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}$		
Reduced Riccati	$y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}$	0	$e^{-\int(n-1) f(x) d x} y^{n}$

The above table shows that

$$
\begin{align*}
& \xi(x, y)=-\frac{x+\ln (x)}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates $\operatorname{map}(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\eta=0$ then in this special case

$$
R=y
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{-\frac{x+\ln (x)}{x}} d x
\end{aligned}
$$

Which results in

$$
S=\int-\frac{x}{x+\ln (x)} d x
$$

4.15.3 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{y}{\ln (y)+y}\right) \mathrm{d} y & =\left(\frac{x}{x+\ln (x)}\right) \mathrm{d} x \\
\left(-\frac{x}{x+\ln (x)}\right) \mathrm{d} x+\left(-\frac{y}{\ln (y)+y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=-\frac{x}{x+\ln (x)} \\
& N(x, y)=-\frac{y}{\ln (y)+y}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x}{x+\ln (x)}\right) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{y}{\ln (y)+y}\right) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x}{x+\ln (x)} \mathrm{d} x \\
\phi & =\int^{x}-\frac{-a}{-a+\ln \left(_a\right)} d _a+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{y}{\ln (y)+y}$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{y}{\ln (y)+y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-\frac{y}{\ln (y)+y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{y}{\ln (y)+y}\right) \mathrm{d} y \\
f(y) & =\int_{0}^{y}-\frac{-a}{-a+\ln \left(_a\right)} d _a+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\int^{x}-\frac{-^{a}}{-^{a+\ln \left(_a\right)}} d _a+\int_{0}^{y}-\frac{-^{a}}{_^{a+\ln \left(_a\right)}} d _a+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\int^{x}-\frac{-^{a}}{-a+\ln \left(_a\right)} d _a+\int_{0}^{y}-\frac{-^{a}}{_^{a+\ln \left(_a\right)}} d _a
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\int^{x}-\frac{-^{a}}{-a+\ln \left(_a\right)} d _a+\int_{0}^{y}-\frac{-^{a}}{-a+\ln \left(_a\right)} d _a=c_{1} \tag{1}
\end{equation*}
$$

Figure 140: Slope field plot
Verification of solutions

$$
\int^{x}-\frac{_^{a}}{-a+\ln \left(_a\right)} d _a+\int_{0}^{y}-\frac{-^{a}}{-a+\ln \left(_a\right)} d _a=c_{1}
$$

Verified OK.

4.15.4 Maple step by step solution

Let's solve

$$
x \ln (y)+x y+(\ln (x) y+x y) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1
- \quad Separate variables

$$
\frac{y y^{\prime}}{\ln (y)+y}=-\frac{x}{x+\ln (x)}
$$

- Integrate both sides with respect to x
$\int \frac{y y^{\prime}}{\ln (y)+y} d x=\int-\frac{x}{x+\ln (x)} d x+c_{1}$
- Cannot compute integral

$$
\int \frac{y y^{\prime}}{\ln (y)+y} d x=\int-\frac{x}{x+\ln (x)} d x+c_{1}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 28

```
dsolve((x*\operatorname{ln}(y(x))+x*y(x))+(y(x)*\operatorname{ln}(\textrm{x})+\textrm{x}*\textrm{y}(\textrm{x}))*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})=0,y(\textrm{x}),\quad\mathrm{ singsol=all)}
```

$$
\int \frac{x}{\ln (x)+x} d x+\int^{y(x)} \frac{-^{a}}{-a+\ln \left(_a\right)} d _a+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 36.692 (sec). Leaf size: 54

```
DSolve[(x*Log[y[x]]+x*y[x])+(y[x]*\operatorname{Log}[x]+x*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions ->
```

$$
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[\int_{1}^{\# 1} \frac{K[1]}{K[1]+\log (K[1])} d K[1] \&\right]\left[\int_{1}^{x}-\frac{K[2]}{K[2]+\log (K[2])} d K[2]\right. \\
& \left.+c_{1}\right] \\
& y(x) \rightarrow W(1)
\end{aligned}
$$

4.16 problem 16

4.16.1 Solving as exact ode
4.16.2 Maple step by step solution . 649

Internal problem ID [6197]
Internal file name [OUTPUT/5445_Sunday_June_05_2022_03_38_30_PM_69843768/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 16.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type

```
[_exact]
```

$$
\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2}+\left(2 x y \mathrm{e}^{y^{2}}-\csc (y) \cot (y) \cot (x)\right) y^{\prime}=0
$$

4.16.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)\right) \mathrm{d} y & =\left(-\mathrm{e}^{y^{2}}+\csc (y) \csc (x)^{2}\right) \mathrm{d} x \\
\left(\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2}\right) \mathrm{d} x+\left(2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2} \\
N(x, y) & =2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2}\right) \\
& =2 y \mathrm{e}^{y^{2}}+\csc (x)^{2} \csc (y) \cot (y)
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)\right) \\
& =2 y \mathrm{e}^{y^{2}}+\csc (x)^{2} \csc (y) \cot (y)
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2} \mathrm{~d} x \\
\phi & =\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)$. Therefore equation (4) becomes

$$
\begin{equation*}
2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)=2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=0
$$

Therefore

$$
f(y)=c_{1}
$$

Where c_{1} is constant of integration. Substituting this result for $f(y)$ into equation (3) gives ϕ

$$
\phi=\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x=c_{1} \tag{1}
\end{equation*}
$$

Figure 141: Slope field plot

Verification of solutions

$$
\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x=c_{1}
$$

Verified OK.

4.16.2 Maple step by step solution

Let's solve
$\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2}+\left(2 x y \mathrm{e}^{y^{2}}-\csc (y) \cot (y) \cot (x)\right) y^{\prime}=0$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 y \mathrm{e}^{y^{2}}+\csc (x)^{2} \csc (y) \cot (y)=2 y \mathrm{e}^{y^{2}}-\csc (y) \cot (y)\left(-1-\cot (x)^{2}\right)
$$

- Simplify
$2 y \mathrm{e}^{y^{2}}+\csc (x)^{2} \csc (y) \cot (y)=2 y \mathrm{e}^{y^{2}}+\csc (x)^{2} \csc (y) \cot (y)$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int\left(\mathrm{e}^{y^{2}}-\csc (y) \csc (x)^{2}\right) d x+f_{1}(y)$
- \quad Evaluate integral
$F(x, y)=\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x+f_{1}(y)$
- Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative
$2 y \mathrm{e}^{y^{2}} x-\csc (y) \cot (y) \cot (x)=-\csc (y) \cot (y) \cot (x)+2 y \mathrm{e}^{y^{2}} x+\frac{d}{d y} f_{1}(y)$
- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=0$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=0$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\csc (y) \cot (x)+\mathrm{e}^{y^{2}} x=c_{1}
$$

- \quad Solve for y
$y=\operatorname{RootOf}\left(-Z^{2}-\ln \left(\frac{c_{1} \tan (x) \sin \left(_Z\right)-1}{x \sin \left(_Z\right) \tan (x)}\right)\right)$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.141 (sec). Leaf size: 18
dsolve $((\exp (y(x) \wedge 2)-\csc (y(x)) * \csc (x) \wedge 2)+(2 * x * y(x) * \exp (y(x) \wedge 2)-\csc (y(x)) * \cot (y(x)) * \cot (x)) * d i$

$$
\csc (y(x)) \cot (x)+x \mathrm{e}^{y(x)^{2}}+c_{1}=0
$$

\checkmark Solution by Mathematica
Time used: 175.525 (sec). Leaf size: 23
DSolve $[(\operatorname{Exp}[y[x] \sim 2]-\operatorname{Csc}[y[x]] * \operatorname{Csc}[x] \sim 2)+(2 * x * y[x] * \operatorname{Exp}[y[x] \sim 2]-\operatorname{Csc}[y[x]] * \operatorname{Cot}[y[x]] * \operatorname{Cot}[x]) * y '$

$$
\text { Solve }\left[-2 x e^{y(x)^{2}}-2 \cot (x) \csc (y(x))=c_{1}, y(x)\right]
$$

4.17 problem 17

4.17.1 Solving as exact ode . 652
4.17.2 Maple step by step solution . 656

Internal problem ID [6198]
Internal file name [OUTPUT/5446_Sunday_June_05_2022_03_38_44_PM_7799592/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 17.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, _Bernoulli]

$$
y^{2} \sin (2 x)-2 y \cos (x)^{2} y^{\prime}=-1
$$

4.17.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-2 \cos (x)^{2} y\right) \mathrm{d} y & =\left(-1-y^{2} \sin (2 x)\right) \mathrm{d} x \\
\left(y^{2} \sin (2 x)+1\right) \mathrm{d} x+\left(-2 \cos (x)^{2} y\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =y^{2} \sin (2 x)+1 \\
N(x, y) & =-2 \cos (x)^{2} y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(y^{2} \sin (2 x)+1\right) \\
& =2 \sin (2 x) y
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-2 \cos (x)^{2} y\right) \\
& =2 \sin (2 x) y
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \sin (2 x)+1 \mathrm{~d} x \\
\phi & =x-\frac{y^{2} \cos (2 x)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=-y \cos (2 x)+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-2 \cos (x)^{2} y$. Therefore equation (4) becomes

$$
\begin{equation*}
-2 \cos (x)^{2} y=-y \cos (2 x)+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
\begin{aligned}
f^{\prime}(y) & =-2 \cos (x)^{2} y+y \cos (2 x) \\
& =-y
\end{aligned}
$$

Integrating the above w.r.t y results in

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x-\frac{y^{2} \cos (2 x)}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x-\frac{y^{2} \cos (2 x)}{2}-\frac{y^{2}}{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 142: Slope field plot

Verification of solutions

$$
x-\frac{\cos (2 x) y^{2}}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

4.17.2 Maple step by step solution

Let's solve

$$
y^{2} \sin (2 x)-2 y \cos (x)^{2} y^{\prime}=-1
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs

$$
F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0
$$

- Evaluate derivatives

$$
2 \sin (2 x) y=4 \cos (x) \sin (x) y
$$

- Simplify

$$
2 \sin (2 x) y=2 \sin (2 x) y
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int\left(y^{2} \sin (2 x)+1\right) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=x-\frac{y^{2} \cos (2 x)}{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-2 \cos (x)^{2} y=-y \cos (2 x)+\frac{d}{d y} f_{1}(y)
$$

- \quad Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-2 \cos (x)^{2} y+y \cos (2 x)
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x-\frac{y^{2} \cos (2 x)}{2}-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x-\frac{y^{2} \cos (2 x)}{2}-\frac{y^{2}\left(2 \cos (x)^{2}-\cos (2 x)\right)}{2}=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-c_{1}+x}}{\cos (x)}, y=-\frac{\sqrt{-c_{1}+x}}{\cos (x)}\right\}
$$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 24

```
dsolve((1+y(x)~ 2*sin}(2*x))-(2*y(x)*\operatorname{cos}(x)~2)*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sec (x) \sqrt{x+c_{1}} \\
& y(x)=-\sec (x) \sqrt{x+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.294 (sec). Leaf size: 32
DSolve $\left[(1+y[x] \sim 2 * \operatorname{Sin}[2 * x])-(2 * y[x] * \operatorname{Cos}[x] \sim 2) * y y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow Tru

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x+c_{1}} \sec (x) \\
& y(x) \rightarrow \sqrt{x+c_{1}} \sec (x)
\end{aligned}
$$

4.18 problem 18

4.18.1 Solving as exact ode658
4.18.2 Maple step by step solution . 662

Internal problem ID [6199]
Internal file name [OUTPUT/5447_Sunday_June_05_2022_03_38_47_PM_64144589/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 18.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_separable]

$$
\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=0
$$

4.18.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
(-y) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+(-y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =-y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-y) \\
& =0
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-y$. Therefore equation (4) becomes

$$
\begin{equation*}
-y=0+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-\frac{x^{2}}{2}-\frac{y^{2}}{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-\frac{x^{2}}{2}-\frac{y^{2}}{2}
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{x^{2}}{2}-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 143: Slope field plot
Verification of solutions

$$
-\frac{x^{2}}{2}-\frac{y^{2}}{2}=c_{1}
$$

Verified OK.

4.18.2 Maple step by step solution

Let's solve

$$
\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}=0
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Integrate both sides with respect to x

$$
\int\left(\frac{x}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}+\frac{y y^{\prime}}{\left(x^{2}+y^{2}\right)^{\frac{3}{2}}}\right) d x=\int 0 d x+c_{1}
$$

- Evaluate integral
$-\frac{1}{\sqrt{x^{2}+y^{2}}}=c_{1}$
- \quad Solve for y

$$
\left\{y=\frac{\sqrt{-x^{2} c_{1}^{2}+1}}{c_{1}}, y=-\frac{\sqrt{-x^{2} c_{1}^{2}+1}}{c_{1}}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 27
dsolve($\left(x /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(3 / 2)\right)+\left(y(x) /\left(x^{\wedge} 2+y(x)^{\wedge} 2\right)^{\wedge}(3 / 2)\right) * \operatorname{diff}(y(x), x)=0, y(x)$, singsol=all)

$$
\begin{aligned}
& y(x)=\sqrt{-x^{2}+c_{1}} \\
& y(x)=-\sqrt{-x^{2}+c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 39
DSolve $\left[\left(x /\left(x^{\wedge} 2+y[x] \sim 2\right)^{\wedge}(3 / 2)\right)+\left(y[x] /\left(x^{\wedge} 2+y[x]^{\wedge} 2\right)^{\wedge}(3 / 2)\right) * y '[x]==0, y[x], x\right.$, IncludeSingularSolut

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{-x^{2}+2 c_{1}} \\
& y(x) \rightarrow \sqrt{-x^{2}+2 c_{1}}
\end{aligned}
$$

4.19 problem 19

4.19.1 Solving as exact ode . 664
4.19.2 Maple step by step solution . 668

Internal problem ID [6200]
Internal file name [OUTPUT/5448_Sunday_June_05_2022_03_38_48_PM_80823751/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 19.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]

$$
3 x^{2}(1+\ln (y))+\left(\frac{x^{3}}{y}-2 y\right) y^{\prime}=0
$$

4.19.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{x^{3}}{y}-2 y\right) \mathrm{d} y & =\left(-3 x^{2}(1+\ln (y))\right) \mathrm{d} x \\
\left(3 x^{2}(1+\ln (y))\right) \mathrm{d} x+\left(\frac{x^{3}}{y}-2 y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=3 x^{2}(1+\ln (y)) \\
& N(x, y)=\frac{x^{3}}{y}-2 y
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 x^{2}(1+\ln (y))\right) \\
& =\frac{3 x^{2}}{y}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{x^{3}}{y}-2 y\right) \\
& =\frac{3 x^{2}}{y}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int 3 x^{2}(1+\ln (y)) \mathrm{d} x \\
\phi & =x^{3}(1+\ln (y))+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x^{3}}{y}+f^{\prime}(y) \tag{4}
\end{equation*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{x^{3}}{y}-2 y$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{x^{3}}{y}-2 y=\frac{x^{3}}{y}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=-2 y
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2 y) \mathrm{d} y \\
f(y) & =-y^{2}+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=x^{3}(1+\ln (y))-y^{2}+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=x^{3}(1+\ln (y))-y^{2}
$$

The solution becomes

$$
y=\mathrm{e}^{-\frac{x^{3} \text { LambertW }\left(-\frac{2 \mathrm{e}^{\frac{-2 x^{3}+2 c_{1}}{x^{3}}}}{x^{3}}\right)+2 x^{3}-2 c_{1}}{2 x^{3}}}
$$

Summary
The solution(s) found are the following

Figure 144: Slope field plot

Verification of solutions

$$
y=\mathrm{e}^{-\frac{x^{3} \text { LambertW }\left(-\frac{2 \mathrm{e}^{\frac{-2 x^{3}+2 c_{1}}{x^{3}}}}{x^{3}}\right)+2 x^{3}-2 c_{1}}{2 x^{3}}}
$$

Verified OK.

4.19.2 Maple step by step solution

Let's solve

$$
3 x^{2}(1+\ln (y))+\left(\frac{x^{3}}{y}-2 y\right) y^{\prime}=0
$$

- Highest derivative means the order of the ODE is 1

$$
y^{\prime}
$$

Check if ODE is exact

- ODE is exact if the lhs is the total derivative of a C^{2} function

$$
F^{\prime}(x, y)=0
$$

- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{3 x^{2}}{y}=\frac{3 x^{2}}{y}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x $F(x, y)=\int 3 x^{2}(1+\ln (y)) d x+f_{1}(y)$
- Evaluate integral

$$
F(x, y)=x^{3}(1+\ln (y))+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y
$N(x, y)=\frac{\partial}{\partial y} F(x, y)$
- Compute derivative

$$
\frac{x^{3}}{y}-2 y=\frac{x^{3}}{y}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-2 y
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-y^{2}$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=x^{3}(1+\ln (y))-y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
x^{3}(1+\ln (y))-y^{2}=c_{1}
$$

- \quad Solve for y

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
trying exact
<- exact successful`
```

\checkmark Solution by Maple
Time used: 0.032 (sec). Leaf size: 43

```
dsolve((3*x^2*(1+ln(y(x))))+(x^3/y(x)-2*y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
y(x)=\mathrm{e}^{-\frac{x^{3} \text { LambertW }\left(-\frac{2 \mathrm{e}^{\frac{-2 x^{3}-2 c_{1}}{x^{3}}}}{x^{3}}\right)+2 x^{3}+2 c_{1}}{2 x^{3}}}
$$

\checkmark Solution by Mathematica
Time used: 60.17 (sec). Leaf size: 79
DSolve $\left[\left(3 * x^{\wedge} 2 *(1+\log [y[x]])\right)+\left(x^{\wedge} 3 / y[x]-2 * y[x]\right) * y^{\prime}[x]==0, y[x], x\right.$, IncludeSingularSolutions \rightarrow T

$$
\begin{aligned}
& y(x) \rightarrow-\frac{i x^{3 / 2} \sqrt{W\left(-\frac{2 e^{-2+\frac{2 c_{1}}{x^{3}}}}{x^{3}}\right)}}{\sqrt{2}} \\
& y(x) \rightarrow \frac{i x^{3 / 2} \sqrt{W\left(-\frac{2 e^{-2+\frac{2 c_{1}}{x^{3}}}}{x^{3}}\right)}}{\sqrt{2}}
\end{aligned}
$$

4.20 problem 20

4.20.1 Solving as first order ode lie symmetry calculated ode 671
4.20.2 Solving as exact ode . 677
4.20.3 Maple step by step solution . 681

Internal problem ID [6201]
Internal file name [OUTPUT/5449_Sunday_June_05_2022_03_38_52_PM_17513810/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 20.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_1st_order, _with_linear_symmetries], _exact, _rational]

$$
\frac{-x y^{\prime}+y}{(x+y)^{2}}+y^{\prime}=1
$$

4.20.1 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =\frac{x^{2}+2 x y+y^{2}-y}{x^{2}+2 x y+y^{2}-x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & +\frac{\left(x^{2}+2 x y+y^{2}-y\right)\left(b_{3}-a_{2}\right)}{x^{2}+2 x y+y^{2}-x}-\frac{\left(x^{2}+2 x y+y^{2}-y\right)^{2} a_{3}}{\left(x^{2}+2 x y+y^{2}-x\right)^{2}} \\
& -\left(\frac{2 y+2 x}{x^{2}+2 x y+y^{2}-x}-\frac{\left(x^{2}+2 x y+y^{2}-y\right)(2 x+2 y-1)}{\left(x^{2}+2 x y+y^{2}-x\right)^{2}}\right)\left(x a_{2}\right. \tag{5E}\\
& \left.+y a_{3}+a_{1}\right)-\left(\frac{2 x+2 y-1}{x^{2}+2 x y+y^{2}-x}\right. \\
& \left.-\frac{\left(x^{2}+2 x y+y^{2}-y\right)(2 y+2 x)}{\left(x^{2}+2 x y+y^{2}-x\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{4} a_{2}+x^{4} a_{3}-x^{4} b_{2}-x^{4} b_{3}+4 x^{3} y a_{2}+4 x^{3} y a_{3}-4 x^{3} y b_{2}-4 x^{3} y b_{3}+6 x^{2} y^{2} a_{2}+6 x^{2} y^{2} a_{3}-6 x^{2} y^{2} b_{2}-6 x^{2}}{}=0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{4} a_{2}-x^{4} a_{3}+x^{4} b_{2}+x^{4} b_{3}-4 x^{3} y a_{2}-4 x^{3} y a_{3}+4 x^{3} y b_{2}+4 x^{3} y b_{3} \\
& -6 x^{2} y^{2} a_{2}-6 x^{2} y^{2} a_{3}+6 x^{2} y^{2} b_{2}+6 x^{2} y^{2} b_{3}-4 x y^{3} a_{2}-4 x y^{3} a_{3}+4 x y^{3} b_{2} \tag{6E}\\
& +4 x y^{3} b_{3}-y^{4} a_{2}-y^{4} a_{3}+y^{4} b_{2}+y^{4} b_{3}+2 x^{3} a_{2}+x^{3} b_{2}-x^{3} b_{3}+x^{2} y a_{2} \\
& +3 x^{2} y a_{3}-2 x^{2} y b_{2}+2 x y^{2} a_{3}-3 x y^{2} b_{2}-x y^{2} b_{3}+y^{3} a_{2}-y^{3} a_{3}-2 y^{3} b_{3} \\
& +x^{2} a_{1}+3 x^{2} b_{1}-2 x y a_{1}+2 x y b_{1}-3 y^{2} a_{1}-y^{2} b_{1}-x b_{1}+y a_{1}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{aligned}
& -a_{2} v_{1}^{4}-4 a_{2} v_{1}^{3} v_{2}-6 a_{2} v_{1}^{2} v_{2}^{2}-4 a_{2} v_{1} v_{2}^{3}-a_{2} v_{2}^{4}-a_{3} v_{1}^{4}-4 a_{3} v_{1}^{3} v_{2}-6 a_{3} v_{1}^{2} v_{2}^{2} \\
& \quad-4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+b_{2} v_{1}^{4}+4 b_{2} v_{1}^{3} v_{2}+6 b_{2} v_{1}^{2} v_{2}^{2}+4 b_{2} v_{1} v_{2}^{3}+b_{2} v_{2}^{4}+b_{3} v_{1}^{4} \\
& +4 b_{3} v_{1}^{3} v_{2}+6 b_{3} v_{1}^{2} v_{2}^{2}+4 b_{3} v_{1} v_{2}^{3}+b_{3} v_{2}^{4}+2 a_{2} v_{1}^{3}+a_{2} v_{1}^{2} v_{2}+a_{2} v_{2}^{3}+3 a_{3} v_{1}^{2} v_{2} \\
& +2 a_{3} v_{1} v_{2}^{2}-a_{3} v_{2}^{3}+b_{2} v_{1}^{3}-2 b_{2} v_{1}^{2} v_{2}-3 b_{2} v_{1} v_{2}^{2}-b_{3} v_{1}^{3}-b_{3} v_{1} v_{2}^{2}-2 b_{3} v_{2}^{3} \\
& +a_{1} v_{1}^{2}-2 a_{1} v_{1} v_{2}-3 a_{1} v_{2}^{2}+3 b_{1} v_{1}^{2}+2 b_{1} v_{1} v_{2}-b_{1} v_{2}^{2}+a_{1} v_{2}-b_{1} v_{1}=0
\end{aligned}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{1}^{4}+\left(-4 a_{2}-4 a_{3}+4 b_{2}+4 b_{3}\right) v_{1}^{3} v_{2}+\left(2 a_{2}+b_{2}-b_{3}\right) v_{1}^{3} \\
& \quad+\left(-6 a_{2}-6 a_{3}+6 b_{2}+6 b_{3}\right) v_{1}^{2} v_{2}^{2}+\left(a_{2}+3 a_{3}-2 b_{2}\right) v_{1}^{2} v_{2}+\left(a_{1}+3 b_{1}\right) v_{1}^{2} \tag{8E}\\
& \quad+\left(-4 a_{2}-4 a_{3}+4 b_{2}+4 b_{3}\right) v_{1} v_{2}^{3}+\left(2 a_{3}-3 b_{2}-b_{3}\right) v_{1} v_{2}^{2}+\left(-2 a_{1}+2 b_{1}\right) v_{1} v_{2} \\
& \quad-b_{1} v_{1}+\left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{2}^{4}+\left(a_{2}-a_{3}-2 b_{3}\right) v_{2}^{3}+\left(-3 a_{1}-b_{1}\right) v_{2}^{2}+a_{1} v_{2}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{aligned}
a_{1} & =0 \\
-b_{1} & =0 \\
-3 a_{1}-b_{1} & =0 \\
-2 a_{1}+2 b_{1} & =0 \\
a_{1}+3 b_{1} & =0 \\
a_{2}-a_{3}-2 b_{3} & =0 \\
a_{2}+3 a_{3}-2 b_{2} & =0 \\
2 a_{2}+b_{2}-b_{3} & =0 \\
2 a_{3}-3 b_{2}-b_{3} & =0 \\
-6 a_{2}-6 a_{3}+6 b_{2}+6 b_{3} & =0 \\
-4 a_{2}-4 a_{3}+4 b_{2}+4 b_{3} & =0 \\
-a_{2}-a_{3}+b_{2}+b_{3} & =0
\end{aligned}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{3} \\
& a_{3}=-b_{3} \\
& b_{1}=0 \\
& b_{2}=-b_{3} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-y \\
& \eta=-x+y
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =-x+y-\left(\frac{x^{2}+2 x y+y^{2}-y}{x^{2}+2 x y+y^{2}-x}\right)(x-y) \\
& =\frac{-2 x^{3}-2 y x^{2}+2 y^{2} x+2 y^{3}+x^{2}-y^{2}}{x^{2}+2 x y+y^{2}-x} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-2 x^{3}-2 y x^{2}+2 y^{2} x+2 y^{3}+x^{2}-y^{2}}{x^{2}+2 x y+y^{2}-x}} d y
\end{aligned}
$$

Which results in

$$
S=-\frac{\ln (x+y)}{2}+\frac{\ln (2 x+2 y-1)}{2}+\frac{\ln (-x+y)}{2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=\frac{x^{2}+2 x y+y^{2}-y}{x^{2}+2 x y+y^{2}-x}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{1}{2 y+2 x}+\frac{1}{2 x+2 y-1}+\frac{1}{-2 y+2 x} \\
S_{y} & =-\frac{1}{2 y+2 x}+\frac{1}{2 x+2 y-1}-\frac{1}{-2 y+2 x}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
-\frac{\ln (x+y)}{2}+\frac{\ln (2 x+2 y-1)}{2}+\frac{\ln (-x+y)}{2}=c_{1}
$$

Which simplifies to

$$
-\frac{\ln (x+y)}{2}+\frac{\ln (2 x+2 y-1)}{2}+\frac{\ln (-x+y)}{2}=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

| Original ode in x, y coordinates |
| :---: | :---: | :---: | | Canonical
 coordinates
 transformation |
| :---: | | ODE in canonical coordinates |
| :---: |
| (R, S) |

Summary

The solution(s) found are the following

$$
\begin{equation*}
-\frac{\ln (x+y)}{2}+\frac{\ln (2 x+2 y-1)}{2}+\frac{\ln (-x+y)}{2}=c_{1} \tag{1}
\end{equation*}
$$

Figure 145: Slope field plot

Verification of solutions

$$
-\frac{\ln (x+y)}{2}+\frac{\ln (2 x+2 y-1)}{2}+\frac{\ln (-x+y)}{2}=c_{1}
$$

Verified OK.

4.20.2 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(-\frac{x}{(x+y)^{2}}+1\right) \mathrm{d} y & =\left(-\frac{y}{(x+y)^{2}}+1\right) \mathrm{d} x \\
\left(\frac{y}{(x+y)^{2}}-1\right) \mathrm{d} x+\left(-\frac{x}{(x+y)^{2}}+1\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{y}{(x+y)^{2}}-1 \\
& N(x, y)=-\frac{x}{(x+y)^{2}}+1
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{y}{(x+y)^{2}}-1\right) \\
& =\frac{x-y}{(x+y)^{3}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{x}{(x+y)^{2}}+1\right) \\
& =\frac{x-y}{(x+y)^{3}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y}{(x+y)^{2}}-1 \mathrm{~d} x \\
\phi & =-x-\frac{y}{x+y}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =-\frac{1}{x+y}+\frac{y}{(x+y)^{2}}+f^{\prime}(y) \tag{4}\\
& =-\frac{x}{(x+y)^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=-\frac{x}{(x+y)^{2}}+1$. Therefore equation (4) becomes

$$
\begin{equation*}
-\frac{x}{(x+y)^{2}}+1=-\frac{x}{(x+y)^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=1
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=-x-\frac{y}{x+y}+y+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=-x-\frac{y}{x+y}+y
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-x-\frac{y}{x+y}+y=c_{1} \tag{1}
\end{equation*}
$$

Figure 146: Slope field plot

Verification of solutions

$$
-x-\frac{y}{x+y}+y=c_{1}
$$

Verified OK.

4.20.3 Maple step by step solution

Let's solve

$$
\frac{-x y^{\prime}+y}{(x+y)^{2}}+y^{\prime}=1
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function
$F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{1}{(x+y)^{2}}-\frac{2 y}{(x+y)^{3}}=-\frac{1}{(x+y)^{2}}+\frac{2 x}{(x+y)^{3}}$
- Simplify
$\frac{x-y}{(x+y)^{3}}=\frac{x-y}{(x+y)^{3}}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form
$\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]$
- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x
$F(x, y)=\int\left(\frac{y}{(x+y)^{2}}-1\right) d x+f_{1}(y)$
- Evaluate integral
$F(x, y)=-x-\frac{y}{x+y}+f_{1}(y)$
- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-\frac{x}{(x+y)^{2}}+1=-\frac{1}{x+y}+\frac{y}{(x+y)^{2}}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$
$\frac{d}{d y} f_{1}(y)=-\frac{x}{(x+y)^{2}}+1+\frac{1}{x+y}-\frac{y}{(x+y)^{2}}$
- \quad Solve for $f_{1}(y)$
$f_{1}(y)=y$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$
$F(x, y)=-x-\frac{y}{x+y}+y$
- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
-x-\frac{y}{x+y}+y=c_{1}
$$

- \quad Solve for y

$$
\left\{y=\frac{1}{2}+\frac{c_{1}}{2}-\frac{\sqrt{c_{1}^{2}+4 c_{1} x+4 x^{2}+2 c_{1}+1}}{2}, y=\frac{1}{2}+\frac{c_{1}}{2}+\frac{\sqrt{c_{1}^{2}+4 c_{1} x+4 x^{2}+2 c_{1}+1}}{2}\right\}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying Chini
differential order: 1; looking for linear symmetries
differential order: 1; found: 1 linear symmetries. Trying reduction of order
1st order, trying the canonical coordinates of the invariance group
    -> Calling odsolve with the ODE`, diff(y(x), x) = (x-y(x))/(y(x)-x), y(x)
        Methods for first order ODEs:
        --- Trying classification methods ---
        trying a quadrature
        trying 1st order linear
        <- 1st order linear successful
<- 1st order, canonical coordinates successful`
```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 61

```
dsolve((y(x)-x*diff(y(x),x))/(x+y(x))^2+diff(y(x),x)=1,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{c_{1}}{4}+\frac{1}{4}-\frac{\sqrt{c_{1}^{2}+(8 x+2) c_{1}+16\left(x-\frac{1}{4}\right)^{2}}}{4} \\
& y(x)=\frac{c_{1}}{4}+\frac{1}{4}+\frac{\sqrt{c_{1}^{2}+(8 x+2) c_{1}+16\left(x-\frac{1}{4}\right)^{2}}}{4}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.468 (sec). Leaf size: 76
DSolve[($\left.\mathrm{y}[\mathrm{x}]-\mathrm{x} * \mathrm{y}^{\prime}[\mathrm{x}]\right) /(\mathrm{x}+\mathrm{y}[\mathrm{x}])^{\wedge} 2+\mathrm{y}$ ' $[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(-\sqrt{4 x^{2}+4 c_{1} x+\left(1+c_{1}\right)^{2}}+1+c_{1}\right) \\
& y(x) \rightarrow \frac{1}{2}\left(\sqrt{4 x^{2}+4 c_{1} x+\left(1+c_{1}\right)^{2}}+1+c_{1}\right) \\
& y(x) \rightarrow-x
\end{aligned}
$$

4.21 problem 21

4.21.1 Solving as exact ode . 685
4.21.2 Maple step by step solution . 689

Internal problem ID [6202]
Internal file name [OUTPUT/5450_Sunday_June_05_2022_03_38_54_PM_42825175/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.5. Exact Equations. Page 20 Problem number: 21.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]

$$
\frac{4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac{\left(8 y^{2}-x^{2}\right) y^{\prime}}{4 y^{3}-y x^{2}}=0
$$

4.21.1 Solving as exact ode

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

We assume there exists a function $\phi(x, y)=c$ where c is constant, that satisfies the ode. Taking derivative of ϕ w.r.t. x gives

$$
\frac{d}{d x} \phi(x, y)=0
$$

Hence

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
$$

Comparing (A, B) shows that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
$$

But since $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ then for the above to be valid, we require that

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

If the above condition is satisfied, then the original ode is called exact. We still need to determine $\phi(x, y)$ but at least we know now that we can do that since the condition $\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}$ is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is

$$
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\left(\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}\right) \mathrm{d} y & =\left(-\frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x}\right) \mathrm{d} x \\
\left(\frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x}\right) \mathrm{d} x+\left(\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
$$

Comparing (1A) and (2A) shows that

$$
\begin{aligned}
& M(x, y)=\frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x} \\
& N(x, y)=\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}
\end{aligned}
$$

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

Using result found above gives

$$
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x}\right) \\
& =\frac{8 y x}{\left(x^{2}-4 y^{2}\right)^{2}}
\end{aligned}
$$

And

$$
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}\right) \\
& =\frac{8 y x}{\left(x^{2}-4 y^{2}\right)^{2}}
\end{aligned}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$, then the ODE is exact The following equations are now set up to solve for the function $\phi(x, y)$

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
$$

Integrating (1) w.r.t. x gives

$$
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x} \mathrm{~d} x \\
\phi & =\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+f(y) \tag{3}
\end{align*}
$$

Where $f(y)$ is used for the constant of integration since ϕ is a function of both x and y. Taking derivative of equation (3) w.r.t y gives

$$
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{1}{2 y+x}-\frac{1}{x-2 y}+f^{\prime}(y) \tag{4}\\
& =-\frac{4 y}{x^{2}-4 y^{2}}+f^{\prime}(y)
\end{align*}
$$

But equation (2) says that $\frac{\partial \phi}{\partial y}=\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}$. Therefore equation (4) becomes

$$
\begin{equation*}
\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}=-\frac{4 y}{x^{2}-4 y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
$$

Solving equation (5) for $f^{\prime}(y)$ gives

$$
f^{\prime}(y)=\frac{1}{y}
$$

Integrating the above w.r.t y gives

$$
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
$$

Where c_{1} is constant of integration. Substituting result found above for $f(y)$ into equation (3) gives ϕ

$$
\phi=\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+\ln (y)+c_{1}
$$

But since ϕ itself is a constant function, then let $\phi=c_{2}$ where c_{2} is new constant and combining c_{1} and c_{2} constants into new constant c_{1} gives the solution as

$$
c_{1}=\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+\ln (y)
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+\ln (y)=c_{1} \tag{1}
\end{equation*}
$$

Figure 147: Slope field plot

Verification of solutions

$$
\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+\ln (y)=c_{1}
$$

Verified OK.

4.21.2 Maple step by step solution

Let's solve

$$
\frac{4 y^{2}-2 x^{2}}{4 x y^{2}-x^{3}}+\frac{\left(8 y^{2}-x^{2}\right) y^{\prime}}{4 y^{3}-y x^{2}}=0
$$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives
$\frac{8 y}{-x^{3}+4 y^{2} x}-\frac{8\left(-2 x^{2}+4 y^{2}\right) x y}{\left(-x^{3}+4 y^{2} x\right)^{2}}=-\frac{2 x}{-y x^{2}+4 y^{3}}+\frac{2\left(-x^{2}+8 y^{2}\right) x y}{\left(-y x^{2}+4 y^{3}\right)^{2}}$
- Simplify
$\frac{8 y x}{\left(x^{2}-4 y^{2}\right)^{2}}=\frac{8 y x}{\left(x^{2}-4 y^{2}\right)^{2}}$
- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int \frac{-2 x^{2}+4 y^{2}}{-x^{3}+4 y^{2} x} d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (x-2 y)}{2}+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}=\frac{1}{2 y+x}-\frac{1}{x-2 y}+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=\frac{-x^{2}+8 y^{2}}{-y x^{2}+4 y^{3}}-\frac{1}{2 y+x}+\frac{1}{x-2 y}
$$

- \quad Solve for $f_{1}(y)$
$f_{1}(y)=-\frac{\ln (x-2 y)}{2}+\frac{\ln (-x+2 y)}{2}+\ln (y)$
- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (-x+2 y)}{2}+\ln (y)
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE

$$
\frac{\ln (2 y+x)}{2}+\ln (x)+\frac{\ln (-x+2 y)}{2}+\ln (y)=c_{1}
$$

- \quad Solve for y

$$
y=-\frac{x \operatorname{RootOf}\left(2 _Z^{6} x^{5}+4\left(\mathrm{e}^{c_{1}}\right)^{2} _Z^{8}-5 x^{4} _Z^{4}+4 x^{3} _Z^{2}-x^{2}\right)^{2}-1}{2 \operatorname{RootOf}\left(2 _Z^{6} x^{5}+4\left(\mathrm{e}^{c_{1}}\right)^{2} _Z^{8}-5 x^{4} _Z^{4}+4 x^{3} _Z^{2}-x^{2}\right)^{2}}
$$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.703 (sec). Leaf size: 157
dsolve $\left(\left(\left(4 * y(x) \wedge 2-2 * x^{\wedge} 2\right) /\left(4 * x * y(x) \wedge 2-x^{\wedge} 3\right)\right)+\left(\left(8 * y(x) \wedge 2-x^{\wedge} 2\right) /\left(4 * y(x)^{\wedge} 3-x^{\wedge} 2 * y(x)\right)\right) * \operatorname{diff}(y(x)\right.$

$$
\begin{aligned}
& y(x)=-\frac{\sqrt{2} \sqrt{c_{1} x\left(c_{1}^{3} x^{3}-\sqrt{c_{1}^{6} x^{6}+16}\right)}}{4 c_{1}^{2} x} \\
& y(x)=\frac{\sqrt{2} \sqrt{c_{1} x\left(c_{1}^{3} x^{3}-\sqrt{c_{1}^{6} x^{6}+16}\right)}}{4 c_{1}^{2} x} \\
& y(x)=-\frac{\sqrt{2} \sqrt{c_{1} x\left(c_{1}^{3} x^{3}+\sqrt{c_{1}^{6} x^{6}+16}\right)}}{4 c_{1}^{2} x} \\
& y(x)=\frac{\sqrt{2} \sqrt{c_{1} x\left(c_{1}^{3} x^{3}+\sqrt{c_{1}^{6} x^{6}+16}\right)}}{4 c_{1}^{2} x}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 12.331 (sec). Leaf size: 297
DSolve $\left[\left(\left(4 * y[x] \wedge 2-2 * x^{\wedge} 2\right) /\left(4 * x * y[x] \wedge 2-x^{\wedge} 3\right)\right)+\left(\left(8 * y[x] \wedge 2-x^{\wedge} 2\right) /\left(4 * y[x] \wedge 3-x^{\wedge} 2 * y[x]\right)\right) * y \cdot[x]==0\right.$,

$$
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-16 e^{2 c_{1}}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}-16 e^{2 c_{1}}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-16 e^{2 c_{1}}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{x^{3}+\sqrt{x^{6}-16 e^{2 c_{1}}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}-\frac{\sqrt{x^{6}}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{\sqrt{x^{6}}+x^{3}}{x}}}{2 \sqrt{2}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{\sqrt{x^{6}}+x^{3}}{x}}}{2 \sqrt{2}}
\end{aligned}
$$

5 Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
5.1 problem 1(a) 694
5.2 problem 1(b) 698
5.3 problem 1(c) 702
5.4 problem 1(d) 706
5.5 problem 1(e) 710
5.6 problem 1(f) 714
5.7 problem 1(g) 720
5.8 problem 1(h) 725
5.9 problem 1(i) 729
5.10 problem $1(\mathrm{j})$ 733
5.11 problem 4(a) 737
5.12 problem 4(b) 748
5.13 problem 4(c) 756
5.14 problem 4(d) 767
5.15 problem 4(e) 778
5.16 problem 5(a) 795
5.17 problem $5(\mathrm{~b})$ 809
5.18 problem 5(c) 822
5.19 problem 7(a) 835
5.20 problem 7(b) 839
5.21 problem 7(c) 843
5.22 problem 7(d) 847

5.1 problem 1(a)

5.1.1 Solving as homogeneous ode . 694

Internal problem ID [6203]
Internal file name [OUTPUT/5451_Sunday_June_05_2022_03_38_58_PM_29077920/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
-2 y^{2}+x y y^{\prime}=-x^{2}
$$

5.1.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{-x^{2}+2 y^{2}}{x y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=-x^{2}+2 y^{2}$ and $N=x y$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =-\frac{1}{u}+2 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{-\frac{1}{u(x)}+u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{-\frac{1}{u(x)}+u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) u(x) x-u(x)^{2}+1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u^{2}-1}{u x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{u^{2}-1}{u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}-1}{u}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-1}{u}} d u & =\int \frac{1}{x} d x \\
\frac{\ln (u-1)}{2}+\frac{\ln (u+1)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

The above can be written as

$$
\begin{aligned}
\left(\frac{1}{2}\right)(\ln (u-1)+\ln (u+1)) & =\ln (x)+2 c_{2} \\
\ln (u-1)+\ln (u+1) & =(2)\left(\ln (x)+2 c_{2}\right) \\
& =2 \ln (x)+4 c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{\ln (u-1)+\ln (u+1)}=\mathrm{e}^{2 \ln (x)+2 c_{2}}
$$

Which simplifies to

$$
\begin{aligned}
u^{2}-1 & =2 c_{2} x^{2} \\
& =c_{3} x^{2}
\end{aligned}
$$

The solution is

$$
u(x)^{2}-1=c_{3} x^{2}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{y^{2}}{x^{2}}-1=c_{3} x^{2}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{2}}{x^{2}}-1=c_{3} x^{2} \tag{1}
\end{equation*}
$$

Figure 148: Slope field plot
Verification of solutions

$$
\frac{y^{2}}{x^{2}}-1=c_{3} x^{2}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 30

```
dsolve((x^2-2*y(x)^2)+(x*y(x))*diff(y(x), x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\sqrt{c_{1} x^{2}+1} x \\
& y(x)=-\sqrt{c_{1} x^{2}+1} x
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.451 (sec). Leaf size: 39
DSolve[($\left.\mathrm{x}^{\wedge} 2-2 * y[\mathrm{x}]^{\wedge} 2\right)+(\mathrm{x} * \mathrm{y}[\mathrm{x}]) * \mathrm{y}$ ' $[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\sqrt{x^{2}+c_{1} x^{4}} \\
& y(x) \rightarrow \sqrt{x^{2}+c_{1} x^{4}}
\end{aligned}
$$

5.2 problem 1(b)

5.2.1 Solving as homogeneous ode . 698

Internal problem ID [6204]
Internal file name [OUTPUT/5452_Sunday_June_05_2022_03_39_00_PM_22095681/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.

Page 28

Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
x^{2} y^{\prime}-3 x y-2 y^{2}=0
$$

5.2.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y(2 y+3 x)}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y(2 y+3 x)$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =2 u^{2}+3 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{2 u(x)^{2}+2 u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{2 u(x)^{2}+2 u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x-2 u(x)^{2}-2 u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u(u+1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(u)=u(u+1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u+1)} d u & =\frac{2}{x} d x \\
\int \frac{1}{u(u+1)} d u & =\int \frac{2}{x} d x \\
-\ln (u+1)+\ln (u) & =2 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u+1)+\ln (u)}=\mathrm{e}^{2 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u}{u+1}=c_{3} x^{2}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=-\frac{x^{3} c_{3}}{c_{3} x^{2}-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{3} c_{3}}{c_{3} x^{2}-1} \tag{1}
\end{equation*}
$$

Figure 149: Slope field plot

Verification of solutions

$$
y=-\frac{x^{3} c_{3}}{c_{3} x^{2}-1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)-3 * x * y(x)-2 * y(x)^{\wedge} 2=0, y(x)$, singsol=all)

$$
y(x)=\frac{x^{3}}{-x^{2}+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 25
DSolve[x^2*y'[x]-3*x*y[x]-2*y[x]~2==0,y[x],x,IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{3}}{x^{2}-c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.3 problem 1(c)

5.3.1 Solving as homogeneous ode . 702

Internal problem ID [6205]
Internal file name [OUTPUT/5453_Sunday_June_05_2022_03_39_02_PM_43511898/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.

Page 28

Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x^{2} y^{\prime}-3\left(x^{2}+y^{2}\right) \arctan \left(\frac{y}{x}\right)-x y=0
$$

5.3.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{3 \arctan \left(\frac{y}{x}\right) x^{2}+3 \arctan \left(\frac{y}{x}\right) y^{2}+x y}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=3 \arctan \left(\frac{y}{x}\right) x^{2}+3 \arctan \left(\frac{y}{x}\right) y^{2}+x y$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =3 \arctan (u)+3 \arctan (u) u^{2}+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{3 \arctan (u(x))+3 \arctan (u(x)) u(x)^{2}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{3 \arctan (u(x))+3 \arctan (u(x)) u(x)^{2}}{x}=0
$$

Or

$$
-3 \arctan (u(x)) u(x)^{2}+u^{\prime}(x) x-3 \arctan (u(x))=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{3 \arctan (u)\left(u^{2}+1\right)}{x}
\end{aligned}
$$

Where $f(x)=\frac{3}{x}$ and $g(u)=\arctan (u)\left(u^{2}+1\right)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\arctan (u)\left(u^{2}+1\right)} d u & =\frac{3}{x} d x \\
\int \frac{1}{\arctan (u)\left(u^{2}+1\right)} d u & =\int \frac{3}{x} d x \\
\ln (\arctan (u)) & =3 \ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\arctan (u)=\mathrm{e}^{3 \ln (x)+c_{2}}
$$

Which simplifies to

$$
\arctan (u)=c_{3} x^{3}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=x \tan \left(c_{3} \mathrm{e}^{c_{2}} x^{3}\right)
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=x \tan \left(c_{3} \mathrm{e}^{c_{2}} x^{3}\right) \tag{1}
\end{equation*}
$$

Figure 150: Slope field plot

Verification of solutions

$$
y=x \tan \left(c_{3} \mathrm{e}^{c_{2}} x^{3}\right)
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 12
dsolve $\left(x^{\wedge} 2 * \operatorname{diff}(y(x), x)=3 *\left(x^{\wedge} 2+y(x)^{\wedge} 2\right) * \arctan (y(x) / x)+x * y(x), y(x)\right.$, singsol=all)

$$
y(x)=\tan \left(c_{1} x^{3}\right) x
$$

\checkmark Solution by Mathematica
Time used: 5.758 (sec). Leaf size: 30
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==3 *\left(x^{\wedge} 2+y[x] \sim 2\right) * \operatorname{ArcTan}[x, y[x]]+x * y[x], y[x], x\right.$, IncludeSingularSolutions $\rightarrow T r$

$$
\begin{aligned}
& y(x) \rightarrow x \tan \left(x^{3}\left(\cosh \left(3 c_{1}\right)-\sinh \left(3 c_{1}\right)\right)\right) \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.4 problem 1(d)

5.4.1 Solving as homogeneous ode

Internal problem ID [6206]
Internal file name [OUTPUT/5454_Sunday_June_05_2022_03_39_05_PM_14435377/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x \sin \left(\frac{y}{x}\right) y^{\prime}-y \sin \left(\frac{y}{x}\right)=x
$$

5.4.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y \sin \left(\frac{y}{x}\right)+x}{x \sin \left(\frac{y}{x}\right)} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y \sin \left(\frac{y}{x}\right)+x$ and $N=x \sin \left(\frac{y}{x}\right)$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u+\frac{1}{\sin (u)} \\
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{1}{\sin (u(x)) x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{1}{\sin (u(x)) x}=0
$$

Or

$$
u^{\prime}(x) \sin (u(x)) x-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{1}{\sin (u) x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{1}{\sin (u)}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{\sin (u)}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{\sin (u)}} d u & =\int \frac{1}{x} d x \\
-\cos (u) & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
-\cos (u(x))-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
-\cos \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
-\cos \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 151: Slope field plot

Verification of solutions

$$
-\cos \left(\frac{y}{x}\right)-\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 15
dsolve $(x * \sin (y(x) / x) * \operatorname{diff}(y(x), x)=y(x) * \sin (y(x) / x)+x, y(x)$, singsol=all)

$$
y(x)=\left(\frac{\pi}{2}+\arcsin \left(\ln (x)+c_{1}\right)\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.461 (sec). Leaf size: 34
DSolve $\left[x * \operatorname{Sin}[y[x] / x] * y^{\prime}[x]==y[x] * \operatorname{Sin}[y[x] / x]+x, y[x], x\right.$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x \arccos \left(-\log (x)-c_{1}\right) \\
& y(x) \rightarrow x \arccos \left(-\log (x)-c_{1}\right)
\end{aligned}
$$

5.5 problem 1(e)

$$
\text { 5.5.1 Solving as homogeneous ode . } 710
$$

Internal problem ID [6207]
Internal file name [OUTPUT/5455_Sunday_June_05_2022_03_39_07_PM_87586332/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.

Page 28

Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]

$$
x y^{\prime}-y-2 x \mathrm{e}^{-\frac{y}{x}}=0
$$

5.5.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y+2 x \mathrm{e}^{-\frac{y}{x}}}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y+2 x \mathrm{e}^{-\frac{y}{x}}$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u+2 \mathrm{e}^{-u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{2 \mathrm{e}^{-u(x)}}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{2 \mathrm{e}^{-u(x)}}{x}=0
$$

Or

$$
u^{\prime}(x) \mathrm{e}^{u(x)} x-2=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 \mathrm{e}^{-u}}{x}
\end{aligned}
$$

Where $f(x)=\frac{2}{x}$ and $g(u)=\mathrm{e}^{-u}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\mathrm{e}^{-u}} d u & =\frac{2}{x} d x \\
\int \frac{1}{\mathrm{e}^{-u}} d u & =\int \frac{2}{x} d x \\
\mathrm{e}^{u} & =2 \ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\mathrm{e}^{u(x)}-2 \ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\mathrm{e}^{\frac{y}{x}}-2 \ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\mathrm{e}^{\frac{y}{x}}-2 \ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 152: Slope field plot

Verification of solutions

$$
\mathrm{e}^{\frac{y}{x}}-2 \ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve ($x * \operatorname{diff}(y(x), x)=y(x)+2 * x * \exp (-y(x) / x), y(x)$, singsol=all)

$$
y(x)=\left(\ln (2)+\ln \left(\ln (x)+c_{1}\right)\right) x
$$

\checkmark Solution by Mathematica
Time used: 0.42 (sec). Leaf size: 15
DSolve $[x * y$ ' $[x]==y[x]+2 * x * \operatorname{Exp}[-y[x] / x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow x \log \left(2 \log (x)+c_{1}\right)
$$

5.6 problem 1(f)

5.6.1 Solving as homogeneous ode . 714
5.6.2 Maple step by step solution . 717

Internal problem ID [6208]
Internal file name [OUTPUT/5456_Sunday_June_05_2022_03_39_10_PM_3528254/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd
    type`, `class A`]]
```

$$
-y-(x+y) y^{\prime}=-x
$$

5.6.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{-x+y}{x+y} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x-y$ and $N=x+y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is
homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{-u+1}{u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{-u(x)+1}{u(x)+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\frac{-u(x)+1}{u(x)+1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x u(x)+u^{\prime}(x) x+u(x)^{2}+2 u(x)-1=0
$$

Or

$$
x(u(x)+1) u^{\prime}(x)+u(x)^{2}+2 u(x)-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+2 u-1}{x(u+1)}
\end{aligned}
$$

Where $f(x)=-\frac{1}{x}$ and $g(u)=\frac{u^{2}+2 u-1}{u+1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+2 u-1}{u+1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+2 u-1\right)}{2} & =-\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\sqrt{u^{2}+2 u-1}=\mathrm{e}^{-\ln (x)+c_{2}}
$$

Which simplifies to

$$
\sqrt{u^{2}+2 u-1}=\frac{c_{3}}{x}
$$

Which simplifies to

$$
\sqrt{u(x)^{2}+2 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

The solution is

$$
\sqrt{u(x)^{2}+2 u(x)-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\sqrt{\frac{y^{2}}{x^{2}}+\frac{2 y}{x}-1}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\sqrt{\frac{y^{2}+2 x y-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x} \tag{1}
\end{equation*}
$$

Figure 153: Slope field plot

Verification of solutions

$$
\sqrt{\frac{y^{2}+2 x y-x^{2}}{x^{2}}}=\frac{c_{3} \mathrm{e}^{c_{2}}}{x}
$$

Verified OK.

5.6.2 Maple step by step solution

Let's solve
$-y-(x+y) y^{\prime}=-x$

- Highest derivative means the order of the ODE is 1
y^{\prime}
Check if ODE is exact
- ODE is exact if the lhs is the total derivative of a C^{2} function $F^{\prime}(x, y)=0$
- Compute derivative of lhs
$F^{\prime}(x, y)+\left(\frac{\partial}{\partial y} F(x, y)\right) y^{\prime}=0$
- Evaluate derivatives

$$
-1=-1
$$

- Condition met, ODE is exact
- Exact ODE implies solution will be of this form

$$
\left[F(x, y)=c_{1}, M(x, y)=F^{\prime}(x, y), N(x, y)=\frac{\partial}{\partial y} F(x, y)\right]
$$

- \quad Solve for $F(x, y)$ by integrating $M(x, y)$ with respect to x

$$
F(x, y)=\int(x-y) d x+f_{1}(y)
$$

- Evaluate integral

$$
F(x, y)=\frac{x^{2}}{2}-x y+f_{1}(y)
$$

- \quad Take derivative of $F(x, y)$ with respect to y

$$
N(x, y)=\frac{\partial}{\partial y} F(x, y)
$$

- Compute derivative

$$
-y-x=-x+\frac{d}{d y} f_{1}(y)
$$

- Isolate for $\frac{d}{d y} f_{1}(y)$

$$
\frac{d}{d y} f_{1}(y)=-y
$$

- \quad Solve for $f_{1}(y)$

$$
f_{1}(y)=-\frac{y^{2}}{2}
$$

- \quad Substitute $f_{1}(y)$ into equation for $F(x, y)$

$$
F(x, y)=\frac{1}{2} x^{2}-x y-\frac{1}{2} y^{2}
$$

- \quad Substitute $F(x, y)$ into the solution of the ODE
$\frac{1}{2} x^{2}-x y-\frac{1}{2} y^{2}=c_{1}$
- \quad Solve for y
$\left\{y=-x-\sqrt{2 x^{2}-2 c_{1}}, y=-x+\sqrt{2 x^{2}-2 c_{1}}\right\}$

Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous D
<- homogeneous successful`
\checkmark Solution by Maple
Time used: 0.062 (sec). Leaf size: 51

```
dsolve((x-y(x))-(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)
```

$$
\begin{aligned}
& y(x)=\frac{-c_{1} x-\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}} \\
& y(x)=\frac{-c_{1} x+\sqrt{2 x^{2} c_{1}^{2}+1}}{c_{1}}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.493 (sec). Leaf size: 94
DSolve $[(x-y[x])-(x+y[x]) * y$ ' $[x]==0, y[x], x$, IncludeSingularSolutions $->$ True]

$$
\begin{aligned}
& y(x) \rightarrow-x-\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-x+\sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow-\sqrt{2} \sqrt{x^{2}}-x \\
& y(x) \rightarrow \sqrt{2} \sqrt{x^{2}}-x
\end{aligned}
$$

5.7 problem 1(g)

5.7.1 Solving as homogeneous ode 720
5.7.2 Maple step by step solution 722

Internal problem ID [6209]
Internal file name [OUTPUT/5457_Sunday_June_05_2022_03_39_12_PM_9353929/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[_linear]
```

$$
x y^{\prime}+6 y=2 x
$$

5.7.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{2(-x+3 y)}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=2 x-6 y$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =2-6 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{2-7 u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{2-7 u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x+7 u(x)-2=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2-7 u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=2-7 u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{2-7 u} d u & =\frac{1}{x} d x \\
\int \frac{1}{2-7 u} d u & =\int \frac{1}{x} d x \\
-\frac{\ln (2-7 u)}{7} & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\frac{1}{(2-7 u)^{\frac{1}{7}}}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{1}{(2-7 u)^{\frac{1}{7}}}=c_{3} x
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=\frac{\left(2 c_{3}^{7} x^{7} \mathrm{e}^{7 c_{2}}-1\right) \mathrm{e}^{-7 c_{2}}}{7 x^{6} c_{3}^{7}}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=\frac{\left(2 c_{3}^{7} x^{7} \mathrm{e}^{7 c_{2}}-1\right) \mathrm{e}^{-7 c_{2}}}{7 x^{6} c_{3}^{7}} \tag{1}
\end{equation*}
$$

Figure 154: Slope field plot

Verification of solutions

$$
y=\frac{\left(2 c_{3}^{7} x^{7} \mathrm{e}^{7 c_{2}}-1\right) \mathrm{e}^{-7 c_{2}}}{7 x^{6} c_{3}^{7}}
$$

Verified OK.

5.7.2 Maple step by step solution

Let's solve

$$
x y^{\prime}+6 y=2 x
$$

- Highest derivative means the order of the ODE is 1 y^{\prime}
- Isolate the derivative
$y^{\prime}=2-\frac{6 y}{x}$
- Group terms with y on the lhs of the ODE and the rest on the rhs of the ODE
$y^{\prime}+\frac{6 y}{x}=2$
- The ODE is linear; multiply by an integrating factor $\mu(x)$
$\mu(x)\left(y^{\prime}+\frac{6 y}{x}\right)=2 \mu(x)$
- Assume the lhs of the ODE is the total derivative $\frac{d}{d x}(\mu(x) y)$
$\mu(x)\left(y^{\prime}+\frac{6 y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}$
- Isolate $\mu^{\prime}(x)$
$\mu^{\prime}(x)=\frac{6 \mu(x)}{x}$
- Solve to find the integrating factor

$$
\mu(x)=x^{6}
$$

- Integrate both sides with respect to x
$\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) d x+c_{1}$
- Evaluate the integral on the lhs
$\mu(x) y=\int 2 \mu(x) d x+c_{1}$
- \quad Solve for y
$y=\frac{\int 2 \mu(x) d x+c_{1}}{\mu(x)}$
- \quad Substitute $\mu(x)=x^{6}$
$y=\frac{\int 2 x^{6} d x+c_{1}}{x^{6}}$
- Evaluate the integrals on the rhs
$y=\frac{\frac{2 x^{7}}{7}+c_{1}}{x^{6}}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
```

\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 13
dsolve ($\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=2 * \mathrm{x}-6 * \mathrm{y}(\mathrm{x}), \mathrm{y}(\mathrm{x})$, singsol=all)

$$
y(x)=\frac{2 x}{7}+\frac{c_{1}}{x^{6}}
$$

\checkmark Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 17
DSolve $[x * y$ ' $[x]==2 * x-6 * y[x], y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
y(x) \rightarrow \frac{2 x}{7}+\frac{c_{1}}{x^{6}}
$$

5.8 problem 1(h)

5.8.1 Solving as homogeneous ode

Internal problem ID [6210]
Internal file name [OUTPUT/5458_Sunday_June_05_2022_03_39_14_PM_33678347/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]

$$
x y^{\prime}-\sqrt{x^{2}+y^{2}}=0
$$

5.8.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{\sqrt{x^{2}+y^{2}}}{x} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=\sqrt{x^{2}+y^{2}}$ and $N=x$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\sqrt{u^{2}+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\sqrt{u(x)^{2}+1}-u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{\sqrt{u(x)^{2}+1}-u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x-\sqrt{u(x)^{2}+1}+u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\sqrt{u^{2}+1}-u}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\sqrt{u^{2}+1}-u$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\sqrt{u^{2}+1}-u} d u & =\frac{1}{x} d x \\
\int \frac{1}{\sqrt{u^{2}+1}-u} d u & =\int \frac{1}{x} d x \\
\frac{u^{2}}{2}+\frac{\sqrt{u^{2}+1} u}{2}+\frac{\operatorname{arcsinh}(u)}{2} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{u(x)^{2}}{2}+\frac{\sqrt{u(x)^{2}+1} u(x)}{2}+\frac{\operatorname{arcsinh}(u(x))}{2}-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{y^{2}}{2 x^{2}}+\frac{\sqrt{\frac{y^{2}}{x^{2}}+1} y}{2 x}+\frac{\operatorname{arcsinh}\left(\frac{y}{x}\right)}{2}-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{\sqrt{\frac{x^{2}+y^{2}}{x^{2}}} y x+\operatorname{arcsinh}\left(\frac{y}{x}\right) x^{2}+y^{2}-2 x^{2}\left(\ln (x)+c_{2}\right)}{2 x^{2}}=0 \tag{1}
\end{equation*}
$$

Figure 155: Slope field plot

Verification of solutions

$$
\frac{\sqrt{\frac{x^{2}+y^{2}}{x^{2}}} y x+\operatorname{arcsinh}\left(\frac{y}{x}\right) x^{2}+y^{2}-2 x^{2}\left(\ln (x)+c_{2}\right)}{2 x^{2}}=0
$$

Verified OK. $\{0<x\}$

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying homogeneous types:
trying homogeneous G
1st order, trying the canonical coordinates of the invariance group
<- 1st order, canonical coordinates successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.015 (sec). Leaf size: 51

```
dsolve(x*diff(y(x),x)=sqrt(x^2+y(x)^2),y(x), singsol=all)
```

$$
\frac{y(x)^{2}+\sqrt{x^{2}+y(x)^{2}} y(x)+x^{2}\left(\ln \left(y(x)+\sqrt{x^{2}+y(x)^{2}}\right)-c_{1}-3 \ln (x)\right)}{x^{2}}=0
$$

Solution by Mathematica
Time used: 0.296 (sec). Leaf size: 66
DSolve[x*y'[x]==Sqrt[x^2+y[x]~2],y[x],x,IncludeSingularSolutions \rightarrow True]

Solve $\left[\frac{1}{2}\left(\frac{y(x)\left(\sqrt{\frac{y(x)^{2}}{x^{2}}+1}+\frac{y(x)}{x}\right)}{x}-\log \left(\sqrt{\frac{y(x)^{2}}{x^{2}}+1}-\frac{y(x)}{x}\right)\right)=\log (x)+c_{1}, y(x)\right]$

5.9 problem 1(i)

5.9.1 Solving as homogeneous ode . 729

Internal problem ID [6211]
Internal file name [OUTPUT/5459_Sunday_June_05_2022_03_39_17_PM_43009656/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 1(i).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type

```
[[_homogeneous, `class A`], _rational, _Bernoulli]
```

$$
x^{2} y^{\prime}-2 x y-y^{2}=0
$$

5.9.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y(y+2 x)}{x^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=y(y+2 x)$ and $N=x^{2}$ are both homogeneous and of the same order $n=2$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u^{2}+2 u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{u(x)^{2}+u(x)}{x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{u(x)^{2}+u(x)}{x}=0
$$

Or

$$
u^{\prime}(x) x-u(x)^{2}-u(x)=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u+1)}{x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=u(u+1)$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{u(u+1)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(u+1)} d u & =\int \frac{1}{x} d x \\
-\ln (u+1)+\ln (u) & =\ln (x)+c_{2}
\end{aligned}
$$

Raising both side to exponential gives

$$
\mathrm{e}^{-\ln (u+1)+\ln (u)}=\mathrm{e}^{\ln (x)+c_{2}}
$$

Which simplifies to

$$
\frac{u}{u+1}=c_{3} x
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
y=-\frac{x^{2} c_{3}}{c_{3} x-1}
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
y=-\frac{x^{2} c_{3}}{c_{3} x-1} \tag{1}
\end{equation*}
$$

Figure 156: Slope field plot

Verification of solutions

$$
y=-\frac{x^{2} c_{3}}{c_{3} x-1}
$$

Verified OK.
Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
```

\checkmark Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
dsolve ($x^{\wedge} 2 * \operatorname{diff}(y(x), x)=y(x)^{\wedge} 2+2 * x * y(x), y(x)$, singsol=all)

$$
y(x)=\frac{x^{2}}{-x+c_{1}}
$$

\checkmark Solution by Mathematica
Time used: 0.141 (sec). Leaf size: 23
DSolve $\left[x^{\wedge} 2 * y^{\prime}[x]==y[x] \wedge 2+2 * x * y[x], y[x], x\right.$, IncludeSingularSolutions $->$ True $]$

$$
\begin{aligned}
& y(x) \rightarrow-\frac{x^{2}}{x-c_{1}} \\
& y(x) \rightarrow 0
\end{aligned}
$$

5.10 problem 1(j)

5.10.1 Solving as homogeneous ode . 733

Internal problem ID [6212]
Internal file name [OUTPUT/5460_Sunday_June_05_2022_03_39_20_PM_57557365/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 1(j).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _Bernoulli]

$$
y^{3}-x y^{2} y^{\prime}=-x^{3}
$$

5.10.1 Solving as homogeneous ode

In canonical form, the ODE is

$$
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x^{3}+y^{3}}{x y^{2}} \tag{1}
\end{align*}
$$

An ode of the form $y^{\prime}=\frac{M(x, y)}{N(x, y)}$ is called homogeneous if the functions $M(x, y)$ and $N(x, y)$ are both homogeneous functions and of the same order. Recall that a function $f(x, y)$ is homogeneous of order n if

$$
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
$$

In this case, it can be seen that both $M=x^{3}+y^{3}$ and $N=y^{2} x$ are both homogeneous and of the same order $n=3$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{y}{x}$, or $y=u x$. Hence

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
$$

Applying the transformation $y=u x$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{1}{u^{2}}+u \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{1}{u(x)^{2} x}
\end{aligned}
$$

Or

$$
u^{\prime}(x)-\frac{1}{u(x)^{2} x}=0
$$

Or

$$
u^{\prime}(x) u(x)^{2} x-1=0
$$

Which is now solved as separable in $u(x)$. Which is now solved in $u(x)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{1}{u^{2} x}
\end{aligned}
$$

Where $f(x)=\frac{1}{x}$ and $g(u)=\frac{1}{u^{2}}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{1}{u^{2}}} d u & =\frac{1}{x} d x \\
\int \frac{1}{\frac{1}{u^{2}}} d u & =\int \frac{1}{x} d x \\
\frac{u^{3}}{3} & =\ln (x)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{u(x)^{3}}{3}-\ln (x)-c_{2}=0
$$

Now u in the above solution is replaced back by y using $u=\frac{y}{x}$ which results in the solution

$$
\frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0
$$

Summary
The solution(s) found are the following

$$
\begin{equation*}
\frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 157: Slope field plot

Verification of solutions

$$
\frac{y^{3}}{3 x^{3}}-\ln (x)-c_{2}=0
$$

Verified OK.
Maple trace

- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\checkmark Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
dsolve $\left(\left(x^{\wedge} 3+y(x)^{\wedge} 3\right)-\left(x * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.$, singsol=all)

$$
\begin{aligned}
& y(x)=\left(c_{1}+3 \ln (x)\right)^{\frac{1}{3}} x \\
& y(x)=-\frac{\left(c_{1}+3 \ln (x)\right)^{\frac{1}{3}}(1+i \sqrt{3}) x}{2} \\
& y(x)=\frac{\left(c_{1}+3 \ln (x)\right)^{\frac{1}{3}}(i \sqrt{3}-1) x}{2}
\end{aligned}
$$

\checkmark Solution by Mathematica
Time used: 0.197 (sec). Leaf size: 63
DSolve $\left[\left(x^{\wedge} 3+y[x] \sim 3\right)-(x * y[x] \sim 2) * y\right.$ ' $[x]==0, y[x], x$, IncludeSingularSolutions \rightarrow True]

$$
\begin{aligned}
& y(x) \rightarrow x \sqrt[3]{3 \log (x)+c_{1}} \\
& y(x) \rightarrow-\sqrt[3]{-1} x \sqrt[3]{3 \log (x)+c_{1}} \\
& y(x) \rightarrow(-1)^{2 / 3} x \sqrt[3]{3 \log (x)+c_{1}}
\end{aligned}
$$

5.11 problem 4(a)

5.11.1 Solving as homogeneousTypeMapleC ode 737
5.11.2 Solving as first order ode lie symmetry calculated ode 740

Internal problem ID [6213]
Internal file name [OUTPUT/5461_Sunday_June_05_2022_03_39_22_PM_1042896/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 4(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
    class A`]]
```

$$
y^{\prime}-\frac{x+y+4}{x-y-6}=0
$$

5.11.1 Solving as homogeneousTypeMapleC ode

Let $Y=y+y_{0}$ and $X=x+x_{0}$ then the above is transformed to new ode in $Y(X)$

$$
\frac{d}{d X} Y(X)=-\frac{X+x_{0}+Y(X)+y_{0}+4}{-X-x_{0}+Y(X)+y_{0}+6}
$$

Solving for possible values of x_{0} and y_{0} which makes the above ode a homogeneous ode results in

$$
\begin{aligned}
x_{0} & =1 \\
y_{0} & =-5
\end{aligned}
$$

Using these values now it is possible to easily solve for $Y(X)$. The above ode now becomes

$$
\frac{d}{d X} Y(X)=-\frac{X+Y(X)}{-X+Y(X)}
$$

In canonical form, the ODE is

$$
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =-\frac{X+Y}{-X+Y} \tag{1}
\end{align*}
$$

An ode of the form $Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}$ is called homogeneous if the functions $M(X, Y)$ and $N(X, Y)$ are both homogeneous functions and of the same order. Recall that a function $f(X, Y)$ is homogeneous of order n if

$$
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
$$

In this case, it can be seen that both $M=X+Y$ and $N=X-Y$ are both homogeneous and of the same order $n=1$. Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution $u=\frac{Y}{X}$, or $Y=u X$. Hence

$$
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
$$

Applying the transformation $Y=u X$ to the above ODE in (1) gives

$$
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{-u-1}{u-1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{-u(X)-1}{u(X)-1}-u(X)}{X}
\end{aligned}
$$

Or

$$
\frac{d}{d X} u(X)-\frac{\frac{-u(X)-1}{u(X)-1}-u(X)}{X}=0
$$

Or

$$
\left(\frac{d}{d X} u(X)\right) X u(X)-\left(\frac{d}{d X} u(X)\right) X+u(X)^{2}+1=0
$$

Or

$$
X(u(X)-1)\left(\frac{d}{d X} u(X)\right)+u(X)^{2}+1=0
$$

Which is now solved as separable in $u(X)$. Which is now solved in $u(X)$. In canonical form the ODE is

$$
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}+1}{X(u-1)}
\end{aligned}
$$

Where $f(X)=-\frac{1}{X}$ and $g(u)=\frac{u^{2}+1}{u-1}$. Integrating both sides gives

$$
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (X)+c_{2}
\end{aligned}
$$

The solution is

$$
\frac{\ln \left(u(X)^{2}+1\right)}{2}-\arctan (u(X))+\ln (X)-c_{2}=0
$$

Now u in the above solution is replaced back by Y using $u=\frac{Y}{X}$ which results in the solution

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}-\arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

Using the solution for $Y(X)$

$$
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}+1\right)}{2}-\arctan \left(\frac{Y(X)}{X}\right)+\ln (X)-c_{2}=0
$$

And replacing back terms in the above solution using

$$
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
$$

Or

$$
\begin{aligned}
& Y=y-5 \\
& X=1+x
\end{aligned}
$$

Then the solution in y becomes

$$
\frac{\ln \left(\frac{(y+5)^{2}}{(x-1)^{2}}+1\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)+\ln (x-1)-c_{2}=0
$$

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(\frac{(y+5)^{2}}{(x-1)^{2}}+1\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)+\ln (x-1)-c_{2}=0 \tag{1}
\end{equation*}
$$

Figure 158: Slope field plot

Verification of solutions

$$
\frac{\ln \left(\frac{(y+5)^{2}}{(x-1)^{2}}+1\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)+\ln (x-1)-c_{2}=0
$$

Verified OK.

5.11.2 Solving as first order ode lie symmetry calculated ode

Writing the ode as

$$
\begin{aligned}
y^{\prime} & =-\frac{x+y+4}{-x+y+6} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
$$

The condition of Lie symmetry is the linearized PDE given by

$$
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
$$

The type of this ode is not in the lookup table. To determine ξ, η then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives

$$
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
$$

Where the unknown coefficients are

$$
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
$$

Substituting equations (1E,2E) and ω into (A) gives

$$
\begin{align*}
b_{2} & -\frac{(x+y+4)\left(b_{3}-a_{2}\right)}{-x+y+6}-\frac{(x+y+4)^{2} a_{3}}{(-x+y+6)^{2}} \\
& -\left(-\frac{1}{-x+y+6}-\frac{x+y+4}{(-x+y+6)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{-x+y+6}+\frac{x+y+4}{(-x+y+6)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
$$

Putting the above in normal form gives

$$
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}-12 x a_{2}+8 x}{(x-} \\
& =0
\end{aligned}
$$

Setting the numerator to zero gives

$$
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2}-2 x y b_{3}+y^{2} a_{2} \tag{6E}\\
& +y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}+12 x a_{2}-8 x a_{3}-2 x b_{1}-10 x b_{2}-2 x b_{3}+2 y a_{1}+10 y a_{2} \\
& +2 y a_{3}+12 y b_{2}-8 y b_{3}+10 a_{1}+24 a_{2}-16 a_{3}+2 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
$$

Looking at the above PDE shows the following are all the terms with $\{x, y\}$ in them.

$$
\{x, y\}
$$

The following substitution is now made to be able to collect on all terms with $\{x, y\}$ in them

$$
\left\{x=v_{1}, y=v_{2}\right\}
$$

The above PDE (6E) now becomes

$$
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2}-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2} \tag{7E}\\
& +b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}+12 a_{2} v_{1}+10 a_{2} v_{2}-8 a_{3} v_{1}+2 a_{3} v_{2}-2 b_{1} v_{1} \\
& -10 b_{2} v_{1}+12 b_{2} v_{2}-2 b_{3} v_{1}-8 b_{3} v_{2}+10 a_{1}+24 a_{2}-16 a_{3}+2 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
$$

Collecting the above on the terms v_{i} introduced, and these are

$$
\left\{v_{1}, v_{2}\right\}
$$

Equation (7E) now becomes

$$
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(12 a_{2}-8 a_{3}-2 b_{1}-10 b_{2}-2 b_{3}\right) v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2} \\
& \quad+\left(2 a_{1}+10 a_{2}+2 a_{3}+12 b_{2}-8 b_{3}\right) v_{2}+10 a_{1}+24 a_{2}-16 a_{3}+2 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
$$

Setting each coefficients in (8E) to zero gives the following equations to solve

$$
\begin{array}{r}
-a_{2}-a_{3}-b_{2}+b_{3}=0 \\
a_{2}+a_{3}+b_{2}-b_{3}=0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}=0 \\
2 a_{1}+10 a_{2}+2 a_{3}+12 b_{2}-8 b_{3}=0 \\
12 a_{2}-8 a_{3}-2 b_{1}-10 b_{2}-2 b_{3}=0 \\
10 a_{1}+24 a_{2}-16 a_{3}+2 b_{1}+36 b_{2}-24 b_{3}=0
\end{array}
$$

Solving the above equations for the unknowns gives

$$
\begin{aligned}
& a_{1}=-5 b_{2}-b_{3} \\
& a_{2}=b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=-b_{2}+5 b_{3} \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
$$

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives

$$
\begin{aligned}
& \xi=x-1 \\
& \eta=y+5
\end{aligned}
$$

Shifting is now applied to make $\xi=0$ in order to simplify the rest of the computation

$$
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y+5-\left(-\frac{x+y+4}{-x+y+6}\right)(x-1) \\
& =\frac{-x^{2}-y^{2}+2 x-10 y-26}{x-y-6} \\
\xi & =0
\end{aligned}
$$

The next step is to determine the canonical coordinates R, S. The canonical coordinates map $(x, y) \rightarrow(R, S)$ where (R, S) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is

$$
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
$$

The above comes from the requirements that $\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1$. Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable R in the canonical coordinates, where $S(R)$. Since $\xi=0$ then in this special case

$$
R=x
$$

S is found from

$$
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}+2 x-10 y-26}{x-y-6}} d y
\end{aligned}
$$

Which results in

$$
S=\frac{\ln \left(x^{2}+y^{2}-2 x+10 y+26\right)}{2}+\frac{2(1-x) \arctan \left(\frac{2 y+10}{2 x-2}\right)}{2 x-2}
$$

Now that R, S are found, we need to setup the ode in these coordinates. This is done by evaluating

$$
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
$$

Where in the above $R_{x}, R_{y}, S_{x}, S_{y}$ are all partial derivatives and $\omega(x, y)$ is the right hand side of the original ode given by

$$
\omega(x, y)=-\frac{x+y+4}{-x+y+6}
$$

Evaluating all the partial derivatives gives

$$
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y+4}{x^{2}+y^{2}-2 x+10 y+26} \\
S_{y} & =\frac{-x+y+6}{x^{2}+y^{2}-2 x+10 y+26}
\end{aligned}
$$

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.

$$
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
$$

We now need to express the RHS as function of R only. This is done by solving for x, y in terms of R, S from the result obtained earlier and simplifying. This gives

$$
\frac{d S}{d R}=0
$$

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates R, S. Integrating the above gives

$$
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
$$

To complete the solution, we just need to transform (4) back to x, y coordinates. This results in

$$
\frac{\ln \left(y^{2}+x^{2}+10 y-2 x+26\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)=c_{1}
$$

Which simplifies to

$$
\frac{\ln \left(y^{2}+x^{2}+10 y-2 x+26\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)=c_{1}
$$

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary

The solution(s) found are the following

$$
\begin{equation*}
\frac{\ln \left(y^{2}+x^{2}+10 y-2 x+26\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)=c_{1} \tag{1}
\end{equation*}
$$

Figure 159: Slope field plot
Verification of solutions

$$
\frac{\ln \left(y^{2}+x^{2}+10 y-2 x+26\right)}{2}-\arctan \left(\frac{y+5}{x-1}\right)=c_{1}
$$

Verified OK.

Maple trace

```
`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous C
trying homogeneous types:
trying homogeneous D
<- homogeneous successful
<- homogeneous successful`
```

\checkmark Solution by Maple
Time used: 0.031 (sec). Leaf size: 31

```
dsolve(diff(y(x),x)=(x+y(x)+4)/(x-y(x)-6),y(x), singsol=all)
```

$$
y(x)=-5-\tan \left(\operatorname{RootOf}\left(2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x-1)+2 c_{1}\right)\right)(x-1)
$$

Solution by Mathematica
Time used: 0.063 (sec). Leaf size: 58

```
DSolve[y'[x]==(x+y[x]+4)/(x-y[x]-6),y[x],x,IncludeSingularSolutions -> True]
```

Solve $\left[2 \arctan \left(\frac{y(x)+x+4}{y(x)-x+6}\right)\right.$

$$
\left.+\log \left(\frac{x^{2}+y(x)^{2}+10 y(x)-2 x+26}{2(x-1)^{2}}\right)+2 \log (x-1)+c_{1}=0, y(x)\right]
$$

5.12 problem 4(b)

5.12.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [6214]
Internal file name [OUTPUT/5462_Sunday_June_05_2022_03_39_25_PM_7414833/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 4(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first_order__ode_lie__symmetry_calculated"

Maple gives the following as the ode type

```
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `
``` class A`]]
\[
y^{\prime}-\frac{x+y+4}{x+y-6}=0
\]

\subsection*{5.12.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{x+y+4}{x+y-6} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{(x+y+4)\left(b_{3}-a_{2}\right)}{x+y-6}-\frac{(x+y+4)^{2} a_{3}}{(x+y-6)^{2}} \\
& -\left(\frac{1}{x+y-6}-\frac{x+y+4}{(x+y-6)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{x+y-6}-\frac{x+y+4}{(x+y-6)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}-x^{2} b_{2}-x^{2} b_{3}+2 x y a_{2}+2 x y a_{3}-2 x y b_{2}-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}-y^{2} b_{2}-y^{2} b_{3}-12 x a_{2}+8 x}{(x+y-6)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}+x^{2} b_{2}+x^{2} b_{3}-2 x y a_{2}-2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2} \tag{6E}\\
& -y^{2} a_{3}+y^{2} b_{2}+y^{2} b_{3}+12 x a_{2}-8 x a_{3}-2 x b_{2}-2 x b_{3}+2 y a_{2}+2 y a_{3} \\
& -12 y b_{2}+8 y b_{3}+10 a_{1}+24 a_{2}-16 a_{3}+10 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -a_{2} v_{1}^{2}-2 a_{2} v_{1} v_{2}-a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}-a_{3} v_{2}^{2}+b_{2} v_{1}^{2}+2 b_{2} v_{1} v_{2} \tag{7E}\\
& \quad+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}+2 b_{3} v_{1} v_{2}+b_{3} v_{2}^{2}+12 a_{2} v_{1}+2 a_{2} v_{2}-8 a_{3} v_{1}+2 a_{3} v_{2}-2 b_{2} v_{1} \\
& \quad-12 b_{2} v_{2}-2 b_{3} v_{1}+8 b_{3} v_{2}+10 a_{1}+24 a_{2}-16 a_{3}+10 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{1}^{2}+\left(-2 a_{2}-2 a_{3}+2 b_{2}+2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(12 a_{2}-8 a_{3}-2 b_{2}-2 b_{3}\right) v_{1}+\left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{2}^{2} \\
& \quad+\left(2 a_{2}+2 a_{3}-12 b_{2}+8 b_{3}\right) v_{2}+10 a_{1}+24 a_{2}-16 a_{3}+10 b_{1}+36 b_{2}-24 b_{3}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
-2 a_{2}-2 a_{3}+2 b_{2}+2 b_{3} & =0 \\
-a_{2}-a_{3}+b_{2}+b_{3} & =0 \\
2 a_{2}+2 a_{3}-12 b_{2}+8 b_{3} & =0 \\
12 a_{2}-8 a_{3}-2 b_{2}-2 b_{3} & =0 \\
10 a_{1}+24 a_{2}-16 a_{3}+10 b_{1}+36 b_{2}-24 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=-2 b_{3}-b_{1} \\
& a_{2}=b_{3} \\
& a_{3}=b_{3} \\
& b_{1}=b_{1} \\
& b_{2}=b_{3} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=-1 \\
& \eta=1
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1-\left(\frac{x+y+4}{x+y-6}\right)(-1) \\
& =\frac{2 x+2 y-2}{x+y-6} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x+2 y-2}{x+y-6}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{2}-\frac{5 \ln (x+y-1)}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{x+y+4}{x+y-6}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{5}{2 x+2 y-2} \\
S_{y} & =\frac{x+y-6}{2 x+2 y-2}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{1}{2}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{R}{2}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y}{2}-\frac{5 \ln (-1+y+x)}{2}=\frac{x}{2}+c_{1}
\]

Which simplifies to
\[
\frac{y}{2}-\frac{5 \ln (-1+y+x)}{2}=\frac{x}{2}+c_{1}
\]

Which gives
\[
y=-5 \text { LambertW }\left(-\frac{\mathrm{e}^{-\frac{2 x}{5}-\frac{2 c_{1}}{5}+\frac{1}{5}}}{5}\right)-x+1
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{x+y+4}{x+y-6}\) & & \(\frac{d S}{d R}=\frac{1}{2}\) \\
\hline & & \\
\hline & & ジッ \\
\hline & & － \\
\hline & & （R） \\
\hline \(\rightarrow \rightarrow+\infty\) & \(R=x\) & \\
\hline & & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{\rightarrow \rightarrow \rightarrow \rightarrow-\infty}\) & \(S=\frac{y}{2}-\frac{5 \ln (x+y-1)}{2}\) & \\
\hline & 2 & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }\) & & \\
\hline & & \\
\hline \(\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}\) & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution（s）found are the following
\[
\begin{equation*}
y=-5 \operatorname{LambertW}\left(-\frac{\mathrm{e}^{-\frac{2 x}{5}-\frac{2 c_{1}}{5}+\frac{1}{5}}}{5}\right)-x+1 \tag{1}
\end{equation*}
\]

Figure 160: Slope field plot

Verification of solutions
\[
y=-5 \operatorname{LambertW}\left(-\frac{\mathrm{e}^{-\frac{2 x}{5}-\frac{2 c_{1}}{5}+\frac{1}{5}}}{5}\right)-x+1
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C 1st order, trying the canonical coordinates of the invariance group <- 1st order, canonical coordinates successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 21
```

dsolve(diff(y(x),x)=(x+y(x)+4)/(x+y(x)-6),y(x), singsol=all)

```
\[
y(x)=-x-5 \text { LambertW }\left(-\frac{c_{1} \mathrm{e}^{-\frac{2 x}{5}+\frac{1}{5}}}{5}\right)+1
\]

Solution by Mathematica
Time used: 4.043 (sec). Leaf size: 35
DSolve \(\left[y y^{\prime}[x]==(x+y[x]+4) /(x+y[x]-6), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-5 W\left(-e^{-\frac{2 x}{5}-1+c_{1}}\right)-x+1 \\
& y(x) \rightarrow 1-x
\end{aligned}
\]

\subsection*{5.13 problem 4(c)}
5.13.1 Solving as homogeneousTypeMapleC ode
5.13.2 Solving as first order ode lie symmetry calculated ode 759

Internal problem ID [6215]
Internal file name [OUTPUT/5463_Sunday_June_05_2022_03_39_28_PM_94865919/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 4(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie_symmetry__calculated"
Maple gives the following as the ode type
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, ` class A`]
\[
-2 y+(y-1) y^{\prime}=-2 x
\]

\subsection*{5.13.1 Solving as homogeneousTypeMapleC ode}

Let \(Y=y+y_{0}\) and \(X=x+x_{0}\) then the above is transformed to new ode in \(Y(X)\)
\[
\frac{d}{d X} Y(X)=\frac{-2 X-2 x_{0}+2 Y(X)+2 y_{0}}{Y(X)+y_{0}-1}
\]

Solving for possible values of \(x_{0}\) and \(y_{0}\) which makes the above ode a homogeneous ode results in
\[
\begin{aligned}
x_{0} & =1 \\
y_{0} & =1
\end{aligned}
\]

Using these values now it is possible to easily solve for \(Y(X)\). The above ode now becomes
\[
\frac{d}{d X} Y(X)=\frac{-2 X+2 Y(X)}{Y(X)}
\]

In canonical form, the ODE is
\[
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{-2 X+2 Y}{Y} \tag{1}
\end{align*}
\]

An ode of the form \(Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}\) is called homogeneous if the functions \(M(X, Y)\) and \(N(X, Y)\) are both homogeneous functions and of the same order. Recall that a function \(f(X, Y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
\]

In this case, it can be seen that both \(M=-2 X+2 Y\) and \(N=Y\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{Y}{X}\), or \(Y=u X\). Hence
\[
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
\]

Applying the transformation \(Y=u X\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =-\frac{2}{u}+2 \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{-\frac{2}{u(X)}+2-u(X)}{X}
\end{aligned}
\]

Or
\[
\frac{d}{d X} u(X)-\frac{-\frac{2}{u(X)}+2-u(X)}{X}=0
\]

Or
\[
\left(\frac{d}{d X} u(X)\right) u(X) X+u(X)^{2}-2 u(X)+2=0
\]

Which is now solved as separable in \(u(X)\). Which is now solved in \(u(X)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{u^{2}-2 u+2}{u X}
\end{aligned}
\]

Where \(f(X)=-\frac{1}{X}\) and \(g(u)=\frac{u^{2}-2 u+2}{u}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{2}-2 u+2}{u}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{u^{2}-2 u+2}{u}} d u & =\int-\frac{1}{X} d X \\
\frac{\ln \left(u^{2}-2 u+2\right)}{2}+\arctan (u-1) & =-\ln (X)+c_{2}
\end{aligned}
\]

The solution is
\[
\frac{\ln \left(u(X)^{2}-2 u(X)+2\right)}{2}+\arctan (u(X)-1)+\ln (X)-c_{2}=0
\]

Now \(u\) in the above solution is replaced back by \(Y\) using \(u=\frac{Y}{X}\) which results in the solution
\[
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}-\frac{2 Y(X)}{X}+2\right)}{2}-\arctan \left(-\frac{Y(X)}{X}+1\right)+\ln (X)-c_{2}=0
\]

Using the solution for \(Y(X)\)
\[
\frac{\ln \left(\frac{Y(X)^{2}}{X^{2}}-\frac{2 Y(X)}{X}+2\right)}{2}-\arctan \left(-\frac{Y(X)}{X}+1\right)+\ln (X)-c_{2}=0
\]

And replacing back terms in the above solution using
\[
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
\]

Or
\[
\begin{aligned}
& Y=1+y \\
& X=1+x
\end{aligned}
\]

Then the solution in \(y\) becomes
\[
\frac{\ln \left(\frac{(y-1)^{2}}{(x-1)^{2}}-\frac{2(y-1)}{x-1}+2\right)}{2}+\arctan \left(\frac{y-1}{x-1}-1\right)+\ln (x-1)-c_{2}=0
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(\frac{(y-1)^{2}}{(x-1)^{2}}-\frac{2(y-1)}{x-1}+2\right)}{2}+\arctan \left(\frac{y-1}{x-1}-1\right)+\ln (x-1)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 161: Slope field plot

Verification of solutions
\[
\frac{\ln \left(\frac{(y-1)^{2}}{(x-1)^{2}}-\frac{2(y-1)}{x-1}+2\right)}{2}+\arctan \left(\frac{y-1}{x-1}-1\right)+\ln (x-1)-c_{2}=0
\]

Verified OK.

\subsection*{5.13.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{-2 x+2 y}{y-1} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E, 2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{2(-x+y)\left(b_{3}-a_{2}\right)}{y-1}-\frac{4(-x+y)^{2} a_{3}}{(y-1)^{2}}+\frac{2 x a_{2}+2 y a_{3}+2 a_{1}}{y-1} \tag{5E}\\
& -\left(\frac{2}{y-1}-\frac{2(-x+y)}{(y-1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{4 x^{2} a_{3}+2 x^{2} b_{2}-4 x y a_{2}-8 x y a_{3}+4 x y b_{3}+2 y^{2} a_{2}+2 y^{2} a_{3}-y^{2} b_{2}-2 y^{2} b_{3}+4 x a_{2}+2 x b_{1}-2 x b_{2}-2 x b_{3}}{(y-1)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -4 x^{2} a_{3}-2 x^{2} b_{2}+4 x y a_{2}+8 x y a_{3}-4 x y b_{3}-2 y^{2} a_{2}-2 y^{2} a_{3}+y^{2} b_{2}+2 y^{2} b_{3} \tag{6E}\\
& \quad-4 x a_{2}-2 x b_{1}+2 x b_{2}+2 x b_{3}+2 y a_{1}+2 y a_{2}-2 y a_{3}-2 y b_{2}-2 a_{1}+2 b_{1}+b_{2}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& 4 a_{2} v_{1} v_{2}-2 a_{2} v_{2}^{2}-4 a_{3} v_{1}^{2}+8 a_{3} v_{1} v_{2}-2 a_{3} v_{2}^{2}-2 b_{2} v_{1}^{2}+b_{2} v_{2}^{2}-4 b_{3} v_{1} v_{2}+2 b_{3} v_{2}^{2} \tag{7E}\\
& +2 a_{1} v_{2}-4 a_{2} v_{1}+2 a_{2} v_{2}-2 a_{3} v_{2}-2 b_{1} v_{1}+2 b_{2} v_{1}-2 b_{2} v_{2}+2 b_{3} v_{1}-2 a_{1}+2 b_{1}+b_{2} \\
& \quad=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-4 a_{3}-2 b_{2}\right) v_{1}^{2}+\left(4 a_{2}+8 a_{3}-4 b_{3}\right) v_{1} v_{2}+\left(-4 a_{2}-2 b_{1}+2 b_{2}+2 b_{3}\right) v_{1} \tag{8E}\\
& \quad+\left(-2 a_{2}-2 a_{3}+b_{2}+2 b_{3}\right) v_{2}^{2}+\left(2 a_{1}+2 a_{2}-2 a_{3}-2 b_{2}\right) v_{2}-2 a_{1}+2 b_{1}+b_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
-4 a_{3}-2 b_{2} & =0 \\
-2 a_{1}+2 b_{1}+b_{2} & =0 \\
4 a_{2}+8 a_{3}-4 b_{3} & =0 \\
2 a_{1}+2 a_{2}-2 a_{3}-2 b_{2} & =0 \\
-4 a_{2}-2 b_{1}+2 b_{2}+2 b_{3} & =0 \\
-2 a_{2}-2 a_{3}+b_{2}+2 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=a_{3}-b_{3} \\
& a_{2}=-2 a_{3}+b_{3} \\
& a_{3}=a_{3} \\
& b_{1}=2 a_{3}-b_{3} \\
& b_{2}=-2 a_{3} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x-1 \\
& \eta=y-1
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-1-\left(\frac{-2 x+2 y}{y-1}\right)(x-1) \\
& =\frac{2 x^{2}-2 x y+y^{2}-2 x+1}{y-1} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 x^{2}-2 x y+y^{2}-2 x+1}{y-1}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{\ln \left(2 x^{2}-2 x y+y^{2}-2 x+1\right)}{2}+\frac{2(x-1) \arctan \left(\frac{-2 x+2 y}{2 x-2}\right)}{2 x-2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{-2 x+2 y}{y-1}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{-2 y+2 x}{2 x^{2}+(-2 y-2) x+y^{2}+1} \\
S_{y} & =\frac{y-1}{2 x^{2}+(-2 y-2) x+y^{2}+1}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\ln \left(2 x^{2}+(-2 y-2) x+y^{2}+1\right)}{2}-\arctan \left(\frac{x-y}{x-1}\right)=c_{1}
\]

Which simplifies to
\[
\frac{\ln \left(2 x^{2}+(-2 y-2) x+y^{2}+1\right)}{2}-\arctan \left(\frac{x-y}{x-1}\right)=c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(2 x^{2}+(-2 y-2) x+y^{2}+1\right)}{2}-\arctan \left(\frac{x-y}{x-1}\right)=c_{1} \tag{1}
\end{equation*}
\]

Figure 162: Slope field plot

Verification of solutions
\[
\frac{\ln \left(2 x^{2}+(-2 y-2) x+y^{2}+1\right)}{2}-\arctan \left(\frac{x-y}{x-1}\right)=c_{1}
\]

\section*{Verified OK.}

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C trying homogeneous types: trying homogeneous D <- homogeneous successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.063 (sec). Leaf size: 31
```

dsolve((2*x-2*y(x))+(y(x)-1)*diff(y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=-\tan \left(\operatorname{RootOf}\left(-2 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x-1)+2 c_{1}\right)\right)(x-1)+x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.057 (sec). Leaf size: 60
```

DSolve[(2*x-2*y[x])+(y[x]-1)*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]

```

Solve \(\left[2 \arctan \left(\frac{y(x)-2 x+1}{y(x)-1}\right)\right.\)
\[
\left.+\log \left(\frac{2 x^{2}-2 x y(x)+y(x)^{2}-2 x+1}{2(x-1)^{2}}\right)+2 \log (x-1)+c_{1}=0, y(x)\right]
\]

\subsection*{5.14 problem 4(d)}
5.14.1 Solving as homogeneousTypeMapleC ode 767
5.14.2 Solving as first order ode lie symmetry calculated ode 771

Internal problem ID [6216]
Internal file name [OUTPUT/5464_Sunday_June_05_2022_03_39_50_PM_24835712/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 4(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeMapleC", "first_order_ode_lie__symmetry__calculated"
Maple gives the following as the ode type
```

[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`,`     class A`]]

```
\[
y^{\prime}-\frac{-1+y+x}{x+4 y+2}=0
\]

\subsection*{5.14.1 Solving as homogeneousTypeMapleC ode}

Let \(Y=y+y_{0}\) and \(X=x+x_{0}\) then the above is transformed to new ode in \(Y(X)\)
\[
\frac{d}{d X} Y(X)=\frac{-1+Y(X)+y_{0}+X+x_{0}}{X+x_{0}+4 Y(X)+4 y_{0}+2}
\]

Solving for possible values of \(x_{0}\) and \(y_{0}\) which makes the above ode a homogeneous ode results in
\[
\begin{aligned}
x_{0} & =2 \\
y_{0} & =-1
\end{aligned}
\]

Using these values now it is possible to easily solve for \(Y(X)\). The above ode now becomes
\[
\frac{d}{d X} Y(X)=\frac{Y(X)+X}{X+4 Y(X)}
\]

In canonical form, the ODE is
\[
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{Y+X}{X+4 Y} \tag{1}
\end{align*}
\]

An ode of the form \(Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}\) is called homogeneous if the functions \(M(X, Y)\) and \(N(X, Y)\) are both homogeneous functions and of the same order. Recall that a function \(f(X, Y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
\]

In this case, it can be seen that both \(M=Y+X\) and \(N=X+4 Y\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{Y}{X}\), or \(Y=u X\). Hence
\[
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
\]

Applying the transformation \(Y=u X\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{u+1}{4 u+1} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{u(X)+1}{4 u(X)+1}-u(X)}{X}
\end{aligned}
\]

Or
\[
\frac{d}{d X} u(X)-\frac{\frac{u(X)+1}{4 u(X)+1}-u(X)}{X}=0
\]

Or
\[
4\left(\frac{d}{d X} u(X)\right) X u(X)+\left(\frac{d}{d X} u(X)\right) X+4 u(X)^{2}-1=0
\]

Or
\[
-1+X(4 u(X)+1)\left(\frac{d}{d X} u(X)\right)+4 u(X)^{2}=0
\]

Which is now solved as separable in \(u(X)\). Which is now solved in \(u(X)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =-\frac{4 u^{2}-1}{X(4 u+1)}
\end{aligned}
\]

Where \(f(X)=-\frac{1}{X}\) and \(g(u)=\frac{4 u^{2}-1}{4 u+1}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{4 u^{2}-1}{4 u+1}} d u & =-\frac{1}{X} d X \\
\int \frac{1}{\frac{4 u^{2}-1}{4 u+1}} d u & =\int-\frac{1}{X} d X \\
\frac{3 \ln (2 u-1)}{4}+\frac{\ln (2 u+1)}{4} & =-\ln (X)+c_{2}
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\frac{3 \ln (2 u-1)+\ln (2 u+1)}{4} & =-\ln (X)+c_{2} \\
3 \ln (2 u-1)+\ln (2 u+1) & =(4)\left(-\ln (X)+c_{2}\right) \\
& =-4 \ln (X)+4 c_{2}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{3 \ln (2 u-1)+\ln (2 u+1)}=\mathrm{e}^{-4 \ln (X)+4 c_{2}}
\]

Which simplifies to
\[
\begin{aligned}
(2 u-1)^{3}(2 u+1) & =\frac{4 c_{2}}{X^{4}} \\
& =\frac{c_{3}}{X^{4}}
\end{aligned}
\]

Which simplifies to
\[
u(X)=\frac{\operatorname{RootOf}\left(-Z^{4}-2 _Z^{3}-\frac{c_{3} e^{4 c_{2}}}{X^{4}}+2 _Z-1\right)}{2}
\]

Now \(u\) in the above solution is replaced back by \(Y\) using \(u=\frac{Y}{X}\) which results in the solution
\[
Y(X)=\frac{X \operatorname{RootOf}\left(_Z^{4} X^{4}-2 _Z^{3} X^{4}-c_{3} \mathrm{e}^{4 c_{2}}+2 _Z X^{4}-X^{4}\right)}{2}
\]

Using the solution for \(Y(X)\)
\[
Y(X)=\frac{X \operatorname{RootOf}\left(_Z^{4} X^{4}-2 _Z^{3} X^{4}-c_{3} \mathrm{e}^{4 c_{2}}+2 _Z X^{4}-X^{4}\right)}{2}
\]

And replacing back terms in the above solution using
\[
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
\]

Or
\[
\begin{aligned}
& Y=y-1 \\
& X=x+2
\end{aligned}
\]

Then the solution in \(y\) becomes
\[
1+y=\frac{(-2+x) \operatorname{RootOf}\left(\left(x^{4}-8 x^{3}+24 x^{2}-32 x+16\right) _Z^{4}+\left(-2 x^{4}+16 x^{3}-48 x^{2}+64 x-32\right) _Z^{3}+\right.}{2}
\]

\section*{Summary}

The solution(s) found are the following
\(1+y\)
\(=\frac{(-2+x) \operatorname{RootOf}\left(\left(x^{4}-8 x^{3}+24 x^{2}-32 x+16\right) _Z^{4}+\left(-2 x^{4}+16 x^{3}-48 x^{2}+64 x-32\right) _Z^{3}+\left(2 x^{4}-\right.\right.}{2}\)

Figure 163: Slope field plot

\section*{Verification of solutions}
\(1+y\)
\(=\frac{(-2+x) \text { RootOf }\left(\left(x^{4}-8 x^{3}+24 x^{2}-32 x+16\right) _Z^{4}+\left(-2 x^{4}+16 x^{3}-48 x^{2}+64 x-32\right) _Z^{3}+\left(2 x^{4}-\right.\right.}{2}\)
Verified OK.

\subsection*{5.14.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{x+y-1}{x+4 y+2} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{(x+y-1)\left(b_{3}-a_{2}\right)}{x+4 y+2}-\frac{(x+y-1)^{2} a_{3}}{(x+4 y+2)^{2}} \\
& -\left(\frac{1}{x+4 y+2}-\frac{x+y-1}{(x+4 y+2)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{1}{x+4 y+2}-\frac{4(x+y-1)}{(x+4 y+2)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}-4 x^{2} b_{2}-x^{2} b_{3}+8 x y a_{2}+2 x y a_{3}-8 x y b_{2}-8 x y b_{3}+4 y^{2} a_{2}+4 y^{2} a_{3}-16 y^{2} b_{2}-4 y^{2} b_{3}+4 x a}{(x+4 y} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}+4 x^{2} b_{2}+x^{2} b_{3}-8 x y a_{2}-2 x y a_{3}+8 x y b_{2}+8 x y b_{3}-4 y^{2} a_{2} \tag{6E}\\
& -4 y^{2} a_{3}+16 y^{2} b_{2}+4 y^{2} b_{3}-4 x a_{2}+2 x a_{3}+3 x b_{1}-2 x b_{2}+x b_{3}-3 y a_{1} \\
& +2 y a_{2}-y a_{3}+16 y b_{2}-8 y b_{3}-3 a_{1}+2 a_{2}-a_{3}-6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -a_{2} v_{1}^{2}-8 a_{2} v_{1} v_{2}-4 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}-4 a_{3} v_{2}^{2}+4 b_{2} v_{1}^{2}+8 b_{2} v_{1} v_{2}+16 b_{2} v_{2}^{2} \tag{7E}\\
& +b_{3} v_{1}^{2}+8 b_{3} v_{1} v_{2}+4 b_{3} v_{2}^{2}-3 a_{1} v_{2}-4 a_{2} v_{1}+2 a_{2} v_{2}+2 a_{3} v_{1}-a_{3} v_{2}+3 b_{1} v_{1} \\
& -2 b_{2} v_{1}+16 b_{2} v_{2}+b_{3} v_{1}-8 b_{3} v_{2}-3 a_{1}+2 a_{2}-a_{3}-6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-a_{2}-a_{3}+4 b_{2}+b_{3}\right) v_{1}^{2}+\left(-8 a_{2}-2 a_{3}+8 b_{2}+8 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad+\left(-4 a_{2}+2 a_{3}+3 b_{1}-2 b_{2}+b_{3}\right) v_{1}+\left(-4 a_{2}-4 a_{3}+16 b_{2}+4 b_{3}\right) v_{2}^{2} \\
& \quad+\left(-3 a_{1}+2 a_{2}-a_{3}+16 b_{2}-8 b_{3}\right) v_{2}-3 a_{1}+2 a_{2}-a_{3}-6 b_{1}+4 b_{2}-2 b_{3}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
-8 a_{2}-2 a_{3}+8 b_{2}+8 b_{3} & =0 \\
-4 a_{2}-4 a_{3}+16 b_{2}+4 b_{3} & =0 \\
-a_{2}-a_{3}+4 b_{2}+b_{3} & =0 \\
-3 a_{1}+2 a_{2}-a_{3}+16 b_{2}-8 b_{3} & =0 \\
-4 a_{2}+2 a_{3}+3 b_{1}-2 b_{2}+b_{3} & =0 \\
-3 a_{1}+2 a_{2}-a_{3}-6 b_{1}+4 b_{2}-2 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=4 b_{2}-2 b_{3} \\
& a_{2}=b_{3} \\
& a_{3}=4 b_{2} \\
& b_{1}=-2 b_{2}+b_{3} \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
\xi & =-2+x \\
\eta & =1+y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =1+y-\left(\frac{x+y-1}{x+4 y+2}\right)(-2+x) \\
& =\frac{-x^{2}+4 y^{2}+4 x+8 y}{x+4 y+2} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}+4 y^{2}+4 x+8 y}{x+4 y+2}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{3 \ln (2 y+4-x)}{4}+\frac{\ln (2 y+x)}{4}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{x+y-1}{x+4 y+2}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y-1}{(2 y+x)(x-4-2 y)} \\
S_{y} & =\frac{-x-4 y-2}{(2 y+x)(x-4-2 y)}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{3 \ln (2 y+4-x)}{4}+\frac{\ln (2 y+x)}{4}=c_{1}
\]

Which simplifies to
\[
\frac{3 \ln (2 y+4-x)}{4}+\frac{\ln (2 y+x)}{4}=c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{3 \ln (2 y+4-x)}{4}+\frac{\ln (2 y+x)}{4}=c_{1} \tag{1}
\end{equation*}
\]

Figure 164: Slope field plot

Verification of solutions
\[
\frac{3 \ln (2 y+4-x)}{4}+\frac{\ln (2 y+x)}{4}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous C trying homogeneous types: trying homogeneous D <- homogeneous successful <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 4.563 (sec). Leaf size: 139
```

dsolve(diff(y(x),x)=(x+y(x)-1)/(x+4*y(x)+2),y(x), singsol=all)

```
\(y(x)\)
\(=\frac{(x-4) \operatorname{RootOf}\left(_Z^{16}+\left(2 c_{1} x^{4}-16 c_{1} x^{3}+48 c_{1} x^{2}-64 c_{1} x+32 c_{1}\right) _Z^{4}-c_{1} x^{4}+8 c_{1} x^{3}-24 c_{1} x^{2}+32 c\right.}{2 \operatorname{RootOf}\left(_Z^{16}+\left(2 c_{1} x^{4}-16 c_{1} x^{3}+48 c_{1} x^{2}-64 c_{1} x+32 c_{1}\right) _Z^{4}-c_{1} x^{4}+8 c_{1} x^{3}-24 c_{1} x^{2}+32\right.}\)
Solution by Mathematica
Time used: 60.343 (sec). Leaf size: 8141
DSolve \([y\) ' \([x]==(x+y[x]-1) /(x+4 * y[x]+2), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
Too large to display

\subsection*{5.15 problem 4(e)}
5.15.1 Solving as linear ode . 778
5.15.2 Solving as homogeneousTypeMapleC ode 780
5.15.3 Solving as first order ode lie symmetry lookup ode 784
5.15.4 Solving as exact ode . 788
5.15.5 Maple step by step solution . 793

Internal problem ID [6217]
Internal file name [OUTPUT/5465_Sunday_June_05_2022_03_39_56_PM_96534507/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 4(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeMapleC", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
3 y-4(1+x) y^{\prime}=1-2 x
\]

\subsection*{5.15.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{3}{4 x+4} \\
& q(x)=\frac{2 x-1}{4 x+4}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{3 y}{4 x+4}=\frac{2 x-1}{4 x+4}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{4 x+4} d x} \\
& =\frac{1}{(1+x)^{\frac{3}{4}}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 x-1}{4 x+4}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{(1+x)^{\frac{3}{4}}}\right) & =\left(\frac{1}{(1+x)^{\frac{3}{4}}}\right)\left(\frac{2 x-1}{4 x+4}\right) \\
\mathrm{d}\left(\frac{y}{(1+x)^{\frac{3}{4}}}\right) & =\left(\frac{2 x-1}{4(1+x)^{\frac{7}{4}}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{y}{(1+x)^{\frac{3}{4}}}=\int \frac{2 x-1}{4(1+x)^{\frac{7}{4}}} \mathrm{~d} x \\
& \frac{y}{(1+x)^{\frac{3}{4}}}=\frac{2 x+3}{(1+x)^{\frac{3}{4}}}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{(1+x)^{\frac{3}{4}}}\) results in
\[
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}} \tag{1}
\end{equation*}
\]

Figure 165: Slope field plot
Verification of solutions
\[
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}}
\]

Verified OK.

\subsection*{5.15.2 Solving as homogeneousTypeMapleC ode}

Let \(Y=y+y_{0}\) and \(X=x+x_{0}\) then the above is transformed to new ode in \(Y(X)\)
\[
\frac{d}{d X} Y(X)=\frac{2 X+2 x_{0}+3 Y(X)+3 y_{0}-1}{4+4 X+4 x_{0}}
\]

Solving for possible values of \(x_{0}\) and \(y_{0}\) which makes the above ode a homogeneous ode results in
\[
\begin{aligned}
x_{0} & =-1 \\
y_{0} & =1
\end{aligned}
\]

Using these values now it is possible to easily solve for \(Y(X)\). The above ode now becomes
\[
\frac{d}{d X} Y(X)=\frac{2 X+3 Y(X)}{4 X}
\]

In canonical form, the ODE is
\[
\begin{align*}
Y^{\prime} & =F(X, Y) \\
& =\frac{2 X+3 Y}{4 X} \tag{1}
\end{align*}
\]

An ode of the form \(Y^{\prime}=\frac{M(X, Y)}{N(X, Y)}\) is called homogeneous if the functions \(M(X, Y)\) and \(N(X, Y)\) are both homogeneous functions and of the same order. Recall that a function \(f(X, Y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} X, t^{n} Y\right)=t^{n} f(X, Y)
\]

In this case, it can be seen that both \(M=2 X+3 Y\) and \(N=4 X\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{Y}{X}\), or \(Y=u X\). Hence
\[
\frac{\mathrm{d} Y}{\mathrm{~d} X}=\frac{\mathrm{d} u}{\mathrm{~d} X} X+u
\]

Applying the transformation \(Y=u X\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} X} X+u & =\frac{1}{2}+\frac{3 u}{4} \\
\frac{\mathrm{~d} u}{\mathrm{~d} X} & =\frac{\frac{1}{2}-\frac{u(X)}{4}}{X}
\end{aligned}
\]

Or
\[
\frac{d}{d X} u(X)-\frac{\frac{1}{2}-\frac{u(X)}{4}}{X}=0
\]

Or
\[
4\left(\frac{d}{d X} u(X)\right) X+u(X)-2=0
\]

Which is now solved as separable in \(u(X)\). Which is now solved in \(u(X)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(X, u) \\
& =f(X) g(u) \\
& =\frac{-\frac{u}{4}+\frac{1}{2}}{X}
\end{aligned}
\]

Where \(f(X)=\frac{1}{X}\) and \(g(u)=-\frac{u}{4}+\frac{1}{2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{-\frac{u}{4}+\frac{1}{2}} d u & =\frac{1}{X} d X \\
\int \frac{1}{-\frac{u}{4}+\frac{1}{2}} d u & =\int \frac{1}{X} d X \\
-4 \ln (u-2) & =\ln (X)+c_{2}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{(u-2)^{4}}=\mathrm{e}^{\ln (X)+c_{2}}
\]

Which simplifies to
\[
\frac{1}{(u-2)^{4}}=c_{3} X
\]

Which simplifies to
\[
\frac{1}{(u(X)-2)^{4}}=c_{3} X \mathrm{e}^{c_{2}}
\]

The solution is
\[
\frac{1}{(u(X)-2)^{4}}=c_{3} X \mathrm{e}^{c_{2}}
\]

Now \(u\) in the above solution is replaced back by \(Y\) using \(u=\frac{Y}{X}\) which results in the solution
\[
\frac{1}{\left(\frac{Y(X)}{X}-2\right)^{4}}=c_{3} X \mathrm{e}^{c_{2}}
\]

Using the solution for \(Y(X)\)
\[
\frac{X^{4}}{(Y(X)-2 X)^{4}}=c_{3} X \mathrm{e}^{c_{2}}
\]

And replacing back terms in the above solution using
\[
\begin{aligned}
& Y=y+y_{0} \\
& X=x+x_{0}
\end{aligned}
\]

Or
\[
\begin{aligned}
& Y=1+y \\
& X=x-1
\end{aligned}
\]

Then the solution in \(y\) becomes
\[
\frac{(1+x)^{4}}{(y-3-2 x)^{4}}=c_{3}(1+x) \mathrm{e}^{c_{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{(1+x)^{4}}{(y-3-2 x)^{4}}=c_{3}(1+x) \mathrm{e}^{c_{2}} \tag{1}
\end{equation*}
\]

Figure 166: Slope field plot

Verification of solutions
\[
\frac{(1+x)^{4}}{(y-3-2 x)^{4}}=c_{3}(1+x) \mathrm{e}^{c_{2}}
\]

Verified OK.

\subsection*{5.15.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{2 x+3 y-1}{4 x+4} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 116: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=(1+x)^{\frac{3}{4}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{(1+x)^{\frac{3}{4}}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{(1+x)^{\frac{3}{4}}}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{2 x+3 y-1}{4 x+4}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y}{4(1+x)^{\frac{7}{4}}} \\
S_{y} & =\frac{1}{(1+x)^{\frac{3}{4}}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{2 x-1}{4(1+x)^{\frac{7}{4}}} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{2 R-1}{4(1+R)^{\frac{7}{4}}}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{2 R+3}{(1+R)^{\frac{3}{4}}}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y}{(1+x)^{\frac{3}{4}}}=\frac{2 x+3}{(1+x)^{\frac{3}{4}}}+c_{1}
\]

Which simplifies to
\[
\frac{y}{(1+x)^{\frac{3}{4}}}=\frac{2 x+3}{(1+x)^{\frac{3}{4}}}+c_{1}
\]

Which gives
\[
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical
coordinates
transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{2 x+3 y-1}{4 x+4}\) & & \(\frac{d S}{d R}=\frac{2 R-1}{4(1+R)^{\frac{7}{4}}}\) \\
\hline & & \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow}\) \\
\hline & & \(S(R)\) \\
\hline \(\xrightarrow[\rightarrow 0 \rightarrow \rightarrow \rightarrow+\infty]{ }\) & & \({ }_{2} \rightarrow\) \\
\hline - & \(R=x\) & \\
\hline & \(S=\underline{y}\) & \\
\hline & \(S=\frac{y}{(1+x)^{\frac{3}{4}}}\) & \(\xrightarrow{\rightarrow \rightarrow \rightarrow-R^{*}}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \\
\hline & & + \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}} \tag{1}
\end{equation*}
\]

Figure 167: Slope field plot
Verification of solutions
\[
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}}
\]

Verified OK.

\subsection*{5.15.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(-4-4 x) \mathrm{d} y & =(-2 x-3 y+1) \mathrm{d} x \\
(2 x+3 y-1) \mathrm{d} x+(-4-4 x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=2 x+3 y-1 \\
& N(x, y)=-4-4 x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 x+3 y-1) \\
& =3
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-4-4 x) \\
& =-4
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-4-4 x}((3)-(-4)) \\
& =-\frac{7}{4 x+4}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{7}{4 x+4} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-\frac{7 \ln (1+x)}{4}} \\
& =\frac{1}{(1+x)^{\frac{7}{4}}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{(1+x)^{\frac{7}{4}}}(2 x+3 y-1) \\
& =\frac{2 x+3 y-1}{(1+x)^{\frac{7}{4}}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{(1+x)^{\frac{7}{4}}}(-4-4 x) \\
& =-\frac{4}{(1+x)^{\frac{3}{4}}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{2 x+3 y-1}{(1+x)^{\frac{7}{4}}}\right)+\left(-\frac{4}{(1+x)^{\frac{3}{4}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 x+3 y-1}{(1+x)^{\frac{7}{4}}} \mathrm{~d} x \\
\phi & =\frac{8 x+12-4 y}{(1+x)^{\frac{3}{4}}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=-\frac{4}{(1+x)^{\frac{3}{4}}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=-\frac{4}{(1+x)^{\frac{3}{4}}}\). Therefore equation (4) becomes
\[
\begin{equation*}
-\frac{4}{(1+x)^{\frac{3}{4}}}=-\frac{4}{(1+x)^{\frac{3}{4}}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{8 x+12-4 y}{(1+x)^{\frac{3}{4}}}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{8 x+12-4 y}{(1+x)^{\frac{3}{4}}}
\]

The solution becomes
\[
y=-\frac{c_{1}(1+x)^{\frac{3}{4}}}{4}+2 x+3
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{c_{1}(1+x)^{\frac{3}{4}}}{4}+2 x+3 \tag{1}
\end{equation*}
\]

Figure 168: Slope field plot

Verification of solutions
\[
y=-\frac{c_{1}(1+x)^{\frac{3}{4}}}{4}+2 x+3
\]

Verified OK.

\subsection*{5.15.5 Maple step by step solution}

Let's solve
\(3 y-4(1+x) y^{\prime}=1-2 x\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=\frac{3 y}{4(1+x)}+\frac{2 x-1}{4(1+x)}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-\frac{3 y}{4(1+x)}=\frac{2 x-1}{4(1+x)}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-\frac{3 y}{4(1+x)}\right)=\frac{\mu(x)(2 x-1)}{4(1+x)}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-\frac{3 y}{4(1+x)}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{3 \mu(x)}{4(1+x)}\)
- Solve to find the integrating factor
\(\mu(x)=\frac{1}{(1+x)^{\frac{3}{4}}}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \frac{\mu(x)(2 x-1)}{4(1+x)} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \frac{\mu(x)(2 x-1)}{4(1+x)} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \frac{\mu(x)(2 x-1)}{4(1+x)} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{(1+x)^{\frac{3}{4}}}\)
\(y=(1+x)^{\frac{3}{4}}\left(\int \frac{2 x-1}{4(1+x)^{\frac{7}{4}}} d x+c_{1}\right)\)
- Evaluate the integrals on the rhs
\[
y=(1+x)^{\frac{3}{4}}\left(\frac{2 x+3}{(1+x)^{\frac{3}{4}}}+c_{1}\right)
\]
- Simplify
\[
y=2 x+3+c_{1}(1+x)^{\frac{3}{4}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 16
```

dsolve((2*x+3*y(x)-1)-4*(x+1)*diff(y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=(x+1)^{\frac{3}{4}} c_{1}+2 x+3
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.065 (sec). Leaf size: 20
DSolve \([(2 * x+3 * y[x]-1)-4 *(x+1) * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow 2 x+c_{1}(x+1)^{3 / 4}+3
\]

\subsection*{5.16 problem 5(a)}
5.16.1 Solving as first order ode lie symmetry lookup ode
5.16.2 Solving as bernoulli ode . 799
5.16.3 Solving as exact ode . 803

Internal problem ID [6218]
Internal file name [OUTPUT/5466_Sunday_June_05_2022_03_39_57_PM_28256205/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 5(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"
Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]
\[
y^{\prime}-\frac{-x y^{2}+1}{2 y x^{2}}=0
\]

\subsection*{5.16.1 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{y^{2} x-1}{2 y x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 119: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{y x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{y x}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y^{2} x}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{y^{2} x-1}{2 y x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y^{2}}{2} \\
S_{y} & =x y
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{1}{2 R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{x y^{2}}{2}=\frac{\ln (x)}{2}+c_{1}
\]

Which simplifies to
\[
\frac{x y^{2}}{2}=\frac{\ln (x)}{2}+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|c|}
\hline Original ode in \(x, y\) coordinates
\end{tabular} \left\lvert\, \begin{tabular}{c}
\begin{tabular}{c}
Canonical \\
coordinates \\
transformation
\end{tabular}
\end{tabular} \begin{tabular}{c}
ODE in canonical coordinates \\
\((R, S)\)
\end{tabular}\right.

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{x y^{2}}{2}=\frac{\ln (x)}{2}+c_{1} \tag{1}
\end{equation*}
\]

Figure 169: Slope field plot
Verification of solutions
\[
\frac{x y^{2}}{2}=\frac{\ln (x)}{2}+c_{1}
\]

Verified OK.

\subsection*{5.16.2 Solving as bernoulli ode}

In canonical form, the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =-\frac{y^{2} x-1}{2 y x^{2}}
\end{aligned}
\]

This is a Bernoulli ODE.
\[
\begin{equation*}
y^{\prime}=-\frac{1}{2 x} y+\frac{1}{2 x^{2}} \frac{1}{y} \tag{1}
\end{equation*}
\]

The standard Bernoulli ODE has the form
\[
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
\]

The first step is to divide the above equation by \(y^{n}\) which gives
\[
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
\]

The next step is use the substitution \(w=y^{1-n}\) in equation (3) which generates a new ODE in \(w(x)\) which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution \(y(x)\) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\[
\begin{aligned}
f_{0}(x) & =-\frac{1}{2 x} \\
f_{1}(x) & =\frac{1}{2 x^{2}} \\
n & =-1
\end{aligned}
\]

Dividing both sides of ODE (1) by \(y^{n}=\frac{1}{y}\) gives
\[
\begin{equation*}
y^{\prime} y=-\frac{y^{2}}{2 x}+\frac{1}{2 x^{2}} \tag{4}
\end{equation*}
\]

Let
\[
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
\]

Taking derivative of equation (5) w.r.t \(x\) gives
\[
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
\]

Substituting equations (5) and (6) into equation (4) gives
\[
\begin{align*}
\frac{w^{\prime}(x)}{2} & =-\frac{w(x)}{2 x}+\frac{1}{2 x^{2}} \\
w^{\prime} & =-\frac{w}{x}+\frac{1}{x^{2}} \tag{7}
\end{align*}
\]

The above now is a linear ODE in \(w(x)\) which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
w^{\prime}(x)+p(x) w(x)=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Hence the ode is
\[
w^{\prime}(x)+\frac{w(x)}{x}=\frac{1}{x^{2}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x w) & =(x)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}(x w) & =\frac{1}{x} \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x w=\int \frac{1}{x} \mathrm{~d} x \\
& x w=\ln (x)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
w(x)=\frac{\ln (x)}{x}+\frac{c_{1}}{x}
\]
which simplifies to
\[
w(x)=\frac{\ln (x)+c_{1}}{x}
\]

Replacing \(w\) in the above by \(y^{2}\) using equation (5) gives the final solution.
\[
y^{2}=\frac{\ln (x)+c_{1}}{x}
\]

Solving for \(y\) gives
\[
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x} \tag{1}\\
& y=-\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x} \tag{2}
\end{align*}
\]

Figure 170: Slope field plot

Verification of solutions
\[
y=\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x}
\]

Verified OK.
\[
y=-\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x}
\]

Verified OK.

\subsection*{5.16.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =\left(\frac{-y^{2} x+1}{2 y x^{2}}\right) \mathrm{d} x \\
\left(-\frac{-y^{2} x+1}{2 y x^{2}}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{-y^{2} x+1}{2 y x^{2}} \\
& N(x, y)=1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-y^{2} x+1}{2 y x^{2}}\right) \\
& =\frac{y^{2} x+1}{2 y^{2} x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(\frac{1}{x}+\frac{-y^{2} x+1}{2 y^{2} x^{2}}\right)-(0)\right) \\
& =\frac{y^{2} x+1}{2 y^{2} x^{2}}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{2 y x^{2}}{y^{2} x-1}\left((0)-\left(\frac{1}{x}+\frac{-y^{2} x+1}{2 y^{2} x^{2}}\right)\right) \\
& =\frac{-y^{2} x-1}{y\left(y^{2} x-1\right)}
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(\frac{1}{x}+\frac{-y^{2} x+1}{2 y^{2} x^{2}}\right)}{x\left(-\frac{-y^{2} x+1}{2 y x^{2}}\right)-y(1)} \\
& =\frac{1}{y x}
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=\frac{1}{t}
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{1}{t}\right) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\ln (t)} \\
& =t
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=x y
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =x y\left(-\frac{-y^{2} x+1}{2 y x^{2}}\right) \\
& =\frac{y^{2} x-1}{2 x}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =x y(1) \\
& =x y
\end{aligned}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{y^{2} x-1}{2 x}\right)+(x y) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{y^{2} x-1}{2 x} \mathrm{~d} x \\
\phi & =\frac{y^{2} x}{2}-\frac{\ln (x)}{2}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=x y+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=x y\). Therefore equation (4) becomes
\[
\begin{equation*}
x y=x y+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{y^{2} x}{2}-\frac{\ln (x)}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{y^{2} x}{2}-\frac{\ln (x)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{x y^{2}}{2}-\frac{\ln (x)}{2}=c_{1} \tag{1}
\end{equation*}
\]

Figure 171: Slope field plot

Verification of solutions
\[
\frac{x y^{2}}{2}-\frac{\ln (x)}{2}=c_{1}
\]

Verified OK.
Maple trace
-Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
```

dsolve(diff(y(x),x)=(1-x*y(x)^2)/(2*x^2*y(x)),y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x} \\
& y(x)=-\frac{\sqrt{x\left(\ln (x)+c_{1}\right)}}{x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.184 (sec). Leaf size: 40
DSolve[y'[x]==(1-x*y[x]~2)/(2*x^2*y[x]),y[x],x,IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{\log (x)+c_{1}}}{\sqrt{x}} \\
& y(x) \rightarrow \frac{\sqrt{\log (x)+c_{1}}}{\sqrt{x}}
\end{aligned}
\]

\subsection*{5.17 problem 5(b)}
5.17.1 Solving as first order ode lie symmetry lookup ode 809
5.17.2 Solving as bernoulli ode . 813
5.17.3 Solving as exact ode . 817

Internal problem ID [6219]
Internal file name [OUTPUT/5467_Sunday_June_05_2022_03_40_00_PM_44970004/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 5(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "bernoulli", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[[_homogeneous, `class G`], _rational, _Bernoulli]

```
\[
y^{\prime}-\frac{2+3 x y^{2}}{4 y x^{2}}=0
\]

\subsection*{5.17.1 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{3 y^{2} x+2}{4 y x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type Bernoulli. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 121: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{x^{\frac{3}{2}}}{y} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{x^{\frac{3}{2}}}{y}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y^{2}}{2 x^{\frac{3}{2}}}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{3 y^{2} x+2}{4 y x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{3 y^{2}}{4 x^{\frac{5}{2}}} \\
S_{y} & =\frac{y}{x^{\frac{3}{2}}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x^{\frac{7}{2}}} \tag{2A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{1}{2 R^{\frac{7}{2}}}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-\frac{1}{5 R^{\frac{5}{2}}}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y^{2}}{2 x^{\frac{3}{2}}}=-\frac{1}{5 x^{\frac{5}{2}}}+c_{1}
\]

Which simplifies to
\[
\frac{y^{2}}{2 x^{\frac{3}{2}}}=-\frac{1}{5 x^{\frac{5}{2}}}+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{3 y^{2} x+2}{4 y x^{2}}\) & & \(\frac{d S}{d R}=\frac{1}{2 R^{\frac{\tau}{2}}}\) \\
\hline & & \(\stackrel{1}{1} \rightarrow \rightarrow \rightarrow\) \\
\hline & & \(\stackrel{\sim}{\text { ¢ }}\) \\
\hline & & \\
\hline \(\Rightarrow \rightarrow \times 10\) & & \\
\hline \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty\) & \(R=x\) & \(\xrightarrow{\boldsymbol{l} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}\) \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow-\infty]{\rightarrow \rightarrow-\infty}\) & \[
y^{2}
\] & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty]{ }\) & \(S=\frac{y^{2}}{2 x^{\frac{3}{2}}}\) & \\
\hline & & \\
\hline & & \(\xrightarrow{\boldsymbol{\lambda} \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}\) \\
\hline & & \\
\hline & & \(\dagger \rightarrow \rightarrow\) \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{y^{2}}{2 x^{\frac{3}{2}}}=-\frac{1}{5 x^{\frac{5}{2}}}+c_{1} \tag{1}
\end{equation*}
\]

Figure 172: Slope field plot
Verification of solutions
\[
\frac{y^{2}}{2 x^{\frac{3}{2}}}=-\frac{1}{5 x^{\frac{5}{2}}}+c_{1}
\]

Verified OK.

\subsection*{5.17.2 Solving as bernoulli ode}

In canonical form, the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =\frac{3 y^{2} x+2}{4 y x^{2}}
\end{aligned}
\]

This is a Bernoulli ODE.
\[
\begin{equation*}
y^{\prime}=\frac{3}{4 x} y+\frac{1}{2 x^{2}} \frac{1}{y} \tag{1}
\end{equation*}
\]

The standard Bernoulli ODE has the form
\[
\begin{equation*}
y^{\prime}=f_{0}(x) y+f_{1}(x) y^{n} \tag{2}
\end{equation*}
\]

The first step is to divide the above equation by \(y^{n}\) which gives
\[
\begin{equation*}
\frac{y^{\prime}}{y^{n}}=f_{0}(x) y^{1-n}+f_{1}(x) \tag{3}
\end{equation*}
\]

The next step is use the substitution \(w=y^{1-n}\) in equation (3) which generates a new ODE in \(w(x)\) which will be linear and can be easily solved using an integrating factor. Backsubstitution then gives the solution \(y(x)\) which is what we want.

This method is now applied to the ODE at hand. Comparing the ODE (1) With (2) Shows that
\[
\begin{aligned}
f_{0}(x) & =\frac{3}{4 x} \\
f_{1}(x) & =\frac{1}{2 x^{2}} \\
n & =-1
\end{aligned}
\]

Dividing both sides of ODE (1) by \(y^{n}=\frac{1}{y}\) gives
\[
\begin{equation*}
y^{\prime} y=\frac{3 y^{2}}{4 x}+\frac{1}{2 x^{2}} \tag{4}
\end{equation*}
\]

Let
\[
\begin{align*}
w & =y^{1-n} \\
& =y^{2} \tag{5}
\end{align*}
\]

Taking derivative of equation (5) w.r.t \(x\) gives
\[
\begin{equation*}
w^{\prime}=2 y y^{\prime} \tag{6}
\end{equation*}
\]

Substituting equations (5) and (6) into equation (4) gives
\[
\begin{align*}
\frac{w^{\prime}(x)}{2} & =\frac{3 w(x)}{4 x}+\frac{1}{2 x^{2}} \\
w^{\prime} & =\frac{3 w}{2 x}+\frac{1}{x^{2}} \tag{7}
\end{align*}
\]

The above now is a linear ODE in \(w(x)\) which is now solved.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
w^{\prime}(x)+p(x) w(x)=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{3}{2 x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Hence the ode is
\[
w^{\prime}(x)-\frac{3 w(x)}{2 x}=\frac{1}{x^{2}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu w) & =(\mu)\left(\frac{1}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{w}{x^{\frac{3}{2}}}\right) & =\left(\frac{1}{x^{\frac{3}{2}}}\right)\left(\frac{1}{x^{2}}\right) \\
\mathrm{d}\left(\frac{w}{x^{\frac{3}{2}}}\right) & =\frac{1}{x^{\frac{7}{2}}} \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{w}{x^{\frac{3}{2}}} & =\int \frac{1}{x^{\frac{7}{2}}} \mathrm{~d} x \\
\frac{w}{x^{\frac{3}{2}}} & =-\frac{2}{5 x^{\frac{5}{2}}}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{\frac{3}{2}}}\) results in
\[
w(x)=-\frac{2}{5 x}+c_{1} x^{\frac{3}{2}}
\]

Replacing \(w\) in the above by \(y^{2}\) using equation (5) gives the final solution.
\[
y^{2}=-\frac{2}{5 x}+c_{1} x^{\frac{3}{2}}
\]

Solving for \(y\) gives
\[
\begin{aligned}
& y(x)=\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x} \\
& y(x)=-\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x} \tag{1}\\
& y=-\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x} \tag{2}
\end{align*}
\]

Figure 173: Slope field plot

Verification of solutions
\[
y=\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x}
\]

Verified OK.
\[
y=-\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x}
\]

Verified OK.

\subsection*{5.17.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(4 y x^{2}\right) \mathrm{d} y & =\left(3 y^{2} x+2\right) \mathrm{d} x \\
\left(-3 y^{2} x-2\right) \mathrm{d} x+\left(4 y x^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-3 y^{2} x-2 \\
N(x, y) & =4 y x^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 y^{2} x-2\right) \\
& =-6 x y
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(4 y x^{2}\right) \\
& =8 x y
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{4 y x^{2}}((-6 x y)-(8 x y)) \\
& =-\frac{7}{2 x}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{7}{2 x} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-\frac{7 \ln (x)}{2}} \\
& =\frac{1}{x^{\frac{7}{2}}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{\frac{7}{2}}}\left(-3 y^{2} x-2\right) \\
& =\frac{-3 y^{2} x-2}{x^{\frac{7}{2}}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{\frac{7}{2}}}\left(4 y x^{2}\right) \\
& =\frac{4 y}{x^{\frac{3}{2}}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-3 y^{2} x-2}{x^{\frac{7}{2}}}\right)+\left(\frac{4 y}{x^{\frac{3}{2}}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-3 y^{2} x-2}{x^{\frac{7}{2}}} \mathrm{~d} x \\
\phi & =\frac{2 y^{2} x+\frac{4}{5}}{x^{\frac{5}{2}}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{4 y}{x^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{4 y}{x^{\frac{3}{2}}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{4 y}{x^{\frac{3}{2}}}=\frac{4 y}{x^{\frac{3}{2}}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{2 y^{2} x+\frac{4}{5}}{x^{\frac{5}{2}}}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{2 y^{2} x+\frac{4}{5}}{x^{\frac{5}{2}}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{2 x y^{2}+\frac{4}{5}}{x^{\frac{5}{2}}}=c_{1} \tag{1}
\end{equation*}
\]

Figure 174: Slope field plot

Verification of solutions
\[
\frac{2 x y^{2}+\frac{4}{5}}{x^{\frac{5}{2}}}=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
```

dsolve(diff (y (x),x)=(2+3*x*y(x)^2)/(4*x^2*y(x)),y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=-\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x} \\
& y(x)=\frac{\sqrt{5} \sqrt{5 x^{\frac{7}{2}} c_{1}-2 x}}{5 x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.667 (sec). Leaf size: 51
DSolve[y' \([x]==(2+3 * x * y[x] \sim 2) /\left(4 * x^{\wedge} 2 * y[x]\right), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\sqrt{-\frac{2}{5 x}+c_{1} x^{3 / 2}} \\
& y(x) \rightarrow \sqrt{-\frac{2}{5 x}+c_{1} x^{3 / 2}}
\end{aligned}
\]

\subsection*{5.18 problem 5(c)}
5.18.1 Solving as first order ode lie symmetry calculated ode 822
5.18.2 Solving as exact ode . 828

Internal problem ID [6220]
Internal file name [OUTPUT/5468_Sunday_June_05_2022_03_40_04_PM_85038005/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations. Page 28
Problem number: 5(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor", "first_order_ode_lie__symmetry__calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, ` class \(\left.\mathrm{B}^{`}\right]\)
\[
y^{\prime}-\frac{-x y^{2}+y}{x+y x^{2}}=0
\]

\subsection*{5.18.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{y(x y-1)}{x(x y+1)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{gather*}
\xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
\eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{gather*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{y(x y-1)\left(b_{3}-a_{2}\right)}{x(x y+1)}-\frac{y^{2}(x y-1)^{2} a_{3}}{x^{2}(x y+1)^{2}} \\
& -\left(-\frac{y^{2}}{x(x y+1)}+\frac{y(x y-1)}{x^{2}(x y+1)}+\frac{y^{2}(x y-1)}{x(x y+1)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{x y-1}{x(x y+1)}-\frac{y}{x y+1}+\frac{y(x y-1)}{(x y+1)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& \frac{2 x^{4} y^{2} b_{2}-2 x^{2} y^{4} a_{3}+x^{3} y^{2} b_{1}-x^{2} y^{3} a_{1}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2}+2 x^{2} y^{2} b_{3}+4 x y^{3} a_{3}+2 x^{2} y b_{1}+2 x y^{2} a_{1}-x b_{1}-}{x^{2}(x y+1)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& 2 x^{4} y^{2} b_{2}-2 x^{2} y^{4} a_{3}+x^{3} y^{2} b_{1}-x^{2} y^{3} a_{1}+4 x^{3} y b_{2}+2 x^{2} y^{2} a_{2} \tag{6E}\\
& +2 x^{2} y^{2} b_{3}+4 x y^{3} a_{3}+2 x^{2} y b_{1}+2 x y^{2} a_{1}-x b_{1}+y a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -2 a_{3} v_{1}^{2} v_{2}^{4}+2 b_{2} v_{1}^{4} v_{2}^{2}-a_{1} v_{1}^{2} v_{2}^{3}+b_{1} v_{1}^{3} v_{2}^{2}+2 a_{2} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3} \tag{7E}\\
& +4 b_{2} v_{1}^{3} v_{2}+2 b_{3} v_{1}^{2} v_{2}^{2}+2 a_{1} v_{1} v_{2}^{2}+2 b_{1} v_{1}^{2} v_{2}+a_{1} v_{2}-b_{1} v_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& 2 b_{2} v_{1}^{4} v_{2}^{2}+b_{1} v_{1}^{3} v_{2}^{2}+4 b_{2} v_{1}^{3} v_{2}-2 a_{3} v_{1}^{2} v_{2}^{4}-a_{1} v_{1}^{2} v_{2}^{3}+\left(2 a_{2}+2 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad+2 b_{1} v_{1}^{2} v_{2}+4 a_{3} v_{1} v_{2}^{3}+2 a_{1} v_{1} v_{2}^{2}-b_{1} v_{1}+a_{1} v_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
a_{1} & =0 \\
b_{1} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
-2 a_{3} & =0 \\
4 a_{3} & =0 \\
-b_{1} & =0 \\
2 b_{1} & =0 \\
2 b_{2} & =0 \\
4 b_{2} & =0 \\
2 a_{2}+2 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=-b_{3} \\
& a_{3}=0 \\
& b_{1}=0 \\
& b_{2}=0 \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=-x \\
& \eta=y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{y(x y-1)}{x(x y+1)}\right)(-x) \\
& =\frac{2 y}{x y+1} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{2 y}{x y+1}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{x y}{2}+\frac{\ln (y)}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{y(x y-1)}{x(x y+1)}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{y}{2} \\
S_{y} & =\frac{x y+1}{2 y}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{1}{2 x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{1}{2 R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{\ln (R)}{2}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{x y}{2}+\frac{\ln (y)}{2}=\frac{\ln (x)}{2}+c_{1}
\]

Which simplifies to
\[
\frac{x y}{2}+\frac{\ln (y)}{2}=\frac{\ln (x)}{2}+c_{1}
\]

Which gives
\[
y=\frac{\text { LambertW }\left(\mathrm{e}^{2 c_{1}} x^{2}\right)}{x}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{y(x y-1)}{x(x y+1)}\) & & \(\frac{d S}{d R}=\frac{1}{2 R}\) \\
\hline & & \(\downarrow\) \\
\hline & & \\
\hline & & \(\rightarrow \rightarrow \rightarrow\) - +1 ¢ \\
\hline & & - \% \({ }^{2}\) \\
\hline & \(R=x\) & \(\therefore 8\) \\
\hline & \[
x y \quad \ln (y)
\] & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 0]{ }\) & \[
S=\frac{x y}{2}+\frac{\ln (y)}{2}
\] & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }\) \\
\hline & & \(\rightarrow \rightarrow \rightarrow \rightarrow \pm{ }_{\sim \rightarrow-\infty}\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \(4{ }^{4}\) \\
\hline & & 1 \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\text { LambertW }\left(\mathrm{e}^{2 c_{1}} x^{2}\right)}{x} \tag{1}
\end{equation*}
\]

Figure 175: Slope field plot

Verification of solutions
\[
y=\frac{\text { LambertW }\left(\mathrm{e}^{2 c_{1}} x^{2}\right)}{x}
\]

Verified OK.

\subsection*{5.18.2 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =\left(\frac{-y^{2} x+y}{y x^{2}+x}\right) \mathrm{d} x \\
\left(-\frac{-y^{2} x+y}{y x^{2}+x}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{-y^{2} x+y}{y x^{2}+x} \\
& N(x, y)=1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{-y^{2} x+y}{y x^{2}+x}\right) \\
& =\frac{y^{2} x^{2}+2 x y-1}{x(x y+1)^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{-2 x y+1}{y x^{2}+x}+\frac{\left(-y^{2} x+y\right) x^{2}}{\left(y x^{2}+x\right)^{2}}\right)-(0)\right) \\
& =\frac{y^{2} x^{2}+2 x y-1}{x(x y+1)^{2}}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{x(x y+1)}{y(x y-1)}\left((0)-\left(-\frac{-2 x y+1}{y x^{2}+x}+\frac{\left(-y^{2} x+y\right) x^{2}}{\left(y x^{2}+x\right)^{2}}\right)\right) \\
& =\frac{-y^{2} x^{2}-2 x y+1}{y^{3} x^{2}-y}
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(0)-\left(-\frac{-2 x y+1}{y x^{2}+x}+\frac{\left(-y^{2} x+y\right) x^{2}}{\left(y x^{2}+x\right)^{2}}\right)}{x\left(-\frac{-y^{2} x+y}{y x^{2}+x}\right)-y(1)} \\
& =\frac{y^{2} x^{2}+2 x y-1}{2 x y(x y+1)}
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=\frac{t^{2}+2 t-1}{2 t(t+1)}
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(\frac{t^{2}+2 t-1}{2 t(t+1)}\right) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\frac{t}{2}+\ln (t+1)-\frac{\ln (t)}{2}} \\
& =\frac{(t+1) \mathrm{e}^{\frac{t}{2}}}{\sqrt{t}}
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}\left(-\frac{-y^{2} x+y}{y x^{2}+x}\right) \\
& =\frac{\mathrm{e}^{\frac{x y}{2}} y(x y-1)}{\sqrt{x y} x}
\end{aligned}
\]

And
\[
\begin{align*}
\bar{N} & =\mu N \\
& =\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}(1 \tag{1}\\
& =\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}
\end{align*}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{\mathrm{e}^{\frac{x y}{2}} y(x y-1)}{\sqrt{x y} x}\right)+\left(\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\mathrm{e}^{\frac{x y}{2}} y(x y-1)}{\sqrt{x y} x} \mathrm{~d} x \\
\phi & =\frac{2 \mathrm{e}^{\frac{x y}{2}} y}{\sqrt{x y}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{x \mathrm{e}^{\frac{x y}{2}} y}{\sqrt{x y}}+\frac{2 \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}-\frac{\mathrm{e}^{\frac{x y}{2}} y x}{(x y)^{\frac{3}{2}}}+f^{\prime}(y) \tag{4}\\
& =\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}+f^{\prime}(y)
\end{align*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{(x y+1))^{\frac{x y}{2}}}{\sqrt{x y}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}=\frac{(x y+1) \mathrm{e}^{\frac{x y}{2}}}{\sqrt{x y}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{2 \mathrm{e}^{\frac{x y}{2}} y}{\sqrt{x y}}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{2 \mathrm{e}^{\frac{x y}{2}} y}{\sqrt{x y}}
\]

The solution becomes
\[
y=\frac{c_{1}^{2} x \mathrm{e}^{-\operatorname{LambertW}\left(\frac{x^{2} c_{1}^{2}}{4}\right)}}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}^{2} x \mathrm{e}^{-\operatorname{LambertW}\left(\frac{x^{2} c_{1}^{2}}{4}\right)}}{4} \tag{1}
\end{equation*}
\]

Figure 176: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{c_{1}^{2} x \mathrm{e}^{-\operatorname{LambertW}\left(\frac{x^{2} c_{1}^{2}}{4}\right)}}{4}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
trying inverse linear
trying homogeneous types:
trying homogeneous G
<- homogeneous successful

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 17
```

dsolve(diff (y(x),x)=(y(x)-x*y(x)^2)/(x+x^2*y(x)),y(x), singsol=all)

```
\[
y(x)=\frac{\text { LambertW }\left(x^{2} \mathrm{e}^{-2 c_{1}}\right)}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 60.444 (sec). Leaf size: 31
DSolve[y' \([x]==(y[x]-x * y[x] \sim 2) /\left(x+x^{\wedge} 2 * y[x]\right), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{W\left(e^{\frac{1}{2}\left(-2-9 \sqrt[3]{-2} c_{1}\right)} x^{2}\right)}{x}
\]

\subsection*{5.19 problem 7(a)}
5.19.1 Solving as homogeneous ode 835

Internal problem ID [6221]
Internal file name [OUTPUT/5469_Sunday_June_05_2022_03_40_06_PM_28975778/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 7(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]
\[
y^{\prime}-\sin \left(\frac{y}{x}\right)+\cos \left(\frac{y}{x}\right)=0
\]

\subsection*{5.19.1 Solving as homogeneous ode}

In canonical form, the ODE is
\[
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\sin \left(\frac{y}{x}\right)-\cos \left(\frac{y}{x}\right) \tag{1}
\end{align*}
\]

An ode of the form \(y^{\prime}=\frac{M(x, y)}{N(x, y)}\) is called homogeneous if the functions \(M(x, y)\) and \(N(x, y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x, y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
\]

In this case, it can be seen that both \(M=\sin \left(\frac{y}{x}\right)-\cos \left(\frac{y}{x}\right)\) and \(N=1\) are both homogeneous and of the same order \(n=0\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{y}{x}\), or \(y=u x\). Hence
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
\]

Applying the transformation \(y=u x\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\sin (u)-\cos (u) \\
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{\sin (u(x))-\cos (u(x))-u(x)}{x}
\end{aligned}
\]

Or
\[
u^{\prime}(x)-\frac{\sin (u(x))-\cos (u(x))-u(x)}{x}=0
\]

Or
\[
u^{\prime}(x) x-\sin (u(x))+\cos (u(x))+u(x)=0
\]

Which is now solved as separable in \(u(x)\). Which is now solved in \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\sin (u)-\cos (u)-u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(u)=\sin (u)-\cos (u)-u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\sin (u)-\cos (u)-u} d u & =\frac{1}{x} d x \\
\int \frac{1}{\sin (u)-\cos (u)-u} d u & =\int \frac{1}{x} d x \\
\int^{u} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a & =\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a=\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a-\ln (x)-c_{2}=0
\]

Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac{y}{x}\) which results in the solution
\[
\int^{\frac{y}{x}} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a-\ln (x)-c_{2}=0
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 177: Slope field plot

Verification of solutions
\[
\int^{\frac{y}{x}} \frac{1}{\sin \left(_a\right)-\cos \left(_a\right)-_a} d _a-\ln (x)-c_{2}=0
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 25
```

dsolve(diff(y(x),x)=\operatorname{sin}(y(x)/x)-\operatorname{cos}(y(x)/x),y(x), singsol=all)

```
\[
y(x)=\operatorname{RootOf}\left(\int^{-Z} \frac{1}{-\sin \left(_a\right)+\cos \left(_a\right)+_a} d _a+\ln (x)+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.367 (sec). Leaf size: 36
DSolve \([y\) ' \([x]==\operatorname{Sin}[y[x] / x]-\operatorname{Cos}[y[x] / x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{1}{\cos (K[1])+K[1]-\sin (K[1])} d K[1]=-\log (x)+c_{1}, y(x)\right]
\]

\subsection*{5.20 problem 7(b)}
5.20.1 Solving as homogeneous ode . 839

Internal problem ID [6222]
Internal file name [OUTPUT/5470_Sunday_June_05_2022_03_40_08_PM_58372649/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 7(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]
\[
\mathrm{e}^{\frac{x}{y}}-\frac{y^{\prime} y}{x}=0
\]

\subsection*{5.20.1 Solving as homogeneous ode}

In canonical form, the ODE is
\[
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{x \mathrm{e}^{\frac{x}{y}}}{y} \tag{1}
\end{align*}
\]

An ode of the form \(y^{\prime}=\frac{M(x, y)}{N(x, y)}\) is called homogeneous if the functions \(M(x, y)\) and \(N(x, y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x, y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
\]

In this case, it can be seen that both \(M=x \mathrm{e}^{\frac{x}{y}}\) and \(N=y\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{y}{x}\), or \(y=u x\). Hence
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
\]

Applying the transformation \(y=u x\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{\mathrm{e}^{\frac{1}{u}}}{u} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x} & =\frac{\frac{\mathrm{e}^{\frac{1}{u(x)}}}{u(x)}-u(x)}{x}
\end{aligned}
\]

Or
\[
u^{\prime}(x)-\frac{\frac{\mathrm{e}^{\frac{1}{u(x)}}}{u(x)}-u(x)}{x}=0
\]

Or
\[
u^{\prime}(x) u(x) x+u(x)^{2}-\mathrm{e}^{\frac{1}{u(x)}}=0
\]

Which is now solved as separable in \(u(x)\). Which is now solved in \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}-\mathrm{e}^{\frac{1}{u}}}{u x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{u^{2}-\mathrm{e}^{\frac{1}{u}}}{u}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{2}-\mathrm{e}^{\frac{1}{u}}}{u}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}-\mathrm{e}^{\frac{1}{u}}}{u}} d u & =\int-\frac{1}{x} d x \\
\int^{u} \frac{-a}{-a^{2}-\mathrm{e}^{\frac{1}{-a}}} d _a & =-\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{-a}{-a^{2}-\mathrm{e}^{\frac{1}{-a}}} d _a=-\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{-a}{-a^{2}-\mathrm{e}^{\frac{1}{-^{a}}}} d _a+\ln (x)-c_{2}=0
\]

Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac{y}{x}\) which results in the solution
\[
\int^{\frac{y}{x}} \frac{-a}{-a^{2}-\mathrm{e}^{\frac{1}{-a}}} d _a+\ln (x)-c_{2}=0
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\left(\int^{\frac{y}{x}} \frac{_a}{-_a^{2}+\mathrm{e}^{\frac{1}{-a}}} d _a\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 178: Slope field plot

Verification of solutions
\[
-\left(\int^{\frac{y}{x}} \frac{_a}{-_a^{2}+\mathrm{e}^{\frac{1}{-a}}} d _a\right)+\ln (x)-c_{2}=0
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 31
```

dsolve(exp(x/y(x))-y(x)/x*diff (y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=\operatorname{RootOf}\left(-\left(\int^{-^{Z}} \frac{_^{a}}{-_a^{2}+\mathrm{e}^{\frac{1}{-a}}} d _a\right)+\ln (x)+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.192 (sec). Leaf size: 41
DSolve[Exp[x/y[x]]-y[x]/x*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{K[1]}{K[1]^{2}-e^{\frac{1}{K[1]}}} d K[1]=-\log (x)+c_{1}, y(x)\right]
\]

\subsection*{5.21 problem 7(c)}
5.21.1 Solving as homogeneous ode . 843

Internal problem ID [6223]
Internal file name [OUTPUT/5471_Sunday_June_05_2022_03_40_11_PM_7650062/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 7(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]
\[
y^{\prime}-\frac{x^{2}-x y}{y^{2} \cos \left(\frac{x}{y}\right)}=0
\]

\subsection*{5.21.1 Solving as homogeneous ode}

In canonical form, the ODE is
\[
\begin{align*}
y^{\prime} & =F(x, y) \\
& =-\frac{x(-x+y)}{y^{2} \cos \left(\frac{x}{y}\right)} \tag{1}
\end{align*}
\]

An ode of the form \(y^{\prime}=\frac{M(x, y)}{N(x, y)}\) is called homogeneous if the functions \(M(x, y)\) and \(N(x, y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x, y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
\]

In this case, it can be seen that both \(M=x(x-y)\) and \(N=\cos \left(\frac{x}{y}\right) y^{2}\) are both homogeneous and of the same order \(n=2\). Therefore this is a homogeneous ode. Since
this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{y}{x}\), or \(y=u x\). Hence
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
\]

Applying the transformation \(y=u x\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =\frac{1}{u^{2} \cos \left(\frac{1}{u}\right)}-\frac{1}{u \cos \left(\frac{1}{u}\right)} \\
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{\frac{1}{u(x)^{2} \cos \left(\frac{1}{u(x)}\right)}-\frac{1}{u(x) \cos \left(\frac{1}{u(x)}\right)}-u(x)}{x}
\end{aligned}
\]

Or
\[
u^{\prime}(x)-\frac{\frac{1}{u(x)^{2} \cos \left(\frac{1}{u(x)}\right)}-\frac{1}{u(x) \cos \left(\frac{1}{u(x)}\right)}-u(x)}{x}=0
\]

Or
\[
u^{\prime}(x) u(x)^{2} \cos \left(\frac{1}{u(x)}\right) x+u(x)^{3} \cos \left(\frac{1}{u(x)}\right)+u(x)-1=0
\]

Or
\[
u(x)^{2}\left(x u^{\prime}(x)+u(x)\right) \cos \left(\frac{1}{u(x)}\right)+u(x)-1=0
\]

Which is now solved as separable in \(u(x)\). Which is now solved in \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{(u-1) \sec \left(\frac{1}{u}\right)+u^{3}}{x u^{2}}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{(u-1) \sec \left(\frac{1}{u}\right)+u^{3}}{u^{2}}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{(u-1) \sec \left(\frac{1}{u}\right)+u^{3}}{u^{2}}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{(u-1) \sec \left(\frac{1}{u}\right)+u^{3}}{u^{2}}} d u & =\int-\frac{1}{x} d x \\
\int^{u} \frac{a^{2}}{\left(_a-1\right) \sec \left(\frac{1}{\square} a\right)+_a^{3}} d _a & =-\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{a^{2}}{\left(_a-1\right) \sec \left(\frac{1}{_^{a}}\right)+_a^{3}} d _a=-\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{a^{2}}{\left(_a-1\right) \sec \left(\frac{1}{_^{a}}\right)+_a^{3}} d _a+\ln (x)-c_{2}=0
\]

Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac{y}{x}\) which results in the solution
\[
\int^{\frac{y}{x}} \frac{_a^{2}}{\left(_a-1\right) \sec \left(\frac{1}{-a}\right)+_a^{3}} d _a+\ln (x)-c_{2}=0
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{_^{a^{2} \cos \left(\frac{1}{-a}\right)}}{-^{3} \cos \left(\frac{1}{-a}\right)+_a-1} d _a+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 179: Slope field plot

\section*{Verification of solutions}
\[
\int^{\frac{y}{x}} \frac{_^{a^{2} \cos \left(\frac{1}{-a}\right)}}{-^{3} \cos \left(\frac{1}{-a}\right)+_a-1} d _a+\ln (x)-c_{2}=0
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 36
```

dsolve(diff(y(x),x)=(x^2-x*y(x))/(y(x)^2*\operatorname{cos}(x/y(x))),y(x), singsol=all)

```
\(\checkmark\) Solution by Mathematica
Time used: 1.114 (sec). Leaf size: 49
```

DSolve[y'[x]==(x^2-x*y[x])/(y[x]^2*Cos[x/y[x]]),y[x],x,IncludeSingularSolutions -> True]

```
\[
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{\cos \left(\frac{1}{K[1]}\right) K[1]^{2}}{\cos \left(\frac{1}{K[1]}\right) K[1]^{3}+K[1]-1} d K[1]=-\log (x)+c_{1}, y(x)\right]
\]

\subsection*{5.22 problem 7(d)}
5.22.1 Solving as homogeneous ode . 847

Internal problem ID [6224]
Internal file name [OUTPUT/5472_Sunday_June_05_2022_03_40_15_PM_31766225/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.7. Homogeneous Equations.
Page 28
Problem number: 7(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program :
Maple gives the following as the ode type
[[_homogeneous, `class A`], _dAlembert]
\[
y^{\prime}-\frac{y \tan \left(\frac{y}{x}\right)}{x}=0
\]

\subsection*{5.22.1 Solving as homogeneous ode}

In canonical form, the ODE is
\[
\begin{align*}
y^{\prime} & =F(x, y) \\
& =\frac{y \tan \left(\frac{y}{x}\right)}{x} \tag{1}
\end{align*}
\]

An ode of the form \(y^{\prime}=\frac{M(x, y)}{N(x, y)}\) is called homogeneous if the functions \(M(x, y)\) and \(N(x, y)\) are both homogeneous functions and of the same order. Recall that a function \(f(x, y)\) is homogeneous of order \(n\) if
\[
f\left(t^{n} x, t^{n} y\right)=t^{n} f(x, y)
\]

In this case, it can be seen that both \(M=y \tan \left(\frac{y}{x}\right)\) and \(N=x\) are both homogeneous and of the same order \(n=1\). Therefore this is a homogeneous ode. Since this ode is homogeneous, it is converted to separable ODE using the substitution \(u=\frac{y}{x}\), or \(y=u x\). Hence
\[
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x} x+u
\]

Applying the transformation \(y=u x\) to the above ODE in (1) gives
\[
\begin{aligned}
\frac{\mathrm{d} u}{\mathrm{~d} x} x+u & =u \tan (u) \\
\frac{\mathrm{d} u}{\mathrm{~d} x} & =\frac{u(x) \tan (u(x))-u(x)}{x}
\end{aligned}
\]

Or
\[
u^{\prime}(x)-\frac{u(x) \tan (u(x))-u(x)}{x}=0
\]

Or
\[
u^{\prime}(x) x-u(x) \tan (u(x))+u(x)=0
\]

Which is now solved as separable in \(u(x)\). Which is now solved in \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(\tan (u)-1)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(u)=u(\tan (u)-1)\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u(\tan (u)-1)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(\tan (u)-1)} d u & =\int \frac{1}{x} d x \\
\int^{u} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a & =\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a=\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a-\ln (x)-c_{2}=0
\]

Now \(u\) in the above solution is replaced back by \(y\) using \(u=\frac{y}{x}\) which results in the solution
\[
\int^{\frac{y}{x}} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a-\ln (x)-c_{2}=0
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a-\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 180: Slope field plot

Verification of solutions
\[
\int^{\frac{y}{x}} \frac{1}{-a\left(\tan \left(_a\right)-1\right)} d _a-\ln (x)-c_{2}=0
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve(diff(y(x),x)=y(x)/x*\operatorname{tan}(y(x)/x),y(x), singsol=all)

```
\[
y(x)=\operatorname{RootOf}\left(\ln (x)+c_{1}-\left(\int^{-^{Z}} \frac{1}{-a\left(-1+\tan \left(_a\right)\right)} d _a\right)\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.796 (sec). Leaf size: 33
DSolve[y'[x]==y[x]/x*Tan[y[x]/x],y[x],x,IncludeSingularSolutions -> True]
\[
\text { Solve }\left[\int_{1}^{\frac{y(x)}{x}} \frac{1}{K[1](\tan (K[1])-1)} d K[1]=\log (x)+c_{1}, y(x)\right]
\]

\section*{6 Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32}
6.1 problem 1(a) 852
6.2 problem 1(b) 859
6.3 problem 1(c) 865
6.4 problem 1(d) 872
6.5 problem 1(e) 878
6.6 problem 1(f) 884
6.7 problem 1(g) 892
6.8 problem 1(h) 898
6.9 problem 1(i) 904
6.10 problem 1(j) 910
6.11 problem 1(k) 917
6.12 problem 4 923

\section*{6.1 problem 1(a)}
\[
\text { 6.1.1 Solving as exact ode . } 852
\]

Internal problem ID [6225]
Internal file name [OUTPUT/5473_Sunday_June_05_2022_03_40_17_PM_80284096/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]
\[
\left(3 x^{2}-y^{2}\right) y^{\prime}-2 x y=0
\]

\subsection*{6.1.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(3 x^{2}-y^{2}\right) \mathrm{d} y & =(2 x y) \mathrm{d} x \\
(-2 x y) \mathrm{d} x+\left(3 x^{2}-y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-2 x y \\
& N(x, y)=3 x^{2}-y^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 x y) \\
& =-2 x
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 x^{2}-y^{2}\right) \\
& =6 x
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 x^{2}-y^{2}}((-2 x)-(6 x)) \\
& =-\frac{8 x}{3 x^{2}-y^{2}}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =-\frac{1}{2 y x}((6 x)-(-2 x)) \\
& =-\frac{4}{y}
\end{aligned}
\]

Since \(B\) does not depend on \(x\), it can be used to obtain an integrating factor. Let the integrating factor be \(\mu\). Then
\[
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{4}{y} \mathrm{~d} y}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-4 \ln (y)} \\
& =\frac{1}{y^{4}}
\end{aligned}
\]
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{4}}(-2 x y) \\
& =-\frac{2 x}{y^{3}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{4}}\left(3 x^{2}-y^{2}\right) \\
& =\frac{3 x^{2}-y^{2}}{y^{4}}
\end{aligned}
\]

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{2 x}{y^{3}}\right)+\left(\frac{3 x^{2}-y^{2}}{y^{4}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{2 x}{y^{3}} \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{y^{3}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{3 x^{2}}{y^{4}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{3 x^{2}-y^{2}}{y^{4}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{3 x^{2}-y^{2}}{y^{4}}=\frac{3 x^{2}}{y^{4}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=-\frac{1}{y^{2}}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{y^{2}}\right) \mathrm{d} y \\
f(y) & =\frac{1}{y}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{x^{2}}{y^{3}}+\frac{1}{y}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{x^{2}}{y^{3}}+\frac{1}{y}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\frac{x^{2}}{y^{3}}+\frac{1}{y}=c_{1} \tag{1}
\end{equation*}
\]

Figure 181: Slope field plot
Verification of solutions
\[
-\frac{x^{2}}{y^{3}}+\frac{1}{y}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 317
```

dsolve((3*x^2-y(x)^2)*diff(y(x),x)-2*x*y(x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\frac{1+\frac{\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{1}{3}}}{2}+\frac{2}{\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{1}{3}}}}{3 c_{1}} \\
& y(x)= \\
& -\frac{(1+i \sqrt{3})\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{2}{3}}-4 i \sqrt{3}-4\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}-\right.}{12\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{1}{3}} c_{1}} \\
& y(x) \\
& =\frac{(i \sqrt{3}-1)\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{2}{3}}-4 i \sqrt{3}+4\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+\varepsilon\right.}{12\left(12 \sqrt{3} x \sqrt{27 x^{2} c_{1}^{2}-4} c_{1}-108 x^{2} c_{1}^{2}+8\right)^{\frac{1}{3}} c_{1}}
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 60.184 (sec). Leaf size: 458
DSolve[(3*x^2-y[x]~2)*y'[x]-2*x*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\left.\left.\begin{array}{rl}
y(x) \rightarrow & \frac{1}{3}\left(\frac{\sqrt[3]{27 e^{c_{1}} x^{2}+3 \sqrt{81 e^{2 c_{1}} x^{4}-12 e^{4 c_{1}} x^{2}}-2 e^{3 c_{1}}}}{\sqrt[3]{2}}\right. \\
+\frac{\sqrt[3]{2} e^{2 c_{1}}}{\sqrt[3]{27 e^{c_{1}} x^{2}+3 \sqrt{81 e^{2 c_{1}} x^{4}-12 e^{4 c_{1}} x^{2}}}-2 e^{3 c_{1}}}
\end{array}\right) e^{c_{1}}\right) .
\]

\section*{6.2 problem 1(b)}
6.2.1 Solving as exact ode . 859

Internal problem ID [6226]
Internal file name [OUTPUT/5474_Sunday_June_05_2022_03_40_20_PM_72852053/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
```

[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel,
`2nd type`, `class B`]]

```
\[
x y+\left(x^{2}-x y\right) y^{\prime}=1
\]

\subsection*{6.2.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(x^{2}-x y\right) \mathrm{d} y & =(-x y+1) \mathrm{d} x \\
(x y-1) \mathrm{d} x+\left(x^{2}-x y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =x y-1 \\
N(x, y) & =x^{2}-x y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x y-1) \\
& =x
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}-x y\right) \\
& =2 x-y
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x(x-y)}((x)-(2 x-y)) \\
& =-\frac{1}{x}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}(x y-1) \\
& =\frac{x y-1}{x}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}\left(x^{2}-x y\right) \\
& =x-y
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{x y-1}{x}\right)+(x-y) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x y-1}{x} \mathrm{~d} x \\
\phi & =x y-\ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=x-y\). Therefore equation (4) becomes
\[
\begin{equation*}
x-y=x+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=-y
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-y) \mathrm{d} y \\
f(y) & =-\frac{y^{2}}{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=x y-\ln (x)-\frac{y^{2}}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=x y-\ln (x)-\frac{y^{2}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
x y-\ln (x)-\frac{y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
\]

Figure 182: Slope field plot

Verification of solutions
\[
x y-\ln (x)-\frac{y^{2}}{2}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact <- exact successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 39
```

dsolve((x*y(x)-1)+(x^2-x*y(x))*diff(y(x),x)=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=x-\sqrt{x^{2}-2 \ln (x)+2 c_{1}} \\
& y(x)=x+\sqrt{x^{2}-2 \ln (x)+2 c_{1}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.393 (sec). Leaf size: 68
DSolve[(\(x * y[x]-1)+\left(x^{\wedge} 2-x * y[x]\right) * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow x+\sqrt{-\frac{1}{x}} \sqrt{-x\left(x^{2}-2 \log (x)+c_{1}\right)} \\
& y(x) \rightarrow x+x\left(-\frac{1}{x}\right)^{3 / 2} \sqrt{-x\left(x^{2}-2 \log (x)+c_{1}\right)}
\end{aligned}
\]

\section*{6.3 problem 1(c)}
\[
\text { 6.3.1 Solving as exact ode . } 865
\]

Internal problem ID [6227]
Internal file name [OUTPUT/5475_Sunday_June_05_2022_03_40_22_PM_75831642/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_homogeneous, 'class G`], _rational]
\[
x y^{\prime}+y+3 x^{3} y^{4} y^{\prime}=0
\]

\subsection*{6.3.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(3 y^{4} x^{3}+x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(3 y^{4} x^{3}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =3 y^{4} x^{3}+x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{4} x^{3}+x\right) \\
& =9 y^{4} x^{2}+1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 y^{4} x^{3}+x}\left((1)-\left(9 y^{4} x^{2}+1\right)\right) \\
& =-\frac{9 y^{4} x}{3 y^{4} x^{2}+1}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}\left(\left(9 y^{4} x^{2}+1\right)-(1)\right) \\
& =9 y^{3} x^{2}
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(9 y^{4} x^{2}+1\right)-(1)}{x(y)-y\left(3 y^{4} x^{3}+x\right)} \\
& =-\frac{3}{y x}
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=-\frac{3}{t}
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{3}{t}\right) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-3 \ln (t)} \\
& =\frac{1}{t^{3}}
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=\frac{1}{x^{3} y^{3}}
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{3} y^{3}}(y) \\
& =\frac{1}{y^{2} x^{3}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{3} y^{3}}\left(3 y^{4} x^{3}+x\right) \\
& =\frac{3 y^{4} x^{2}+1}{x^{2} y^{3}}
\end{aligned}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{1}{y^{2} x^{3}}\right)+\left(\frac{3 y^{4} x^{2}+1}{x^{2} y^{3}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{y^{2} x^{3}} \mathrm{~d} x \\
\phi & =-\frac{1}{2 y^{2} x^{2}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{y^{3} x^{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{3 y^{4} x^{2}+1}{x^{2} y^{3}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{3 y^{4} x^{2}+1}{x^{2} y^{3}}=\frac{1}{y^{3} x^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=3 y
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(3 y) \mathrm{d} y \\
f(y) & =\frac{3 y^{2}}{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{1}{2 y^{2} x^{2}}+\frac{3 y^{2}}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{1}{2 y^{2} x^{2}}+\frac{3 y^{2}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\frac{1}{2 y^{2} x^{2}}+\frac{3 y^{2}}{2}=c_{1} \tag{1}
\end{equation*}
\]

Figure 183: Slope field plot

\section*{Verification of solutions}
\[
-\frac{1}{2 y^{2} x^{2}}+\frac{3 y^{2}}{2}=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous G <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.156 (sec). Leaf size: 133
dsolve(\(x * \operatorname{diff}(y(x), x)+y(x)+3 * x^{\wedge} 3 * y(x) \wedge 4 * \operatorname{diff}(y(x), x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)=-\frac{\sqrt{6} \sqrt{x c_{1}\left(x-\sqrt{12 c_{1}^{2}+x^{2}}\right)}}{6 x c_{1}} \\
& y(x)=\frac{\sqrt{6} \sqrt{x c_{1}\left(x-\sqrt{12 c_{1}^{2}+x^{2}}\right)}}{6 x c_{1}} \\
& y(x)=-\frac{\sqrt{6} \sqrt{x c_{1}\left(x+\sqrt{12 c_{1}^{2}+x^{2}}\right)}}{6 x c_{1}} \\
& y(x)=\frac{\sqrt{6} \sqrt{x c_{1}\left(x+\sqrt{12 c_{1}^{2}+x^{2}}\right)}}{6 x c_{1}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 9.711 (sec). Leaf size: 166
DSolve \(\left[x * y\right.\) ' \([x]+y[x]+3 * x^{\wedge} 3 * y[x] \sim 4 * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{c_{1}-\frac{\sqrt{x^{2}\left(3+c_{1}^{2} x^{2}\right)}}{x^{2}}}}{\sqrt{3}} \\
& y(x) \rightarrow \frac{\sqrt{c_{1}-\frac{\sqrt{x^{2}\left(3+c_{1}{ }^{2} x^{2}\right)}}{x^{2}}}}{\sqrt{3}} \\
& y(x) \rightarrow-\frac{\sqrt{\frac{\sqrt{x^{2}\left(3+c_{1}^{2} x^{2}\right)}}{x^{2}}+c_{1}}}{\sqrt{3}} \\
& y(x) \rightarrow \frac{\sqrt{\frac{\sqrt{x^{2}\left(3+c_{1} x^{2}\right)}}{x^{2}}+c_{1}}}{\sqrt{3}} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{6.4 problem 1(d)}
6.4.1 Solving as exact ode . 872

Internal problem ID [6228]
Internal file name [OUTPUT/5476_Sunday_June_05_2022_03_40_25_PM_67230230/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(d).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
\[
\left[\left[_1 \text { st_order, }{ }^{-} \text {_with_symmetry_ }[F(x) * G(y), 0] \cdot\right]\right]
\]
\[
\left(\mathrm{e}^{x} \cot (y)+2 y \csc (y)\right) y^{\prime}=-\mathrm{e}^{x}
\]

\subsection*{6.4.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\mathrm{e}^{x} \cot (y)+2 y \csc (y)\right) \mathrm{d} y & =\left(-\mathrm{e}^{x}\right) \mathrm{d} x \\
\left(\mathrm{e}^{x}\right) \mathrm{d} x+\left(\mathrm{e}^{x} \cot (y)+2 y \csc (y)\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =\mathrm{e}^{x} \\
N(x, y) & =\mathrm{e}^{x} \cot (y)+2 y \csc (y)
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\mathrm{e}^{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\mathrm{e}^{x} \cot (y)+2 y \csc (y)\right) \\
& =\mathrm{e}^{x} \cot (y)
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{\sin (y)}{\mathrm{e}^{x} \cos (y)+2 y}\left((0)-\left(\mathrm{e}^{x} \cot (y)\right)\right) \\
& =-\frac{\mathrm{e}^{x} \cos (y)}{\mathrm{e}^{x} \cos (y)+2 y}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\mathrm{e}^{-x}\left(\left(\mathrm{e}^{x} \cot (y)\right)-(0)\right) \\
& =\cot (y)
\end{aligned}
\]

Since \(B\) does not depend on \(x\), it can be used to obtain an integrating factor. Let the integrating factor be \(\mu\). Then
\[
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \cot (y) \mathrm{d} y}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\ln (\sin (y))} \\
& =\sin (y)
\end{aligned}
\]
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\sin (y)\left(\mathrm{e}^{x}\right) \\
& =\mathrm{e}^{x} \sin (y)
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\sin (y)\left(\mathrm{e}^{x} \cot (y)+2 y \csc (y)\right) \\
& =\mathrm{e}^{x} \cos (y)+2 y
\end{aligned}
\]

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\mathrm{e}^{x} \sin (y)\right)+\left(\mathrm{e}^{x} \cos (y)+2 y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \mathrm{e}^{x} \sin (y) \mathrm{d} x \\
\phi & =\mathrm{e}^{x} \sin (y)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{x} \cos (y)+2 y\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{x} \cos (y)+2 y=\mathrm{e}^{x} \cos (y)+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=2 y
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(2 y) \mathrm{d} y \\
f(y) & =y^{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\mathrm{e}^{x} \sin (y)+y^{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\mathrm{e}^{x} \sin (y)+y^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\mathrm{e}^{x} \sin (y)+y^{2}=c_{1} \tag{1}
\end{equation*}
\]

Figure 184: Slope field plot

Verification of solutions
\[
\mathrm{e}^{x} \sin (y)+y^{2}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact <- exact successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 15
dsolve \((\exp (x)+(\exp (x) * \cot (y(x))+2 * y(x) * \csc (y(x))) * \operatorname{diff}(y(x), x)=0, y(x)\), singsol=all)
\[
\mathrm{e}^{x} \sin (y(x))+y(x)^{2}+c_{1}=0
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.322 (sec). Leaf size: 18
DSolve \([\operatorname{Exp}[x]+(\operatorname{Exp}[x] * \operatorname{Cot}[y[x]]+2 * y[x] * \operatorname{Csc}[y[x]]) * y '[x]==0, y[x], x\), IncludeSingularSolutions
\[
\text { Solve }\left[y(x)^{2}+e^{x} \sin (y(x))=c_{1}, y(x)\right]
\]

\section*{6.5 problem 1(e)}
6.5.1 Solving as exact ode . 878
6.5.2 Maple step by step solution . 882

Internal problem ID [6229]
Internal file name [OUTPUT/5477_Sunday_June_05_2022_03_40_39_PM_65128346/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact"
Maple gives the following as the ode type
[_separable]
\[
(x+2) \sin (y)+y^{\prime} \cos (y) x=0
\]

\subsection*{6.5.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(-\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =\left(\frac{x+2}{x}\right) \mathrm{d} x \\
\left(-\frac{x+2}{x}\right) \mathrm{d} x+\left(-\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{x+2}{x} \\
& N(x, y)=-\frac{\cos (y)}{\sin (y)}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{x+2}{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{\cos (y)}{\sin (y)}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{x+2}{x} \mathrm{~d} x \\
\phi & =-x-2 \ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=-\frac{\cos (y)}{\sin (y)}\). Therefore equation (4) becomes
\[
\begin{equation*}
-\frac{\cos (y)}{\sin (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =-\frac{\cos (y)}{\sin (y)} \\
& =-\cot (y)
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-\cot (y)) \mathrm{d} y \\
f(y) & =-\ln (\sin (y))+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-x-2 \ln (x)-\ln (\sin (y))+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-x-2 \ln (x)-\ln (\sin (y))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
-x-2 \ln (x)-\ln (\sin (y))=c_{1} \tag{1}
\end{equation*}
\]

Figure 185: Slope field plot

Verification of solutions
\[
-x-2 \ln (x)-\ln (\sin (y))=c_{1}
\]

Verified OK.

\subsection*{6.5.2 Maple step by step solution}

Let's solve
\[
(x+2) \sin (y)+y^{\prime} \cos (y) x=0
\]
- Highest derivative means the order of the ODE is 1

\section*{\(y^{\prime}\)}
- \(\quad\) Separate variables
\[
\frac{y^{\prime} \cos (y)}{\sin (y)}=-\frac{x+2}{x}
\]
- Integrate both sides with respect to \(x\) \(\int \frac{y^{\prime} \cos (y)}{\sin (y)} d x=\int-\frac{x+2}{x} d x+c_{1}\)
- Evaluate integral
\(\ln (\sin (y))=-x-2 \ln (x)+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\arcsin \left(\frac{\mathrm{e}^{-x+c_{1}}}{x^{2}}\right)\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve \(((x+2) * \sin (y(x))+x * \cos (y(x)) * \operatorname{diff}(y(x), x)=0, y(x), \quad\) singsol \(=a l l)\)
\[
y(x)=\arcsin \left(\frac{\mathrm{e}^{-x}}{c_{1} x^{2}}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 51.335 (sec). Leaf size: 23
DSolve \(\left[(x+2) * \operatorname{Sin}[y[x]]+x * \operatorname{Cos}[y[x]] * y{ }^{\prime}[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \arcsin \left(\frac{e^{-x+c_{1}}}{x^{2}}\right) \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{6.6 problem 1(f)}
6.6.1 Solving as exact ode . 884

Internal problem ID [6230]
Internal file name [OUTPUT/5478_Sunday_June_05_2022_03_40_42_PM_72967215/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational]
\[
y+\left(x-2 y^{3} x^{2}\right) y^{\prime}=0
\]

\subsection*{6.6.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(-2 y^{3} x^{2}+x\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(-2 y^{3} x^{2}+x\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=y \\
& N(x, y)=-2 y^{3} x^{2}+x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-2 y^{3} x^{2}+x\right) \\
& =-4 x y^{3}+1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{-2 y^{3} x^{2}+x}\left((1)-\left(-4 x y^{3}+1\right)\right) \\
& =-\frac{4 y^{3}}{2 x y^{3}-1}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}\left(\left(-4 x y^{3}+1\right)-(1)\right) \\
& =-4 y^{2} x
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{\left(-4 x y^{3}+1\right)-(1)}{x(y)-y\left(-2 y^{3} x^{2}+x\right)} \\
& =-\frac{2}{y x}
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=-\frac{2}{t}
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int\left(-\frac{2}{t}\right) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-2 \ln (t)} \\
& =\frac{1}{t^{2}}
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=\frac{1}{y^{2} x^{2}}
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y^{2} x^{2}}(y) \\
& =\frac{1}{y x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y^{2} x^{2}}\left(-2 y^{3} x^{2}+x\right) \\
& =\frac{-2 x y^{3}+1}{y^{2} x}
\end{aligned}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{1}{y x^{2}}\right)+\left(\frac{-2 x y^{3}+1}{y^{2} x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{1}{y x^{2}} \mathrm{~d} x \\
\phi & =-\frac{1}{y x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{y^{2} x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{-2 x y^{3}+1}{y^{2} x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{-2 x y^{3}+1}{y^{2} x}=\frac{1}{y^{2} x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=-2 y
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(-2 y) \mathrm{d} y \\
f(y) & =-y^{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{1}{y x}-y^{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{1}{y x}-y^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
-\frac{1}{x y}-y^{2}=c_{1} \tag{1}
\end{equation*}
\]

Figure 186: Slope field plot

Verification of solutions
\[
-\frac{1}{x y}-y^{2}=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous G <- homogeneous successful`

```

\author{
\(\checkmark\) Solution by Maple
}

Time used: 0.125 (sec). Leaf size: 320
```

dsolve(y(x)+(x-2*x^2*y(x)^3)*diff (y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{12^{\frac{1}{3}}\left(12^{\frac{1}{3}} c_{1} x^{2}+\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{1}^{3}-4 x^{2}}{c_{1}}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{2}{3}}\right)}{6 c_{1} x\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{1}^{3}-4 x^{2}}{c_{1}}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{1}{3}}}
\]
\[
y(x)=\frac{2^{\frac{2}{3}}\left((-i \sqrt{3}-1)\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{1}^{3}-4 x^{2}}{c_{1}}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{2}{3}}+2^{\frac{2}{3}} x^{2} c_{1}\left(i 3^{\frac{5}{6}}-3^{\frac{1}{3}}\right)\right) 3^{\frac{1}{3}}}{12\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{1}^{3}-4 x^{2}}{c_{1}}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{1}{3}} x c_{1}}
\]
\[
y(x)=-\frac{2^{\frac{2}{3}}\left((1-i \sqrt{3})\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{c_{1}^{3}-4 x^{2}}^{c_{1}}}{}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{2}{3}}+2^{\frac{2}{3}}\left(i 3^{\frac{5}{6}}+3^{\frac{1}{3}}\right) x^{2} c_{1}\right) 3^{\frac{1}{3}}}{12\left(-9 x^{2}\left(-\frac{\sqrt{3} \sqrt{\frac{27 c_{1}^{3}-4 x^{2}}{c_{1}}}}{9}+c_{1}\right) c_{1}^{2}\right)^{\frac{1}{3}} x c_{1}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 28.221 (sec). Leaf size: 327
DSolve \(\left[y[x]+\left(x-2 * x^{\wedge} 2 * y[x] \wedge 3\right) * y^{\prime}[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x) \rightarrow \frac{2 \sqrt[3]{3} c_{1} x^{2}+\sqrt[3]{2}\left(-9 x^{2}+\sqrt{81 x^{4}-12 c_{1}^{3} x^{6}}\right)^{2 / 3}}{6^{2 / 3} x \sqrt[3]{-9 x^{2}+\sqrt{81 x^{4}-12 c_{1}^{3} x^{6}}}}\)
\(y(x) \rightarrow \frac{i \sqrt[3]{3}(\sqrt{3}+i)\left(-18 x^{2}+2 \sqrt{81 x^{4}-12 c_{1}^{3} x^{6}}\right)^{2 / 3}-2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}+3 i) c_{1} x^{2}}{12 x \sqrt[3]{-9 x^{2}+\sqrt{81 x^{4}-12 c_{1}^{3} x^{6}}}}\)
\(y(x) \rightarrow \frac{\sqrt[3]{3}(-1-i \sqrt{3})\left(-18 x^{2}+2 \sqrt{81 x^{4}-12 c_{1}{ }^{3} x^{6}}\right)^{2 / 3}-2 \sqrt[3]{2} \sqrt[6]{3}(\sqrt{3}-3 i) c_{1} x^{2}}{12 x \sqrt[3]{-9 x^{2}+\sqrt{81 x^{4}-12 c_{1}{ }^{3} x^{6}}}}\)
\(y(x) \rightarrow 0\)

\section*{6.7 problem 1(g)}
6.7.1 Solving as exact ode

Internal problem ID [6231]
Internal file name [OUTPUT/5479_Sunday_June_05_2022_03_40_47_PM_13544762/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[[_homogeneous, `class G`], _rational, _Bernoulli]
\[
3 y^{2}+2 x y y^{\prime}=-x
\]

\subsection*{6.7.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(2 x y) \mathrm{d} y & =\left(-3 y^{2}-x\right) \mathrm{d} x \\
\left(3 y^{2}+x\right) \mathrm{d} x+(2 x y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =3 y^{2}+x \\
N(x, y) & =2 x y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(3 y^{2}+x\right) \\
& =6 y
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(2 x y) \\
& =2 y
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 y x}((6 y)-(2 y)) \\
& =\frac{2}{x}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{2}{x} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{2 \ln (x)} \\
& =x^{2}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =x^{2}\left(3 y^{2}+x\right) \\
& =x^{2}\left(3 y^{2}+x\right)
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =x^{2}(2 x y) \\
& =2 y x^{3}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(x^{2}\left(3 y^{2}+x\right)\right)+\left(2 y x^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x^{2}\left(3 y^{2}+x\right) \mathrm{d} x \\
\phi & =y^{2} x^{3}+\frac{1}{4} x^{4}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 y x^{3}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=2 y x^{3}\). Therefore equation (4) becomes
\[
\begin{equation*}
2 y x^{3}=2 y x^{3}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=y^{2} x^{3}+\frac{1}{4} x^{4}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=y^{2} x^{3}+\frac{1}{4} x^{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
x^{3} y^{2}+\frac{x^{4}}{4}=c_{1} \tag{1}
\end{equation*}
\]

Figure 187: Slope field plot

Verification of solutions
\[
x^{3} y^{2}+\frac{x^{4}}{4}=c_{1}
\]

Verified OK.
Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
<- Bernoulli successful`
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 41
dsolve \(((x+3 * y(x) \sim 2)+(2 * x * y(x)) * \operatorname{diff}(y(x), x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)=-\frac{\sqrt{-x\left(x^{4}-4 c_{1}\right)}}{2 x^{2}} \\
& y(x)=\frac{\sqrt{-x\left(x^{4}-4 c_{1}\right)}}{2 x^{2}}
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.206 (sec). Leaf size: 55
DSolve \([(x+3 * y[x] \sim 2)+(2 * x * y[x]) * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-\frac{\sqrt{-x^{4}+4 c_{1}}}{2 x^{3 / 2}} \\
& y(x) \rightarrow \frac{\sqrt{-x^{4}+4 c_{1}}}{2 x^{3 / 2}}
\end{aligned}
\]

\section*{6.8 problem 1(h)}
6.8.1 Solving as exact ode

898
Internal problem ID [6232]
Internal file name [OUTPUT/5480_Sunday_June_05_2022_03_40_49_PM_66946067/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
```

[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]

```
\[
y+\left(2 x-\mathrm{e}^{y} y\right) y^{\prime}=0
\]

\subsection*{6.8.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(2 x-\mathrm{e}^{y} y\right) \mathrm{d} y & =(-y) \mathrm{d} x \\
(y) \mathrm{d} x+\left(2 x-\mathrm{e}^{y} y\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =y \\
N(x, y) & =2 x-\mathrm{e}^{y} y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(2 x-\mathrm{e}^{y} y\right) \\
& =2
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{2 x-\mathrm{e}^{y} y}((1)-(2)) \\
& =\frac{1}{\mathrm{e}^{y} y-2 x}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y}((2)-(1)) \\
& =\frac{1}{y}
\end{aligned}
\]

Since \(B\) does not depend on \(x\), it can be used to obtain an integrating factor. Let the integrating factor be \(\mu\). Then
\[
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int \frac{1}{y} \mathrm{~d} y}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\ln (y)} \\
& =y
\end{aligned}
\]
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =y(y) \\
& =y^{2}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =y\left(2 x-\mathrm{e}^{y} y\right) \\
& =-y^{2} \mathrm{e}^{y}+2 x y
\end{aligned}
\]

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(y^{2}\right)+\left(-y^{2} \mathrm{e}^{y}+2 x y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int y^{2} \mathrm{~d} x \\
\phi & =y^{2} x+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=2 x y+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=-y^{2} \mathrm{e}^{y}+2 x y\). Therefore equation (4) becomes
\[
\begin{equation*}
-y^{2} \mathrm{e}^{y}+2 x y=2 x y+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=-y^{2} \mathrm{e}^{y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-y^{2} \mathrm{e}^{y}\right) \mathrm{d} y \\
f(y) & =-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=y^{2} x-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=y^{2} x-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1} \tag{1}
\end{equation*}
\]

Figure 188: Slope field plot

Verification of solutions
\[
x y^{2}-\left(y^{2}-2 y+2\right) \mathrm{e}^{y}=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear <- 1st order linear successful <- inverse linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 34
```

dsolve(y(x)+(2*x-y(x)*exp(y(x)))*diff (y(x),x)=0,y(x), singsol=all)

```
\[
\frac{\left(-y(x)^{2}+2 y(x)-2\right) \mathrm{e}^{y(x)}+x y(x)^{2}-c_{1}}{y(x)^{2}}=0
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.259 (sec). Leaf size: 32
DSolve \(\left[y[x]+(2 * x-y[x] * \operatorname{Exp}[y[x]]) * y^{\prime}[x]==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[x=\frac{e^{y(x)}\left(y(x)^{2}-2 y(x)+2\right)}{y(x)^{2}}+\frac{c_{1}}{y(x)^{2}}, y(x)\right]
\]

\section*{6.9 problem 1(i)}
6.9.1 Solving as exact ode

904
Internal problem ID [6233]
Internal file name [OUTPUT/5481_Sunday_June_05_2022_03_40_52_PM_86106885/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(i).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[`y=_G(x, \(\left.\left.y^{\prime}\right)^{`}\right]\)
\[
y \ln (y)-2 x y+(x+y) y^{\prime}=0
\]

\subsection*{6.9.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(x+y) \mathrm{d} y & =(-\ln (y) y+2 x y) \mathrm{d} x \\
(\ln (y) y-2 x y) \mathrm{d} x+(x+y) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =\ln (y) y-2 x y \\
N(x, y) & =x+y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(\ln (y) y-2 x y) \\
& =1+\ln (y)-2 x
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x+y) \\
& =1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x+y}((1+\ln (y)-2 x)-(1)) \\
& =\frac{\ln (y)-2 x}{x+y}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{y(\ln (y)-2 x)}((1)-(1+\ln (y)-2 x)) \\
& =-\frac{1}{y}
\end{aligned}
\]

Since \(B\) does not depend on \(x\), it can be used to obtain an integrating factor. Let the integrating factor be \(\mu\). Then
\[
\begin{aligned}
\mu & =e^{\int B \mathrm{~d} y} \\
& =e^{\int-\frac{1}{y} \mathrm{~d} y}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-\ln (y)} \\
& =\frac{1}{y}
\end{aligned}
\]
\(M\) and \(N\) are now multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{y}(\ln (y) y-2 x y) \\
& =\ln (y)-2 x
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{y}(x+y) \\
& =\frac{x+y}{y}
\end{aligned}
\]

So now a modified ODE is obtained from the original ODE which will be exact and can be solved using the standard method. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
(\ln (y)-2 x)+\left(\frac{x+y}{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \ln (y)-2 x \mathrm{~d} x \\
\phi & =x(\ln (y)-x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{x}{y}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{x+y}{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{x+y}{y}=\frac{x}{y}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=1
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(1) \mathrm{d} y \\
f(y) & =y+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=x(\ln (y)-x)+y+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=x(\ln (y)-x)+y
\]

The solution becomes
\[
y=\mathrm{e}^{-\frac{x \text { LambertW }\left(\frac{e^{\frac{x^{2}+c_{1}}{x}}}{x}\right)-x^{2}-c_{1}}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 189: Slope field plot
Verification of solutions

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact <- exact successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 36
```

dsolve((y(x)*\operatorname{ln}(y(x))-2*x*y(x))+(x+y(x))*diff(y(x),x)=0,y(x), singsol=all)

```

\(\sqrt{ }\) Solution by Mathematica
Time used: 1.073 (sec). Leaf size: 22
DSolve \([(y[x] * \log [y[x]]-2 * x * y[x])+(x+y[x]) * y '[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x W\left(\frac{e^{x+\frac{c_{1}}{x}}}{x}\right)
\]

\subsection*{6.10 problem 1(j)}
6.10.1 Solving as exact ode . 910

Internal problem ID [6234]
Internal file name [OUTPUT/5482_Sunday_June_05_2022_03_40_55_PM_15432646/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(j).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, [_Abel, `2nd type`, `class B`]]
\[
y^{2}+x y+\left(x^{2}+x y+1\right) y^{\prime}=-1
\]

\subsection*{6.10.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(x^{2}+x y+1\right) \mathrm{d} y & =\left(-x y-y^{2}-1\right) \mathrm{d} x \\
\left(x y+y^{2}+1\right) \mathrm{d} x+\left(x^{2}+x y+1\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =x y+y^{2}+1 \\
N(x, y) & =x^{2}+x y+1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y+y^{2}+1\right) \\
& =2 y+x
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}+x y+1\right) \\
& =y+2 x
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}+x y+1}((2 y+x)-(y+2 x)) \\
& =\frac{-x+y}{x^{2}+x y+1}
\end{aligned}
\]

Since \(A\) depends on \(y\), it can not be used to obtain an integrating factor. We will now try a second method to find an integrating factor. Let
\[
\begin{aligned}
B & =\frac{1}{M}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) \\
& =\frac{1}{x y+y^{2}+1}((y+2 x)-(2 y+x)) \\
& =\frac{x-y}{x y+y^{2}+1}
\end{aligned}
\]

Since \(B\) depends on \(x\), it can not be used to obtain an integrating factor. We will now try a third method to find an integrating factor. Let
\[
R=\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N}
\]
\(R\) is now checked to see if it is a function of only \(t=x y\). Therefore
\[
\begin{aligned}
R & =\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{x M-y N} \\
& =\frac{(y+2 x)-(2 y+x)}{x\left(x y+y^{2}+1\right)-y\left(x^{2}+x y+1\right)} \\
& =1
\end{aligned}
\]

Replacing all powers of terms \(x y\) by \(t\) gives
\[
R=1
\]

Since \(R\) depends on \(t\) only, then it can be used to find an integrating factor. Let the integrating factor be \(\mu\) then
\[
\begin{aligned}
\mu & =e^{\int R \mathrm{~d} t} \\
& =e^{\int(1) \mathrm{d} t}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{t} \\
& =\mathrm{e}^{t}
\end{aligned}
\]

Now \(t\) is replaced back with \(x y\) giving
\[
\mu=\mathrm{e}^{x y}
\]

Multiplying \(M\) and \(N\) by this integrating factor gives new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) so not to confuse them with the original \(M\) and \(N\)
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x y}\left(x y+y^{2}+1\right) \\
& =\left(x y+y^{2}+1\right) \mathrm{e}^{x y}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x y}\left(x^{2}+x y+1\right) \\
& =\left(x^{2}+x y+1\right) \mathrm{e}^{x y}
\end{aligned}
\]

A modified ODE is now obtained from the original ODE, which is exact and can solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\left(x y+y^{2}+1\right) \mathrm{e}^{x y}\right)+\left(\left(x^{2}+x y+1\right) \mathrm{e}^{x y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int\left(x y+y^{2}+1\right) \mathrm{e}^{x y} \mathrm{~d} x \\
\phi & =(x+y) \mathrm{e}^{x y}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{align*}
\frac{\partial \phi}{\partial y} & =\mathrm{e}^{x y}+(x+y) x \mathrm{e}^{x y}+f^{\prime}(y) \tag{4}\\
& =\left(x^{2}+x y+1\right) \mathrm{e}^{x y}+f^{\prime}(y)
\end{align*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\left(x^{2}+x y+1\right) \mathrm{e}^{x y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\left(x^{2}+x y+1\right) \mathrm{e}^{x y}=\left(x^{2}+x y+1\right) \mathrm{e}^{x y}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=(x+y) \mathrm{e}^{x y}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=(x+y) \mathrm{e}^{x y}
\]

The solution becomes
\[
y=\frac{-x^{2}+\text { LambertW }\left(c_{1} x \mathrm{e}^{x^{2}}\right)}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-x^{2}+\text { LambertW }\left(c_{1} x \mathrm{e}^{x^{2}}\right)}{x} \tag{1}
\end{equation*}
\]

Figure 190: Slope field plot

Verification of solutions
\[
y=\frac{-x^{2}+\text { LambertW }\left(c_{1} x \mathrm{e}^{x^{2}}\right)}{x}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying Chini differential order: 1; looking for linear symmetries trying exact trying Abel <- Abel successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve((y(x)^2+x*y(x)+1)+(x^2+x*y(x)+1)*diff (y (x),x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{-x^{2}+\text { LambertW }\left(-2 x c_{1} \mathrm{e}^{(x-1)(x+1)}\right)}{x}
\]

Solution by Mathematica
Time used: 6.606 (sec). Leaf size: 56
DSolve \(\left[\left(y[x]{ }^{\wedge} 2+x * y[x]+1\right)+\left(x^{\wedge} 2+x * y[x]+1\right) * y\right.\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-x+\frac{W\left(x\left(-e^{x^{2}-1+c_{1}}\right)\right)}{x} \\
& y(x) \rightarrow-x \\
& y(x) \rightarrow \frac{W\left(-e^{x^{2}-1} x\right)}{x}-x
\end{aligned}
\]

\subsection*{6.11 problem 1(k)}
6.11.1 Solving as exact ode

Internal problem ID [6235]
Internal file name [OUTPUT/5483_Sunday_June_05_2022_03_40_58_PM_37883864/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 1(k).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactWithIntegrationFactor"
Maple gives the following as the ode type
[_rational, _Bernoulli]
\[
y^{3} x+3 y^{\prime} y^{2}=-x^{3}
\]

\subsection*{6.11.1 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(3 y^{2}\right) \mathrm{d} y & =\left(-x y^{3}-x^{3}\right) \mathrm{d} x \\
\left(x y^{3}+x^{3}\right) \mathrm{d} x+\left(3 y^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =x y^{3}+x^{3} \\
N(x, y) & =3 y^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(x y^{3}+x^{3}\right) \\
& =3 y^{2} x
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(3 y^{2}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{3 y^{2}}\left(\left(3 y^{2} x\right)-(0)\right) \\
& =x
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int x \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{\frac{x^{2}}{2}} \\
& =\mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{\frac{x^{2}}{2}}\left(x y^{3}+x^{3}\right) \\
& =x\left(y^{3}+x^{2}\right) \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{\frac{x^{2}}{2}}\left(3 y^{2}\right) \\
& =3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(x\left(y^{3}+x^{2}\right) \mathrm{e}^{\frac{x^{2}}{2}}\right)+\left(3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int x\left(y^{3}+x^{2}\right) \mathrm{e}^{\frac{x^{2}}{2}} \mathrm{~d} x \\
\phi & =\left(y^{3}+x^{2}-2\right) \mathrm{e}^{\frac{x^{2}}{2}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}\). Therefore equation (4) becomes
\[
\begin{equation*}
3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}=3 y^{2} \mathrm{e}^{\frac{x^{2}}{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\left(y^{3}+x^{2}-2\right) \mathrm{e}^{\frac{x^{2}}{2}}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\left(y^{3}+x^{2}-2\right) \mathrm{e}^{\frac{x^{2}}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\left(y^{3}+x^{2}-2\right) \mathrm{e}^{\frac{x^{2}}{2}}=c_{1} \tag{1}
\end{equation*}
\]

Figure 191: Slope field plot

Verification of solutions
\[
\left(y^{3}+x^{2}-2\right) \mathrm{e}^{\frac{x^{2}}{2}}=c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 81
dsolve \(\left(\left(x^{\wedge} 3+x * y(x)^{\wedge} 3\right)+\left(3 * y(x)^{\wedge} 2\right) * \operatorname{diff}(y(x), x)=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
& y(x)=\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}-x^{2}+2\right)^{\frac{1}{3}} \\
& y(x)=-\frac{\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}-x^{2}+2\right)^{\frac{1}{3}}(1+i \sqrt{3})}{2} \\
& y(x)=\frac{\left(\mathrm{e}^{-\frac{x^{2}}{2}} c_{1}-x^{2}+2\right)^{\frac{1}{3}}(i \sqrt{3}-1)}{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 10.689 (sec). Leaf size: 95
DSolve[(\(\left.x^{\wedge} 3+x * y[x] \sim 3\right)+(3 * y[x] \sim 2) * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \sqrt[3]{-x^{2}+c_{1} e^{-\frac{x^{2}}{2}}+2} \\
& y(x) \rightarrow-\sqrt[3]{-1} \sqrt[3]{-x^{2}+c_{1} e^{-\frac{x^{2}}{2}}+2} \\
& y(x) \rightarrow(-1)^{2 / 3} \sqrt[3]{-x^{2}+c_{1} e^{-\frac{x^{2}}{2}}+2}
\end{aligned}
\]

\subsection*{6.12 problem 4}
6.12.1 Solving as first order ode lie symmetry calculated ode

Internal problem ID [6236]
Internal file name [OUTPUT/5484_Sunday_June_05_2022_03_41_00_PM_64600096/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.8. Integrating Factors. Page 32
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first__order_ode__lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class G`]]
\[
y^{\prime}-\frac{2 y}{x}-\frac{x^{3}}{y}-x \tan \left(\frac{y}{x^{2}}\right)=0
\]

\subsection*{6.12.1 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}}{x y} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & +\frac{\left(x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}\right)\left(b_{3}-a_{2}\right)}{x y}-\frac{\left(x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}\right)^{2} a_{3}}{x^{2} y^{2}} \\
& -\left(\frac{2 x \tan \left(\frac{y}{x^{2}}\right) y-\frac{2 y^{2}\left(1+\tan \left(\frac{y}{x^{2}}\right)^{2}\right)}{x}+4 x^{3}}{x y}\right. \\
& \left.-\frac{x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}}{x^{2} y}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(\frac{\left(1+\tan \left(\frac{y}{x^{2}}\right)^{2}\right) y+x^{2} \tan \left(\frac{y}{x^{2}}\right)+4 y}{x y}\right. \\
& \left.-\frac{x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}}{y^{2} x}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{\tan \left(\frac{y}{x^{2}}\right)^{2} x^{4} y^{2} a_{3}+2 \tan \left(\frac{y}{x^{2}}\right) x^{6} y a_{3}+x^{8} a_{3}+\tan \left(\frac{y}{x^{2}}\right)^{2} x^{2} y^{2} b_{2}-2 \tan \left(\frac{y}{x^{2}}\right)^{2} x y^{3} a_{2}+\tan \left(\frac{y}{x^{2}}\right)^{2} x y^{3} b_{3}-}{=0}
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -\tan \left(\frac{y}{x^{2}}\right)^{2} x^{4} y^{2} a_{3}-2 \tan \left(\frac{y}{x^{2}}\right) x^{6} y a_{3}-x^{8} a_{3}-\tan \left(\frac{y}{x^{2}}\right)^{2} x^{2} y^{2} b_{2} \\
& +2 \tan \left(\frac{y}{x^{2}}\right)^{2} x y^{3} a_{2}-\tan \left(\frac{y}{x^{2}}\right)^{2} x y^{3} b_{3}+2 \tan \left(\frac{y}{x^{2}}\right)^{2} y^{4} a_{3} \\
& -2 \tan \left(\frac{y}{x^{2}}\right) x^{3} y^{2} a_{2}+\tan \left(\frac{y}{x^{2}}\right) x^{3} y^{2} b_{3}-5 \tan \left(\frac{y}{x^{2}}\right) x^{2} y^{3} a_{3} \tag{6E}\\
& +x^{6} b_{2}-4 x^{5} y a_{2}+2 x^{5} y b_{3}-7 x^{4} y^{2} a_{3}-\tan \left(\frac{y}{x^{2}}\right)^{2} x y^{2} b_{1} \\
& +2 \tan \left(\frac{y}{x^{2}}\right)^{2} y^{3} a_{1}-\tan \left(\frac{y}{x^{2}}\right) x^{2} y^{2} a_{1}+x^{5} b_{1}-3 x^{4} y a_{1} \\
& -2 b_{2} y^{2} x^{2}+2 x y^{3} a_{2}-x y^{3} b_{3}-3 x y^{2} b_{1}+4 y^{3} a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\left\{x, y, \tan \left(\frac{y}{x^{2}}\right)\right\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}, \tan \left(\frac{y}{x^{2}}\right)=v_{3}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} v_{2} a_{3}-v_{3}^{2} v_{1}^{4} v_{2}^{2} a_{3}-4 v_{1}^{5} v_{2} a_{2}-2 v_{3} v_{1}^{3} v_{2}^{2} a_{2}+2 v_{3}^{2} v_{1} v_{2}^{3} a_{2} \\
& -7 v_{1}^{4} v_{2}^{2} a_{3}-5 v_{3} v_{1}^{2} v_{2}^{3} a_{3}+2 v_{3}^{2} v_{2}^{4} a_{3}+v_{1}^{6} b_{2}-v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{2}+2 v_{1}^{5} v_{2} b_{3} \tag{7E}\\
& +v_{3} v_{1}^{3} v_{2}^{2} b_{3}-v_{3}^{2} v_{1} v_{2}^{3} b_{3}-3 v_{1}^{4} v_{2} a_{1}-v_{3} v_{1}^{2} v_{2}^{2} a_{1}+2 v_{3}^{2} v_{2}^{3} a_{1}+v_{1}^{5} b_{1} \\
& -v_{3}^{2} v_{1} v_{2}^{2} b_{1}+2 v_{1} v_{2}^{3} a_{2}-2 b_{2} v_{2}^{2} v_{1}^{2}-v_{1} v_{2}^{3} b_{3}+4 v_{2}^{3} a_{1}-3 v_{1} v_{2}^{2} b_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}, v_{3}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& -v_{1}^{8} a_{3}-2 v_{3} v_{1}^{6} v_{2} a_{3}+v_{1}^{6} b_{2}+\left(-4 a_{2}+2 b_{3}\right) v_{1}^{5} v_{2}+v_{1}^{5} b_{1}-v_{3}^{2} v_{1}^{4} v_{2}^{2} a_{3} \\
& \quad-7 v_{1}^{4} v_{2}^{2} a_{3}-3 v_{1}^{4} v_{2} a_{1}+\left(-2 a_{2}+b_{3}\right) v_{1}^{3} v_{2}^{2} v_{3}-5 v_{3} v_{1}^{2} v_{2}^{3} a_{3}-v_{3}^{2} v_{1}^{2} v_{2}^{2} b_{2} \tag{8E}\\
& \quad-v_{3} v_{1}^{2} v_{2}^{2} a_{1}-2 b_{2} v_{2}^{2} v_{1}^{2}+\left(2 a_{2}-b_{3}\right) v_{1} v_{2}^{3} v_{3}^{2}+\left(2 a_{2}-b_{3}\right) v_{1} v_{2}^{3} \\
& \quad-v_{3}^{2} v_{1} v_{2}^{2} b_{1}-3 v_{1} v_{2}^{2} b_{1}+2 v_{3}^{2} v_{2}^{4} a_{3}+2 v_{3}^{2} v_{2}^{3} a_{1}+4 v_{2}^{3} a_{1}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
b_{1} & =0 \\
b_{2} & =0 \\
-3 a_{1} & =0 \\
-a_{1} & =0 \\
2 a_{1} & =0 \\
4 a_{1} & =0 \\
-7 a_{3} & =0 \\
-5 a_{3} & =0 \\
-2 a_{3} & =0 \\
-a_{3} & =0 \\
2 a_{3} & =0 \\
-3 b_{1} & =0 \\
-b_{1} & =0 \\
-2 b_{2} & =0 \\
-b_{2} & =0 \\
-4 a_{2}+2 b_{3} & =0 \\
-2 a_{2}+b_{3} & =0 \\
2 a_{2}-b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =a_{2} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =2 a_{2}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x \\
& \eta=2 y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =2 y-\left(\frac{x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}}{x y}\right)(x) \\
& =\frac{-x^{2} \tan \left(\frac{y}{x^{2}}\right) y-x^{4}}{y} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2} \tan \left(\frac{y}{x^{2}}\right) y-x^{4}}{y}} d y
\end{aligned}
\]

Which results in
\[
S=-\ln \left(\cos \left(\frac{y}{x^{2}}\right)+\frac{\sin \left(\frac{y}{x^{2}}\right) y}{x^{2}}\right)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{x^{2} \tan \left(\frac{y}{x^{2}}\right) y+x^{4}+2 y^{2}}{x y}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 y^{2} \cos \left(\frac{y}{x^{2}}\right)}{x^{3}\left(\cos \left(\frac{y}{x^{2}}\right) x^{2}+\sin \left(\frac{y}{x^{2}}\right) y\right)} \\
S_{y} & =-\frac{\cos \left(\frac{y}{x^{2}}\right) y}{x^{2}\left(\cos \left(\frac{y}{x^{2}}\right) x^{2}+\sin \left(\frac{y}{x^{2}}\right) y\right)}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=-\frac{1}{x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=-\frac{1}{R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-\ln (R)+c_{1} \tag{4}
\end{equation*}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
-\ln \left(\cos \left(\frac{y}{x^{2}}\right) x^{2}+\sin \left(\frac{y}{x^{2}}\right) y\right)+2 \ln (x)=-\ln (x)+c_{1} \tag{1}
\end{equation*}
\]

Figure 192: Slope field plot
Verification of solutions
\[
-\ln \left(\cos \left(\frac{y}{x^{2}}\right) x^{2}+\sin \left(\frac{y}{x^{2}}\right) y\right)+2 \ln (x)=-\ln (x)+c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous G <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.157 (sec). Leaf size: 176
dsolve(diff \((y(x), x)=2 * y(x) / x+x^{\wedge} 3 / y(x)+x * \tan \left(y(x) / x^{\wedge} 2\right), y(x)\), singsol=all)
\(y(x)\)
\(=\frac{x^{2}\left(\csc \left(\operatorname{RootOf}\left(2 c_{1}^{2} \sin \left(_Z\right)^{2} _Z^{2}-2 c_{1}^{2} \cos \left(_Z\right)^{2}-4 c_{1} \sin \left(_Z\right) x _Z+2 x^{2}\right)\right) x-\cot \left(\operatorname{RootOf}\left(2 c_{1}^{2} \operatorname{sir}\right.\right.\right.}{c_{1}}\)
\(y(x)\)
\(=\frac{\left(\cot \left(\operatorname{RootOf}\left(2 c_{1}^{2} \sin \left(_Z\right)^{2} _Z^{2}-2 c_{1}^{2} \cos \left(_Z\right)^{2}-4 c_{1} \sin \left(_Z\right) x_{-} Z+2 x^{2}\right)\right) c_{1}+\csc \left(\operatorname{RootOf}\left(2 c_{1}^{2} \sin (\right.\right.\right.}{c_{1}}\)
\(\checkmark\) Solution by Mathematica
Time used: 1.103 (sec). Leaf size: 36
DSolve \(\left[y y^{\prime}[x]==2 * y[x] / x+x^{\wedge} 3 / y[x]+x * \operatorname{Tan}\left[y[x] / x^{\wedge} 2\right], y[x], x\right.\), IncludeSingularSolutions \(->\) True]
\[
\text { Solve }\left[3 \log (x)-\log \left(y(x) \sin \left(\frac{y(x)}{x^{2}}\right)+x^{2} \cos \left(\frac{y(x)}{x^{2}}\right)\right)=c_{1}, y(x)\right]
\]
7 Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
7.1 problem 1(a) 933
7.2 problem 1(b) 941
7.3 problem 1(c) 944
7.4 problem 1(d) 053
7.5 problem 1(e) 957
7.6 problem 1(f) 963
7.7 problem 1(g) 967
7.8 problem 2(a) 986
7.9 problem 2(b) 998
7.10 problem 2(c) 1006
7.11 problem 3(a) 1020
7.12 problem 3(b) 1025

\section*{7.1 problem 1(a)}
7.1.1 Solving as second order integrable as is ode 933
7.1.2 Solving as second order ode missing \(x\) ode 934
\(\begin{array}{ll}\text { 7.1.3 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 936\end{array}\)
7.1.4 Solving as exact nonlinear second order ode ode 937
7.1.5 Maple step by step solution . 938

Internal problem ID [6237]
Internal file name [OUTPUT/5485_Sunday_June_05_2022_03_41_08_PM_41183519/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second__order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear],
_Liouville, [_2nd_order, _reducible, _mu_x_y1], [_2nd_order,
_reducible, _mu_xy]]

```
\[
y y^{\prime \prime}+y^{\prime 2}=0
\]

\subsection*{7.1.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y y^{\prime \prime}+y^{\prime 2}\right) d x=0 \\
y^{\prime} y=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{y}{c_{1}} d y & =c_{2}+x \\
\frac{y^{2}}{2 c_{1}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.
\[
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.

\subsection*{7.1.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{2}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{p}{y}
\end{aligned}
\]

Where \(f(y)=-\frac{1}{y}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =-\frac{1}{y} d y \\
\int \frac{1}{p} d p & =\int-\frac{1}{y} d y \\
\ln (p) & =-\ln (y)+c_{1} \\
p & =\mathrm{e}^{-\ln (y)+c_{1}} \\
& =\frac{c_{1}}{y}
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\frac{c_{1}}{y}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{y}{c_{1}} d y & =c_{2}+x \\
\frac{y^{2}}{2 c_{1}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.
\[
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.

\subsection*{7.1.3 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y y^{\prime \prime}+y^{\prime 2}=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y y^{\prime \prime}+y^{\prime 2}\right) d x=0 \\
y^{\prime} y=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{y}{c_{1}} d y & =c_{2}+x \\
\frac{y^{2}}{2 c_{1}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
\begin{aligned}
& y_{1}=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \\
& y_{2}=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{1}\\
& y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.
\[
y=-\sqrt{2 c_{1} c_{2}+2 c_{1} x}
\]

Verified OK.

\subsection*{7.1.4 Solving as exact nonlinear second order ode ode}

An exact non-linear second order ode has the form
\[
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
\]

Where the following conditions are satisfied
\[
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
\]

Looking at the the ode given we see that
\[
\begin{aligned}
a_{2} & =y \\
a_{1} & =y^{\prime} \\
a_{0} & =0
\end{aligned}
\]

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by
\[
\begin{array}{r}
\int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
\int y d y^{\prime}+\int y^{\prime} d y+\int 0 d x=c_{1}
\end{array}
\]

Which results in
\[
2 y^{\prime} y=c_{1}
\]

Which is now solved Integrating both sides gives
\[
\begin{aligned}
\int \frac{2 y}{c_{1}} d y & =c_{2}+x \\
\frac{y^{2}}{c_{1}} & =c_{2}+x
\end{aligned}
\]

Solving for \(y\) gives these solutions
\[
\begin{aligned}
& y_{1}=\sqrt{c_{1} c_{2}+c_{1} x} \\
& y_{2}=-\sqrt{c_{1} c_{2}+c_{1} x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\sqrt{c_{1} c_{2}+c_{1} x} \tag{1}\\
& y=-\sqrt{c_{1} c_{2}+c_{1} x} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\sqrt{c_{1} c_{2}+c_{1} x}
\]

Verified OK.
\[
y=-\sqrt{c_{1} c_{2}+c_{1} x}
\]

Verified OK.

\subsection*{7.1.5 Maple step by step solution}

Let's solve
\[
y y^{\prime \prime}+y^{\prime 2}=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Define new dependent variable \(u\)
\[
u(x)=y^{\prime}
\]
- \(\quad\) Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)+u(y)^{2}=0\)
- \(\quad\) Separate variables
\[
\frac{\frac{d}{d y} u(y)}{u(y)}=-\frac{1}{y}
\]
- Integrate both sides with respect to \(y\)
\[
\int \frac{d}{d y} u(y) d y=\int-\frac{1}{y} d y+c_{1}
\]
- Evaluate integral
\[
\ln (u(y))=-\ln (y)+c_{1}
\]
- \(\quad\) Solve for \(u(y)\)
\[
u(y)=\frac{\mathrm{e}^{c_{1}}}{y}
\]
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\frac{\mathrm{e}^{c_{1}}}{y}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\[
y^{\prime}=\frac{\mathrm{e}^{c_{1}}}{y}
\]
- Separate variables
\[
y^{\prime} y=\mathrm{e}^{c_{1}}
\]
- Integrate both sides with respect to \(x\)
\[
\int y^{\prime} y d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
\]
- Evaluate integral
\[
\frac{y^{2}}{2}=x \mathrm{e}^{c_{1}}+c_{2}
\]
- \(\quad\) Solve for \(y\)
\[
\left\{y=\sqrt{2 x \mathrm{e}^{c_{1}}+2 c_{2}}, y=-\sqrt{2 x \mathrm{e}^{c_{1}}+2 c_{2}}\right\}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville <- 2nd_order Liouville successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 33
dsolve \(\left(y(x) * \operatorname{diff}(y(x), x \$ 2)+(\operatorname{diff}(y(x), x))^{\wedge} 2=0, y(x)\right.\), singsol=all)
\[
\begin{aligned}
& y(x)=0 \\
& y(x)=\sqrt{2 c_{1} x+2 c_{2}} \\
& y(x)=-\sqrt{2 c_{1} x+2 c_{2}}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.166 (sec). Leaf size: 20
DSolve \(\left[y[x] * y^{\prime \prime}[x]+\left(y y^{\prime}[x]\right)^{\sim} 2==0, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2} \sqrt{2 x-c_{1}}
\]

\section*{7.2 problem 1(b)}

Internal problem ID [6238]
Internal file name [OUTPUT/5486_Sunday_June_05_2022_03_41_11_PM_32735869/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
[NONE]
Unable to solve or complete the solution.
\[
x y y^{\prime \prime}-y^{\prime}-y^{\prime 3}=0
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order
--- trying a change of variables \(\{x \rightarrow y(x), y(x)\)-> \(x\}\)
differential order: 2; trying a linearization to 3rd order
trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form \(m u(x, y)\)
trying differential order: 2; missing variables
\(\rightarrow\) trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integrating \(f\)
--- trying a change of variables \(\{x \rightarrow y(x), y(x) \rightarrow x\}\) and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, fully reducible to Abel through one integratin trying 2nd order, integrating factors of the form \(m u(x, y) /(y) \wedge n\), only the singular cases
trying symmetries linear in \(x\) and \(y(x)\)
trying differential order: 2; exact nonlinear
trying 2nd order, integrating factor of the form mu(y)
trying 2nd order, integrating factor of the form mu(x,y)
trying 2nd order, integrating factor of the form \(m u(x, y) /(y)^{\wedge} n\), only the general case
trying 2nd order, integrating factor of the form mu(y,y)
trying differential order: 2; mu polynomial in y
trying 2nd order, integrating factor of the form mu(x,y)
differential order: 2; looking for linear symmetries
-> trying 2nd order, the S-function method
-> trying a change of variables \(\{x \rightarrow y(x), y(x)\) \(\rightarrow x\}\) and re-entering methods for the \(S\) -
-> trying 2nd order, the S-function method
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x \rightarrow y(x), y(x) \rightarrow x\}\) and re-entering methods for \(d y\)
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x->y(x), y(x)\)-> \(x\}\) and re-entering methods for \(d y\)
-> trying 2nd order, No Point Symmetries Class V
-> trying 2nd order, No Point Symmetries Class V
--- trying a change of variables \(\{x \rightarrow y(x), y(x)\)-> \(x\}\) and re-entering methods for \(d y\) -> trying 2nd order, No Point Symmetries Class V
trying 2nd order, integrating factor of the form \(m u(x, y) /(y)^{\wedge} n\), only the general case
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrating --- trying a change of variables \(\{x->y(x), y(x)\)-> \(x\}\) and re-entering methods for dynam
-> trying 2nd order, dynamical_symmetries, only a reduction of order through one integrat --- Trying Lie symmetry methods, 2nd order ---
, `-> Computing symmetries using: way \(4 \overline{\overline{2}} 3\)
, `-> Computing symmetries using: way \(=5\)
`, `-> Computing symmetries using: way = formal`

X Solution by Maple
dsolve \((x * y(x) * \operatorname{diff}(y(x), x \$ 2)=\operatorname{diff}(y(x), x)+(\operatorname{diff}(y(x), x)) \wedge 3, y(x)\), singsol=all)

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 1.417 (sec). Leaf size: 103
DSolve[x*y''[x]==y'[x]+(y'[x])~3,y[x],x,IncludeSingularSolutions -> True]
\[
\begin{aligned}
& y(x) \rightarrow c_{2}-i e^{-c_{1}} \sqrt{-1+e^{2 c_{1}} x^{2}} \\
& y(x) \rightarrow i e^{-c_{1}} \sqrt{-1+e^{2 c_{1}} x^{2}}+c_{2} \\
& y(x) \rightarrow c_{2}-i \sqrt{x^{2}} \\
& y(x) \rightarrow i \sqrt{x^{2}}+c_{2}
\end{aligned}
\]

\section*{7.3 problem 1(c)}
7.3.1 Solving as second order linear constant coeff ode 944
7.3.2 Solving as second order ode can be made integrable ode 946
7.3.3 Solving using Kovacic algorithm 947
7.3.4 Maple step by step solution . 951

Internal problem ID [6239]
Internal file name [OUTPUT/5487_Sunday_June_05_2022_03_41_13_PM_65395190/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be__made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-k^{2} y=0
\]

\subsection*{7.3.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=-k^{2}\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-k^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
-k^{2}+\lambda^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-k^{2}\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)\left(-k^{2}\right)} \\
& = \pm \sqrt{k^{2}}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{k^{2}} \\
& \lambda_{2}=-\sqrt{k^{2}}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{k^{2}} \\
& \lambda_{2}=-\sqrt{k^{2}}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\sqrt{k^{2}}\right) x}+c_{2} e^{\left(-\sqrt{k^{2}}\right) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{k^{2}} x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{k^{2}} x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}+c_{2} \mathrm{e}^{-\sqrt{k^{2}} x}
\]

Verified OK.

\subsection*{7.3.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}-y^{\prime} k^{2} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-y^{\prime} k^{2} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\frac{y^{2} k^{2}}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{y^{2} k^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{y^{2} k^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(\frac{k^{2} y}{\sqrt{k^{2}}}+\sqrt{y^{2} k^{2}+2 c_{1}}\right)}{\sqrt{k^{2}}} & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\frac{\ln \left(\frac{k^{2} y}{\sqrt{k^{2}}}+\sqrt{y^{2} k^{2}+2 c_{1}}\right)}{\sqrt{k^{2}}}}=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
\left(k \operatorname{csgn}(k) y+\sqrt{y^{2} k^{2}+2 c_{1}}\right)^{\frac{1}{\sqrt{k^{2}}}}=c_{3} \mathrm{e}^{x}
\]

Simplifying the solution \(y=-\frac{\operatorname{csgn}(k)\left(2\left(c_{3} \mathrm{e}^{x}\right)^{-\operatorname{csgn}(k) k} c_{1}-\left(c_{3} \mathrm{e}^{x}\right)^{\operatorname{csgn}(k) k}\right)}{2 k}\) to \(y=-\frac{2\left(c_{3} \mathrm{e}^{x}\right)^{-k} c_{1}-\left(c_{3} \mathrm{e}^{x}\right)^{k}}{2 k}\) Solving equation (2)

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{y^{2} k^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(\frac{k^{2} y}{\sqrt{k^{2}}}+\sqrt{y^{2} k^{2}+2 c_{1}}\right)}{\sqrt{k^{2}}} & =x+c_{4}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{-\frac{\ln \left(\frac{k^{2} y}{\sqrt{k^{2}}}+\sqrt{y^{2} k^{2}+2 c_{1}}\right)}{\sqrt{k^{2}}}}=\mathrm{e}^{x+c_{4}}
\]

Which simplifies to
\[
\left(k \operatorname{csgn}(k) y+\sqrt{y^{2} k^{2}+2 c_{1}}\right)^{-\frac{\operatorname{csgn}(k)}{k}}=c_{5} \mathrm{e}^{x}
\]

Simplifying the solution \(y=\frac{\operatorname{csgn}(k)\left(\left(c_{5} \mathrm{e}^{x}\right)^{-\operatorname{csgn}(k) k}-2\left(c_{5} \mathrm{e}^{x}\right)^{\operatorname{csgn}(k) k} c_{1}\right)}{2 k}\) to \(y=\frac{\left(c_{5} \mathrm{e}^{x}\right)^{-k}-2\left(c_{5} \mathrm{e}^{x}\right)^{k} c_{1}}{2 k}\) Summary
The solution(s) found are the following
\[
\begin{align*}
& y=-\frac{2\left(c_{3} \mathrm{e}^{x}\right)^{-k} c_{1}-\left(c_{3} \mathrm{e}^{x}\right)^{k}}{2 k} \tag{1}\\
& y=\frac{\left(c_{5} \mathrm{e}^{x}\right)^{-k}-2\left(c_{5} \mathrm{e}^{x}\right)^{k} c_{1}}{2 k} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=-\frac{2\left(c_{3} \mathrm{e}^{x}\right)^{-k} c_{1}-\left(c_{3} \mathrm{e}^{x}\right)^{k}}{2 k}
\]

Verified OK.
\[
y=\frac{\left(c_{5} \mathrm{e}^{x}\right)^{-k}-2\left(c_{5} \mathrm{e}^{x}\right)^{k} c_{1}}{2 k}
\]

Verified OK.

\subsection*{7.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-k^{2} y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =-k^{2}
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{k^{2}}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=k^{2} \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(k^{2}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 125: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=k^{2}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{\sqrt{k^{2}} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{\sqrt{k^{2} x}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\sqrt{k^{2}} x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{\sqrt{k^{2}} x} \int \frac{1}{\mathrm{e}^{2 \sqrt{k^{2}} x}} d x \\
& =\mathrm{e}^{\sqrt{k^{2}} x}\left(-\frac{\operatorname{csgn}(k) \mathrm{e}^{-2 k x \operatorname{csgn}(k)}}{2 k}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\sqrt{k^{2}} x}\right)+c_{2}\left(\mathrm{e}^{\sqrt{k^{2}} x}\left(-\frac{\operatorname{csgn}(k) \mathrm{e}^{-2 k x \operatorname{csgn}(k)}}{2 k}\right)\right)
\end{aligned}
\]

Simplifying the solution \(y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}-\frac{c_{2} \operatorname{csgn}(k) \mathrm{e}^{-k x \operatorname{csgn}(k)}}{2 k}\) to \(y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}-\frac{c_{2} \mathrm{e}^{-k x}}{2 k}\) Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}-\frac{c_{2} \mathrm{e}^{-k x}}{2 k} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{k^{2}} x}-\frac{c_{2} \mathrm{e}^{-k x}}{2 k}
\]

Verified OK.

\subsection*{7.3.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-k^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\(-k^{2}+r^{2}=0\)
- Factor the characteristic polynomial
\(-(k-r)(k+r)=0\)
- Roots of the characteristic polynomial
\(r=(k,-k)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{k x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{-k x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{k x}+c_{2} \mathrm{e}^{-k x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff \((y(x), x \$ 2)-k^{\wedge} 2 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{-k x}+c_{2} \mathrm{e}^{k x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 23
DSolve[y''[x]-k^2*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} e^{k x}+c_{2} e^{-k x}
\]

\section*{7.4 problem 1(d)}
7.4.1 Solving as second order ode missing y ode 953

Internal problem ID [6240]
Internal file name [OUTPUT/5488_Sunday_June_05_2022_03_41_15_PM_99919298/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y"
Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}-y^{\prime 2}=0
\]

\subsection*{7.4.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
x^{2} p^{\prime}(x)+(-2 x-p(x)) p(x)=0
\]

Which is now solve for \(p(x)\) as first order ode. Using the change of variables \(p(x)=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
x^{2}\left(u^{\prime}(x) x+u(x)\right)+(-2 x-u(x) x) u(x) x=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(u+1)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(u)=u(u+1)\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u(u+1)} d u & =\frac{1}{x} d x \\
\int \frac{1}{u(u+1)} d u & =\int \frac{1}{x} d x \\
-\ln (u+1)+\ln (u) & =\ln (x)+c_{2}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{-\ln (u+1)+\ln (u)}=\mathrm{e}^{\ln (x)+c_{2}}
\]

Which simplifies to
\[
\frac{u}{u+1}=c_{3} x
\]

Therefore the solution \(p(x)\) is
\[
\begin{aligned}
p(x) & =x u \\
& =-\frac{x^{2} c_{3}}{c_{3} x-1}
\end{aligned}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\frac{x^{2} c_{3}}{c_{3} x-1}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2} c_{3}}{c_{3} x-1} \mathrm{~d} x \\
& =-\frac{x^{2}}{2}-\frac{x}{c_{3}}-\frac{\ln \left(c_{3} x-1\right)}{c_{3}^{2}}+c_{4}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{x^{2}}{2}-\frac{x}{c_{3}}-\frac{\ln \left(c_{3} x-1\right)}{c_{3}^{2}}+c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{x^{2}}{2}-\frac{x}{c_{3}}-\frac{\ln \left(c_{3} x-1\right)}{c_{3}^{2}}+c_{4}
\]

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables
, --> Computing symmetries using: way \(=3\)
 symmetry methods on request
-, `1st order, trying reduction of order with given symmetries:`[_a, _b]
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 26
```

dsolve(x^2*\operatorname{diff}(y(x),x\$2)=2*x*\operatorname{diff}(y(x),x)+(\operatorname{diff}(y(x),x))~2,y(x), singsol=all)

```
\[
y(x)=-\frac{x^{2}}{2}-c_{1} x-c_{1}^{2} \ln \left(x-c_{1}\right)+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.435 (sec). Leaf size: 41
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}\right.\) ' \([x]==2 * x * y^{\prime}[x]+(y '[x]) \sim 2, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow-\frac{x^{2}}{2}-c_{1} x-c_{1}^{2} \log \left(x-c_{1}\right)+\frac{3 c_{1}^{2}}{2}+c_{2}
\]

\section*{7.5 problem 1(e)}
7.5.1 Solving as second order ode missing x ode 957
7.5.2 Maple step by step solution . 960

Internal problem ID [6241]
Internal file name [OUTPUT/5489_Sunday_June_05_2022_03_41_18_PM_49576723/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x" Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

```
\[
2 y y^{\prime \prime}-y^{\prime 2}=1
\]

\subsection*{7.5.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
2 y p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=1
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p^{2}+1}{2 y p}
\end{aligned}
\]

Where \(f(y)=\frac{1}{2 y}\) and \(g(p)=\frac{p^{2}+1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{p^{2}+1}{p}} d p & =\frac{1}{2 y} d y \\
\int \frac{1}{\frac{p^{2}+1}{p}} d p & =\int \frac{1}{2 y} d y \\
\frac{\ln \left(p^{2}+1\right)}{2} & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\sqrt{p^{2}+1}=\mathrm{e}^{\frac{\ln (y)}{2}+c_{1}}
\]

Which simplifies to
\[
\sqrt{p^{2}+1}=c_{2} \sqrt{y}
\]

Which simplifies to
\[
\sqrt{p(y)^{2}+1}=c_{2} \sqrt{y} \mathrm{e}^{c_{1}}
\]

The solution is
\[
\sqrt{p(y)^{2}+1}=c_{2} \sqrt{y} \mathrm{e}^{c_{1}}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\sqrt{1+y^{\prime 2}}=c_{2} \sqrt{y} \mathrm{e}^{c_{1}}
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
y^{\prime} & =\sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}} \tag{1}\\
y^{\prime} & =-\sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}}} d y & =\int d x \\
\frac{2 \sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}} \mathrm{e}^{-2 c_{1}}}{c_{2}^{2}} & =x+c_{3}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}}} d y & =\int d x \\
-\frac{2 \sqrt{-1+c_{2}^{2} y \mathrm{e}^{2 c_{1}}} \mathrm{e}^{-2 c_{1}}}{c_{2}^{2}} & =x+c_{4}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\frac{\left(c_{3}^{2} \mathrm{e}^{4 c_{1}} c_{2}^{4}+2 c_{3} \mathrm{e}^{4 c_{1}} c_{2}^{4} x+\mathrm{e}^{4 c_{1}} c_{2}^{4} x^{2}+4\right) \mathrm{e}^{-2 c_{1}}}{4 c_{2}^{2}} \tag{1}\\
& y=\frac{\left(c_{4}^{2} \mathrm{e}^{4 c_{1}} c_{2}^{4}+2 c_{4} \mathrm{e}^{4 c_{1}} c_{2}^{4} x+\mathrm{e}^{4 c_{1}} c_{2}^{4} x^{2}+4\right) \mathrm{e}^{-2 c_{1}}}{4 c_{2}^{2}} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\frac{\left(c_{3}^{2} \mathrm{e}^{4 c_{1}} c_{2}^{4}+2 c_{3} \mathrm{e}^{4 c_{1}} c_{2}^{4} x+\mathrm{e}^{4 c_{1}} c_{2}^{4} x^{2}+4\right) \mathrm{e}^{-2 c_{1}}}{4 c_{2}^{2}}
\]

Verified OK.
\[
y=\frac{\left(c_{4}^{2} \mathrm{e}^{4 c_{1}} c_{2}^{4}+2 c_{4} \mathrm{e}^{4 c_{1}} c_{2}^{4} x+\mathrm{e}^{4 c_{1}} c_{2}^{4} x^{2}+4\right) \mathrm{e}^{-2 c_{1}}}{4 c_{2}^{2}}
\]

Verified OK.

\subsection*{7.5.2 Maple step by step solution}

Let's solve
\(2 y y^{\prime \prime}-y^{\prime 2}=1\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE
\(2 y u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=1\)
- Separate variables
\[
\frac{\left(\frac{d}{d y} u(y)\right) u(y)}{u(y)^{2}+1}=\frac{1}{2 y}
\]
- Integrate both sides with respect to \(y\)
\(\int \frac{\left(\frac{d}{d y} u(y)\right) u(y)}{u(y)^{2}+1} d y=\int \frac{1}{2 y} d y+c_{1}\)
- Evaluate integral
\(\frac{\ln \left(u(y)^{2}+1\right)}{2}=\frac{\ln (y)}{2}+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\[
\left\{u(y)=\frac{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}{\mathrm{e}^{-2 c_{1}}}, u(y)=-\frac{\sqrt{-\mathrm{e}^{-2 c_{1}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}}{\mathrm{e}^{-2 c_{1}}}\right\}
\]
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\frac{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{\left.-2 c_{1}-y\right)}\right.}}{\mathrm{e}^{-2 c_{1}}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=\frac{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{\left.-2 c_{1}-y\right)}\right.}}{\mathrm{e}^{-2 c_{1}}}\)
- Separate variables
\(\frac{y^{\prime}}{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}=\frac{1}{\mathrm{e}^{-2 c_{1}}}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}} d x=\int \frac{1}{\mathrm{e}^{-2 c_{1}}} d x+c_{2}\)
- Evaluate integral
\(\frac{2 \sqrt{\mathrm{e}^{-2 c_{1} y-\left(\mathrm{e}^{-2 c_{1}}\right)^{2}}}}{\mathrm{e}^{-2 c_{1}}}=\frac{x}{\mathrm{e}^{-2 c_{1}}}+c_{2}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{c_{2}^{2}\left(\mathrm{e}^{-2 c_{1}}\right)^{2}+2 c_{2} \mathrm{e}^{-2 c_{1}} x+4\left(\mathrm{e}^{-2 c_{1}}\right)^{2}+x^{2}}{4 \mathrm{e}^{-2 c_{1}}}\)
- \(\quad\) Solve 2nd ODE for \(u(y)\)
\(u(y)=-\frac{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}{\mathrm{e}^{-2 c_{1}}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=-\frac{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}{\mathrm{e}^{-2 c_{1}}}\)
- Separate variables
\(\frac{y^{\prime}}{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}}=-\frac{1}{\mathrm{e}^{-2 c_{1}}}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\sqrt{-\mathrm{e}^{-2 c_{1}}\left(\mathrm{e}^{-2 c_{1}}-y\right)}} d x=\int-\frac{1}{\mathrm{e}^{-2 c_{1}}} d x+c_{2}\)
- Evaluate integral
\(\frac{2 \sqrt{\mathrm{e}^{-2 c_{1} y-\left(\mathrm{e}^{-2 c_{1}}\right)^{2}}}}{\mathrm{e}^{-2 c_{1}}}=-\frac{x}{\mathrm{e}^{-2 c_{1}}}+c_{2}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{c_{2}^{2}\left(\mathrm{e}^{-2 c_{1}}\right)^{2}-2 c_{2} \mathrm{e}^{-2 c_{1}} x+4\left(\mathrm{e}^{-2 c_{1}}\right)^{2}+x^{2}}{4 \mathrm{e}^{-2 c_{1}}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation -> Calling odsolve with the ODE`, diff(diff(diff(y(x), x), x), x), y(x)`     Methods for third order ODEs:     --- Trying classification methods ---     trying a quadrature     <- quadrature successful <- 2nd order ODE linearizable_by_differentiation successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 22
```

dsolve(2*y(x)*diff(y(x),x\$2)=1+(diff (y (x),x))^2,y(x), singsol=all)

```
\[
y(x)=\frac{\left(c_{1}^{2}+1\right) x^{2}}{4 c_{2}}+c_{1} x+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.032 (sec). Leaf size: 34
DSolve[2*y \([x] * y\) ' ' \([x]==1+(y '[x]) \wedge 2, y[x], x\), IncludeSingularSolutions -> True]
\[
\begin{aligned}
& y(x) \rightarrow \frac{\left(1+c_{1}^{2}\right) x^{2}}{4 c_{2}}+c_{1} x+c_{2} \\
& y(x) \rightarrow \text { Indeterminate }
\end{aligned}
\]

\section*{7.6 problem 1(f)}
7.6.1 Solving as second order ode missing \(x\) ode 963
7.6.2 Maple step by step solution . 965

Internal problem ID [6242]
Internal file name [OUTPUT/5490_Sunday_June_05_2022_03_41_21_PM_68794890/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x"
Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
_mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

```
\[
y y^{\prime \prime}-y^{\prime 2}=0
\]

\subsection*{7.6.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p}{y}
\end{aligned}
\]

Where \(f(y)=\frac{1}{y}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{y} d y \\
\int \frac{1}{p} d p & =\int \frac{1}{y} d y \\
\ln (p) & =\ln (y)+c_{1} \\
p & =\mathrm{e}^{\ln (y)+c_{1}} \\
& =c_{1} y
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=y c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{c_{1} y} d y & =\int d x \\
\frac{\ln (y)}{c_{1}} & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\frac{\ln (y)}{c_{1}}}=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
y^{\frac{1}{c_{1}}}=c_{3} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}}
\]

Verified OK.

\subsection*{7.6.2 Maple step by step solution}

Let's solve
\(y y^{\prime \prime}-y^{\prime 2}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=0\)
- Separate variables
\[
\frac{\frac{d}{d y} u(y)}{u(y)}=\frac{1}{y}
\]
- Integrate both sides with respect to \(y\)
\(\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int \frac{1}{y} d y+c_{1}\)
- Evaluate integral
\(\ln (u(y))=\ln (y)+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=y \mathrm{e}^{c_{1}}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=y \mathrm{e}^{c_{1}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\) \(y^{\prime}=y \mathrm{e}^{c_{1}}\)
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=\mathrm{e}^{c_{1}}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
\]
- Evaluate integral
\(\ln (y)=x \mathrm{e}^{c_{1}}+c_{2}\)
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x \mathrm{e}^{c_{1}}+c_{2}}
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 14
```

dsolve(y(x)*diff(y(x),x\$2)-(diff(y(x),x))^2=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=0 \\
& y(x)=\mathrm{e}^{c_{1} x} c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 14
DSolve[y[x]*y''[x]-(y'[x])~2==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{2} e^{c_{1} x}
\]

\section*{7.7 problem 1(g)}
7.7.1 Solving as second order integrable as is ode 968
7.7.2 Solving as second order ode missing y ode 968
\(\begin{array}{ll}\text { 7.7.3 } & \text { Solving as second order ode non constant coeff transformation } \\ & \text { on B ode . } 970\end{array}\)
\(\begin{array}{ll}\text { 7.7.4 } & \text { Solving as type second_order_integrable_as_is (not using ABC } \\ & \text { version) . } 974\end{array}\)
7.7.5 Solving using Kovacic algorithm 975
7.7.6 Solving as exact linear second order ode ode 982
7.7.7 Maple step by step solution . 983

Internal problem ID [6243]
Internal file name [OUTPUT/5491_Sunday_June_05_2022_03_41_23_PM_37012367/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__non_constant_coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x y^{\prime \prime}+y^{\prime}=4 x
\]

\subsection*{7.7.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(x y^{\prime \prime}+y^{\prime}\right) d x=\int 4 x d x \\
& x y^{\prime}=2 x^{2}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{2 x^{2}+c_{1}}{x} \mathrm{~d} x \\
& =x^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{2}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

Verified OK.

\subsection*{7.7.2 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x) x+p(x)-4 x=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =4
\end{aligned}
\]

Hence the ode is
\[
p^{\prime}(x)+\frac{p(x)}{x}=4
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(4) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x p) & =(x)(4) \\
\mathrm{d}(x p) & =(4 x) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x p=\int 4 x \mathrm{~d} x \\
& x p=2 x^{2}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
p(x)=2 x+\frac{c_{1}}{x}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=2 x+\frac{c_{1}}{x}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{2 x^{2}+c_{1}}{x} \mathrm{~d} x \\
& =x^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{2}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

Verified OK.

\subsection*{7.7.3 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x \\
& B=1 \\
& C=0 \\
& F=4 x
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(1)(0)+(0)(1) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
x v^{\prime \prime}+(1) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
x u^{\prime}(x)+u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1}}{x}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int \frac{c_{1}}{x} \mathrm{~d} x \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(1)\left(c_{1} \ln (x)+c_{2}\right) \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
\]

Therefore
\[
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{4 \ln (x) x}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int 4 \ln (x) x d x
\]

Hence
\[
u_{1}=-2 \ln (x) x^{2}+x^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{4 x}{1} d x
\]

Which simplifies to
\[
u_{2}=\int 4 x d x
\]

Hence
\[
u_{2}=2 x^{2}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=2 x^{2}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x^{2}(1-2 \ln (x))+2 \ln (x) x^{2}
\]

Which simplifies to
\[
y_{p}(x)=x^{2}
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(c_{1} \ln (x)+c_{2}\right)+\left(x^{2}\right) \\
& =x^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{2}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

Verified OK.

\subsection*{7.7.4 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}+y^{\prime}=4 x
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(x y^{\prime \prime}+y^{\prime}\right) d x=\int 4 x d x \\
& x y^{\prime}=2 x^{2}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{2 x^{2}+c_{1}}{x} \mathrm{~d} x \\
& =x^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{2}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

Verified OK.

\subsection*{7.7.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+y^{\prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=1 \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-1 \\
t & =4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 129: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{x} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(\ln (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x y^{\prime \prime}+y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}+c_{2} \ln (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\ln (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & \ln (x) \\
\frac{d}{d x}(1) & \frac{d}{d x}(\ln (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
1 & \ln (x) \\
0 & \frac{1}{x}
\end{array}\right|
\]

Therefore
\[
W=(1)\left(\frac{1}{x}\right)-(\ln (x))(0)
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Which simplifies to
\[
W=\frac{1}{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{4 \ln (x) x}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int 4 \ln (x) x d x
\]

Hence
\[
u_{1}=-2 \ln (x) x^{2}+x^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{4 x}{1} d x
\]

Which simplifies to
\[
u_{2}=\int 4 x d x
\]

Hence
\[
u_{2}=2 x^{2}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=x^{2}(1-2 \ln (x)) \\
& u_{2}=2 x^{2}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x^{2}(1-2 \ln (x))+2 \ln (x) x^{2}
\]

Which simplifies to
\[
y_{p}(x)=x^{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \ln (x)\right)+\left(x^{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+c_{2} \ln (x)+x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}+c_{2} \ln (x)+x^{2}
\]

Verified OK.

\subsection*{7.7.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=1 \\
& r(x)=0 \\
& s(x)=4 x
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
x y^{\prime}=\int 4 x d x
\]

We now have a first order ode to solve which is
\[
x y^{\prime}=2 x^{2}+c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{2 x^{2}+c_{1}}{x} \mathrm{~d} x \\
& =x^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{2}+c_{1} \ln (x)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

Verified OK.

\subsection*{7.7.7 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+y^{\prime}=4 x
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\[
u^{\prime}(x) x+u(x)=4 x
\]
- Isolate the derivative
\(u^{\prime}(x)=4-\frac{u(x)}{x}\)
- Group terms with \(u(x)\) on the lhs of the ODE and the rest on the rhs of the ODE
\(u^{\prime}(x)+\frac{u(x)}{x}=4\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=4 \mu(x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) u(x))\)
\(\mu(x)\left(u^{\prime}(x)+\frac{u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\frac{\mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=x\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int 4 \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) u(x)=\int 4 \mu(x) d x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{\int 4 \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=x\)
\(u(x)=\frac{\int 4 x d x+c_{1}}{x}\)
- Evaluate the integrals on the rhs
\(u(x)=\frac{2 x^{2}+c_{1}}{x}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{2 x^{2}+c_{1}}{x}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\frac{2 x^{2}+c_{1}}{x}\)
- Integrate both sides to solve for \(y\)
\[
\int y^{\prime} d x=\int \frac{2 x^{2}+c_{1}}{x} d x+c_{2}
\]
- Compute integrals
\[
y=x^{2}+c_{1} \ln (x)+c_{2}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)-4*_a)/_a, _b(_a)` *** Sublev     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     <- 1st order linear successful <- high order exact linear fully integrable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve(\(\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+\operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=4 * \mathrm{x}, \mathrm{y}(\mathrm{x})\), singsol=all)
\[
y(x)=x^{2}+c_{1} \ln (x)+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 16
DSolve[x*y'' \([x]+y\) ' \([x]==4 * x, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x^{2}+c_{1} \log (x)+c_{2}
\]

\section*{7.8 problem 2(a)}
7.8.1 Solving as second order integrable as is ode 986
7.8.2 Solving as second order ode missing y ode 990
7.8.3 Solving as type second_order_integrable_as_is (not using ABC version)

Internal problem ID [6244]
Internal file name [OUTPUT/5492_Sunday_June_05_2022_03_41_26_PM_64351548/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second__order__ode_missing_y"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _exact, _nonlinear], [
_2nd_order, _reducible, _mu_poly_yn]]

```
\[
\left(x^{2}+2 y^{\prime}\right) y^{\prime \prime}+2 x y^{\prime}=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=0\right]
\]

\subsection*{7.8.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(x^{2}+2 y^{\prime}\right) y^{\prime \prime}+2 x y^{\prime}\right) d x=0 \\
x^{2} y^{\prime}+y^{\prime 2}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}}}{2} \tag{1}\\
& y^{\prime}=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{2} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}}}{2} \mathrm{~d} x \\
& =\frac{x \sqrt{x^{4}+4 c_{1}}}{6}+\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{x^{3}}{6}+c_{2}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{2} \mathrm{~d} x \\
& =-\frac{x^{3}}{6}-\frac{x \sqrt{x^{4}+4 c_{1}}}{6}-\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
y=\frac{x \sqrt{x^{4}+4 c_{1}}}{6}+\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{x^{3}}{6}+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{2} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\(y^{\prime}=\frac{\sqrt{x^{4}+4 c_{1}}}{6}+\frac{x^{4}}{3 \sqrt{x^{4}+4 c_{1}}}-\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right) x}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \mathrm{E}}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4+}}\)
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\sqrt{c_{1}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\lim _{c_{1} \rightarrow 0}\left(-\frac{-\sqrt{\frac{i}{\sqrt{c_{1}}}} x^{5}+x^{3} \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}-4 c_{1} \sqrt{2} \sqrt{\frac{-i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)-4}{6 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}\right.\)
Looking at the Second solution
\[
\begin{equation*}
y=-\frac{x^{3}}{6}-\frac{x \sqrt{x^{4}+4 c_{1}}}{6}-\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{3} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\(y^{\prime}=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{6}-\frac{x^{4}}{3 \sqrt{x^{4}+4 c_{1}}}+\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right) x}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4}}{3 \sqrt{\frac{i}{\sqrt{2}}}}\)
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-\sqrt{c_{1}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{3}=1
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\lim _{c_{1} \rightarrow 0}\left(-\frac{\sqrt{\frac{i}{\sqrt{c_{1}}}} x^{5}+x^{3} \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}+4 c_{1} \sqrt{2} \sqrt{\frac{-i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}}{}\right.\) EllipticF \(\left.\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)+4\right)\)
Summary
The solution(s) found are the following
\(y=\)
\(-\frac{\left(\lim _{c_{1} \rightarrow 0}\left(-\frac{4\left((1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right)\right.}{c_{1}^{4}} \frac{\left.c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+\left(-\frac{x^{3}}{4}+\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+\frac{x^{5}}{4}+c_{1} x\right)}{\sqrt{x^{4}+4 c_{1}}}\right)\right)}{6}\)
\(\left.y=-\frac{\left(\lim _{c_{1} \rightarrow 0} \frac{4(1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right.}{c_{1}^{4}}\right) c_{c_{1}^{5}}^{\frac{5}{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+4\left(\frac{x^{3}}{4}-\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+x^{5}+4 c_{1} x}}{\sqrt{x^{4}+4 c_{1}}}\right)\)

\section*{Verification of solutions}
\(y=-\frac{\left.\left(\lim _{c_{1} \rightarrow 0}\left(-\frac{4\left((1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right.\right.}{}\right) \frac{\left.c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+\left(-\frac{x^{3}}{4}+\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+\frac{x^{5}}{4}+c_{1} x\right)}{\sqrt{x^{4}+4 c_{1}}}\right)\right)}{6}\)
Verified OK.
\[
y=-\frac{\left(\lim _{c_{1} \rightarrow 0} \frac{4(1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right) c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+4\left(\frac{x^{3}}{4}-\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+x^{5}+4 c_{1} x}{\sqrt{x^{4}+4 c_{1}}}\right)}{6}
\]

\section*{Verified OK.}

\subsection*{7.8.2 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
\left(x^{2}+2 p(x)\right) p^{\prime}(x)+2 x p(x)=0
\]

Which is now solve for \(p(x)\) as first order ode. Writing the ode as
\[
\begin{equation*}
p^{\prime}(x)=-\frac{2 x p(x)}{x^{2}+2 p(x)} \tag{1}
\end{equation*}
\]

Which becomes
\[
\begin{equation*}
(2 p) d p=\left(-x^{2}\right) d p+(-2 x p) d x \tag{2}
\end{equation*}
\]

But the RHS is complete differential because
\[
\left(-x^{2}\right) d p+(-2 x p) d x=d\left(-x^{2} p\right)
\]

Hence (2) becomes
\[
(2 p) d p=d\left(-x^{2} p\right)
\]

Integrating both sides gives gives these solutions
\[
\begin{aligned}
& p(x)=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}}}{2}+c_{1} \\
& p(x)=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{2}+c_{1}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=-\sqrt{c_{1}}+c_{1} \\
c_{1}=0
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}}}{2}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(p=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=\sqrt{c_{1}}+c_{1} \\
c_{1}=0
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}}}{2}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}}}{2}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}}}{2} \mathrm{~d} x \\
& =\frac{\sqrt{x^{4}} x}{6}-\frac{x^{3}}{6}+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 1=c_{2} \\
& c_{2}=1
\end{aligned}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
y=\frac{\sqrt{x^{4}} x}{6}-\frac{x^{3}}{6}+1
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}}}{2}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}}}{2} \mathrm{~d} x \\
& =-\frac{x^{3}}{6}-\frac{\sqrt{x^{4} x}}{6}+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{3}\). Substituting \(x=0\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 1=c_{3} \\
& c_{3}=1
\end{aligned}
\]

Substituting \(c_{3}\) found above in the general solution gives
\[
y=-\frac{x^{3}}{6}-\frac{\sqrt{x^{4}} x}{6}+1
\]

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\frac{\sqrt{x^{4}} x}{6}-\frac{x^{3}}{6}+1 \tag{1}\\
& y=-\frac{x^{3}}{6}-\frac{\sqrt{x^{4} x}}{6}+1 \tag{2}
\end{align*}
\]

Figure 193: Solution plot

\section*{Verification of solutions}
\[
y=\frac{\sqrt{x^{4}} x}{6}-\frac{x^{3}}{6}+1
\]

Verified OK.
\[
y=-\frac{x^{3}}{6}-\frac{\sqrt{x^{4}} x}{6}+1
\]

Verified OK.

\subsection*{7.8.3 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
\left(x^{2}+2 y^{\prime}\right) y^{\prime \prime}+2 x y^{\prime}=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(\left(x^{2}+2 y^{\prime}\right) y^{\prime \prime}+2 x y^{\prime}\right) d x=0 \\
x^{2} y^{\prime}+y^{\prime 2}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}}}{2} \tag{1}\\
& y^{\prime}=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{2} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}+\frac{\sqrt{x^{4}+4 c_{1}}}{2} \mathrm{~d} x \\
& =\frac{x \sqrt{x^{4}+4 c_{1}}}{6}+\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{x^{3}}{6}+c_{2}
\end{aligned}
\]

Solving equation (2)

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{2} \mathrm{~d} x \\
& =-\frac{x^{3}}{6}-\frac{x \sqrt{x^{4}+4 c_{1}}}{6}-\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
y=\frac{x \sqrt{x^{4}+4 c_{1}}}{6}+\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{x^{3}}{6}+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{2} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\(y^{\prime}=\frac{\sqrt{x^{4}+4 c_{1}}}{6}+\frac{x^{4}}{3 \sqrt{x^{4}+4 c_{1}}}-\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \text { EllipticF }\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right) x}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \mathrm{E}}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4+}}\)
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\sqrt{c_{1}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=1
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\lim _{c_{1} \rightarrow 0}\left(-\frac{\left.-\sqrt{\frac{i}{\sqrt{c_{1}}}} x^{5}+x^{3} \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}-4 c_{1} \sqrt{2} \sqrt{\frac{-i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)-\frac{6 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}{} \text { (}\right)}{}\right.\)

Looking at the Second solution
\[
\begin{equation*}
y=-\frac{x^{3}}{6}-\frac{x \sqrt{x^{4}+4 c_{1}}}{6}-\frac{c_{1} \sqrt{2} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{3} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\(y^{\prime}=-\frac{x^{2}}{2}-\frac{\sqrt{x^{4}+4 c_{1}}}{6}-\frac{x^{4}}{3 \sqrt{x^{4}+4 c_{1}}}+\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4+\frac{2 i x^{2}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right) x}{3 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{4-\frac{2 i x^{2}}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}-\frac{2 i \sqrt{c_{1}} \sqrt{2} \sqrt{4}}{3 \sqrt{\frac{i}{\sqrt{2}}}}\)
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-\sqrt{c_{1}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{3}=1
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\lim _{c_{1} \rightarrow 0}\left(\frac{\sqrt{\frac{i}{\sqrt{c_{1}}}} x^{5}+x^{3} \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}+4 c_{1} \sqrt{2} \sqrt{\frac{-i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \operatorname{EllipticF}\left(\frac{x \sqrt{2} \sqrt{\frac{i}{\sqrt{c_{1}}}}}{2}, i\right)+4}{6 \sqrt{\frac{i}{\sqrt{c_{1}}}} \sqrt{x^{4}+4 c_{1}}}\right.\)

\section*{Summary}

The solution(s) found are the following
\(y=\)
\(-\frac{\left(\lim _{c_{1} \rightarrow 0}\left(-\frac{4\left((1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right) c_{1}^{\frac{5}{4}} \sqrt{\frac{\sqrt{2} x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+\left(-\frac{x^{3}}{4}+\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+\frac{x^{5}}{4}+c_{1} x\right)}{\sqrt{x^{4}+4 c_{1}}}\right)\right)}{6}\)
\(\left.y=-\frac{\left(\lim _{c_{1} \rightarrow 0} \frac{4(1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right.}{c_{1}^{4}}\right) c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+4\left(\frac{x^{3}}{4}-\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+x^{5}+4 c_{1} x}{\sqrt{x^{4}+4 c_{1}}}\right)\)

Verification of solutions
\(y=-\frac{\left.\left(\lim _{c_{1} \rightarrow 0}\left(-\frac{4\left((1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right.\right.}{}\right) \frac{\left.c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+\left(-\frac{x^{3}}{4}+\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+\frac{x^{5}}{4}+c_{1} x\right)}{\sqrt{x^{4}+4 c_{1}}}\right)\right)}{6}\)
Verified OK.
\[
y=-\frac{\left.\left(\lim _{c_{1} \rightarrow 0} \frac{4(1+i) \text { EllipticF }\left(\frac{\left(\frac{1}{2}-\frac{i}{2}\right) x}{c_{1}^{4}}, i\right.}{c_{1}^{4}}\right) \frac{c_{1}^{\frac{5}{4}} \sqrt{\frac{i x^{2}+2 \sqrt{c_{1}}}{\sqrt{c_{1}}}} \sqrt{-\frac{i x^{2}-2 \sqrt{c_{1}}}{\sqrt{c_{1}}}}+4\left(\frac{x^{3}}{4}-\frac{3}{2}\right) \sqrt{x^{4}+4 c_{1}}+x^{5}+4 c_{1} x}{\sqrt{x^{4}+4 c_{1}}}\right)}{6}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, --> Computing symmetries using: way = 3
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -2*_b(_a)*_a/(_a^2+2*_b(_a)), _b(_a), H     symmetry methods on request `, `1st order, trying reduction of order with given symmetries:`[_a, 2*_b]

```
\(\checkmark\) Solution by Maple
Time used: 0.079 (sec). Leaf size: 15
```

dsolve([(x^2+2*diff(y(x),x))*diff(y(x),x\$2)+2*x*diff(y(x),x)=0,y(0)=1,D(y)(0) = 0],y(x),

```
\[
\begin{aligned}
& y(x)=1 \\
& y(x)=-\frac{x^{3}}{3}+1
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.252 (sec). Leaf size: 32
DSolve \(\left[\left\{\left(x^{\wedge} 2+2 * y\right.\right.\right.\) ' \(\left.\left.[x]\right) * y{ }^{\prime} '[x]+2 * x * y y^{\prime}[x]==0,\left\{y[0]==1, y^{\prime}[0]==0\right\}\right\}, y[x], x\), IncludeSingularSolution
\[
\begin{aligned}
& y(x) \rightarrow \text { Indeterminate } \\
& y(x) \rightarrow 0 \text { Hypergeometric } 2 \mathrm{~F} 1\left(-\frac{1}{2}, \frac{1}{4}, \frac{5}{4}, \text { ComplexInfinity }\right)-\frac{x^{3}}{6}+1
\end{aligned}
\]

\section*{7.9 problem 2(b)}
7.9.1 Solving as second order ode missing x ode 998
7.9.2 Maple step by step solution . 1002

Internal problem ID [6245]
Internal file name [OUTPUT/5493_Sunday_June_05_2022_03_41_28_PM_68194147/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x"
Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order,
_with_potential_symmetries], [_2nd_order, _reducible, _mu_xy
]]

```
\[
y y^{\prime \prime}-y^{\prime} y^{2}-y^{\prime 2}=0
\]

With initial conditions
\[
\left[y(0)=-\frac{1}{2}, y^{\prime}(0)=1\right]
\]

\subsection*{7.9.1 Solving as second order ode missing \(\mathbf{x}\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)+\left(-p(y)-y^{2}\right) p(y)=0
\]

Which is now solved as first order ode for \(p(y)\).
Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{y} d y} \\
& =\frac{1}{y}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} y}(\mu p) & =(\mu)(y) \\
\frac{\mathrm{d}}{\mathrm{~d} y}\left(\frac{p}{y}\right) & =\left(\frac{1}{y}\right)(y) \\
\mathrm{d}\left(\frac{p}{y}\right) & =\mathrm{d} y
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{p}{y}=\int \mathrm{d} y \\
& \frac{p}{y}=y+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{y}\) results in
\[
p(y)=c_{1} y+y^{2}
\]
which simplifies to
\[
p(y)=y\left(y+c_{1}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=-\frac{1}{2}\) and \(p=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1=\frac{1}{4}-\frac{c_{1}}{2} \\
c_{1}=-\frac{3}{2}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(y)=\frac{y(2 y-3)}{2}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\frac{y(2 y-3)}{2}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{2}{y(2 y-3)} d y & =\int d x \\
-\frac{2 \ln (y)}{3}+\frac{2 \ln (2 y-3)}{3} & =c_{2}+x
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\left(-\frac{2}{3}\right)(\ln (y)-\ln (2 y-3)) & =c_{2}+x \\
\ln (y)-\ln (2 y-3) & =\left(-\frac{3}{2}\right)\left(c_{2}+x\right) \\
& =-\frac{3 c_{2}}{2}-\frac{3 x}{2}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln (y)-\ln (2 y-3)}=-\frac{3 c_{2} \mathrm{e}^{-\frac{3 x}{2}}}{2}
\]

Which simplifies to
\[
\frac{y}{2 y-3}=c_{3} \mathrm{e}^{-\frac{3 x}{2}}
\]

Initial conditions are used to solve for \(c_{3}\). Substituting \(x=0\) and \(y=-\frac{1}{2}\) in the above solution gives an equation to solve for the constant of integration.
\[
-\frac{1}{2}=\frac{3 c_{3}}{-1+2 c_{3}}
\]
\[
c_{3}=\frac{1}{8}
\]

Substituting \(c_{3}\) found above in the general solution gives
\[
y=\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2 \mathrm{e}^{-\frac{3 x}{2}}-8}
\]

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2 \mathrm{e}^{-\frac{3 x}{2}}-8} \tag{1}
\end{equation*}
\]

Figure 194: Solution plot

Verification of solutions
\[
y=\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2 \mathrm{e}^{-\frac{3 x}{2}}-8}
\]

Verified OK.

\subsection*{7.9.2 Maple step by step solution}

Let's solve
\[
\left[y y^{\prime \prime}+\left(-y^{\prime}-y^{2}\right) y^{\prime}=0, y(0)=-\frac{1}{2},\left.y^{\prime}\right|_{\{x=0\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Define new dependent variable \(u\)
\[
u(x)=y^{\prime}
\]
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)+\left(-u(y)-y^{2}\right) u(y)=0\)
- Isolate the derivative
\(\frac{d}{d y} u(y)=\frac{u(y)}{y}+y\)
- Group terms with \(u(y)\) on the lhs of the ODE and the rest on the rhs of the ODE \(\frac{d}{d y} u(y)-\frac{u(y)}{y}=y\)
- The ODE is linear; multiply by an integrating factor \(\mu(y)\)
\(\mu(y)\left(\frac{d}{d y} u(y)-\frac{u(y)}{y}\right)=\mu(y) y\)
- \(\quad\) Assume the lhs of the ODE is the total derivative \(\frac{d}{d y}(\mu(y) u(y))\)
\(\mu(y)\left(\frac{d}{d y} u(y)-\frac{u(y)}{y}\right)=\left(\frac{d}{d y} \mu(y)\right) u(y)+\mu(y)\left(\frac{d}{d y} u(y)\right)\)
- Isolate \(\frac{d}{d y} \mu(y)\)
\(\frac{d}{d y} \mu(y)=-\frac{\mu(y)}{y}\)
- \(\quad\) Solve to find the integrating factor
\[
\mu(y)=\frac{1}{y}
\]
- Integrate both sides with respect to \(y\)
\(\int\left(\frac{d}{d y}(\mu(y) u(y))\right) d y=\int \mu(y) y d y+c_{1}\)
- Evaluate the integral on the lhs
\[
\mu(y) u(y)=\int \mu(y) y d y+c_{1}
\]
- \(\quad\) Solve for \(u(y)\)
\(u(y)=\frac{\int \mu(y) y d y+c_{1}}{\mu(y)}\)
- \(\quad\) Substitute \(\mu(y)=\frac{1}{y}\)
\(u(y)=y\left(\int 1 d y+c_{1}\right)\)
- Evaluate the integrals on the rhs
\(u(y)=y\left(y+c_{1}\right)\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=y\left(y+c_{1}\right)\)
- \(\quad\) Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=y\left(y+c_{1}\right)\)
- \(\quad\) Separate variables
\(\frac{y^{\prime}}{y\left(y+c_{1}\right)}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y\left(y+c_{1}\right)} d x=\int 1 d x+c_{2}\)
- Evaluate integral
\(\frac{\ln (y)}{c_{1}}-\frac{\ln \left(y+c_{1}\right)}{c_{1}}=c_{2}+x\)
- \(\quad\) Solve for \(y\)
\(y=-\frac{c_{1} \mathrm{e}_{2} c_{1}+c_{1} x}{-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}}\)
Check validity of solution \(y=-\frac{c_{1} e^{c_{2} c_{1}+c_{1} x}}{-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}}\)
- Use initial condition \(y(0)=-\frac{1}{2}\)
\(-\frac{1}{2}=-\frac{c_{1} e^{c_{2} c_{1}}}{-1+\mathrm{e}^{c_{2} c_{1}}}\)
- Compute derivative of the solution
\(y^{\prime}=\frac{c_{1}^{2}\left(\mathrm{e}^{c_{2} c_{1}+c_{1} x}\right)^{2}}{\left(-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}\right)^{2}}-\frac{c_{1}^{2} \mathrm{e}^{c_{2} c_{1}+c_{1} x}}{-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}}\)
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=1\)
\[
1=\frac{c_{1}^{2}\left(\mathrm{e}^{c_{2} c_{1}}\right)^{2}}{\left(-1+\mathrm{e}^{c_{2} c_{1}}\right)^{2}}-\frac{c_{1}^{2} e^{c_{2} c_{1}}}{-1+\mathrm{e}_{2}^{c_{2} c_{1}}}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{3}{2}, c_{2}=\frac{4 \ln (2)}{3}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2 \mathrm{e}^{-\frac{3 x}{2}}-8}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{3 \mathrm{e}^{-\frac{3 x}{2}}}{2 \mathrm{e}^{-\frac{3 x}{2}}-8}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, --> Computing symmetries using: way = 3
<- differential order: 2; canonical coordinates successful
<- differential order 2; missing variables successful`

```

Solution by Maple
Time used: 0.203 (sec). Leaf size: 16

\[
y(x)=-\frac{3}{8 \mathrm{e}^{\frac{3 x}{2}}-2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.982 (sec). Leaf size: 20
DSolve \(\left[\left\{y[x] * y{ }^{\prime}{ }^{\prime}[x]==y[x] \sim 2 * y '[x]+\left(y y^{\prime}[x]\right)^{\wedge} 2,\left\{y[0]==-1 / 2, y^{\prime}[0]==1\right\}\right\}, y[x], x\right.\), IncludeSingularSol
\[
y(x) \rightarrow \frac{3}{2-8 e^{3 x / 2}}
\]

\subsection*{7.10 problem 2(c)}
7.10.1 Solving as second order integrable as is ode 1007
7.10.2 Solving as second order ode missing \(x\) ode 1009
7.10.3 Solving as type second_order_integrable_as_is (not using ABC
version) . 1011
7.10.4 Solving as exact nonlinear second order ode ode 1013
7.10.5 Maple step by step solution . 1016

Internal problem ID [6246]
Internal file name [OUTPUT/5494_Sunday_June_05_2022_03_41_29_PM_83387578/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_integrable_as_is", "second_order_ode_missing_x", "exact nonlinear second order ode"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [
_2nd_order, _reducible, _mu_xy]]

```
\[
y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=2\right]
\]

\subsection*{7.10.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}\right) d x=0 \\
-\mathrm{e}^{y}+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\mathrm{e}^{y}+c_{1}} d y & =\int d x \\
\frac{\ln \left(\mathrm{e}^{y}\right)}{c_{1}}-\frac{\ln \left(\mathrm{e}^{y}+c_{1}\right)}{c_{1}} & =c_{2}+x
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\left(\frac{1}{c_{1}}\right)\left(\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)\right) & =c_{2}+x \\
\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right) & =\left(c_{1}\right)\left(c_{2}+x\right) \\
& =c_{1}\left(c_{2}+x\right)
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)}=c_{1} c_{2} \mathrm{e}^{c_{1} x}
\]

Which simplifies to
\[
\frac{\mathrm{e}^{y}}{\mathrm{e}^{y}+c_{1}}=c_{3} \mathrm{e}^{c_{1} x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}\right)+c_{1} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3}}\right) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{c_{3} \mathrm{e}^{c_{1} x} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}+c_{1}
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=-\frac{c_{1}}{-1+c_{3}} \tag{2A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{3}=\frac{1}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x \tag{1}
\end{equation*}
\]

Figure 195: Solution plot

Verification of solutions
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Verified OK.

\subsection*{7.10.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)-p(y) \mathrm{e}^{y}=0
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
p(y) & =\int \mathrm{e}^{y} \mathrm{~d} y \\
& =\mathrm{e}^{y}+c_{1}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(y=0\) and \(p=2\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
2=c_{1}+1 \\
c_{1}=1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(y)=1+\mathrm{e}^{y}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=1+\mathrm{e}^{y}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{1+\mathrm{e}^{y}} d y & =\int d x \\
-\ln \left(1+\mathrm{e}^{y}\right)+\ln \left(\mathrm{e}^{y}\right) & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{-\ln \left(1+\mathrm{e}^{y}\right)+\ln \left(\mathrm{e}^{y}\right)}=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
\frac{\mathrm{e}^{y}}{1+\mathrm{e}^{y}}=c_{3} \mathrm{e}^{x}
\]

Initial conditions are used to solve for \(c_{3}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=\ln \left(-\frac{c_{3}}{-1+c_{3}}\right) \\
c_{3}=\frac{1}{2}
\end{gathered}
\]

Substituting \(c_{3}\) found above in the general solution gives
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x \tag{1}
\end{equation*}
\]

Figure 196: Solution plot

\section*{Verification of solutions}
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Verified OK.

\subsection*{7.10.3 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}=0
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}\right) d x=0 \\
-\mathrm{e}^{y}+y^{\prime}=c_{1}
\end{gathered}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\mathrm{e}^{y}+c_{1}} d y & =\int d x \\
\frac{\ln \left(\mathrm{e}^{y}\right)}{c_{1}}-\frac{\ln \left(\mathrm{e}^{y}+c_{1}\right)}{c_{1}} & =c_{2}+x
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\left(\frac{1}{c_{1}}\right)\left(\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)\right) & =c_{2}+x \\
\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right) & =\left(c_{1}\right)\left(c_{2}+x\right) \\
& =c_{1}\left(c_{2}+x\right)
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)}=c_{1} c_{2} \mathrm{e}^{c_{1} x}
\]

Which simplifies to
\[
\frac{\mathrm{e}^{y}}{\mathrm{e}^{y}+c_{1}}=c_{3} \mathrm{e}^{c_{1} x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}\right)+c_{1} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3}}\right) \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{c_{3} \mathrm{e}^{c_{1} x} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}+c_{1}
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=-\frac{c_{1}}{-1+c_{3}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{3}=\frac{1}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x \tag{1}
\end{equation*}
\]

Figure 197: Solution plot

Verification of solutions
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Verified OK.

\subsection*{7.10.4 Solving as exact nonlinear second order ode ode}

An exact non-linear second order ode has the form
\[
a_{2}\left(x, y, y^{\prime}\right) y^{\prime \prime}+a_{1}\left(x, y, y^{\prime}\right) y^{\prime}+a_{0}\left(x, y, y^{\prime}\right)=0
\]

Where the following conditions are satisfied
\[
\begin{aligned}
\frac{\partial a_{2}}{\partial y} & =\frac{\partial a_{1}}{\partial y^{\prime}} \\
\frac{\partial a_{2}}{\partial x} & =\frac{\partial a_{0}}{\partial y^{\prime}} \\
\frac{\partial a_{1}}{\partial x} & =\frac{\partial a_{0}}{\partial y}
\end{aligned}
\]

Looking at the the ode given we see that
\[
\begin{aligned}
a_{2} & =1 \\
a_{1} & =-\mathrm{e}^{y} \\
a_{0} & =0
\end{aligned}
\]

Applying the conditions to the above shows this is a nonlinear exact second order ode. Therefore it can be reduced to first order ode given by
\[
\begin{aligned}
& \int a_{2} d y^{\prime}+\int a_{1} d y+\int a_{0} d x=c_{1} \\
& \int 1 d y^{\prime}+\int-\mathrm{e}^{y} d y+\int 0 d x=c_{1}
\end{aligned}
\]

Which results in
\[
-\mathrm{e}^{y}+y^{\prime}=c_{1}
\]

Which is now solved Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\mathrm{e}^{y}+c_{1}} d y & =\int d x \\
\frac{\ln \left(\mathrm{e}^{y}\right)}{c_{1}}-\frac{\ln \left(\mathrm{e}^{y}+c_{1}\right)}{c_{1}} & =c_{2}+x
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\left(\frac{1}{c_{1}}\right)\left(\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)\right) & =c_{2}+x \\
\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right) & =\left(c_{1}\right)\left(c_{2}+x\right) \\
& =c_{1}\left(c_{2}+x\right)
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln \left(\mathrm{e}^{y}\right)-\ln \left(\mathrm{e}^{y}+c_{1}\right)}=c_{1} c_{2} \mathrm{e}^{c_{1} x}
\]

Which simplifies to
\[
\frac{\mathrm{e}^{y}}{\mathrm{e}^{y}+c_{1}}=c_{3} \mathrm{e}^{c_{1} x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}\right)+c_{1} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\ln \left(-\frac{c_{3} c_{1}}{-1+c_{3}}\right) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{c_{3} \mathrm{e}^{c_{1} x} c_{1}}{-1+c_{3} \mathrm{e}^{c_{1} x}}+c_{1}
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=-\frac{c_{1}}{-1+c_{3}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{3}=\frac{1}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x \tag{1}
\end{equation*}
\]

Figure 198: Solution plot

Verification of solutions
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Verified OK.

\subsection*{7.10.5 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-y^{\prime} \mathrm{e}^{y}=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- \(\quad\) Define new dependent variable \(u\)
\[
u(x)=y^{\prime}
\]
- \(\quad\) Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Substitute in the definition of \(u\)
\(u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(u(y)\left(\frac{d}{d y} u(y)\right)-u(y) \mathrm{e}^{y}=0\)
- Separate variables
\(\frac{d}{d y} u(y)=\mathrm{e}^{y}\)
- Integrate both sides with respect to \(y\)
\(\int\left(\frac{d}{d y} u(y)\right) d y=\int \mathrm{e}^{y} d y+c_{1}\)
- \(\quad\) Evaluate integral
\(u(y)=\mathrm{e}^{y}+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=\mathrm{e}^{y}+c_{1}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=\mathrm{e}^{y}+c_{1}\)
- \(\quad\) Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=\mathrm{e}^{y}+c_{1}\)
- \(\quad\) Separate variables
\(\frac{y^{\prime}}{\mathrm{e}^{y}+c_{1}}=1\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\mathrm{e}^{y}+c_{1}} d x=\int 1 d x+c_{2}\)
- Evaluate integral
\(\frac{\ln \left(\mathrm{e}^{y}\right)}{c_{1}}-\frac{\ln \left(\mathrm{e}^{y}+c_{1}\right)}{c_{1}}=c_{2}+x\)
- \(\quad\) Solve for \(y\)
\(y=c_{2} c_{1}+c_{1} x+\ln \left(-\frac{c_{1}}{-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}}\right)\)
Check validity of solution \(y=c_{2} c_{1}+c_{1} x+\ln \left(-\frac{c_{1}}{-1+\mathrm{e}^{c_{2} c_{1}+c_{1} x}}\right)\)
- Use initial condition \(y(0)=0\)
\(0=c_{2} c_{1}+\ln \left(-\frac{c_{1}}{-1+\mathrm{e}^{c_{2} c_{1}}}\right)\)
- Compute derivative of the solution
\[
y^{\prime}=-\frac{c_{1} 1^{c_{2} c_{1}+c_{1} x}}{-1+e^{c_{2} c_{1}+c_{1} x}}+c_{1}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=2\)
\[
2=-\frac{c_{1} \mathrm{c}_{2} c_{1}}{-1+\mathrm{e}_{2} c_{1} c_{1}}+c_{1}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=1, c_{2}=-\ln (2)\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]
- \(\quad\) Solution to the IVP
\[
y=\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)+x
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(\(\mathrm{x}, \mathrm{y}\))
trying differential order: 2; missing variables
-, --> Computing symmetries using: way \(=3\)
\(\rightarrow\) Calling odsolve with the ODE \(, ~\left(\operatorname{diff}\left(_b\left(_a\right), \quad, a\right)\right) *_{-} b\left(_a\right)-\exp \left(_a\right) *_{-} b\left(_a\right)=0, \quad b\left(_a\right)\), HINT symmetry methods on request
-, `1st order, trying reduction of order with given symmetries:` [1, _b]
\(\checkmark\) Solution by Maple
Time used: 0.735 (sec). Leaf size: 21
dsolve([diff \((y(x), x \$ 2)=\operatorname{diff}(y(x), x) * \exp (y(x)), y(0)=0, D(y)(0)=2], y(x)\), singsol=all)
\[
y(x)=x+\ln \left(-\frac{1}{\mathrm{e}^{x}-2}\right)
\]
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{y''[x]==y'[x]*Exp[y[x]],\{y[0]==0,y'[0]==2\}\},y[x],x,IncludeSingularSolutions \(->\) True]
\{\}

\subsection*{7.11 problem 3(a)}
7.11.1 Solving as second order ode missing y ode 1020
7.11.2 Solving as second order ode missing \(x\) ode 1021
7.11.3 Maple step by step solution . 1023

Internal problem ID [6247]
Internal file name [OUTPUT/5495_Sunday_June_05_2022_03_41_33_PM_45489118/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_oorder_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
\[
y^{\prime \prime}-y^{\prime 2}=1
\]

\subsection*{7.11.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)-1-p(x)^{2}=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{p^{2}+1} d p & =x+c_{1} \\
\arctan (p) & =x+c_{1}
\end{aligned}
\]

Solving for \(p\) gives these solutions
\[
p_{1}=\tan \left(x+c_{1}\right)
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\tan \left(x+c_{1}\right)
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \tan \left(x+c_{1}\right) \mathrm{d} x \\
& =\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}
\]

Verified OK.

\subsection*{7.11.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=1
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
\int \frac{p}{p^{2}+1} d p & =\int d y \\
\frac{\ln \left(p^{2}+1\right)}{2} & =y+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\sqrt{p^{2}+1}=\mathrm{e}^{y+c_{1}}
\]

Which simplifies to
\[
\sqrt{p^{2}+1}=c_{2} \mathrm{e}^{y}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)
\]

Integrating both sides gives
\[
\begin{aligned}
& \int \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2 y}+1\right)} d y=\int d x \\
&\left.\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2}-a\right.}+1\right) \\
& d _a=x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2} _a+1\right)} d _a=x+c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2}^{2} \mathrm{e}^{2} _^{a}+1\right)} d _a=x+c_{3}
\]

Verified OK.

\subsection*{7.11.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-y^{\prime 2}=1\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE \(u^{\prime}(x)-u(x)^{2}=1\)
- Separate variables
\[
\frac{u^{\prime}(x)}{u(x)^{2}+1}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{u^{\prime}(x)}{u(x)^{2}+1} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\(\arctan (u(x))=x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\tan \left(x+c_{1}\right)\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\tan \left(x+c_{1}\right)\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\tan \left(x+c_{1}\right)\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \tan \left(x+c_{1}\right) d x+c_{2}\)
- Compute integrals
\(y=\frac{\ln \left(1+\tan \left(x+c_{1}\right)^{2}\right)}{2}+c_{2}\)

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
<- 2nd order, 2 integrating factors of the form mu(x,y) successful-
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)=1+(diff(y(x),x))^2,y(x), singsol=all)

```
\[
y(x)=-\ln \left(-\cos (x) c_{2}+c_{1} \sin (x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.938 (sec). Leaf size: 16
DSolve[y''[x]==1+(y'[x])~2,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2}-\log \left(\cos \left(x+c_{1}\right)\right)
\]

\subsection*{7.12 problem 3(b)}
7.12.1 Solving as second order ode missing y ode 1025
7.12.2 Solving as second order ode missing \(x\) ode 1026
7.12.3 Maple step by step solution . 1028

Internal problem ID [6248]
Internal file name [OUTPUT/5496_Sunday_June_05_2022_03_41_34_PM_27172925/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Section 1.9. Reduction of Order. Page 38
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order__ode_missing_x", "second_oorder_ode_missing_y"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_xy]]
\[
y^{\prime \prime}+y^{\prime 2}=1
\]

\subsection*{7.12.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)+p(x)^{2}-1=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{-p^{2}+1} d p & =x+c_{1} \\
\operatorname{arctanh}(p) & =x+c_{1}
\end{aligned}
\]

Solving for \(p\) gives these solutions
\[
p_{1}=\tanh \left(x+c_{1}\right)
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\tanh \left(x+c_{1}\right)
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \tanh \left(x+c_{1}\right) \mathrm{d} x \\
& =\ln \left(\cosh \left(x+c_{1}\right)\right)+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\ln \left(\cosh \left(x+c_{1}\right)\right)+c_{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\ln \left(\cosh \left(x+c_{1}\right)\right)+c_{2}
\]

Verified OK.

\subsection*{7.12.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)+p(y)^{2}=1
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
\int-\frac{p}{p^{2}-1} d p & =\int d y \\
-\frac{\ln (p-1)}{2}-\frac{\ln (p+1)}{2} & =y+c_{1}
\end{aligned}
\]

The above can be written as
\[
\begin{aligned}
\left(-\frac{1}{2}\right)(\ln (p-1)+\ln (p+1)) & =y+c_{1} \\
\ln (p-1)+\ln (p+1) & =(-2)\left(y+c_{1}\right) \\
& =-2 c_{1}-2 y
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\ln (p-1)+\ln (p+1)}=-2 c_{1} \mathrm{e}^{-2 y}
\]

Which simplifies to
\[
p^{2}-1=c_{2} \mathrm{e}^{-2 y}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 y}-1\right)
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 y}-1\right)} d y & =\int d x \\
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 _a}-1\right)} d _a & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 _a}-1\right)} d _a=x+c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\int^{y} \frac{1}{\operatorname{RootOf}\left(_Z^{2}-c_{2} \mathrm{e}^{-2 _a}-1\right)} d _a=x+c_{3}
\]

Verified OK.

\subsection*{7.12.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+y^{\prime 2}=1\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE \(u^{\prime}(x)+u(x)^{2}=1\)
- Separate variables
\[
\frac{u^{\prime}(x)}{-u(x)^{2}+1}=1
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{-u(x)^{2}+1} d x=\int 1 d x+c_{1}\)
- Evaluate integral
\(\operatorname{arctanh}(u(x))=x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\tanh \left(x+c_{1}\right)\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\tanh \left(x+c_{1}\right)\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=\tanh \left(x+c_{1}\right)\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int \tanh \left(x+c_{1}\right) d x+c_{2}\)
- Compute integrals
\(y=\ln \left(\cosh \left(x+c_{1}\right)\right)+c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful <- 2nd order, 2 integrating factors of the form mu(x,y) successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
```

dsolve(diff(y(x),x\$2)+(diff(y(x),x))^2=1,y(x), singsol=all)

```
\[
y(x)=x-\ln (2)+\ln \left(\mathrm{e}^{-2 x} c_{1}-c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.388 (sec). Leaf size: 46
```

DSolve[y''[x]+(y'[x])~2==1,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& y(x) \rightarrow-\log \left(e^{x}\right)+\log \left(e^{2 x}+e^{2 c_{1}}\right)+c_{2} \\
& y(x) \rightarrow-\log \left(e^{x}\right)+\log \left(e^{2 x}\right)+c_{2}
\end{aligned}
\]
8 Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
8.1 problem 1(a) 1031
8.2 problem 1(b) 1046
8.3 problem 1(c) 1060
8.4 problem 1(d) 1075
8.5 problem 1(e) 1087
8.6 problem 1(f) 1097
8.7 problem 1(g) 1111
8.8 problem 1(h) 1126
8.9 problem 2(a) 1138
8.10 problem 2(b) 1153
8.11 problem 2(c) 1167
8.12 problem 2(d) 1183
8.13 problem 2(e) 1195
8.14 problem 2(f) 1208
8.15 problem 2(g) 1218
8.16 problem 2(h) 1231
8.17 problem 4(a) 1244
8.18 problem 4(b) 1248
8.19 problem 4(c) 1254
8.20 problem 4(d) 1259

\section*{8.1 problem 1(a)}
8.1.1 Solving as linear ode . 1031
8.1.2 Solving as homogeneousTypeD2 ode 1033
8.1.3 Solving as differentialType ode 1035
8.1.4 Solving as first order ode lie symmetry lookup ode 1036
8.1.5 Solving as exact ode . 1040
8.1.6 Maple step by step solution . 1044

Internal problem ID [6249]
Internal file name [OUTPUT/5497_Sunday_June_05_2022_03_41_36_PM_62340482/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
```

[_linear]

```
\[
x y^{\prime}+y=x
\]

\subsection*{8.1.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =1
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x}=1
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =x \\
\mathrm{~d}(x y) & =x \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x y=\int x \mathrm{~d} x \\
& x y=\frac{x^{2}}{2}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
y=\frac{x}{2}+\frac{c_{1}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x}{2}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
\]

Figure 199: Slope field plot
Verification of solutions
\[
y=\frac{x}{2}+\frac{c_{1}}{x}
\]

Verified OK.

\subsection*{8.1.2 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
x\left(u^{\prime}(x) x+u(x)\right)+u(x) x=x
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{-2 u+1}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(u)=-2 u+1\). Integrating both sides gives
\[
\frac{1}{-2 u+1} d u=\frac{1}{x} d x
\]
\[
\begin{aligned}
\int \frac{1}{-2 u+1} d u & =\int \frac{1}{x} d x \\
-\frac{\ln (-2 u+1)}{2} & =\ln (x)+c_{2}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{\sqrt{-2 u+1}}=\mathrm{e}^{\ln (x)+c_{2}}
\]

Which simplifies to
\[
\frac{1}{\sqrt{-2 u+1}}=c_{3} x
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =u x \\
& =\frac{\left(\mathrm{e}^{2 c_{2}} c_{3}^{2} x^{2}-1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(\mathrm{e}^{2 c_{2}} c_{3}^{2} x^{2}-1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}} \tag{1}
\end{equation*}
\]

Figure 200: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\left(\mathrm{e}^{2 c_{2}} c_{3}^{2} x^{2}-1\right) \mathrm{e}^{-2 c_{2}}}{2 x c_{3}^{2}}
\]

Verified OK.

\subsection*{8.1.3 Solving as differentialType ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=\frac{x-y}{x} \tag{1}
\end{equation*}
\]

Which becomes
\[
\begin{equation*}
0=(-x) d y+(x-y) d x \tag{2}
\end{equation*}
\]

But the RHS is complete differential because
\[
(-x) d y+(x-y) d x=d\left(\frac{1}{2} x^{2}-x y\right)
\]

Hence (2) becomes
\[
0=d\left(\frac{1}{2} x^{2}-x y\right)
\]

Integrating both sides gives gives these solutions
\[
y=\frac{x^{2}+2 c_{1}}{2 x}+c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{2}+2 c_{1}}{2 x}+c_{1} \tag{1}
\end{equation*}
\]

Figure 201: Slope field plot
Verification of solutions
\[
y=\frac{x^{2}+2 c_{1}}{2 x}+c_{1}
\]

Verified OK.

\subsection*{8.1.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{-x+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 135: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
\]

Which results in
\[
S=x y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{-x+y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
x y=\frac{x^{2}}{2}+c_{1}
\]

Which simplifies to
\[
x y=\frac{x^{2}}{2}+c_{1}
\]

Which gives
\[
y=\frac{x^{2}+2 c_{1}}{2 x}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{-x+y}{x}\) & & \(\frac{d S}{d R}=R\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \({ }^{\prime \prime}\) & & \\
\hline & & \\
\hline & & \\
\hline & & \(\xrightarrow{+1}\) \\
\hline & \(S=x y\) & \\
\hline & & ! ! : \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{2}+2 c_{1}}{2 x} \tag{1}
\end{equation*}
\]

Figure 202: Slope field plot

Verification of solutions
\[
y=\frac{x^{2}+2 c_{1}}{2 x}
\]

Verified OK.

\subsection*{8.1.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(x) \mathrm{d} y & =(x-y) \mathrm{d} x \\
(-x+y) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-x+y \\
& N(x, y)=x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x+y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x+y \mathrm{~d} x \\
\phi & =-\frac{x(x-2 y)}{2}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=x\). Therefore equation (4) becomes
\[
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{x(x-2 y)}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{x(x-2 y)}{2}
\]

The solution becomes
\[
y=\frac{x^{2}+2 c_{1}}{2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{2}+2 c_{1}}{2 x} \tag{1}
\end{equation*}
\]

Figure 203: Slope field plot

Verification of solutions
\[
y=\frac{x^{2}+2 c_{1}}{2 x}
\]

Verified OK.

\subsection*{8.1.6 Maple step by step solution}

Let's solve
\(x y^{\prime}+y=x\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=1-\frac{y}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}+\frac{y}{x}=1\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu(x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\frac{\mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=x\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\[
\mu(x) y=\int \mu(x) d x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=x\)
\(y=\frac{\int x d x+c_{1}}{x}\)
- Evaluate the integrals on the rhs
\(y=\frac{\frac{x^{2}}{2}+c_{1}}{x}\)
- Simplify
\[
y=\frac{x^{2}+2 c_{1}}{2 x}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve(\(x * \operatorname{diff}(y(x), x)+y(x)=x, y(x)\), singsol=all)
\[
y(x)=\frac{x}{2}+\frac{c_{1}}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 17
DSolve[x*y' \([x]+y[x]==x, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{x}{2}+\frac{c_{1}}{x}
\]

\section*{8.2 problem 1(b)}
8.2.1 Solving as linear ode . 1046
8.2.2 Solving as first order ode lie symmetry lookup ode 1048
8.2.3 Solving as exact ode . 1052
8.2.4 Maple step by step solution . 1057

Internal problem ID [6250]
Internal file name [OUTPUT/5498_Sunday_June_05_2022_03_41_38_PM_88803413/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
x^{2} y^{\prime}+y=x^{2}
\]

\subsection*{8.2.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{1}{x^{2}} \\
& q(x)=1
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x^{2}}=1
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{1}{x^{2}} d x} \\
& =\mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =\mu \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-\frac{1}{x}} y\right) & =\mathrm{e}^{-\frac{1}{x}} \\
\mathrm{~d}\left(\mathrm{e}^{-\frac{1}{x}} y\right) & =\mathrm{e}^{-\frac{1}{x}} \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{-\frac{1}{x}} y=\int \mathrm{e}^{-\frac{1}{x}} \mathrm{~d} x \\
& \mathrm{e}^{-\frac{1}{x}} y=\mathrm{e}^{-\frac{1}{x}} x-\exp \text { Integral }_{1}\left(\frac{1}{x}\right)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-\frac{1}{x}}\) results in
\[
y=\mathrm{e}^{\frac{1}{x}}\left(\mathrm{e}^{-\frac{1}{x}} x-\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right)\right)+c_{1} \mathrm{e}^{\frac{1}{x}}
\]
which simplifies to
\[
y=x-\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}}+c_{1} \mathrm{e}^{\frac{1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x-\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}}+c_{1} \mathrm{e}^{\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 204: Slope field plot

\section*{Verification of solutions}
\[
y=x-\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}}+c_{1} \mathrm{e}^{\frac{1}{x}}
\]

Verified OK.

\subsection*{8.2.2 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=-\frac{-x^{2}+y}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 138: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \[
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
\] & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{\frac{1}{x}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{\frac{1}{x}}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{-\frac{1}{x}} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{-x^{2}+y}{x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=\frac{\mathrm{e}^{-\frac{1}{x}} y}{x^{2}} \\
& S_{y}=\mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\mathrm{e}^{-\frac{1}{x}} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\mathrm{e}^{-\frac{1}{R}}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=R \mathrm{e}^{-\frac{1}{R}}-\operatorname{expIntegral}{ }_{1}\left(\frac{1}{R}\right)+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{-\frac{1}{x}} y=\mathrm{e}^{-\frac{1}{x}} x-\exp \text { Integral }_{1}\left(\frac{1}{x}\right)+c_{1}
\]

Which simplifies to
\[
(-x+y) \mathrm{e}^{-\frac{1}{x}}-c_{1}+\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right)=0
\]

Which gives
\[
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{-x^{2}+y}{x^{2}}\) & & \(\frac{d S}{d R}=\mathrm{e}^{-\frac{1}{R}}\) \\
\hline & & \\
\hline & \(R=x\) & \\
\hline & \(S=\mathrm{e}^{-\frac{1}{x}} y\) & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 205: Slope field plot

\section*{Verification of solutions}
\[
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
\]

Verified OK.

\subsection*{8.2.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the
ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(x^{2}-y\right) \mathrm{d} x \\
\left(-x^{2}+y\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-x^{2}+y \\
N(x, y) & =x^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+y\right) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}}((1)-(2 x)) \\
& =\frac{1-2 x}{x^{2}}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{1-2 x}{x^{2}} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-2 \ln (x)-\frac{1}{x}} \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}\left(-x^{2}+y\right) \\
& =-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}-y\right)}{x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{-\frac{1}{x}}}{x^{2}}\left(x^{2}\right) \\
& =\mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}-y\right)}{x^{2}}\right)+\left(\mathrm{e}^{-\frac{1}{x}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\mathrm{e}^{-\frac{1}{x}}\left(x^{2}-y\right)}{x^{2}} \mathrm{~d} x \\
\phi & =(-x+y) \mathrm{e}^{-\frac{1}{x}}+\operatorname{expIntegral}_{1}\left(\frac{1}{x}\right)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{1}{x}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{-\frac{1}{x}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{-\frac{1}{x}}=\mathrm{e}^{-\frac{1}{x}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=(-x+y) \mathrm{e}^{-\frac{1}{x}}+\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=(-x+y) \mathrm{e}^{-\frac{1}{x}}+\exp \operatorname{Integral}_{1}\left(\frac{1}{x}\right)
\]

The solution becomes
\[
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 206: Slope field plot

\section*{Verification of solutions}
\[
y=\left(\mathrm{e}^{-\frac{1}{x}} x-\operatorname{expIntegral} l_{1}\left(\frac{1}{x}\right)+c_{1}\right) \mathrm{e}^{\frac{1}{x}}
\]

\section*{Verified OK.}

\subsection*{8.2.4 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime}+y=x^{2}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=1-\frac{y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}+\frac{y}{x^{2}}=1\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\[
\mu(x)\left(y^{\prime}+\frac{y}{x^{2}}\right)=\mu(x)
\]
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}+\frac{y}{x^{2}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\frac{\mu(x)}{x^{2}}\)
- \(\quad\) Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{-\frac{1}{x}}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{-\frac{1}{x}}\)
\(y=\frac{\int \mathrm{e}^{-\frac{1}{x}} d x+c_{1}}{\mathrm{e}^{-\frac{1}{x}}}\)
- Evaluate the integrals on the rhs
\(y=\frac{\mathrm{e}^{-\frac{1}{x} x-\mathrm{Ei}_{1}\left(\frac{1}{x}\right)+c_{1}}}{\mathrm{e}^{-\frac{1}{x}}}\)
- Simplify
\(y=x-\operatorname{Ei}_{1}\left(\frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}}+c_{1} \mathrm{e}^{\frac{1}{x}}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve(\(x^{\wedge} 2 * \operatorname{diff}(y(x), x)+y(x)=x \wedge 2, y(x)\), singsol=all)
\[
y(x)=x-\exp \text { Integral }_{1}\left(\frac{1}{x}\right) \mathrm{e}^{\frac{1}{x}}+\mathrm{e}^{\frac{1}{x}} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 27
DSolve \(\left[x^{\wedge} \sim 2 * y^{\prime}[x]+y[x]==x^{\wedge} 2, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{\frac{1}{x}} \text { ExpIntegralEi }\left(-\frac{1}{x}\right)+x+c_{1} e^{\frac{1}{x}}
\]

\section*{8.3 problem 1(c)}
8.3.1 Solving as separable ode . 1060
8.3.2 Solving as linear ode . 1062
8.3.3 Solving as homogeneousTypeD2 ode 1063
8.3.4 Solving as first order ode lie symmetry lookup ode 1065
8.3.5 Solving as exact ode . 1069
8.3.6 Maple step by step solution . 1073

Internal problem ID [6251]
Internal file name [OUTPUT/5499_Sunday_June_05_2022_03_41_39_PM_75934341/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[_separable]

```
\[
x^{2} y^{\prime}-y=0
\]

\subsection*{8.3.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x^{2}}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x^{2}}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x^{2}} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x^{2}} d x \\
\ln (y) & =c_{1}-\frac{1}{x} \\
y & =\mathrm{e}^{c_{1}-\frac{1}{x}} \\
& =c_{1} \mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 207: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{8.3.2 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x^{2}} \\
& q(x)=0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x^{2}}=0
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x^{2}} d x} \\
& =\mathrm{e}^{\frac{1}{x}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{1}{x}} y\right) & =0
\end{aligned}
\]

Integrating gives
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{1}{x}}\) results in
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 208: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{8.3.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
x^{2}\left(u^{\prime}(x) x+u(x)\right)-u(x) x=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(x-1)}{x^{2}}
\end{aligned}
\]

Where \(f(x)=-\frac{x-1}{x^{2}}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{x-1}{x^{2}} d x \\
\int \frac{1}{u} d u & =\int-\frac{x-1}{x^{2}} d x \\
\ln (u) & =-\ln (x)-\frac{1}{x}+c_{2} \\
u & =\mathrm{e}^{-\ln (x)-\frac{1}{x}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)-\frac{1}{x}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{2} \mathrm{e}^{-\frac{1}{x}}}{x}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =u x \\
& =c_{2} \mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 209: Slope field plot
Verification of solutions
\[
y=c_{2} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{8.3.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{y}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 141: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{1}{x}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{1}{x}}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{\frac{1}{x}} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y}{x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\mathrm{e}^{\frac{1}{x}} y}{x^{2}} \\
& S_{y}=\mathrm{e}^{\frac{1}{x}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Which simplifies to
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Which gives
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{y}{x^{2}}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }\) \\
\hline \(\rightarrow \rightarrow \rightarrow \pm \infty\) - & & \\
\hline & & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }\) & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 25}\) + \\
\hline \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}\) & \(R=x\) & \\
\hline & \[
S=\mathrm{e}^{\frac{1}{x}} y
\] & \\
\hline & & \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow}\) \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}\) \\
\hline & & \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 210: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{8.3.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{1}{x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=\frac{1}{y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{1}{x}+\ln (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{1}{x}+\ln (y)
\]

The solution becomes
\[
y=\mathrm{e}^{\frac{c_{1} x-1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{\frac{c_{1} x-1}{x}} \tag{1}
\end{equation*}
\]

Figure 211: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{\frac{c_{1} x-1}{x}}
\]

Verified OK.

\subsection*{8.3.6 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Separate variables
\[
\frac{y^{\prime}}{y}=\frac{1}{x^{2}}
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x^{2}} d x+c_{1}\)
- Evaluate integral
\(\ln (y)=c_{1}-\frac{1}{x}\)
- \(\quad\) Solve for \(y\)
\(y=\mathrm{e}^{\frac{c_{1} x-1}{x}}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
```

dsolve(x^2*diff(y(x),x)=y(x),y(x), singsol=all)

```
\[
y(x)=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 20
DSolve \(\left[x^{\wedge} 2 * y '[x]==y[x], y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-1 / x} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{8.4 problem 1(d)}
8.4.1 Solving as separable ode . 1075
8.4.2 Solving as first order ode lie symmetry lookup ode 1077
8.4.3 Solving as exact ode . 1081
8.4.4 Maple step by step solution . 1085

Internal problem ID [6252]
Internal file name [OUTPUT/5500_Sunday_June_05_2022_03_41_40_PM_74561563/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
y^{\prime} \sec (x)-\sec (y)=0
\]

\subsection*{8.4.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sec (y)}{\sec (x)}
\end{aligned}
\]

Where \(f(x)=\frac{1}{\sec (x)}\) and \(g(y)=\sec (y)\). Integrating both sides gives
\[
\frac{1}{\sec (y)} d y=\frac{1}{\sec (x)} d x
\]
\[
\begin{aligned}
\int \frac{1}{\sec (y)} d y & =\int \frac{1}{\sec (x)} d x \\
\sin (y) & =\sin (x)+c_{1}
\end{aligned}
\]

Which results in
\[
y=\arcsin \left(\sin (x)+c_{1}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\arcsin \left(\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
\]

Figure 212: Slope field plot

Verification of solutions
\[
y=\arcsin \left(\sin (x)+c_{1}\right)
\]

Verified OK.

\subsection*{8.4.2 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{\sec (y)}{\sec (x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 144: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=\sec (x) \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\sec (x)} d x
\end{aligned}
\]

Which results in
\[
S=\sin (x)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{\sec (y)}{\sec (x)}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\cos (x) \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\cos (y) \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\cos (R)
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\sin (R)+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\sin (x)=\sin (y)+c_{1}
\]

Which simplifies to
\[
\sin (x)=\sin (y)+c_{1}
\]

Which gives
\[
y=-\arcsin \left(-\sin (x)+c_{1}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \[
\frac{d y}{d x}=\frac{\sec (y)}{\sec (x)}
\] & & \(\frac{d S}{d R}=\cos (R)\) \\
\hline & & \\
\hline & & \(\rightarrow+1\) \\
\hline & & \\
\hline & & \(\rightarrow x_{0}+x_{0 \rightarrow 0}\) \\
\hline \(\cdots\) - & & \(\rightarrow x_{0}\) \\
\hline \(\rightarrow+x^{+1}\) & \(R=y\) & \(\rightarrow{ }^{+\infty}\) \\
\hline \(\rightarrow\) 为 & \(S=\sin (x)\) & \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\arcsin \left(-\sin (x)+c_{1}\right) \tag{1}
\end{equation*}
\]

Figure 213: Slope field plot

Verification of solutions
\[
y=-\arcsin \left(-\sin (x)+c_{1}\right)
\]

Verified OK.

\subsection*{8.4.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{\sec (y)}\right) \mathrm{d} y & =\left(\frac{1}{\sec (x)}\right) \mathrm{d} x \\
\left(-\frac{1}{\sec (x)}\right) \mathrm{d} x+\left(\frac{1}{\sec (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{\sec (x)} \\
& N(x, y)=\frac{1}{\sec (y)}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\sec (x)}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\sec (y)}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\sec (x)} \mathrm{d} x \\
\phi & =-\sin (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{\sec (y)}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{\sec (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =\frac{1}{\sec (y)} \\
& =\cos (y)
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\cos (y)) \mathrm{d} y \\
f(y) & =\sin (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\sin (x)+\sin (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\sin (x)+\sin (y)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
-\sin (x)+\sin (y)=c_{1} \tag{1}
\end{equation*}
\]

Figure 214: Slope field plot

Verification of solutions
\[
-\sin (x)+\sin (y)=c_{1}
\]

Verified OK.

\subsection*{8.4.4 Maple step by step solution}

Let's solve
\[
y^{\prime} \sec (x)-\sec (y)=0
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{\sec (y)}=\frac{1}{\sec (x)}
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{\sec (y)} d x=\int \frac{1}{\sec (x)} d x+c_{1}\)
- Evaluate integral
\[
\sin (y)=\sin (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\arcsin \left(\sin (x)+c_{1}\right)
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 9
dsolve (sec \((x) * \operatorname{diff}(y(x), x)=\sec (y(x)), y(x), \quad\) singsol \(=a l l)\)
\[
y(x)=\arcsin \left(\sin (x)+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.335 (sec). Leaf size: 11
DSolve[Sec \([x] * y '[x]==\operatorname{Sec}[y[x]], y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \arcsin \left(\sin (x)+c_{1}\right)
\]

\section*{8.5 problem 1(e)}
8.5.1 Solving as homogeneousTypeD2 ode 1087
8.5.2 Solving as first order ode lie symmetry calculated ode 1089

Internal problem ID [6253]
Internal file name [OUTPUT/5501_Sunday_June_05_2022_03_41_42_PM_4078066/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]
\[
y^{\prime}-\frac{x^{2}+y^{2}}{x^{2}-y^{2}}=0
\]

\subsection*{8.5.1 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-\frac{x^{2}+u(x)^{2} x^{2}}{x^{2}-u(x)^{2} x^{2}}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{3}+u^{2}-u+1}{x\left(u^{2}-1\right)}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{u^{3}+u^{2}-u+1}{u^{2}-1}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{3}+u^{2}-u+1}{u^{2}-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{3}+u^{2}-u+1}{u^{2}-1}} d u & =\int-\frac{1}{x} d x \\
\int^{u} \frac{a^{2}-1}{-a^{3}+_a^{2}-_a+1} d _a & =-\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{_a^{2}-1}{-a^{3}+_a^{2}-_a+1} d _a=-\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{_a^{2}-1}{_^{3}+_a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& \int^{\frac{y}{x}} \frac{_a^{2}-1}{\square^{3}+_a^{2}-_a+1} d _a+\ln (x)-c_{2}=0 \\
& \int^{\frac{y}{x}} \frac{_a^{2}-1}{_^{3}+a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{_a^{2}-1}{-^{3}+_a^{2}-_a+1} d _a+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 215: Slope field plot
Verification of solutions
\[
\int^{\frac{y}{x}} \frac{_a^{2}-1}{-^{3}+_a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\]

Verified OK.

\subsection*{8.5.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=-\frac{x^{2}+y^{2}}{-x^{2}+y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{\left(x^{2}+y^{2}\right)\left(b_{3}-a_{2}\right)}{-x^{2}+y^{2}}-\frac{\left(x^{2}+y^{2}\right)^{2} a_{3}}{\left(-x^{2}+y^{2}\right)^{2}} \\
& -\left(-\frac{2 x}{-x^{2}+y^{2}}-\frac{2\left(x^{2}+y^{2}\right) x}{\left(-x^{2}+y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2 y}{-x^{2}+y^{2}}+\frac{2\left(x^{2}+y^{2}\right) y}{\left(-x^{2}+y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{x^{4} a_{2}+x^{4} a_{3}-x^{4} b_{2}-x^{4} b_{3}+4 x^{3} y b_{2}-4 x^{2} y^{2} a_{2}+2 x^{2} y^{2} a_{3}+2 x^{2} y^{2} b_{2}+4 x^{2} y^{2} b_{3}-4 x y^{3} a_{3}-y^{4} a_{2}+y^{4} a_{3}}{\left(x^{2}-y^{2}\right)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -x^{4} a_{2}-x^{4} a_{3}+x^{4} b_{2}+x^{4} b_{3}-4 x^{3} y b_{2}+4 x^{2} y^{2} a_{2}-2 x^{2} y^{2} a_{3}-2 x^{2} y^{2} b_{2} \tag{6E}\\
& \quad-4 x^{2} y^{2} b_{3}+4 x y^{3} a_{3}+y^{4} a_{2}-y^{4} a_{3}+y^{4} b_{2}-y^{4} b_{3}-4 x^{2} y b_{1}+4 x y^{2} a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -a_{2} v_{1}^{4}+4 a_{2} v_{1}^{2} v_{2}^{2}+a_{2} v_{2}^{4}-a_{3} v_{1}^{4}-2 a_{3} v_{1}^{2} v_{2}^{2}+4 a_{3} v_{1} v_{2}^{3}-a_{3} v_{2}^{4}+b_{2} v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2} \tag{7E}\\
& \quad-2 b_{2} v_{1}^{2} v_{2}^{2}+b_{2} v_{2}^{4}+b_{3} v_{1}^{4}-4 b_{3} v_{1}^{2} v_{2}^{2}-b_{3} v_{2}^{4}+4 a_{1} v_{1} v_{2}^{2}-4 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{gather*}
\left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{1}^{4}-4 b_{2} v_{1}^{3} v_{2}+\left(4 a_{2}-2 a_{3}-2 b_{2}-4 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
-4 b_{1} v_{1}^{2} v_{2}+4 a_{3} v_{1} v_{2}^{3}+4 a_{1} v_{1} v_{2}^{2}+\left(a_{2}-a_{3}+b_{2}-b_{3}\right) v_{2}^{4}=0
\end{gather*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
4 a_{1} & =0 \\
4 a_{3} & =0 \\
-4 b_{1} & =0 \\
-4 b_{2} & =0 \\
-a_{2}-a_{3}+b_{2}+b_{3} & =0 \\
a_{2}-a_{3}+b_{2}-b_{3} & =0 \\
4 a_{2}-2 a_{3}-2 b_{2}-4 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Therefore
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
\]

This is easily solved to give
\[
y=c_{1} x
\]

Where now the coordinate \(R\) is taken as the constant of integration. Hence
\[
R=\frac{y}{x}
\]

And \(S\) is found from
\[
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
\]

Where the constant of integration is set to zero as we just need one solution. Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{x^{2}+y^{2}}{-x^{2}+y^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{x^{3}-y^{2} x}{x^{3}-y x^{2}+y^{2} x+y^{3}} \tag{2A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{-R^{2}+1}{R^{3}+R^{2}-R+1}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\int-\frac{R^{2}-1}{R^{3}+R^{2}-R+1} d R+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{-a^{2}-1}{-a^{3}+_a^{2}-_a+1} d _a+c_{1}
\]

Which simplifies to
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{a^{2}-1}{-^{3}+a^{2} a^{2}-_a+1} d _a+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & \[
\begin{gathered}
\text { Canonical } \\
\text { coordinates } \\
\text { transformation }
\end{gathered}
\] & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \[
\frac{d y}{d x}=-\frac{x^{2}+y^{2}}{-x^{2}+y^{2}}
\] & & \[
\frac{d S}{d R}=\frac{-R^{2}+1}{R^{3}+R^{2}-R+1}
\] \\
\hline didtatdt & & \\
\hline & & \(\rightarrow \rightarrow \pm 0\) 为 \\
\hline & & \\
\hline & & \(\bigcirc\) S \\
\hline & & \\
\hline & \(R=\underline{y}\) & \(\lim _{\rightarrow \rightarrow \rightarrow \infty}\) \\
\hline & & \(\rightarrow \rightarrow\) - \\
\hline & \(S=\ln (x)\) & \\
\hline & & \\
\hline & & \(\rightarrow \rightarrow-\infty\) ¢ \\
\hline & & \\
\hline & & \\
\hline 4 & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\ln (x)=\int^{\frac{y}{x}}-\frac{-a^{2}-1}{-a^{3}+_a^{2}-_a+1} d _a+c_{1} \tag{1}
\end{equation*}
\]

Figure 216: Slope field plot
Verification of solutions
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{_^{2}-1}{-^{a^{3}+a^{2}-a^{2}+1} d _a+c_{1} .}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve(diff \((y(x), x)=\left(x^{\wedge} 2+y(x)^{\wedge} 2\right) /\left(x^{\wedge} 2-y(x)^{\wedge} 2\right), y(x)\), singsol=all)
\[
y(x)=\operatorname{RootOf}\left(\int^{-Z} \frac{_a^{2}-1}{_^{3}+_a^{2}-_a+1} d _a+\ln (x)+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.115 (sec). Leaf size: 67
DSolve[y'[x]==(x^2+y[x]~2)/(x^2-y[x]^2),y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& \text { Solve }\left[\operatorname { R o o t S u m } \left[\# 1^{3}+\# 1^{2}-\# 1\right.\right. \\
& \left.\left.+1 \&, \frac{\# 1 \log \left(\frac{y(x)}{x}-\# 1\right)-\log \left(\frac{y(x)}{x}-\# 1\right)}{3 \# 1-1} \&\right]=-\log (x)+c_{1}, y(x)\right]
\end{aligned}
\]

\section*{8.6 problem 1(f)}
8.6.1 Solving as homogeneousTypeD2 ode 1097
8.6.2 Solving as first order ode lie symmetry calculated ode 1099
8.6.3 Solving as exact ode . 1104

Internal problem ID [6254]
Internal file name [OUTPUT/5502_Sunday_June_05_2022_03_41_43_PM_36474534/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
```

[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`,`     class A`]]

```
\[
y^{\prime}-\frac{2 y+x}{2 x-y}=0
\]

\subsection*{8.6.1 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-\frac{2 u(x) x+x}{2 x-u(x) x}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-2)}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{u^{2}+1}{u-2}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-2}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-2}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-2 \arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
\]

The solution is
\[
\frac{\ln \left(u(x)^{2}+1\right)}{2}-2 \arctan (u(x))+\ln (x)-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-2 \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-2 \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-2 \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 217: Slope field plot
Verification of solutions
\[
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-2 \arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\]

Verified OK.

\subsection*{8.6.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{2 y+x}{-2 x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{(2 y+x)\left(b_{3}-a_{2}\right)}{-2 x+y}-\frac{(2 y+x)^{2} a_{3}}{(-2 x+y)^{2}} \\
& -\left(-\frac{1}{-2 x+y}-\frac{2(2 y+x)}{(-2 x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{2}{-2 x+y}+\frac{2 y+x}{(-2 x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{2 x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-2 x^{2} b_{3}-2 x y a_{2}+4 x y a_{3}+4 x y b_{2}+2 x y b_{3}-2 y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+2 y^{2} b_{3}+5 x b_{1}-}{(2 x-y)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -2 x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+2 x^{2} b_{3}+2 x y a_{2}-4 x y a_{3}-4 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+2 y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-2 y^{2} b_{3}-5 x b_{1}+5 y a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -2 a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+2 a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-4 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-4 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+2 b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-2 b_{3} v_{2}^{2}+5 a_{1} v_{2}-5 b_{1} v_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-2 a_{2}-a_{3}-b_{2}+2 b_{3}\right) v_{1}^{2}+\left(2 a_{2}-4 a_{3}-4 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-5 b_{1} v_{1}+\left(2 a_{2}+a_{3}+b_{2}-2 b_{3}\right) v_{2}^{2}+5 a_{1} v_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
5 a_{1} & =0 \\
-5 b_{1} & =0 \\
-2 a_{2}-a_{3}-b_{2}+2 b_{3} & =0 \\
2 a_{2}-4 a_{3}-4 b_{2}-2 b_{3} & =0 \\
2 a_{2}+a_{3}+b_{2}-2 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E,2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{2 y+x}{-2 x+y}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{2 x-y} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{2 x-y}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \arctan \left(\frac{y}{x}\right)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{2 y+x}{-2 x+y}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{2 y+x}{x^{2}+y^{2}} \\
S_{y} & =\frac{-2 x+y}{x^{2}+y^{2}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \arctan \left(\frac{y}{x}\right)=c_{1}
\]

Which simplifies to
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \arctan \left(\frac{y}{x}\right)=c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{2 y+x}{-2 x+y}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \\
\hline & & \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-}\) S \((R)\) \\
\hline & & \\
\hline \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty\) & \(R=x\) & \(\xrightarrow{\rightarrow \rightarrow \rightarrow}\) \\
\hline - & ln (\(\left.x^{2}+y^{2}\right)\) & \\
\hline & \(S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \mathrm{arct}\) & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{\text { P }}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \arctan \left(\frac{y}{x}\right)=c_{1} \tag{1}
\end{equation*}
\]

Figure 218: Slope field plot

\section*{Verification of solutions}
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-2 \arctan \left(\frac{y}{x}\right)=c_{1}
\]

Verified OK.

\subsection*{8.6.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(-2 x+y) \mathrm{d} y & =(-2 y-x) \mathrm{d} x \\
(2 y+x) \mathrm{d} x+(-2 x+y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =2 y+x \\
N(x, y) & =-2 x+y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(2 y+x) \\
& =2
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-2 x+y) \\
& =-2
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. By inspection \(\frac{1}{x^{2}+y^{2}}\) is an integrating factor. Therefore by multiplying \(M=2 y+x\) and \(N=-2 x+y\) by this integrating factor the ode becomes exact. The new \(M, N\) are
\[
\begin{aligned}
M & =\frac{2 y+x}{x^{2}+y^{2}} \\
N & =\frac{-2 x+y}{x^{2}+y^{2}}
\end{aligned}
\]

To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might
or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{-2 x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{2 y+x}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{2 y+x}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{-2 x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =\frac{2 y+x}{x^{2}+y^{2}} \\
N(x, y) & =\frac{-2 x+y}{x^{2}+y^{2}}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 y+x}{x^{2}+y^{2}}\right) \\
& =\frac{2 x^{2}-2 x y-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-2 x+y}{x^{2}+y^{2}}\right) \\
& =\frac{2 x^{2}-2 x y-2 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{2 y+x}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln \left(x^{2}+y^{2}\right)}{2}+2 \arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{y}{x^{2}+y^{2}}-\frac{2 x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{-2 x+y}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{-2 x+y}{x^{2}+y^{2}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{-2 x+y}{x^{2}+y^{2}}=\frac{-2 x+y}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+2 \arctan \left(\frac{x}{y}\right)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+2 \arctan \left(\frac{x}{y}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+2 \arctan \left(\frac{x}{y}\right)=c_{1} \tag{1}
\end{equation*}
\]

Figure 219: Slope field plot

Verification of solutions
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+2 \arctan \left(\frac{x}{y}\right)=c_{1}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 24
```

dsolve(diff(y(x),x)=(x+2*y(x))/(2*x-y(x)),y(x), singsol=all)

```
\[
y(x)=\tan \left(\text { RootOf }\left(-4 _Z+\ln \left(\sec \left(_Z\right)^{2}\right)+2 \ln (x)+2 c_{1}\right)\right) x
\]

Solution by Mathematica
Time used: 0.06 (sec). Leaf size: 36
DSolve \(\left[y y^{\prime}[x]==(x+2 * y[x]) /(2 * x-y[x]), y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\text { Solve }\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-2 \arctan \left(\frac{y(x)}{x}\right)=-\log (x)+c_{1}, y(x)\right]
\]

\section*{8.7 problem 1 (g)}
8.7.1 Solving as separable ode . 1111
8.7.2 Solving as linear ode . 1113
8.7.3 Solving as homogeneousTypeD2 ode 1114
8.7.4 Solving as first order ode lie symmetry lookup ode 1116
8.7.5 Solving as exact ode . 1120
8.7.6 Maple step by step solution . 1124

Internal problem ID [6255]
Internal file name [OUTPUT/5503_Sunday_June_05_2022_03_41_46_PM_59101253/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[_separable]

```
\[
x^{2} y^{\prime}+2 x y=0
\]

\subsection*{8.7.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =-\frac{2 y}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{2}{x}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =-\frac{2}{x} d x \\
\int \frac{1}{y} d y & =\int-\frac{2}{x} d x \\
\ln (y) & =-2 \ln (x)+c_{1} \\
y & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
\]

Figure 220: Slope field plot

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}
\]

Verified OK.

\subsection*{8.7.2 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{2 y}{x}=0
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int \frac{2}{x} d x} \\
& =x^{2}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(y x^{2}\right) & =0
\end{aligned}
\]

Integrating gives
\[
y x^{2}=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=x^{2}\) results in
\[
y=\frac{c_{1}}{x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
\]

Figure 221: Slope field plot
Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}
\]

Verified OK.

\subsection*{8.7.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
x^{2}\left(u^{\prime}(x) x+u(x)\right)+2 x^{2} u(x)=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{3 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{3}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{3}{x} d x \\
\ln (u) & =-3 \ln (x)+c_{2} \\
u & =\mathrm{e}^{-3 \ln (x)+c_{2}} \\
& =\frac{c_{2}}{x^{3}}
\end{aligned}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =x u \\
& =\frac{c_{2}}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{2}}{x^{2}} \tag{1}
\end{equation*}
\]

Figure 222: Slope field plot

Verification of solutions
\[
y=\frac{c_{2}}{x^{2}}
\]

Verified OK.

\subsection*{8.7.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{2 y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 147: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x^{2}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x^{2}}} d y
\end{aligned}
\]

Which results in
\[
S=y x^{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{2 y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =2 x y \\
S_{y} & =x^{2}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
y x^{2}=c_{1}
\]

Which simplifies to
\[
y x^{2}=c_{1}
\]

Which gives
\[
y=\frac{c_{1}}{x^{2}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & \begin{tabular}{l}
Canonical \\
coordinates transformation
\end{tabular} & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{2 y}{x}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \(\underset{\rightarrow+\rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}{ }\) \\
\hline & & \(\rightarrow \rightarrow\) SRT \(\rightarrow\) \\
\hline & & \\
\hline - & \(R=x\) & \(\rightarrow\) \\
\hline & \(S=y x^{2}\) & \\
\hline & & \(\xrightarrow{\square \rightarrow \rightarrow \rightarrow+=29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}\) \\
\hline & & \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\rightarrow \rightarrow \rightarrow \rightarrow\) 进 \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow 0+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
\]

Figure 223: Slope field plot

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}
\]

Verified OK.

\subsection*{8.7.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(-\frac{1}{2 y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(-\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=-\frac{1}{2 y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(-\frac{1}{2 y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=-\frac{1}{2 y}\). Therefore equation (4) becomes
\[
\begin{equation*}
-\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=-\frac{1}{2 y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(-\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (y)}{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\ln (x)-\frac{\ln (y)}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\ln (x)-\frac{\ln (y)}{2}
\]

The solution becomes
\[
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}} \tag{1}
\end{equation*}
\]

Figure 224: Slope field plot

Verification of solutions
\[
y=\frac{\mathrm{e}^{-2 c_{1}}}{x^{2}}
\]

Verified OK.

\subsection*{8.7.6 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime}+2 x y=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Integrate both sides with respect to \(x\)
\[
\int\left(x^{2} y^{\prime}+2 x y\right) d x=\int 0 d x+c_{1}
\]
- Evaluate integral
\[
y x^{2}=c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\frac{c_{1}}{x^{2}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 9
```

dsolve(2*x*y(x)+x^2*diff(y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1}}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 16
DSolve[2*x*y [x] \(+x^{\sim} 2 * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \frac{c_{1}}{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{8.8 problem 1(h)}
8.8.1 Solving as separable ode . 1126
8.8.2 Solving as first order ode lie symmetry lookup ode 1128
8.8.3 Solving as exact ode . 1132
8.8.4 Maple step by step solution . 1136

Internal problem ID [6256]
Internal file name [OUTPUT/5504_Sunday_June_05_2022_03_41_47_PM_95497302/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
-\sin (x) \sin (y)+\cos (x) \cos (y) y^{\prime}=0
\]

\subsection*{8.8.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\sin (x) \tan (y)}{\cos (x)}
\end{aligned}
\]

Where \(f(x)=\frac{\sin (x)}{\cos (x)}\) and \(g(y)=\tan (y)\). Integrating both sides gives
\[
\frac{1}{\tan (y)} d y=\frac{\sin (x)}{\cos (x)} d x
\]
\[
\begin{aligned}
\int \frac{1}{\tan (y)} d y & =\int \frac{\sin (x)}{\cos (x)} d x \\
\ln (\sin (y)) & =-\ln (\cos (x))+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\sin (y)=\mathrm{e}^{-\ln (\cos (x))+c_{1}}
\]

Which simplifies to
\[
\sin (y)=\frac{c_{2}}{\cos (x)}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\cos (x)}\right) \tag{1}
\end{equation*}
\]

Figure 225: Slope field plot
Verification of solutions
\[
y=\arcsin \left(\frac{c_{2} \mathrm{e}^{c_{1}}}{\cos (x)}\right)
\]

Verified OK.

\subsection*{8.8.2 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{\sin (x) \sin (y)}{\cos (x) \cos (y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 150: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=\frac{\cos (x)}{\sin (x)} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{\cos (x)}{\sin (x)}} d x
\end{aligned}
\]

Which results in
\[
S=-\ln (\cos (x))
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{\sin (x) \sin (y)}{\cos (x) \cos (y)}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\tan (x) \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\cot (y) \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\cot (R)
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\ln (\sin (R))+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
-\ln (\cos (x))=\ln (\sin (y))+c_{1}
\]

Which simplifies to
\[
-\ln (\cos (x))=\ln (\sin (y))+c_{1}
\]

Which gives
\[
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\cos (x)}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{\sin (x) \sin (y)}{\cos (x) \cos (y)}\) & & \(\frac{d S}{d R}=\cot (R)\) \\
\hline & & \\
\hline & & \\
\hline \(\rightarrow \rightarrow-y(x) \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow\) & & \\
\hline & & \\
\hline & & \\
\hline & \(R=y\) & \\
\hline & & \\
\hline & \(S=-\ln (\cos (x))\) & \\
\hline & & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \infty]{ }{ }^{-\infty}\) & & \(\rightarrow \rightarrow+1\) \\
\hline \({ }_{4}\) & & \\
\hline +19, & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\cos (x)}\right) \tag{1}
\end{equation*}
\]

Figure 226: Slope field plot

\section*{Verification of solutions}
\[
y=\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{\cos (x)}\right)
\]

Verified OK.

\subsection*{8.8.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =\left(\frac{\sin (x)}{\cos (x)}\right) \mathrm{d} x \\
\left(-\frac{\sin (x)}{\cos (x)}\right) \mathrm{d} x+\left(\frac{\cos (y)}{\sin (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{\sin (x)}{\cos (x)} \\
& N(x, y)=\frac{\cos (y)}{\sin (y)}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{\sin (x)}{\cos (x)}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\cos (y)}{\sin (y)}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{\sin (x)}{\cos (x)} \mathrm{d} x \\
\phi & =\ln (\cos (x))+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{\cos (y)}{\sin (y)}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{\cos (y)}{\sin (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =\frac{\cos (y)}{\sin (y)} \\
& =\cot (y)
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\cot (y)) \mathrm{d} y \\
f(y) & =\ln (\sin (y))+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\ln (\cos (x))+\ln (\sin (y))+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\ln (\cos (x))+\ln (\sin (y))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\ln (\cos (x))+\ln (\sin (y))=c_{1} \tag{1}
\end{equation*}
\]

Figure 227: Slope field plot

\section*{Verification of solutions}
\[
\ln (\cos (x))+\ln (\sin (y))=c_{1}
\]

Verified OK.

\subsection*{8.8.4 Maple step by step solution}

Let's solve
\(-\sin (x) \sin (y)+\cos (x) \cos (y) y^{\prime}=0\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Integrate both sides with respect to \(x\)
\(\int\left(-\sin (x) \sin (y)+\cos (x) \cos (y) y^{\prime}\right) d x=\int 0 d x+c_{1}\)
- Evaluate integral
\[
\cos (x) \sin (y)=c_{1}
\]
- \(\quad\) Solve for \(y\)
\(y=\arcsin \left(\frac{c_{1}}{\cos (x)}\right)\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.14 (sec). Leaf size: 9
```

dsolve(-\operatorname{sin}(x)*\operatorname{sin}(y(x))+\operatorname{cos}(x)*\operatorname{cos}(y(x))*\operatorname{diff}(y(x),x)=0,y(x), singsol=all)

```
\[
y(x)=\arcsin \left(\sec (x) c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.473 (sec). Leaf size: 19
DSolve \([-\operatorname{Sin}[x] * \operatorname{Sin}[y[x]]+\operatorname{Cos}[x] * \operatorname{Cos}[y[x]] * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \arcsin \left(\frac{1}{2} c_{1} \sec (x)\right) \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{8.9 problem 2(a)}
8.9.1 Existence and uniqueness analysis 1139
8.9.2 Solving as linear ode . 1139
8.9.3 Solving as homogeneousTypeD2 ode 1141
8.9.4 Solving as first order ode lie symmetry lookup ode 1142
8.9.5 Solving as exact ode . 1146
8.9.6 Maple step by step solution . 1151

Internal problem ID [6257]
Internal file name [OUTPUT/5505_Sunday_June_05_2022_03_41_49_PM_16109693/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
-y+x y^{\prime}=2 x
\]

With initial conditions
\[
[y(1)=0]
\]

\subsection*{8.9.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=2
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x}=2
\]

The domain of \(p(x)=-\frac{1}{x}\) is
\[
\{x<0 \vee 0<x\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=2\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{8.9.2 Solving as linear ode}

Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(2) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =\left(\frac{2}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{y}{x}=\int \frac{2}{x} \mathrm{~d} x \\
& \frac{y}{x}=2 \ln (x)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x}\) results in
\[
y=2 \ln (x) x+c_{1} x
\]
which simplifies to
\[
y=x\left(2 \ln (x)+c_{1}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=2 \ln (x) x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 \ln (x) x \tag{1}
\end{equation*}
\]

(a) Solution plot (b) Slope field plot

Verification of solutions
\[
y=2 \ln (x) x
\]

Verified OK.

\subsection*{8.9.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
-u(x) x+x\left(u^{\prime}(x) x+u(x)\right)=2 x
\]

Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int \frac{2}{x} \mathrm{~d} x \\
& =2 \ln (x)+c_{2}
\end{aligned}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =u x \\
& =x\left(2 \ln (x)+c_{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=1\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{2} \\
& c_{2}=0
\end{aligned}
\]

Substituting \(c_{2}\) found above in the general solution gives
\[
y=2 \ln (x) x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 \ln (x) x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=2 \ln (x) x
\]

Verified OK.

\subsection*{8.9.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{2 x+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 153: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{2 x+y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{2}{x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{2}{R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=2 \ln (R)+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y}{x}=2 \ln (x)+c_{1}
\]

Which simplifies to
\[
\frac{y}{x}=2 \ln (x)+c_{1}
\]

Which gives
\[
y=x\left(2 \ln (x)+c_{1}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{2 x+y}{x}\) & & \(\frac{d S}{d R}=\frac{2}{R}\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & crawnet \\
\hline & \(R=x\) & \\
\hline & \(S=\frac{y}{x}\) & 5xay \\
\hline & \(S=\frac{y}{x}\) & \\
\hline & & \\
\hline & & - \\
\hline & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
0=c_{1}
\]
\[
c_{1}=0
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=2 \ln (x) x
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=2 \ln (x) x \tag{1}
\end{equation*}
\]

(a) Solution plot

Verification of solutions
\[
y=2 \ln (x) x
\]

Verified OK.

\subsection*{8.9.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(x) \mathrm{d} y & =(2 x+y) \mathrm{d} x \\
(-2 x-y) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-2 x-y \\
N(x, y) & =x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-2 x-y) \\
& =-1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x}((-1)-(1)) \\
& =-\frac{2}{x}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{2}{x} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-2 \ln (x)} \\
& =\frac{1}{x^{2}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x^{2}}(-2 x-y) \\
& =\frac{-2 x-y}{x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x^{2}}(x) \\
& =\frac{1}{x}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(\frac{-2 x-y}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-2 x-y}{x^{2}} \mathrm{~d} x \\
\phi & =-2 \ln (x)+\frac{y}{x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-2 \ln (x)+\frac{y}{x}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-2 \ln (x)+\frac{y}{x}
\]

The solution becomes
\[
y=x\left(2 \ln (x)+c_{1}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 0=c_{1} \\
& c_{1}=0
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=2 \ln (x) x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 \ln (x) x \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=2 \ln (x) x
\]

Verified OK.

\subsection*{8.9.6 Maple step by step solution}

Let's solve
\(\left[-y+x y^{\prime}=2 x, y(1)=0\right]\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=2+\frac{y}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-\frac{y}{x}=2\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=2 \mu(x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{\mu(x)}{x}\)
- \(\quad\) Solve to find the integrating factor
\(\mu(x)=\frac{1}{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 2 \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\[
\mu(x) y=\int 2 \mu(x) d x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\(y=\frac{\int 2 \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{x}\)
\(y=x\left(\int \frac{2}{x} d x+c_{1}\right)\)
- Evaluate the integrals on the rhs
\[
y=x\left(2 \ln (x)+c_{1}\right)
\]
- Use initial condition \(y(1)=0\)
\[
0=c_{1}
\]
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=0\)
- \(\quad\) Substitute \(c_{1}=0\) into general solution and simplify
\(y=2 \ln (x) x\)
- Solution to the IVP
\(y=2 \ln (x) x\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 9
```

dsolve([x*diff(y(x),x)-y(x)=2*x,y(1) = 0],y(x), singsol=all)

```
\[
y(x)=2 \ln (x) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 10
DSolve[\{x*y'[x]-y[x]==2*x,\{y[1]==0\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow 2 x \log (x)
\]

\subsection*{8.10 problem 2(b)}
8.10.1 Existence and uniqueness analysis 1153
8.10.2 Solving as linear ode . 1154
8.10.3 Solving as first order ode lie symmetry lookup ode 1156
8.10.4 Solving as exact ode . 1160
8.10.5 Maple step by step solution . 1165

Internal problem ID [6258]
Internal file name [OUTPUT/5506_Sunday_June_05_2022_03_41_50_PM_37330925/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
x^{2} y^{\prime}-2 y=3 x^{2}
\]

With initial conditions
\[
[y(1)=2]
\]

\subsection*{8.10.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{2}{x^{2}} \\
q(x) & =3
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{2 y}{x^{2}}=3
\]

The domain of \(p(x)=-\frac{2}{x^{2}}\) is
\[
\{x<0 \vee 0<x\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=3\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{8.10.2 Solving as linear ode}

Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{2}{x^{2}} d x} \\
& =\mathrm{e}^{\frac{2}{x}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(3) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{2}{x}} y\right) & =\left(\mathrm{e}^{\frac{2}{x}}\right)(3) \\
\mathrm{d}\left(\mathrm{e}^{\frac{2}{x}} y\right) & =\left(3 \mathrm{e}^{\frac{2}{x}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{\frac{2}{x}} y=\int 3 \mathrm{e}^{\frac{2}{x}} \mathrm{~d} x \\
& \mathrm{e}^{\frac{2}{x}} y=3 x \mathrm{e}^{\frac{2}{x}}+6 \exp \text { Integral }_{1}\left(-\frac{2}{x}\right)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{2}{x}}\) results in
\[
y=\mathrm{e}^{-\frac{2}{x}}\left(3 x \mathrm{e}^{\frac{2}{x}}+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right)\right)+c_{1} \mathrm{e}^{-\frac{2}{x}}
\]
which simplifies to
\[
y=3 x+6 \text { expIntegral }{ }_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}+c_{1} \mathrm{e}^{-\frac{2}{x}}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 2=3+6 \exp \text { Integral }_{1}(-2) \mathrm{e}^{-2}+c_{1} \mathrm{e}^{-2} \\
& c_{1}=-\left(6 \operatorname{expIntegral}_{1}(-2) \mathrm{e}^{-2}+1\right) \mathrm{e}^{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x \tag{1}
\end{equation*}
\]

(a) Solution plot

(b) Slope field plot

\section*{Verification of solutions}
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp ^{\operatorname{Integral}}{ }_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

Verified OK.

\subsection*{8.10.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{3 x^{2}+2 y}{x^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 156: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{2}{x}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{2}{x}}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{\frac{2}{x}} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{3 x^{2}+2 y}{x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{2 \mathrm{e}^{\frac{2}{x}} y}{x^{2}} \\
& S_{y}=\mathrm{e}^{\frac{2}{x}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=3 \mathrm{e}^{\frac{2}{x}} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=3 \mathrm{e}^{\frac{2}{R}}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=3 R \mathrm{e}^{\frac{2}{R}}+6 \text { expIntegral } 1\left(-\frac{2}{R}\right)+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{\frac{2}{x}} y=3 x \mathrm{e}^{\frac{2}{x}}+6 \exp \text { Integral }_{1}\left(-\frac{2}{x}\right)+c_{1}
\]

Which simplifies to
\[
-6 \exp \text { Integral }_{1}\left(-\frac{2}{x}\right)+(-3 x+y) \mathrm{e}^{\frac{2}{x}}-c_{1}=0
\]

Which gives
\[
y=\left(3 x \mathrm{e}^{\frac{2}{x}}+6 \text { expIntegral } 1\left(-\frac{2}{x}\right)+c_{1}\right) \mathrm{e}^{-\frac{2}{x}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{3 x^{2}+2 y}{x^{2}}\) & & \(\frac{d S}{d R}=3 \mathrm{e}^{\frac{2}{R}}\) \\
\hline & & \\
\hline +4, & \(S=\mathrm{e}^{\frac{2}{x}} y\) & \\
\hline & \(S=\mathrm{e}^{\frac{2}{x}} y\) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 2=3+6 \exp \operatorname{Integral}_{1}(-2) \mathrm{e}^{-2}+c_{1} \mathrm{e}^{-2} \\
& c_{1}=-\left(6 \exp \operatorname{Integral}_{1}(-2) \mathrm{e}^{-2}+1\right) \mathrm{e}^{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \operatorname{expIntegral}{ }_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

Verified OK.

\subsection*{8.10.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(x^{2}\right) \mathrm{d} y & =\left(3 x^{2}+2 y\right) \mathrm{d} x \\
\left(-3 x^{2}-2 y\right) \mathrm{d} x+\left(x^{2}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-3 x^{2}-2 y \\
N(x, y) & =x^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-3 x^{2}-2 y\right) \\
& =-2
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(x^{2}\right) \\
& =2 x
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =\frac{1}{x^{2}}((-2)-(2 x)) \\
& =\frac{-2-2 x}{x^{2}}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int \frac{-2-2 x}{x^{2}} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-2 \ln (x)+\frac{2}{x}} \\
& =\frac{\mathrm{e}^{\frac{2}{x}}}{x^{2}}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{\mathrm{e}^{\frac{2}{x}}}{x^{2}}\left(-3 x^{2}-2 y\right) \\
& =\frac{\left(-3 x^{2}-2 y\right) \mathrm{e}^{\frac{2}{x}}}{x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{\mathrm{e}^{\frac{2}{x}}}{x^{2}}\left(x^{2}\right) \\
& =\mathrm{e}^{\frac{2}{x}}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{\left(-3 x^{2}-2 y\right) \mathrm{e}^{\frac{2}{x}}}{x^{2}}\right)+\left(\mathrm{e}^{\frac{2}{x}}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{\left(-3 x^{2}-2 y\right) \mathrm{e}^{\frac{2}{x}}}{x^{2}} \mathrm{~d} x \\
\phi & =-6 \operatorname{expIntegral}_{1}\left(-\frac{2}{x}\right)+(-3 x+y) \mathrm{e}^{\frac{2}{x}}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{2}{x}}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{\frac{2}{x}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{\frac{2}{x}}=\mathrm{e}^{\frac{2}{x}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right)+(-3 x+y) \mathrm{e}^{\frac{2}{x}}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right)+(-3 x+y) \mathrm{e}^{\frac{2}{x}}
\]

The solution becomes
\[
y=\left(3 x \mathrm{e}^{\frac{2}{x}}+6 \text { expIntegral }{ }_{1}\left(-\frac{2}{x}\right)+c_{1}\right) \mathrm{e}^{-\frac{2}{x}}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& 2=3+6 \exp \text { Integral }_{1}(-2) \mathrm{e}^{-2}+c_{1} \mathrm{e}^{-2} \\
& c_{1}=-\left(6 \operatorname{expIntegral}_{1}(-2) \mathrm{e}^{-2}+1\right) \mathrm{e}^{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x \tag{1}
\end{equation*}
\]

(a) Solution plot

(b) Slope field plot

\section*{Verification of solutions}
\[
y=-6 \mathrm{e}^{-\frac{2}{x}} \exp \operatorname{Integral}_{1}(-2)+6 \exp ^{\operatorname{Integral}}{ }_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x
\]

Verified OK.

\subsection*{8.10.5 Maple step by step solution}

Let's solve
\(\left[x^{2} y^{\prime}-2 y=3 x^{2}, y(1)=2\right]\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=3+\frac{2 y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-\frac{2 y}{x^{2}}=3\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-\frac{2 y}{x^{2}}\right)=3 \mu(x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-\frac{2 y}{x^{2}}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{2 \mu(x)}{x^{2}}\)
- Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{\frac{2}{x}}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int 3 \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int 3 \mu(x) d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int 3 \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{\frac{2}{x}}\)
\(y=\frac{\int 3 \mathrm{e}^{\frac{2}{x}} d x+c_{1}}{\mathrm{e}^{\frac{2}{x}}}\)
- Evaluate the integrals on the rhs
\(y=\frac{3 x \mathrm{e}^{\frac{2}{x}}+6 \mathrm{Ei}_{1}\left(-\frac{2}{x}\right)+c_{1}}{\mathrm{e}^{\frac{2}{x}}}\)
- Simplify
\[
y=3 x+6 \mathrm{Ei}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}+c_{1} \mathrm{e}^{-\frac{2}{x}}
\]
- Use initial condition \(y(1)=2\)
\[
2=3+6 \mathrm{Ei}_{1}(-2) \mathrm{e}^{-2}+c_{1} \mathrm{e}^{-2}
\]
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=-\frac{6 \mathrm{Ei}_{1}(-2) \mathrm{e}^{-2}+1}{\mathrm{e}^{-2}}\)
- Substitute \(c_{1}=-\frac{6 \mathrm{Ei}_{1}(-2) \mathrm{e}^{-2}+1}{\mathrm{e}^{-2}}\) into general solution and simplify
\(y=-6 \mathrm{e}^{-\frac{2}{x}} \mathrm{Ei}_{1}(-2)+6 \mathrm{Ei}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x\)
- \(\quad\) Solution to the IVP
\(y=-6 \mathrm{e}^{-\frac{2}{x}} \mathrm{Ei}_{1}(-2)+6 \mathrm{Ei}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-\mathrm{e}^{\frac{2 x-2}{x}}+3 x\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.218 (sec). Leaf size: 39
```

dsolve([x^2*diff(y(x),x)-2*y(x)=3*x^2,y(1) = 2],y(x), singsol=all)

```
\[
y(x)=3 x-\mathrm{e}^{2-\frac{2}{x}}+6 \exp \operatorname{Integral}_{1}\left(-\frac{2}{x}\right) \mathrm{e}^{-\frac{2}{x}}-6 \exp \operatorname{Integral}_{1}(-2) \mathrm{e}^{-\frac{2}{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 41
DSolve[\{x^2*y'[x]-2*y[x]==3*x^2,\{y[1]==2\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-2 / x}\left(-6 \operatorname{ExpIntegralEi}\left(\frac{2}{x}\right)+6 \operatorname{ExpIntegralEi}(2)+3 e^{2 / x} x-e^{2}\right)
\]

\subsection*{8.11 problem 2(c)}
8.11.1 Existence and uniqueness analysis 1168
8.11.2 Solving as separable ode . 1168
8.11.3 Solving as differentialType ode 1170
8.11.4 Solving as first order ode lie symmetry lookup ode 1174
8.11.5 Solving as exact ode . 1178
8.11.6 Maple step by step solution . 1181

Internal problem ID [6259]
Internal file name [OUTPUT/5507_Sunday_June_05_2022_03_41_59_PM_92155662/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[_separable]

```
\[
y^{\prime} y^{2}=x
\]

With initial conditions
\[
[y(-1)=3]
\]

\subsection*{8.11.1 Existence and uniqueness analysis}

This is non linear first order ODE. In canonical form it is written as
\[
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{x}{y^{2}}
\end{aligned}
\]

The \(x\) domain of \(f(x, y)\) when \(y=3\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=-1\) is inside this domain. The \(y\) domain of \(f(x, y)\) when \(x=-1\) is
\[
\{y<0 \vee 0<y\}
\]

And the point \(y_{0}=3\) is inside this domain. Now we will look at the continuity of
\[
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x}{y^{2}}\right) \\
& =-\frac{2 x}{y^{3}}
\end{aligned}
\]

The \(x\) domain of \(\frac{\partial f}{\partial y}\) when \(y=3\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=-1\) is inside this domain. The \(y\) domain of \(\frac{\partial f}{\partial y}\) when \(x=-1\) is
\[
\{y<0 \vee 0<y\}
\]

And the point \(y_{0}=3\) is inside this domain. Therefore solution exists and is unique.

\subsection*{8.11.2 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{x}{y^{2}}
\end{aligned}
\]

Where \(f(x)=x\) and \(g(y)=\frac{1}{y^{2}}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{y^{2}}} d y & =x d x \\
\int \frac{1}{\frac{1}{y^{2}}} d y & =\int x d x \\
\frac{y^{3}}{3} & =\frac{x^{2}}{2}+c_{1}
\end{aligned}
\]

Which results in
\[
\begin{aligned}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
3=-\frac{i\left(12+24 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{4}
\]

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
3=\frac{i\left(12+24 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}-\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{4}
\]

Warning: Unable to solve for constant of integration. Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
3=\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{2} \\
c_{1}=\frac{17}{2}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2}
\]

Verified OK.

\subsection*{8.11.3 Solving as differentialType ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=\frac{x}{y^{2}} \tag{1}
\end{equation*}
\]

Which becomes
\[
\begin{equation*}
\left(y^{2}\right) d y=(x) d x \tag{2}
\end{equation*}
\]

But the RHS is complete differential because
\[
(x) d x=d\left(\frac{x^{2}}{2}\right)
\]

Hence (2) becomes
\[
\left(y^{2}\right) d y=d\left(\frac{x^{2}}{2}\right)
\]

Integrating both sides gives gives these solutions
\[
\begin{aligned}
& y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}+c_{1} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1} \\
& y=-\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i \sqrt{3}\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{4}+c_{1}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
3=-\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{4}-\frac{i\left(12+24 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}+c_{1} \\
c_{1}=\frac{i \sqrt{3}\left((42+2 \sqrt{457})^{\frac{1}{3}}-\frac{-2 i \sqrt{3}-2}{(42+2 \sqrt{457})^{\frac{1}{3}}}\right)}{4}+\frac{(42+2 \sqrt{457})^{\frac{1}{3}}}{4}-\frac{-2 i \sqrt{3}-2}{4(42+2 \sqrt{457})^{\frac{1}{3}}}+3
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\(y=\frac{-4(42+2 \sqrt{457})^{\frac{1}{9}}-i \sqrt{3}\left(i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+2 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}+4 i \sqrt{3}+(42+2 \sqrt{457})^{\frac{2}{3}}+12\right.}{}\)

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
3=-\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{4}+\frac{i\left(12+24 c_{1}\right)^{\frac{1}{3}} \sqrt{3}}{4}+c_{1} \\
c_{1}=-\frac{i \sqrt{3}\left((42+2 \sqrt{457})^{\frac{1}{3}}-\frac{2 i \sqrt{3}-2}{(42+2 \sqrt{457})^{\frac{1}{3}}}\right)}{4}+\frac{(42+2 \sqrt{457})^{\frac{1}{3}}}{4}-\frac{2 i \sqrt{3}-2}{4(42+2 \sqrt{457})^{\frac{1}{3}}}+3
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\underline{-i \sqrt{3}(42+2 \sqrt{457})^{\frac{7}{9}}+i \sqrt{3}\left(-6 i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-24 i \sqrt{3}+6(42+2 \sqrt{45}\right.}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
3=\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{2}+c_{1} \\
c_{1}=-\frac{(42+2 \sqrt{457})^{\frac{1}{3}}}{2}+\frac{2}{(42+2 \sqrt{457})^{\frac{1}{3}}}+3
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{-(42+2 \sqrt{457})^{\frac{7}{9}}+\left(12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-12(42+2 \sqrt{457})^{\frac{2}{3}}+72(42+2 \sqrt{457})^{\frac{1}{3}}+48\right)^{\frac{1}{3}}(42+2 \sqrt{ }}{2(42+2 \sqrt{457})^{\frac{4}{9}}}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\[
\begin{equation*}
=\frac{-(42+2 \sqrt{457})^{\frac{7}{9}}+\left(12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-12(42+2 \sqrt{457})^{\frac{2}{3}}+72(42+2 \sqrt{457})^{\frac{1}{3}}+48\right)^{\frac{1}{3}}(42+2 \sqrt{45}}{2(42+2 \sqrt{457})^{\frac{4}{9}}} \tag{1}
\end{equation*}
\]
\(y\)
\(=\frac{-i \sqrt{3}(42+2 \sqrt{457})^{\frac{7}{9}}+i \sqrt{3}\left(-6 i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-24 i \sqrt{3}+6(42+2 \sqrt{457})\right.}{}\)
\(y\)
\(=\underline{-4(42+2 \sqrt{457})^{\frac{1}{9}}-i \sqrt{3}\left(i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+2 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}+4 i \sqrt{3}+(42+2 \sqrt{457})^{\frac{2}{3}}+12(4)\right.}\)

\section*{Verification of solutions}
\(y\)
\[
=\frac{-(42+2 \sqrt{457})^{\frac{7}{9}}+\left(12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-12(42+2 \sqrt{457})^{\frac{2}{3}}+72(42+2 \sqrt{457})^{\frac{1}{3}}+48\right)^{\frac{1}{3}}(42+2 \sqrt{45}}{2(42+2 \sqrt{457})^{\frac{4}{9}}}
\]

Verified OK. \{positive\}
\(y\)
\[
=-i \sqrt{3}(42+2 \sqrt{457})^{\frac{7}{9}}+i \sqrt{3}\left(-6 i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+12 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}-24 i \sqrt{3}+6(42+2 \sqrt{457})\right.
\]

Verified OK. \{positive\}
\(y\)
\[
=\frac{-4(42+2 \sqrt{457})^{\frac{1}{9}}-i \sqrt{3}\left(i \sqrt{3}(42+2 \sqrt{457})^{\frac{2}{3}}+2 x^{2}(42+2 \sqrt{457})^{\frac{1}{3}}+4 i \sqrt{3}+(42+2 \sqrt{457})^{\frac{2}{3}}+12(4\right.}{}
\]

Verified OK. \{positive\}

\subsection*{8.11.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{x}{y^{2}} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 159: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\)
\end{tabular}\(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\).

The above table shows that
\[
\begin{align*}
& \xi(x, y)=\frac{1}{x} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{1}{x}} d x
\end{aligned}
\]

Which results in
\[
S=\frac{x^{2}}{2}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{x}{y^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =x \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=y^{2} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R^{2}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1}
\]

Which simplifies to
\[
\frac{x^{2}}{2}=\frac{y^{3}}{3}+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{x}{y^{2}}\) & & \(\frac{d S}{d R}=R^{2}\) \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-]{ }\) & & \\
\hline \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\infty \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty \rightarrow \infty\) & & \\
\hline & & \\
\hline & & \\
\hline & \(R=y\) & \\
\hline & & ¢
+1 \\
\hline & \[
S=\frac{x^{2}}{}
\] & \\
\hline & & \\
\hline \(\therefore x^{\text {a }}\) & & \\
\hline \(\triangle \sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty\) & & \\
\hline 为 & & \\
\hline \(\xrightarrow{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \infty}\) & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& \frac{1}{2}=9+c_{1} \\
& c_{1}=-\frac{17}{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{x^{2}}{2}=\frac{y^{3}}{3}-\frac{17}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{x^{2}}{2}=\frac{y^{3}}{3}-\frac{17}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{x^{2}}{2}=\frac{y^{3}}{3}-\frac{17}{2}
\]

Verified OK.

\subsection*{8.11.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(y^{2}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(y^{2}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-x \\
N(x, y) & =y^{2}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(y^{2}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=y^{2}\). Therefore equation (4) becomes
\[
\begin{equation*}
y^{2}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=y^{2}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(y^{2}\right) \mathrm{d} y \\
f(y) & =\frac{y^{3}}{3}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{y^{3}}{3}-\frac{x^{2}}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{y^{3}}{3}-\frac{x^{2}}{2}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=-1\) and \(y=3\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& \frac{17}{2}=c_{1} \\
& c_{1}=\frac{17}{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{y^{3}}{3}-\frac{x^{2}}{2}=\frac{17}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{y^{3}}{3}-\frac{x^{2}}{2}=\frac{17}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{y^{3}}{3}-\frac{x^{2}}{2}=\frac{17}{2}
\]

Verified OK.

\subsection*{8.11.6 Maple step by step solution}

Let's solve
\[
\left[y^{\prime} y^{2}=x, y(-1)=3\right]
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Integrate both sides with respect to \(x\)
\(\int y^{\prime} y^{2} d x=\int x d x+c_{1}\)
- Evaluate integral
\[
\frac{y^{3}}{3}=\frac{x^{2}}{2}+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\frac{\left(12 x^{2}+24 c_{1}\right)^{\frac{1}{3}}}{2}
\]
- Use initial condition \(y(-1)=3\)
\(3=\frac{\left(12+24 c_{1}\right)^{\frac{1}{3}}}{2}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=\frac{17}{2}\)
- Substitute \(c_{1}=\frac{17}{2}\) into general solution and simplify
\(y=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2}\)
- \(\quad\) Solution to the IVP
\(y=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli <- Bernoulli successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.094 (sec). Leaf size: 15
dsolve([y(x) \(\left.)^{\sim} 2 * \operatorname{diff}(y(x), x)=x, y(-1)=3\right], y(x)\), singsol=all)
\[
y(x)=\frac{\left(12 x^{2}+204\right)^{\frac{1}{3}}}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.191 (sec). Leaf size: 22
DSolve[\{y[x]~2*y'[x]==x,\{y[-1]==3\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \sqrt[3]{\frac{3}{2}} \sqrt[3]{x^{2}+17}
\]

\subsection*{8.12 problem 2(d)}
8.12.1 Existence and uniqueness analysis 1183
8.12.2 Solving as separable ode . 1184
8.12.3 Solving as first order ode lie symmetry lookup ode 1186
8.12.4 Solving as exact ode . 1190

Internal problem ID [6260]
Internal file name [OUTPUT/5508_Sunday_June_05_2022_03_42_00_PM_51902994/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 2(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
y^{\prime} \csc (x)-\csc (y)=0
\]

With initial conditions
\[
\left[y\left(\frac{\pi}{2}\right)=1\right]
\]

\subsection*{8.12.1 Existence and uniqueness analysis}

This is non linear first order ODE. In canonical form it is written as
\[
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{\csc (y)}{\csc (x)}
\end{aligned}
\]

The \(x\) domain of \(f(x, y)\) when \(y=1\) is
\[
\left\{x<\pi _Z 411 \vee \pi _Z 411<x\right\}
\]

And the point \(x_{0}=\frac{\pi}{2}\) is inside this domain. The \(y\) domain of \(f(x, y)\) when \(x=\frac{\pi}{2}\) is
\[
\left\{y<\pi _Z 412 \vee \pi_{-} Z 412<y\right\}
\]

And the point \(y_{0}=1\) is inside this domain. Now we will look at the continuity of
\[
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{\csc (y)}{\csc (x)}\right) \\
& =-\frac{\csc (y) \cot (y)}{\csc (x)}
\end{aligned}
\]

The \(x\) domain of \(\frac{\partial f}{\partial y}\) when \(y=1\) is
\[
\left\{x<\pi _Z 411 \vee \pi _Z 411<x\right\}
\]

And the point \(x_{0}=\frac{\pi}{2}\) is inside this domain. The \(y\) domain of \(\frac{\partial f}{\partial y}\) when \(x=\frac{\pi}{2}\) is
\[
\left\{y<\pi _Z 412 \vee \pi _Z 412<y\right\}
\]

And the point \(y_{0}=1\) is inside this domain. Therefore solution exists and is unique.

\subsection*{8.12.2 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{\csc (y)}{\csc (x)}
\end{aligned}
\]

Where \(f(x)=\frac{1}{\csc (x)}\) and \(g(y)=\csc (y)\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\csc (y)} d y & =\frac{1}{\csc (x)} d x \\
\int \frac{1}{\csc (y)} d y & =\int \frac{1}{\csc (x)} d x \\
-\cos (y) & =-\cos (x)+c_{1}
\end{aligned}
\]

Which results in
\[
y=\pi-\arccos \left(-\cos (x)+c_{1}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=\frac{\pi}{2}\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1=\frac{\pi}{2}+\arcsin \left(c_{1}\right) \\
c_{1}=-\cos (1)
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1)) \tag{1}
\end{equation*}
\]

(a) Solution plot

Verification of solutions
\[
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1))
\]

Verified OK.

\subsection*{8.12.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{\csc (y)}{\csc (x)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 162: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=\csc (x) \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\csc (x)} d x
\end{aligned}
\]

Which results in
\[
S=-\cos (x)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{\csc (y)}{\csc (x)}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\sin (x) \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\sin (y) \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\sin (R)
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-\cos (R)+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
-\cos (x)=-\cos (y)+c_{1}
\]

Which simplifies to
\[
-\cos (x)=-\cos (y)+c_{1}
\]

Which gives
\[
y=\arccos \left(\cos (x)+c_{1}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \[
\frac{d y}{d x}=\frac{\csc (y)}{\csc (x)}
\] & & \(\frac{d S}{d R}=\sin (R)\) \\
\hline 吅以 & & \\
\hline & & 刀刀ロ \(\rightarrow+\infty\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & \(R=y\) & \\
\hline & \(S=-\cos (x)\) & \\
\hline & & \\
\hline & & \\
\hline & & カアカー \\
\hline & & \\
\hline & & フ＇ \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\) ．Substituting \(x=\frac{\pi}{2}\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration．
\[
\begin{gathered}
1=\frac{\pi}{2}-\arcsin \left(c_{1}\right) \\
c_{1}=\cos (1)
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1))
\]

Summary
The solution（s）found are the following
\[
\begin{equation*}
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1)) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\pi}{2}-\arcsin (\cos (x)+\cos (1))
\]

Verified OK.

\subsection*{8.12.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{\csc (y)}\right) \mathrm{d} y & =\left(\frac{1}{\csc (x)}\right) \mathrm{d} x \\
\left(-\frac{1}{\csc (x)}\right) \mathrm{d} x+\left(\frac{1}{\csc (y)}\right) \mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-\frac{1}{\csc (x)} \\
N(x, y) & =\frac{1}{\csc (y)}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{\csc (x)}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{\csc (y)}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{\csc (x)} \mathrm{d} x \\
\phi & =\cos (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{\csc (y)}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{\csc (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =\frac{1}{\csc (y)} \\
& =\sin (y)
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int(\sin (y)) \mathrm{d} y \\
f(y) & =-\cos (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\cos (x)-\cos (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\cos (x)-\cos (y)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=\frac{\pi}{2}\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& -\cos (1)=c_{1} \\
& c_{1}=-\cos (1)
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\cos (x)-\cos (y)=-\cos (1)
\]

Solving for \(y\) from the above gives
\[
y=\arccos (\cos (x)+\cos (1))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\arccos (\cos (x)+\cos (1)) \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\arccos (\cos (x)+\cos (1))
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable <- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 10
```

dsolve([csc(x)*diff (y(x),x)=csc(y(x)),y(1/2*Pi) = 1],y(x), singsol=all)

```
\[
y(x)=\arccos (\cos (x)+\cos (1))
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.398 (sec). Leaf size: 11
DSolve[\{Csc \([x] * y '[x]==\operatorname{Csc}[y[x]],\{y[P i / 2]==1\}\}, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \arccos (\cos (x)+\cos (1))
\]

\subsection*{8.13 problem 2(e)}
8.13.1 Existence and uniqueness analysis 1195
8.13.2 Solving as homogeneousTypeD2 ode 1196
8.13.3 Solving as first order ode lie symmetry calculated ode 1197
8.13.4 Solving as exact ode . 1202

Internal problem ID [6261]
Internal file name [OUTPUT/5509_Sunday_June_05_2022_03_42_02_PM_76246877/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 2(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exactByInspection", "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, ` class A`]]
\[
y^{\prime}-\frac{x+y}{x-y}=0
\]

With initial conditions
\[
[y(1)=1]
\]

\subsection*{8.13.1 Existence and uniqueness analysis}

This is non linear first order ODE. In canonical form it is written as
\[
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =-\frac{x+y}{-x+y}
\end{aligned}
\]

The \(x\) domain of \(f(x, y)\) when \(y=1\) is
\[
\{x<1 \vee 1<x\}
\]

But the point \(x_{0}=1\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

\subsection*{8.13.2 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-\frac{x+u(x) x}{x-u(x) x}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u^{2}+1}{x(u-1)}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{u^{2}+1}{u-1}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{u^{2}+1}{u-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{u^{2}+1}{u-1}} d u & =\int-\frac{1}{x} d x \\
\frac{\ln \left(u^{2}+1\right)}{2}-\arctan (u) & =-\ln (x)+c_{2}
\end{aligned}
\]

The solution is
\[
\frac{\ln \left(u(x)^{2}+1\right)}{2}-\arctan (u(x))+\ln (x)-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0 \\
& \frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-c_{2}=0
\end{aligned}
\]

Substituting initial conditions and solving for \(c_{2}\) gives \(c_{2}=\frac{\ln (2)}{2}-\frac{\pi}{4}\). Hence the solution \(\frac{\text { Summary }}{\text { The solution(s) found are the following }}\)
becomes
\[
\begin{equation*}
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-\frac{\ln (2)}{2}+\frac{\pi}{4}=0 \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{\ln \left(\frac{y^{2}}{x^{2}}+1\right)}{2}-\arctan \left(\frac{y}{x}\right)+\ln (x)-\frac{\ln (2)}{2}+\frac{\pi}{4}=0
\]

Verified OK.

\subsection*{8.13.3 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{x+y}{-x+y} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E, 2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{(x+y)\left(b_{3}-a_{2}\right)}{-x+y}-\frac{(x+y)^{2} a_{3}}{(-x+y)^{2}} \\
& -\left(-\frac{1}{-x+y}-\frac{x+y}{(-x+y)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{1}{-x+y}+\frac{x+y}{(-x+y)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{x^{2} a_{2}+x^{2} a_{3}+x^{2} b_{2}-x^{2} b_{3}-2 x y a_{2}+2 x y a_{3}+2 x y b_{2}+2 x y b_{3}-y^{2} a_{2}-y^{2} a_{3}-y^{2} b_{2}+y^{2} b_{3}+2 x b_{1}-2 y a}{(x-y)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -x^{2} a_{2}-x^{2} a_{3}-x^{2} b_{2}+x^{2} b_{3}+2 x y a_{2}-2 x y a_{3}-2 x y b_{2} \tag{6E}\\
& \quad-2 x y b_{3}+y^{2} a_{2}+y^{2} a_{3}+y^{2} b_{2}-y^{2} b_{3}-2 x b_{1}+2 y a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -a_{2} v_{1}^{2}+2 a_{2} v_{1} v_{2}+a_{2} v_{2}^{2}-a_{3} v_{1}^{2}-2 a_{3} v_{1} v_{2}+a_{3} v_{2}^{2}-b_{2} v_{1}^{2} \tag{7E}\\
& \quad-2 b_{2} v_{1} v_{2}+b_{2} v_{2}^{2}+b_{3} v_{1}^{2}-2 b_{3} v_{1} v_{2}-b_{3} v_{2}^{2}+2 a_{1} v_{2}-2 b_{1} v_{1}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-a_{2}-a_{3}-b_{2}+b_{3}\right) v_{1}^{2}+\left(2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3}\right) v_{1} v_{2} \tag{8E}\\
& \quad-2 b_{1} v_{1}+\left(a_{2}+a_{3}+b_{2}-b_{3}\right) v_{2}^{2}+2 a_{1} v_{2}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
2 a_{1} & =0 \\
-2 b_{1} & =0 \\
-a_{2}-a_{3}-b_{2}+b_{3} & =0 \\
a_{2}+a_{3}+b_{2}-b_{3} & =0 \\
2 a_{2}-2 a_{3}-2 b_{2}-2 b_{3} & =0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
& a_{1}=0 \\
& a_{2}=b_{3} \\
& a_{3}=-b_{2} \\
& b_{1}=0 \\
& b_{2}=b_{2} \\
& b_{3}=b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
\xi & =x \\
\eta & =y
\end{aligned}
\]

Shifting is now applied to make \(\xi=0\) in order to simplify the rest of the computation
\[
\begin{aligned}
\eta & =\eta-\omega(x, y) \xi \\
& =y-\left(-\frac{x+y}{-x+y}\right)(x) \\
& =\frac{-x^{2}-y^{2}}{x-y} \\
\xi & =0
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{-x^{2}-y^{2}}{x-y}} d y
\end{aligned}
\]

Which results in
\[
S=\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{x+y}{-x+y}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =\frac{x+y}{x^{2}+y^{2}} \\
S_{y} & =\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
\]

Which simplifies to
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{x+y}{-x+y}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \(\rightarrow \rightarrow\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \\
\hline & & \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 29 \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow\) 他 \\
\hline & \(R=x\) & \(\rightarrow\) \\
\hline & \(S=\ln \left(x^{2}+y^{2}\right)\) & \\
\hline \({ }_{\text {崖 }}\) & \(S=\frac{2}{2}-\operatorname{arcta}\) & \(\xrightarrow{\rightarrow \rightarrow \rightarrow+R^{n \rightarrow \rightarrow \rightarrow \rightarrow}}\) \\
\hline & & \(\xrightarrow{-2}+{ }_{\text {2 }}^{+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow}\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \(\xrightarrow{\rightarrow}\) \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& \frac{\ln (2)}{2}-\frac{\pi}{4}=c_{1} \\
& c_{1}=\frac{\ln (2)}{2}-\frac{\pi}{4}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=\frac{\ln (2)}{2}-\frac{\pi}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=\frac{\ln (2)}{2}-\frac{\pi}{4} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}-\arctan \left(\frac{y}{x}\right)=\frac{\ln (2)}{2}-\frac{\pi}{4}
\]

Verified OK.

\subsection*{8.13.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(-x+y) \mathrm{d} y & =(-y-x) \mathrm{d} x \\
(x+y) \mathrm{d} x+(-x+y) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =x+y \\
N(x, y) & =-x+y
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(x+y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(-x+y) \\
& =-1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. By inspection \(\frac{1}{x^{2}+y^{2}}\) is an integrating factor. Therefore by multiplying \(M=x+y\) and \(N=-x+y\) by this integrating factor the ode becomes exact. The new \(M, N\) are
\[
\begin{aligned}
M & =\frac{x+y}{x^{2}+y^{2}} \\
N & =\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
\]

To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{-x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =\left(-\frac{x+y}{x^{2}+y^{2}}\right) \mathrm{d} x \\
\left(\frac{x+y}{x^{2}+y^{2}}\right) \mathrm{d} x+\left(\frac{-x+y}{x^{2}+y^{2}}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=\frac{x+y}{x^{2}+y^{2}} \\
& N(x, y)=\frac{-x+y}{x^{2}+y^{2}}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{x+y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{-x+y}{x^{2}+y^{2}}\right) \\
& =\frac{x^{2}-2 x y-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{x+y}{x^{2}+y^{2}} \mathrm{~d} x \\
\phi & =\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{align*}
\frac{\partial \phi}{\partial y} & =\frac{y}{x^{2}+y^{2}}-\frac{x}{y^{2}\left(\frac{x^{2}}{y^{2}}+1\right)}+f^{\prime}(y) \tag{4}\\
& =\frac{-x+y}{x^{2}+y^{2}}+f^{\prime}(y)
\end{align*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{-x+y}{x^{2}+y^{2}}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{-x+y}{x^{2}+y^{2}}=\frac{-x+y}{x^{2}+y^{2}}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& \frac{\ln (2)}{2}+\frac{\pi}{4}=c_{1} \\
& c_{1}=\frac{\ln (2)}{2}+\frac{\pi}{4}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=\frac{\ln (2)}{2}+\frac{\pi}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=\frac{\ln (2)}{2}+\frac{\pi}{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{\ln \left(x^{2}+y^{2}\right)}{2}+\arctan \left(\frac{x}{y}\right)=\frac{\ln (2)}{2}+\frac{\pi}{4}
\]

Verified OK.

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.234 (sec). Leaf size: 30
```

dsolve([diff(y(x),x)=(x+y(x))/(x-y(x)),y(1) = 1],y(x), singsol=all)

```
\[
y(x)=\tan \left(\operatorname{RootOf}\left(4 _Z-2 \ln \left(\sec \left(_Z\right)^{2}\right)-4 \ln (x)+2 \ln (2)-\pi\right)\right) x
\]

Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 46
```

DSolve[{y'[x]==(x+y[x])/(x-y[x]),{y[1]==1}},y[x],x,IncludeSingularSolutions -> True]

```

Solve \(\left[\frac{1}{2} \log \left(\frac{y(x)^{2}}{x^{2}}+1\right)-\arctan \left(\frac{y(x)}{x}\right)=\frac{1}{4}(2 \log (2)-\pi)-\log (x), y(x)\right]\)

\subsection*{8.14 problem 2(f)}
8.14.1 Solving as homogeneousTypeD2 ode 1208
8.14.2 Solving as first order ode lie symmetry calculated ode 1210

Internal problem ID [6262]
Internal file name [OUTPUT/5510_Sunday_June_05_2022_03_42_05_PM_82967625/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "homogeneousTypeD2", "first_order_ode_lie_symmetry_calculated"

Maple gives the following as the ode type
[[_homogeneous, `class A`], _rational, _dAlembert]
\[
y^{\prime}-\frac{x^{2}+2 y^{2}}{x^{2}-2 y^{2}}=0
\]

\subsection*{8.14.1 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-\frac{x^{2}+2 u(x)^{2} x^{2}}{x^{2}-2 u(x)^{2} x^{2}}=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u^{3}+2 u^{2}-u+1}{x\left(2 u^{2}-1\right)}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=\frac{2 u^{3}+2 u^{2}-u+1}{2 u^{2}-1}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{2 u^{3}+2 u^{2}-u+1}{2 u^{2}-1}} d u & =-\frac{1}{x} d x \\
\int \frac{1}{\frac{2 u^{3}+2 u^{2}-u+1}{2 u^{2}-1}} d u & =\int-\frac{1}{x} d x \\
\int^{u} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a & =-\ln (x)+c_{2}
\end{aligned}
\]

Which results in
\[
\int^{u} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a=-\ln (x)+c_{2}
\]

The solution is
\[
\int^{u(x)} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\]

Replacing \(u(x)\) in the above solution by \(\frac{y}{x}\) results in the solution for \(y\) in implicit form
\[
\begin{aligned}
& \int^{\frac{y}{x}} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)-c_{2}=0 \\
& \int^{\frac{y}{x}} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
\int^{\frac{y}{x}} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)-c_{2}=0 \tag{1}
\end{equation*}
\]

Figure 240: Slope field plot
Verification of solutions
\[
\int^{\frac{y}{x}} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)-c_{2}=0
\]

Verified OK.

\subsection*{8.14.2 Solving as first order ode lie symmetry calculated ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=-\frac{x^{2}+2 y^{2}}{-x^{2}+2 y^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is not in the lookup table. To determine \(\xi, \eta\) then (A) is solved using ansatz. Making bivariate polynomials of degree 1 to use as anstaz gives
\[
\begin{align*}
& \xi=x a_{2}+y a_{3}+a_{1} \tag{1E}\\
& \eta=x b_{2}+y b_{3}+b_{1} \tag{2E}
\end{align*}
\]

Where the unknown coefficients are
\[
\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}
\]

Substituting equations (1E,2E) and \(\omega\) into (A) gives
\[
\begin{align*}
b_{2} & -\frac{\left(x^{2}+2 y^{2}\right)\left(b_{3}-a_{2}\right)}{-x^{2}+2 y^{2}}-\frac{\left(x^{2}+2 y^{2}\right)^{2} a_{3}}{\left(-x^{2}+2 y^{2}\right)^{2}} \\
& -\left(-\frac{2 x}{-x^{2}+2 y^{2}}-\frac{2\left(x^{2}+2 y^{2}\right) x}{\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x a_{2}+y a_{3}+a_{1}\right) \tag{5E}\\
& -\left(-\frac{4 y}{-x^{2}+2 y^{2}}+\frac{4\left(x^{2}+2 y^{2}\right) y}{\left(-x^{2}+2 y^{2}\right)^{2}}\right)\left(x b_{2}+y b_{3}+b_{1}\right)=0
\end{align*}
\]

Putting the above in normal form gives
\[
\begin{aligned}
& -\frac{x^{4} a_{2}+x^{4} a_{3}-x^{4} b_{2}-x^{4} b_{3}+8 x^{3} y b_{2}-8 x^{2} y^{2} a_{2}+4 x^{2} y^{2} a_{3}+4 x^{2} y^{2} b_{2}+8 x^{2} y^{2} b_{3}-8 x y^{3} a_{3}-4 y^{4} a_{2}+4 y^{4}}{\left(x^{2}-2 y^{2}\right)^{2}} \\
& =0
\end{aligned}
\]

Setting the numerator to zero gives
\[
\begin{align*}
& -x^{4} a_{2}-x^{4} a_{3}+x^{4} b_{2}+x^{4} b_{3}-8 x^{3} y b_{2}+8 x^{2} y^{2} a_{2}-4 x^{2} y^{2} a_{3}-4 x^{2} y^{2} b_{2} \tag{6E}\\
& \quad-8 x^{2} y^{2} b_{3}+8 x y^{3} a_{3}+4 y^{4} a_{2}-4 y^{4} a_{3}+4 y^{4} b_{2}-4 y^{4} b_{3}-8 x^{2} y b_{1}+8 x y^{2} a_{1}=0
\end{align*}
\]

Looking at the above PDE shows the following are all the terms with \(\{x, y\}\) in them.
\[
\{x, y\}
\]

The following substitution is now made to be able to collect on all terms with \(\{x, y\}\) in them
\[
\left\{x=v_{1}, y=v_{2}\right\}
\]

The above PDE (6E) now becomes
\[
\begin{align*}
& -a_{2} v_{1}^{4}+8 a_{2} v_{1}^{2} v_{2}^{2}+4 a_{2} v_{2}^{4}-a_{3} v_{1}^{4}-4 a_{3} v_{1}^{2} v_{2}^{2}+8 a_{3} v_{1} v_{2}^{3}-4 a_{3} v_{2}^{4}+b_{2} v_{1}^{4} \tag{7E}\\
& \quad-8 b_{2} v_{1}^{3} v_{2}-4 b_{2} v_{1}^{2} v_{2}^{2}+4 b_{2} v_{2}^{4}+b_{3} v_{1}^{4}-8 b_{3} v_{1}^{2} v_{2}^{2}-4 b_{3} v_{2}^{4}+8 a_{1} v_{1} v_{2}^{2}-8 b_{1} v_{1}^{2} v_{2}=0
\end{align*}
\]

Collecting the above on the terms \(v_{i}\) introduced, and these are
\[
\left\{v_{1}, v_{2}\right\}
\]

Equation (7E) now becomes
\[
\begin{align*}
& \left(-a_{2}-a_{3}+b_{2}+b_{3}\right) v_{1}^{4}-8 b_{2} v_{1}^{3} v_{2}+\left(8 a_{2}-4 a_{3}-4 b_{2}-8 b_{3}\right) v_{1}^{2} v_{2}^{2} \tag{8E}\\
& \quad-8 b_{1} v_{1}^{2} v_{2}+8 a_{3} v_{1} v_{2}^{3}+8 a_{1} v_{1} v_{2}^{2}+\left(4 a_{2}-4 a_{3}+4 b_{2}-4 b_{3}\right) v_{2}^{4}=0
\end{align*}
\]

Setting each coefficients in (8E) to zero gives the following equations to solve
\[
\begin{aligned}
8 a_{1} & =0 \\
8 a_{3} & =0 \\
-8 b_{1} & =0 \\
-8 b_{2} & =0 \\
-a_{2}-a_{3}+b_{2}+b_{3}= & 0 \\
4 a_{2}-4 a_{3}+4 b_{2}-4 b_{3}= & 0 \\
8 a_{2}-4 a_{3}-4 b_{2}-8 b_{3}= & 0
\end{aligned}
\]

Solving the above equations for the unknowns gives
\[
\begin{aligned}
a_{1} & =0 \\
a_{2} & =b_{3} \\
a_{3} & =0 \\
b_{1} & =0 \\
b_{2} & =0 \\
b_{3} & =b_{3}
\end{aligned}
\]

Substituting the above solution in the anstaz (1E, 2E) (using 1 as arbitrary value for any unknown in the RHS) gives
\[
\begin{aligned}
& \xi=x \\
& \eta=y
\end{aligned}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Therefore
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{\eta}{\xi} \\
& =\frac{y}{x} \\
& =\frac{y}{x}
\end{aligned}
\]

This is easily solved to give
\[
y=c_{1} x
\]

Where now the coordinate \(R\) is taken as the constant of integration. Hence
\[
R=\frac{y}{x}
\]

And \(S\) is found from
\[
\begin{aligned}
d S & =\frac{d x}{\xi} \\
& =\frac{d x}{x}
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
S & =\int \frac{d x}{T} \\
& =\ln (x)
\end{aligned}
\]

Where the constant of integration is set to zero as we just need one solution. Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{x^{2}+2 y^{2}}{-x^{2}+2 y^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =-\frac{y}{x^{2}} \\
R_{y} & =\frac{1}{x} \\
S_{x} & =\frac{1}{x} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\frac{x\left(x^{2}-2 y^{2}\right)}{x^{3}-y x^{2}+2 y^{2} x+2 y^{3}} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\frac{-2 R^{2}+1}{2 R^{3}+2 R^{2}-R+1}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\int-\frac{2 R^{2}-1}{2 R^{3}+2 R^{2}-R+1} d R+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+c_{1}
\]

Which simplifies to
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+c_{1}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \[
\frac{d y}{d x}=-\frac{x^{2}+2 y^{2}}{-x^{2}+2 y^{2}}
\] & & \[
\frac{d S}{d R}=\frac{-2 R^{2}+1}{2 R^{3}+2 R^{2}-R+1}
\] \\
\hline dtdrditydidtatht & & \\
\hline & & \\
\hline & & \(0 \rightarrow\) S \((R)\) \\
\hline & & \(\rightarrow\) Os, \\
\hline & & \\
\hline & \(R=\frac{y}{x}\) & \\
\hline & & \\
\hline & \(S=\ln (x)\) & \(\rightarrow \rightarrow \rightarrow \pm か ゙\) \\
\hline & & \\
\hline & & \\
\hline & & \% \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
\ln (x)=\int^{\frac{y}{x}}-\frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+c_{1} \tag{1}
\end{equation*}
\]

Figure 241: Slope field plot
Verification of solutions
\[
\ln (x)=\int^{\frac{y}{x}}-\frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+c_{1}
\]

Verified OK.
Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear trying Bernoulli trying separable trying inverse linear trying homogeneous types: trying homogeneous D <- homogeneous successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 40
dsolve(diff \((y(x), x)=\left(x^{\wedge} 2+2 * y(x)^{\wedge} 2\right) /\left(x^{\wedge} 2-2 * y(x)^{\wedge} 2\right), y(x)\), singsol=all)
\[
y(x)=\operatorname{RootOf}\left(\int^{Z} \frac{2 _a^{2}-1}{2 _a^{3}+2 _a^{2}-_a+1} d _a+\ln (x)+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 80
DSolve[y' \([x]==\left(x^{\wedge} 2+2 * y[x] \sim 2\right) /\left(x^{\wedge} 2-2 * y[x] \sim 2\right), y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& \text { Solve }\left[\operatorname { R o o t S u m } \left[2 \# 1^{3}+2 \# 1^{2}-\# 1\right.\right. \\
& \left.\left.+1 \&, \frac{2 \# 1^{2} \log \left(\frac{y(x)}{x}-\# 1\right)-\log \left(\frac{y(x)}{x}-\# 1\right)}{6 \# 1^{2}+4 \# 1-1} \&\right]=-\log (x)+c_{1}, y(x)\right]
\end{aligned}
\]

\subsection*{8.15 problem 2(g)}
8.15.1 Existence and uniqueness analysis 1218
8.15.2 Solving as separable ode . 1219
8.15.3 Solving as first order ode lie symmetry lookup ode 1221
8.15.4 Solving as exact ode . 1225
8.15.5 Maple step by step solution . 1229

Internal problem ID [6263]
Internal file name [OUTPUT/5511_Sunday_June_05_2022_03_42_16_PM_21153099/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "separable", "first_order__ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
2 \cos (y) x-x^{2} \sin (y) y^{\prime}=0
\]

With initial conditions
\[
[y(1)=1]
\]

\subsection*{8.15.1 Existence and uniqueness analysis}

This is non linear first order ODE. In canonical form it is written as
\[
\begin{aligned}
y^{\prime} & =f(x, y) \\
& =\frac{2 \cos (y)}{x \sin (y)}
\end{aligned}
\]

The \(x\) domain of \(f(x, y)\) when \(y=1\) is
\[
\{x<0 \vee 0<x\}
\]

And the point \(x_{0}=1\) is inside this domain. The \(y\) domain of \(f(x, y)\) when \(x=1\) is
\[
\left\{y<\pi _Z 415 \vee \pi _Z 415<y\right\}
\]

And the point \(y_{0}=1\) is inside this domain. Now we will look at the continuity of
\[
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y}\left(\frac{2 \cos (y)}{x \sin (y)}\right) \\
& =-\frac{2}{x}-\frac{2 \cos (y)^{2}}{x \sin (y)^{2}}
\end{aligned}
\]

The \(x\) domain of \(\frac{\partial f}{\partial y}\) when \(y=1\) is
\[
\{x<0 \vee 0<x\}
\]

And the point \(x_{0}=1\) is inside this domain. The \(y\) domain of \(\frac{\partial f}{\partial y}\) when \(x=1\) is
\[
\left\{y<\pi _Z 415 \vee \pi _Z 415<y\right\}
\]

And the point \(y_{0}=1\) is inside this domain. Therefore solution exists and is unique.

\subsection*{8.15.2 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{2 \cot (y)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{2}{x}\) and \(g(y)=\cot (y)\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\cot (y)} d y & =\frac{2}{x} d x \\
\int \frac{1}{\cot (y)} d y & =\int \frac{2}{x} d x \\
-\ln (\cos (y)) & =2 \ln (x)+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{\cos (y)}=\mathrm{e}^{2 \ln (x)+c_{1}}
\]

Which simplifies to
\[
\sec (y)=c_{2} x^{2}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1=\frac{\pi}{2}-\arcsin \left(\frac{\mathrm{e}^{-c_{1}}}{c_{2}}\right) \\
c_{1}=-\ln \left(\cos (1) c_{2}\right)
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right) \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right)
\]

Verified OK.

\subsection*{8.15.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{2 \cos (y)}{x \sin (y)} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type separable. Therefore we do not need to solve the \(\operatorname{PDE}(A)\), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 164: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=\frac{x}{2} \\
& \eta(x, y)=0 \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\eta=0\) then in this special case
\[
R=y
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\xi} d x \\
& =\int \frac{1}{\frac{x}{2}} d x
\end{aligned}
\]

Which results in
\[
S=2 \ln (x)
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{2 \cos (y)}{x \sin (y)}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =0 \\
R_{y} & =1 \\
S_{x} & =\frac{2}{x} \\
S_{y} & =0
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\tan (y) \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\tan (R)
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-\ln (\cos (R))+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
2 \ln (x)=-\ln (\cos (y))+c_{1}
\]

Which simplifies to
\[
2 \ln (x)=-\ln (\cos (y))+c_{1}
\]

Which gives
\[
y=\arccos \left(\frac{\mathrm{e}^{c_{1}}}{x^{2}}\right)
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{2 \cos (y)}{x \sin (y)}\) & & \(\frac{d S}{d R}=\tan (R)\) \\
\hline \(\rightarrow \rightarrow \rightarrow \infty \times \infty\) & & \\
\hline \(\cdots\) 可 & & \\
\hline & & \\
\hline & & \\
\hline \(\rightarrow\) 为 & & \\
\hline & \(R=y\) & \\
\hline & \(S=2 \ln (x)\) & \\
\hline \(\operatorname{lom}_{\rightarrow \rightarrow \rightarrow-\infty}\) & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \(\rightarrow \rightarrow \rightarrow-\infty \times\) 成 & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\) ．Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration．
\[
\begin{gathered}
1=\frac{\pi}{2}-\arcsin \left(\mathrm{e}^{c_{1}}\right) \\
c_{1}=\ln (\cos (1))
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right)
\]

Summary
The solution（s）found are the following
\[
\begin{equation*}
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\pi}{2}-\arcsin \left(\frac{\cos (1)}{x^{2}}\right)
\]

Verified OK.

\subsection*{8.15.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{\sin (y)}{2 \cos (y)}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{\sin (y)}{2 \cos (y)}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{\sin (y)}{2 \cos (y)}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{\sin (y)}{2 \cos (y)}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{\sin (y)}{2 \cos (y)}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{\sin (y)}{2 \cos (y)}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
\begin{aligned}
f^{\prime}(y) & =\frac{\sin (y)}{2 \cos (y)} \\
& =\frac{\tan (y)}{2}
\end{aligned}
\]

Integrating the above w.r.t \(y\) results in
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{\tan (y)}{2}\right) \mathrm{d} y \\
f(y) & =-\frac{\ln (\cos (y))}{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\ln (x)-\frac{\ln (\cos (y))}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\ln (x)-\frac{\ln (\cos (y))}{2}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{aligned}
& -\frac{\ln (\cos (1))}{2}=c_{1} \\
& c_{1}=-\frac{\ln (\cos (1))}{2}
\end{aligned}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
-\ln (x)-\frac{\ln (\cos (y))}{2}=-\frac{\ln (\cos (1))}{2}
\]

Solving for \(y\) from the above gives
\[
y=\arccos \left(\frac{\cos (1)}{x^{2}}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\arccos \left(\frac{\cos (1)}{x^{2}}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\arccos \left(\frac{\cos (1)}{x^{2}}\right)
\]

Verified OK.

\subsection*{8.15.5 Maple step by step solution}

Let's solve
\(\left[2 \cos (y) x-x^{2} \sin (y) y^{\prime}=0, y(1)=1\right]\)
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Integrate both sides with respect to \(x\)
\[
\int\left(2 \cos (y) x-x^{2} \sin (y) y^{\prime}\right) d x=\int 0 d x+c_{1}
\]
- Evaluate integral
\[
\cos (y) x^{2}=c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\arccos \left(\frac{c_{1}}{x^{2}}\right)
\]
- Use initial condition \(y(1)=1\)
\(1=\arccos \left(c_{1}\right)\)
- \(\quad\) Solve for \(c_{1}\)
\[
c_{1}=\cos (1)
\]
- Substitute \(c_{1}=\cos (1)\) into general solution and simplify
\(y=\arccos \left(\frac{\cos (1)}{x^{2}}\right)\)
- \(\quad\) Solution to the IVP
\(y=\arccos \left(\frac{\cos (1)}{x^{2}}\right)\)

Maple trace
```

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
trying Bernoulli
trying separable
<- separable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.64 (sec). Leaf size: 11
\[
\begin{aligned}
& \underbrace{\operatorname{dsolve}\left(\left[2 * \mathrm{x} * \cos (\mathrm{y}(\mathrm{x}))-\mathrm{x}^{\wedge} 2 * \sin (\mathrm{y}(\mathrm{x})) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})=0, \mathrm{y}(1)=1\right], \mathrm{y}(\mathrm{x}), \text { singsol=all }\right)} \\
& y(x)=\arccos \left(\frac{\cos (1)}{x^{2}}\right)
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 29.379 (sec). Leaf size: 12
DSolve \(\left[\left\{2 * x * \operatorname{Cos}[y[x]]-x^{\wedge} 2 * \operatorname{Sin}[y[x]] * y{ }^{\prime}[x]==0,\{y[1]==1\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) I
\[
y(x) \rightarrow \arccos \left(\frac{\cos (1)}{x^{2}}\right)
\]

\subsection*{8.16 problem 2(h)}
8.16.1 Existence and uniqueness analysis 1232
8.16.2 Solving as separable ode . 1232
8.16.3 Solving as linear ode . 1233
8.16.4 Solving as homogeneousTypeD2 ode 1234
8.16.5 Solving as first order ode lie symmetry lookup ode 1235
8.16.6 Solving as exact ode . 1239
8.16.7 Maple step by step solution . 1242

Internal problem ID [6264]
Internal file name [OUTPUT/5512_Sunday_June_05_2022_03_42_20_PM_46598502/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 2(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
\frac{1}{y}-\frac{x y^{\prime}}{y^{2}}=0
\]

With initial conditions
\[
[y(0)=2]
\]

\subsection*{8.16.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x}=0
\]

The domain of \(p(x)=-\frac{1}{x}\) is
\[
\{x<0 \vee 0<x\}
\]

But the point \(x_{0}=0\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

\subsection*{8.16.2 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
2=0
\]

This shows that no solution exist. \(\frac{\text { Summary }}{\text { The solution(s) found are the following }}\)
\[
y=c_{1} x
\]

Verification of solutions
\[
y=c_{1} x
\]

Warning, solution could not be verified

\subsection*{8.16.3 Solving as linear ode}

Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
\]

Integrating gives
\[
\frac{y}{x}=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x}\) results in
\[
y=c_{1} x
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
2=0
\]

This shows that no solution exist. The solution(s) found are the following
\[
y=c_{1} x
\]

\section*{Verification of solutions}
\[
y=c_{1} x
\]

Warning, solution could not be verified

\subsection*{8.16.4 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
\frac{1}{u(x) x}-\frac{u^{\prime}(x) x+u(x)}{x u(x)^{2}}=0
\]

Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =x u \\
& =c_{2} x
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=0\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
2=0
\]

This shows that no solution exist. \(\frac{\text { Summary }}{\text { The solution(s) found are the following }}\)
\[
y=c_{2} x
\]

Verification of solutions
\[
y=c_{2} x
\]

Warning, solution could not be verified

\subsection*{8.16.5 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =\frac{y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 167: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x y^{n}}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y}{x}=c_{1}
\]

Which simplifies to
\[
\frac{y}{x}=c_{1}
\]

Which gives
\[
y=c_{1} x
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & \[
\begin{gathered}
\text { Canonical } \\
\text { coordinates } \\
\text { transformation }
\end{gathered}
\] & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{y}{x}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline \(\cdots\) 込 & & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow]{ }\) & \(R=x\) & 他 \\
\hline & \(S=\underline{y}\) & \\
\hline & \(S=\frac{\bar{x}}{}\) & \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
2=0
\]

This shows that no solution exist. \(\frac{\text { Summary }}{\text { The solution(s) found are the following }}\)
\[
y=c_{1} x
\]

\section*{Verification of solutions}
\[
y=c_{1} x
\]

Warning, solution could not be verified

\subsection*{8.16.6 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=\frac{1}{y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\ln (x)+\ln (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\ln (x)+\ln (y)
\]

The solution becomes
\[
y=x \mathrm{e}^{c_{1}}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=2\) in the above solution gives an equation to solve for the constant of integration.
\[
2=0
\]

This shows that no solution exist. \(\frac{\text { Summary }}{\text { The solution(s) found are the following }}\)
\[
y=x \mathrm{e}^{c_{1}}
\]

\section*{Verification of solutions}
\[
y=x \mathrm{e}^{c_{1}}
\]

Warning, solution could not be verified

\subsection*{8.16.7 Maple step by step solution}

Let's solve
\[
\left[\frac{1}{y}-\frac{x y^{\prime}}{y^{2}}=0, y(0)=2\right]
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Integrate both sides with respect to \(x\)
\[
\int\left(\frac{1}{y}-\frac{x y^{\prime}}{y^{2}}\right) d x=\int 0 d x+c_{1}
\]
- Evaluate integral
\[
\frac{x}{y}=c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\frac{x}{c_{1}}
\]
- Use initial condition \(y(0)=2\)
\[
2=0
\]
- Solution does not satisfy initial condition

\section*{Maple trace}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(X\) Solution by Maple
```

dsolve([1/y(x)-x/y(x)^2*diff (y(x),x)=0,y(0) = 2],y(x), singsol=all)

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve[\{1/y[x]-x/y[x]~2*y'[x]==0,\{y[0]==2\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\{\}

\subsection*{8.17 problem 4(a)}
8.17.1 Solving as second order ode missing x ode 1244
8.17.2 Maple step by step solution . 1246

Internal problem ID [6265]
Internal file name [OUTPUT/5513_Sunday_June_05_2022_03_42_21_PM_66243305/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x"
Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible,
_mu_x_y1], [_2nd_order, _reducible, _mu_xy]]

```
\[
y y^{\prime \prime}-y^{\prime 2}=0
\]

\subsection*{8.17.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)-p(y)^{2}=0
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =\frac{p}{y}
\end{aligned}
\]

Where \(f(y)=\frac{1}{y}\) and \(g(p)=p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{p} d p & =\frac{1}{y} d y \\
\int \frac{1}{p} d p & =\int \frac{1}{y} d y \\
\ln (p) & =\ln (y)+c_{1} \\
p & =\mathrm{e}^{\ln (y)+c_{1}} \\
& =c_{1} y
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=y c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{c_{1} y} d y & =\int d x \\
\frac{\ln (y)}{c_{1}} & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\frac{\ln (y)}{c_{1}}}=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
y^{\frac{1}{c_{1}}}=c_{3} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{3} \mathrm{e}^{x}\right)^{c_{1}}
\]

Verified OK.

\subsection*{8.17.2 Maple step by step solution}

Let's solve
\(y y^{\prime \prime}-y^{\prime 2}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\[
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
\]
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)-u(y)^{2}=0\)
- Separate variables
\[
\frac{\frac{d}{d y} u(y)}{u(y)}=\frac{1}{y}
\]
- Integrate both sides with respect to \(y\)
\(\int \frac{\frac{d}{d y} u(y)}{u(y)} d y=\int \frac{1}{y} d y+c_{1}\)
- Evaluate integral
\(\ln (u(y))=\ln (y)+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=y \mathrm{e}^{c_{1}}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=y \mathrm{e}^{c_{1}}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\) \(y^{\prime}=y \mathrm{e}^{c_{1}}\)
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=\mathrm{e}^{c_{1}}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int \mathrm{e}^{c_{1}} d x+c_{2}
\]
- Evaluate integral
\(\ln (y)=x \mathrm{e}^{c_{1}}+c_{2}\)
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x \mathrm{e}^{c_{1}}+c_{2}}
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
<- 2nd_order Liouville successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
```

dsolve(y(x)*diff(y(x),x\$2)-(diff(y(x),x))^2=0,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=0 \\
& y(x)=\mathrm{e}^{c_{1} x} c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.113 (sec). Leaf size: 14
DSolve[y[x]*y' ' \([\mathrm{x}]-(\mathrm{y} \text { ' }[\mathrm{x}])^{\sim} 2==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{2} e^{c_{1} x}
\]

\subsection*{8.18 problem 4(b)}
8.18.1 Solving as second order ode missing y ode 1248
8.18.2 Maple step by step solution . 1250

Internal problem ID [6266]
Internal file name [OUTPUT/5514_Sunday_June_05_2022_03_42_24_PM_11812817/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y" Maple gives the following as the ode type
```

[[_2nd_order, _missing_y], [_2nd_order, _reducible, _mu_y_y1]]

```
\[
x y^{\prime \prime}-y^{\prime}+2 y^{\prime 3}=0
\]

\subsection*{8.18.1 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x) x+\left(-1+2 p(x)^{2}\right) p(x)=0
\]

Which is now solve for \(p(x)\) as first order ode. In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(x, p) \\
& =f(x) g(p) \\
& =-\frac{2 p^{3}-p}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(p)=2 p^{3}-p\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{2 p^{3}-p} d p & =-\frac{1}{x} d x \\
\int \frac{1}{2 p^{3}-p} d p & =\int-\frac{1}{x} d x \\
\frac{\ln \left(2 p^{2}-1\right)}{2}-\ln (p) & =-\ln (x)+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\frac{\ln \left(2 p^{2}-1\right)}{2}-\ln (p)}=\mathrm{e}^{-\ln (x)+c_{1}}
\]

Which simplifies to
\[
\frac{\sqrt{2 p^{2}-1}}{p}=\frac{c_{2}}{x}
\]

The solution is
\[
\frac{\sqrt{-1+2 p(x)^{2}}}{p(x)}=\frac{c_{2}}{x}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\frac{\sqrt{-1+2 y^{\prime 2}}}{y^{\prime}}=\frac{c_{2}}{x}
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=-\frac{x}{\sqrt{-c_{2}^{2}+2 x^{2}}} \tag{1}\\
& y^{\prime}=\frac{x}{\sqrt{-c_{2}^{2}+2 x^{2}}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{x}{\sqrt{-c_{2}^{2}+2 x^{2}}} \mathrm{~d} x \\
& =-\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{3}
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{x}{\sqrt{-c_{2}^{2}+2 x^{2}}} \mathrm{~d} x \\
& =\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{4}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=-\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{3} \tag{1}\\
& y=\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{4} \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=-\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{3}
\]

Verified OK.
\[
y=\frac{\sqrt{-c_{2}^{2}+2 x^{2}}}{2}+c_{4}
\]

Verified OK.

\subsection*{8.18.2 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+\left(-1+2 y^{\prime 2}\right) y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\[
u^{\prime}(x) x+\left(-1+2 u(x)^{2}\right) u(x)=0
\]
- Separate variables
\[
\frac{u^{\prime}(x)}{\left(-1+2 u(x)^{2}\right) u(x)}=-\frac{1}{x}
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{u^{\prime}(x)}{\left(-1+2 u(x)^{2}\right) u(x)} d x=\int-\frac{1}{x} d x+c_{1}\)
- Evaluate integral
\(\frac{\ln \left(-1+2 u(x)^{2}\right)}{2}-\ln (u(x))=-\ln (x)+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(\left\{u(x)=\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}, u(x)=-\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}\right\}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}\)
- Make substitution \(u=y^{\prime}\)
\[
y^{\prime}=\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}
\]
- Integrate both sides to solve for \(y\)
\[
\int y^{\prime} d x=\int \frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}} d x+c_{2}
\]
- Compute integrals
\(y=\frac{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}{2}+c_{2}\)
- \(\quad\) Solve 2 nd ODE for \(u(x)\)
\(u(x)=-\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=-\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int-\frac{x}{\sqrt{2 x^{2}-\left(\mathrm{e}^{\left.c_{1}\right)^{2}}\right.}} d x+c_{2}\)
- Compute integrals
\(y=-\frac{\sqrt{2 x^{2}-\left(\mathrm{e}^{c_{1}}\right)^{2}}}{2}+c_{2}\)

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order --- trying a change of variables \(\{x->y(x), y(x)->x\}\)
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation
trying 2nd order, 2 integrating factors of the form mu(x,y)
trying differential order: 2; missing variables
-, --> Computing symmetries using: way \(=3\)
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(_b\left(_a\right), \quad a\right)=-_b\left(_a\right) *\left(2 * _b\left(_a\right) \sim 2-1\right) / _a, \quad, b\left(_a\right)\), HINT symmetry methods on request
, `1st order, trying reduction of order with given symmetries:` [_a, 0]
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 37
```

dsolve(x*diff(y(x),x\$2)=diff(y(x),x)-2*(diff(y(x),x))^3,y(x), singsol=all)

```
\[
\begin{aligned}
& y(x)=\frac{\sqrt{2 x^{2}-c_{1}}}{2}+c_{2} \\
& y(x)=-\frac{\sqrt{2 x^{2}-c_{1}}}{2}+c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.628 (sec). Leaf size: 96
DSolve[x*y''[x]==y'[x]-2*(y'[x]) \(3, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{2}-\frac{1}{2} \sqrt{2 x^{2}+e^{2 c_{1}}} \\
& y(x) \rightarrow \frac{1}{2} \sqrt{2 x^{2}+e^{2 c_{1}}}+c_{2} \\
& y(x) \rightarrow-\frac{\sqrt{x^{2}}}{\sqrt{2}}+c_{2} \\
& y(x) \rightarrow \frac{\sqrt{x^{2}}}{\sqrt{2}}+c_{2}
\end{aligned}
\]

\subsection*{8.19 problem 4(c)}
8.19.1 Solving as second order ode missing x ode 1254
8.19.2 Maple step by step solution . 1256

Internal problem ID [6267]
Internal file name [OUTPUT/5515_Sunday_June_05_2022_03_42_26_PM_82411712/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery. Page 53
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_ode_missing_x" Maple gives the following as the ode type
```

[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1],
[_2nd_order, _reducible, _mu_xy]]

```
\[
y y^{\prime \prime}+y^{\prime}=0
\]

\subsection*{8.19.1 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
y p(y)\left(\frac{d}{d y} p(y)\right)+p(y)=0
\]

Which is now solved as first order ode for \(p(y)\). Integrating both sides gives
\[
\begin{aligned}
p(y) & =\int-\frac{1}{y} \mathrm{~d} y \\
& =-\ln (y)+c_{1}
\end{aligned}
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
y^{\prime}=-\ln (y)+c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{-\ln (y)+c_{1}} d y & =\int d x \\
\mathrm{e}^{c_{1}} \operatorname{expIntegral}_{1}\left(-\ln (y)+c_{1}\right) & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\mathrm{e}_{1} \operatorname{expIntegral}}\left(-\ln (y)+c_{1}\right)=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
\mathrm{e}^{\mathrm{e}_{1}^{c_{1}} \operatorname{expIntegral}}{ }_{1}\left(-\ln (y)+c_{1}\right)=c_{3} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{\operatorname{RootOf}\left(-\exp \operatorname{Integral}_{1}\left(--Z+c_{1}\right) \mathrm{e}^{\left.c_{1}+\ln \left(c_{3}\right)+x\right)}\right.} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\left.y=\mathrm{e}^{\operatorname{RootOf}(-\operatorname{expIntegral}}{ }_{1}\left(-\quad Z+c_{1}\right) \mathrm{e}^{c_{1}}+\ln \left(c_{3}\right)+x\right)
\]

Verified OK.

\subsection*{8.19.2 Maple step by step solution}

Let's solve
\(y y^{\prime \prime}+y^{\prime}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- \(\quad\) Define new dependent variable \(u\)
\(u(x)=y^{\prime}\)
- Compute \(y^{\prime \prime}\)
\(u^{\prime}(x)=y^{\prime \prime}\)
- Use chain rule on the lhs
\(y^{\prime}\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}\)
- \(\quad\) Substitute in the definition of \(u\)
\[
u(y)\left(\frac{d}{d y} u(y)\right)=y^{\prime \prime}
\]
- Make substitutions \(y^{\prime}=u(y), y^{\prime \prime}=u(y)\left(\frac{d}{d y} u(y)\right)\) to reduce order of ODE \(y u(y)\left(\frac{d}{d y} u(y)\right)+u(y)=0\)
- Separate variables
\[
\frac{d}{d y} u(y)=-\frac{1}{y}
\]
- Integrate both sides with respect to \(y\)
\(\int\left(\frac{d}{d y} u(y)\right) d y=\int-\frac{1}{y} d y+c_{1}\)
- Evaluate integral
\(u(y)=-\ln (y)+c_{1}\)
- \(\quad\) Solve for \(u(y)\)
\(u(y)=-\ln (y)+c_{1}\)
- \(\quad\) Solve 1st ODE for \(u(y)\)
\(u(y)=-\ln (y)+c_{1}\)
- Revert to original variables with substitution \(u(y)=y^{\prime}, y=y\)
\(y^{\prime}=-\ln (y)+c_{1}\)
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{-\ln (y)+c_{1}}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{-\ln (y)+c_{1}} d x=\int 1 d x+c_{2}
\]
- Evaluate integral
\[
\mathrm{Ei}_{1}\left(-\ln (y)+c_{1}\right) \mathrm{e}^{c_{1}}=c_{2}+x
\]
- \(\quad\) Solve for \(y\)
\[
\left\{\mathrm{e}^{\operatorname{RootOf}\left(-\mathrm{Ei}_{1}\left(--Z+c_{1}\right) \mathrm{e}^{\left.c_{1}+c_{2}+x\right)}\right.}\right\}
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying 2nd order Liouville
trying 2nd order WeierstrassP
trying 2nd order JacobiSN
differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(\(\mathrm{x}, \mathrm{y}\))
trying differential order: 2; missing variables
-, `-> Computing symmetries using: way \(=3\)
\(\rightarrow\) Calling odsolve with the ODE', (diff (_b (_a), _a))*_b(_a)+_b(_a)/_a=0,_b(_a),HINT=[[] symmetry methods on request
`, `1st order, trying reduction of order with given symmetries:`[_a, 0]
\(\checkmark\) Solution by Maple
Time used: 0.125 (sec). Leaf size: 24
dsolve(\(y(x) * \operatorname{diff}(y(x), x \$ 2)+\operatorname{diff}(y(x), x)=0, y(x)\), singsol=all)
\[
\begin{aligned}
& y(x)=0 \\
& y(x)=\mathrm{e}^{\text {RootOf }\left(-\mathrm{e}^{c_{1}} \operatorname{expIntegra1}\left(-_Z+c_{1}\right)+x+c_{2}\right)}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.248 (sec). Leaf size: 80
DSolve[y[x]*y' ' \([\mathrm{x}]+\mathrm{y}\) ' \([\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \text { InverseFunction }\left[-e^{c_{1}} \operatorname{ExpIntegral\operatorname {Ei}(\operatorname {log}(\# 1)-c_{1})\&][x+c_{2}]}\right. \\
& y(x) \rightarrow \text { InverseFunction }\left[-e^{-c_{1}} \operatorname{ExpIntegralEi}\left(\log (\# 1)--c_{1}\right) \&\right]\left[x+c_{2}\right] \\
& y(x) \rightarrow \text { InverseFunction }\left[-e^{c_{1}} \operatorname{ExpIntegralEi}\left(\log (\# 1)-c_{1}\right) \&\right]\left[x+c_{2}\right]
\end{aligned}
\]

\subsection*{8.20 problem 4(d)}
8.20.1 Solving as second order integrable as is ode 1260
8.20.2 Solving as second order ode missing y ode 1261
8.20.3 Solving as second order ode non constant coeff transformation on B ode

8.20.5 Solving using Kovacic algorithm 1269
8.20.6 Solving as exact linear second order ode ode 1276
8.20.7 Maple step by step solution . 1278

Internal problem ID [6268]
Internal file name [OUTPUT/5516_Sunday_June_05_2022_03_42_29_PM_92411154/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 1. What is a differential equation. Problems for Review and Discovery.
Page 53
Problem number: 4(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second__order_ode__non_constant__coeff_transformation__on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x y^{\prime \prime}-3 y^{\prime}=5 x
\]

\subsection*{8.20.1 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \quad \int\left(x y^{\prime \prime}-3 y^{\prime}\right) d x=\int 5 x d x \\
& x y^{\prime}-4 y=\frac{5 x^{2}}{2}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{4}{x} \\
q(x) & =\frac{5 x^{2}+2 c_{1}}{2 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{4 y}{x}=\frac{5 x^{2}+2 c_{1}}{2 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{4}}\right) & =\left(\frac{5 x^{2}+2 c_{1}}{2 x^{5}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{y}{x^{4}} & =\int \frac{5 x^{2}+2 c_{1}}{2 x^{5}} \mathrm{~d} x \\
\frac{y}{x^{4}} & =-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{4}}\) results in
\[
y=x^{4}\left(-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}\right)+c_{2} x^{4}
\]
which simplifies to
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Verified OK.

\subsection*{8.20.2 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x) x-3 p(x)-5 x=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=5
\end{aligned}
\]

Hence the ode is
\[
p^{\prime}(x)-\frac{3 p(x)}{x}=5
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(5) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{p}{x^{3}}\right) & =\left(\frac{1}{x^{3}}\right)(5) \\
\mathrm{d}\left(\frac{p}{x^{3}}\right) & =\left(\frac{5}{x^{3}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{p}{x^{3}} & =\int \frac{5}{x^{3}} \mathrm{~d} x \\
\frac{p}{x^{3}} & =-\frac{5}{2 x^{2}}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{3}}\) results in
\[
p(x)=-\frac{5}{2} x+c_{1} x^{3}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\frac{5}{2} x+c_{1} x^{3}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\frac{5}{2} x+c_{1} x^{3} \mathrm{~d} x \\
& =\frac{\left(2 c_{1} x^{2}-5\right)^{2}}{16 c_{1}}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(2 c_{1} x^{2}-5\right)^{2}}{16 c_{1}}+c_{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\left(2 c_{1} x^{2}-5\right)^{2}}{16 c_{1}}+c_{2}
\]

Verified OK.

\subsection*{8.20.3 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x \\
& B=-3 \\
& C=0 \\
& F=5 x
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(-3)(0)+(0)(-3) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-3 x v^{\prime \prime}+(9) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
-3 x u^{\prime}(x)+9 u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{3 u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{3}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{3}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{3}{x} d x \\
\ln (u) & =3 \ln (x)+c_{1} \\
u & =\mathrm{e}^{3 \ln (x)+c_{1}} \\
& =c_{1} x^{3}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1} x^{3}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} x^{3} \mathrm{~d} x \\
& =\frac{c_{1} x^{4}}{4}+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(-3)\left(\frac{c_{1} x^{4}}{4}+c_{2}\right) \\
& =-\frac{3 c_{1} x^{4}}{4}-3 c_{2}
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=-3 \\
& y_{2}=x^{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
-3 & x^{4} \\
\frac{d}{d x}(-3) & \frac{d}{d x}\left(x^{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
-3 & x^{4} \\
0 & 4 x^{3}
\end{array}\right|
\]

Therefore
\[
W=(-3)\left(4 x^{3}\right)-\left(x^{4}\right)(0)
\]

Which simplifies to
\[
W=-12 x^{3}
\]

Which simplifies to
\[
W=-12 x^{3}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{5 x^{5}}{-12 x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{5 x}{12} d x
\]

Hence
\[
u_{1}=\frac{5 x^{2}}{24}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{-15 x}{-12 x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{5}{4 x^{3}} d x
\]

Hence
\[
u_{2}=-\frac{5}{8 x^{2}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{5 x^{2}}{4}
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-\frac{3 c_{1} x^{4}}{4}-3 c_{2}\right)+\left(-\frac{5 x^{2}}{4}\right) \\
& =-\frac{3}{4} c_{1} x^{4}-3 c_{2}-\frac{5}{4} x^{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{3}{4} c_{1} x^{4}-3 c_{2}-\frac{5}{4} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{3}{4} c_{1} x^{4}-3 c_{2}-\frac{5}{4} x^{2}
\]

Verified OK.

\subsection*{8.20.4 Solving as type second__order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x y^{\prime \prime}-3 y^{\prime}=5 x
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \quad \int\left(x y^{\prime \prime}-3 y^{\prime}\right) d x=\int 5 x d x \\
& x y^{\prime}-4 y=\frac{5 x^{2}}{2}+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{5 x^{2}+2 c_{1}}{2 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{4 y}{x}=\frac{5 x^{2}+2 c_{1}}{2 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{4}}\right) & =\left(\frac{5 x^{2}+2 c_{1}}{2 x^{5}}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
\frac{y}{x^{4}} & =\int \frac{5 x^{2}+2 c_{1}}{2 x^{5}} \mathrm{~d} x \\
\frac{y}{x^{4}} & =-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{4}}\) results in
\[
y=x^{4}\left(-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}\right)+c_{2} x^{4}
\]
which simplifies to
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Verified OK.

\subsection*{8.20.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x y^{\prime \prime}-3 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-3 \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{15}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=15 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{15}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 173: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{15}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{15}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{5}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{3}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{15}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{5}{2}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=-\frac{3}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{3}{2}-\left(-\frac{3}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{2 x}+(-)(0) \\
& =-\frac{3}{2 x} \\
& =-\frac{3}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{3}{2 x}\right)(0)+\left(\left(\frac{3}{2 x^{2}}\right)+\left(-\frac{3}{2 x}\right)^{2}-\left(\frac{15}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{2 x} d x} \\
& =\frac{1}{x^{\frac{3}{2}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{x} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{4}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{x^{4}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x y^{\prime \prime}-3 y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}+\frac{c_{2} x^{4}}{4}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{x^{4}}{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & \frac{x^{4}}{4} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{x^{4}}{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
1 & \frac{x^{4}}{4} \\
0 & x^{3}
\end{array}\right|
\]

Therefore
\[
W=(1)\left(x^{3}\right)-\left(\frac{x^{4}}{4}\right)(0)
\]

Which simplifies to
\[
W=x^{3}
\]

Which simplifies to
\[
W=x^{3}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{5 x^{5}}{4}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{5 x}{4} d x
\]

Hence
\[
u_{1}=-\frac{5 x^{2}}{8}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{5 x}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{5}{x^{3}} d x
\]

Hence
\[
u_{2}=-\frac{5}{2 x^{2}}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{5 x^{2}}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} x^{4}}{4}\right)+\left(-\frac{5 x^{2}}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+\frac{1}{4} c_{2} x^{4}-\frac{5}{4} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}+\frac{1}{4} c_{2} x^{4}-\frac{5}{4} x^{2}
\]

Verified OK.

\subsection*{8.20.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x \\
& q(x)=-3 \\
& r(x)=0 \\
& s(x)=5 x
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
x y^{\prime}-4 y=\int 5 x d x
\]

We now have a first order ode to solve which is
\[
x y^{\prime}-4 y=\frac{5 x^{2}}{2}+c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{4}{x} \\
q(x) & =\frac{5 x^{2}+2 c_{1}}{2 x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{4 y}{x}=\frac{5 x^{2}+2 c_{1}}{2 x}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{4}{x} d x} \\
& =\frac{1}{x^{4}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x^{4}}\right) & =\left(\frac{1}{x^{4}}\right)\left(\frac{5 x^{2}+2 c_{1}}{2 x}\right) \\
\mathrm{d}\left(\frac{y}{x^{4}}\right) & =\left(\frac{5 x^{2}+2 c_{1}}{2 x^{5}}\right) \mathrm{d} x
\end{aligned}
\]

\section*{Integrating gives}
\[
\begin{aligned}
\frac{y}{x^{4}} & =\int \frac{5 x^{2}+2 c_{1}}{2 x^{5}} \mathrm{~d} x \\
\frac{y}{x^{4}} & =-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x^{4}}\) results in
\[
y=x^{4}\left(-\frac{c_{1}}{4 x^{4}}-\frac{5}{4 x^{2}}\right)+c_{2} x^{4}
\]
which simplifies to
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\frac{5}{4} x^{2}-\frac{1}{4} c_{1}+c_{2} x^{4}
\]

Verified OK.

\subsection*{8.20.7 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x-3 y^{\prime}=5 x
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Make substitution \(u=y^{\prime}\) to reduce order of ODE
\(u^{\prime}(x) x-3 u(x)=5 x\)
- Isolate the derivative
\(u^{\prime}(x)=5+\frac{3 u(x)}{x}\)
- Group terms with \(u(x)\) on the lhs of the ODE and the rest on the rhs of the ODE \(u^{\prime}(x)-\frac{3 u(x)}{x}=5\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(u^{\prime}(x)-\frac{3 u(x)}{x}\right)=5 \mu(x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) u(x))\)
\(\mu(x)\left(u^{\prime}(x)-\frac{3 u(x)}{x}\right)=\mu^{\prime}(x) u(x)+\mu(x) u^{\prime}(x)\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{3 \mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=\frac{1}{x^{3}}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) u(x))\right) d x=\int 5 \mu(x) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) u(x)=\int 5 \mu(x) d x+c_{1}\)
- \(\quad\) Solve for \(u(x)\)
\(u(x)=\frac{\int 5 \mu(x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{x^{3}}\)
\(u(x)=x^{3}\left(\int \frac{5}{x^{3}} d x+c_{1}\right)\)
- Evaluate the integrals on the rhs
\(u(x)=x^{3}\left(-\frac{5}{2 x^{2}}+c_{1}\right)\)
- Simplify
\(u(x)=-\frac{5}{2} x+c_{1} x^{3}\)
- \(\quad\) Solve 1st ODE for \(u(x)\)
\(u(x)=-\frac{5}{2} x+c_{1} x^{3}\)
- Make substitution \(u=y^{\prime}\)
\(y^{\prime}=-\frac{5}{2} x+c_{1} x^{3}\)
- Integrate both sides to solve for \(y\)
\(\int y^{\prime} d x=\int\left(-\frac{5}{2} x+c_{1} x^{3}\right) d x+c_{2}\)
- Compute integrals
\(y=\frac{\left(2 c_{1} x^{2}-5\right)^{2}}{16 c_{1}}+c_{2}\)

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = (3*_b(_a)+5*_a)/_a, _b(_a) *** Suble
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(x*diff(y(x),x\$2)-3*diff (y (x),x)=5*x,y(x), singsol=all)

```
\[
y(x)=\frac{\left(2 c_{1} x^{2}-5\right)^{2}}{16 c_{1}}+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 24
DSolve[x*y' \([x]-3 * y\) ' \([x]==5 * x, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{1} x^{4}}{4}-\frac{5 x^{2}}{4}+c_{2}
\]
9 Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
9.1 problem 1(a) 1282
9.2 problem 1(b) 1290
9.3 problem 1(c) 1299
9.4 problem 1(d) 1309
9.5 problem 1(e) 1317
9.6 problem 1(f) 1326
9.7 problem 1(g) 1334
9.8 problem 1(h) 1343
9.9 problem 1(i) 1352
9.10 problem 1(j) 1362
9.11 problem 1(k) 1370
9.12 problem 1(l) 1379
9.13 problem 1(m) 1387
9.14 problem 1(n) 1397
9.15 problem 1(o) 1406
9.16 problem 1(p) 1414
9.17 problem 1(q) 1422
9.18 problem 1(r) 1430
9.19 problem 2(a) 1438
9.20 problem 2(b) 1448
9.21 problem 2(c) 1458
9.22 problem 2(d) 1470
9.23 problem 2(e) 1480
9.24 problem 2(f) 1490
9.25 problem 5(a) 1500
9.26 problem 5(b) 1517
9.27 problem 5(c) 1533
9.28 problem 5(d) 1547
9.29 problem 5(e) 1557
9.30 problem 5(f) 1573
9.31 problem \(5(\mathrm{~g})\) 1587
9.32 problem 5(h) 1605
9.33 problem 5(i) 1622

\section*{9.1 problem 1(a)}
9.1.1 Solving as second order linear constant coeff ode 1282
9.1.2 Solving using Kovacic algorithm 1284
9.1.3 Maple step by step solution . 1288

Internal problem ID [6269]
Internal file name [OUTPUT/5517_Sunday_June_05_2022_03_42_31_PM_66854464/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+y^{\prime}-6 y=0
\]

\subsection*{9.1.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=-6\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda-6=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=-6\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(-6)} \\
& =-\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{5}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-3
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-3) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
\]

Figure 245: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-3 x}
\]

Verified OK.

\subsection*{9.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=-6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 175: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{25}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-3 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5} \tag{1}
\end{equation*}
\]

Figure 246: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-3 x}+\frac{c_{2} \mathrm{e}^{2 x}}{5}
\]

\section*{Verified OK.}

\subsection*{9.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}-6 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+r-6=0
\]
- Factor the characteristic polynomial
\[
(r+3)(r-2)=0
\]
- Roots of the characteristic polynomial
\(r=(-3,2)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-3 x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{2 x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
dsolve(diff \((y(x), x \$ 2)+\operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\left(\mathrm{e}^{5 x} c_{1}+c_{2}\right) \mathrm{e}^{-3 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 22
DSolve[y''[x]+y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-3 x}\left(c_{2} e^{5 x}+c_{1}\right)
\]

\section*{9.2 problem 1(b)}
9.2.1 Solving as second order linear constant coeff ode 1290
\(\begin{array}{ll}\text { 9.2.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1292\end{array}\)
9.2.3 Solving using Kovacic algorithm 1293
9.2.4 Maple step by step solution . 1297

Internal problem ID [6270]
Internal file name [OUTPUT/5518_Sunday_June_05_2022_03_42_32_PM_57703630/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+2 y^{\prime}+y=0
\]

\subsection*{9.2.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=1\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2} \tag{1}
\end{equation*}
\]

Figure 247: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
\]

Verified OK.

\subsection*{9.2.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=2\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(y \mathrm{e}^{x}\right)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
\left(y \mathrm{e}^{x}\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(y \mathrm{e}^{x}\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 248: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} x \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{9.2.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 177: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2} \tag{1}
\end{equation*}
\]

Figure 249: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
\]

Verified OK.

\subsection*{9.2.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+2 y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+2 r+1=0\)
- Factor the characteristic polynomial
\((r+1)^{2}=0\)
- Root of the characteristic polynomial
\[
r=-1
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-x}
\]
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{-x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve(diff \((y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 18
DSolve[y' ' \([\mathrm{x}]+2 * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-x}\left(c_{2} x+c_{1}\right)
\]

\section*{9.3 problem 1(c)}
9.3.1 Solving as second order linear constant coeff ode 1299
9.3.2 Solving as second order ode can be made integrable ode 1301
9.3.3 Solving using Kovacic algorithm 1303
9.3.4 Maple step by step solution . 1307

Internal problem ID [6271]
Internal file name [OUTPUT/5519_Sunday_June_05_2022_03_42_33_PM_3420271/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+8 y=0
\]

\subsection*{9.3.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=8\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+8 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+8=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=8\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(8)} \\
& = \pm 2 i \sqrt{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 i \sqrt{2} \\
& \lambda_{2}=-2 i \sqrt{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 i \sqrt{2} \\
& \lambda_{2}=-2 i \sqrt{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=2 \sqrt{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (2 x \sqrt{2})+c_{2} \sin (2 x \sqrt{2})\right)
\]

Or
\[
y=c_{1} \cos (2 x \sqrt{2})+c_{2} \sin (2 x \sqrt{2})
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x \sqrt{2})+c_{2} \sin (2 x \sqrt{2}) \tag{1}
\end{equation*}
\]

Figure 250: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \cos (2 x \sqrt{2})+c_{2} \sin (2 x \sqrt{2})
\]

Verified OK.

\subsection*{9.3.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+8 y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+8 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+4 y^{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-8 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-8 y^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-8 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-8 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4} & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4} & =c_{2}+x \tag{1}\\
-\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4} & =x+c_{3} \tag{2}
\end{align*}
\]

Figure 251: Slope field plot

Verification of solutions
\[
\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4}=c_{2}+x
\]

Verified OK.
\[
-\frac{\sqrt{2} \arctan \left(\frac{2 \sqrt{2} y}{\sqrt{-8 y^{2}+2 c_{1}}}\right)}{4}=x+c_{3}
\]

Verified OK.

\subsection*{9.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =8
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-8}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-8 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-8 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 179: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-8\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x \sqrt{2})
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x \sqrt{2})
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (2 x \sqrt{2})
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x \sqrt{2}) \int \frac{1}{\cos (2 x \sqrt{2})^{2}} d x \\
& =\cos (2 x \sqrt{2})\left(\frac{\sqrt{2} \tan (2 x \sqrt{2})}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x \sqrt{2}))+c_{2}\left(\cos (2 x \sqrt{2})\left(\frac{\sqrt{2} \tan (2 x \sqrt{2})}{4}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x \sqrt{2})+\frac{c_{2} \sqrt{2} \sin (2 x \sqrt{2})}{4} \tag{1}
\end{equation*}
\]

Figure 252: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \cos (2 x \sqrt{2})+\frac{c_{2} \sqrt{2} \sin (2 x \sqrt{2})}{4}
\]

Verified OK.

\subsection*{9.3.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+8 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\[
r^{2}+8=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-32})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-2 \mathrm{I} \sqrt{2}, 2 \mathrm{I} \sqrt{2})
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\cos (2 x \sqrt{2})
\]
- 2 nd solution of the ODE
\[
y_{2}(x)=\sin (2 x \sqrt{2})
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \cos (2 x \sqrt{2})+c_{2} \sin (2 x \sqrt{2})
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$2)+8*y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (2 \sqrt{2} x)+c_{2} \cos (2 \sqrt{2} x)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 30
```

DSolve[y''[x] +8*y[x]==0,y[x],x, IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \cos (2 \sqrt{2} x)+c_{2} \sin (2 \sqrt{2} x)
\]

\section*{9.4 problem 1(d)}
9.4.1 Solving as second order linear constant coeff ode 1309
9.4.2 Solving using Kovacic algorithm 1311
9.4.3 Maple step by step solution . 1315

Internal problem ID [6272]
Internal file name [OUTPUT/5520_Sunday_June_05_2022_03_42_34_PM_15542383/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
2 y^{\prime \prime}-4 y^{\prime}+4 y=0
\]

\subsection*{9.4.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=2, B=-4, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
2 \lambda^{2}-4 \lambda+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=2, B=-4, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{-4^{2}-(4)(2)(4)} \\
& =1 \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
\lambda_{1} & =1+i \\
\lambda_{2} & =1-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=1\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
\]

Figure 253: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Verified OK.

\subsection*{9.4.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
2 y^{\prime \prime}-4 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=2 \\
& B=-4 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 181: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{2} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x) \mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 254: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}
\]

Verified OK.

\subsection*{9.4.3 Maple step by step solution}

Let's solve
\(2 y^{\prime \prime}-4 y^{\prime}+4 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=2 y^{\prime}-2 y\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-2 y^{\prime}+2 y=0\)
- Characteristic polynomial of ODE
\(r^{2}-2 r+2=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{2 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial \(r=(1-\mathrm{I}, 1+\mathrm{I})\)
- 1st solution of the ODE
\(y_{1}(x)=\cos (x) \mathrm{e}^{x}\)
- 2nd solution of the ODE
\(y_{2}(x)=\sin (x) \mathrm{e}^{x}\)
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 16
dsolve(\(2 * \operatorname{diff}(y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{x}\left(c_{1} \sin (x)+\cos (x) c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20
DSolve[2*y' ' \([\mathrm{x}]-4 * \mathrm{y}\) ' \([\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
\]

\section*{9.5 problem 1(e)}
9.5.1 Solving as second order linear constant coeff ode 1317
\(\begin{array}{ll}\text { 9.5.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1319\end{array}\)
9.5.3 Solving using Kovacic algorithm 1320
9.5.4 Maple step by step solution . 1324

Internal problem ID [6273]
Internal file name [OUTPUT/5521_Sunday_June_05_2022_03_42_36_PM_76880388/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}-4 y^{\prime}+4 y=0
\]

\subsection*{9.5.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-4, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-4 \lambda+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-4, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-4)^{2}-(4)(1)(4)} \\
& =2
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=-2\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} x \tag{1}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{2} \tag{1}
\end{equation*}
\]

Figure 255: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{2}
\]

Verified OK.

\subsection*{9.5.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-4\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-4 d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{gathered}
(M(x) y)^{\prime \prime}=0 \\
\left(y \mathrm{e}^{-2 x}\right)^{\prime \prime}=0
\end{gathered}
\]

Integrating once gives
\[
\left(y \mathrm{e}^{-2 x}\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(y \mathrm{e}^{-2 x}\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-2 x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 256: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} x \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{9.5.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-4 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 183: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-4}{1} d x} \\
& =z_{1} e^{2 x} \\
& =z_{1}\left(\mathrm{e}^{2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{2} \tag{1}
\end{equation*}
\]

Figure 257: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{2}
\]

Verified OK.

\subsection*{9.5.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-4 y^{\prime}+4 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}-4 r+4=0\)
- Factor the characteristic polynomial
\((r-2)^{2}=0\)
- Root of the characteristic polynomial
\[
r=2
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{2 x}
\]
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=\mathrm{e}^{2 x} x
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{2 x}+x \mathrm{e}^{2 x} c_{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff \((y(x), x \$ 2)-4 * \operatorname{diff}(y(x), x)+4 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{2 x}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18
DSolve[y'' \([x]-4 * y\) ' \([x]+4 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{2 x}\left(c_{2} x+c_{1}\right)
\]

\section*{9.6 problem 1(f)}
9.6.1 Solving as second order linear constant coeff ode 1326
9.6.2 Solving using Kovacic algorithm 1328
9.6.3 Maple step by step solution . 1332

Internal problem ID [6274]
Internal file name [OUTPUT/5522_Sunday_June_05_2022_03_42_37_PM_46056091/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}-9 y^{\prime}+20 y=0
\]

\subsection*{9.6.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-9, C=20\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-9 \lambda \mathrm{e}^{\lambda x}+20 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-9 \lambda+20=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-9, C=20\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{9}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-9^{2}-(4)(1)(20)} \\
& =\frac{9}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
\lambda_{1} & =\frac{9}{2}+\frac{1}{2} \\
\lambda_{2} & =\frac{9}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=4
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{(4) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{4 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{4 x} \tag{1}
\end{equation*}
\]

Figure 258: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{4 x}
\]

Verified OK.

\subsection*{9.6.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-9 y^{\prime}+20 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-9 \tag{3}\\
& C=20
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 185: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-9}{1} d x} \\
& =z_{1} e^{\frac{9 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{9 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{4 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-9}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{9 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{4 x}\right)+c_{2}\left(\mathrm{e}^{4 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{5 x} \tag{1}
\end{equation*}
\]

Figure 259: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{5 x}
\]

Verified OK.

\subsection*{9.6.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-9 y^{\prime}+20 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\(r^{2}-9 r+20=0\)
- Factor the characteristic polynomial
\((r-4)(r-5)=0\)
- Roots of the characteristic polynomial
\(r=(4,5)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{4 x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{5 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{4 x}+c_{2} \mathrm{e}^{5 x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
dsolve(diff \((y(x), x \$ 2)-9 * \operatorname{diff}(y(x), x)+20 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{4 x} c_{1}+c_{2} \mathrm{e}^{5 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20
DSolve[y'' \([x]-9 * y\) ' \([x]+20 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{4 x}\left(c_{2} e^{x}+c_{1}\right)
\]

\section*{9.7 problem 1 (g)}
9.7.1 Solving as second order linear constant coeff ode 1334
9.7.2 Solving using Kovacic algorithm 1336
9.7.3 Maple step by step solution . 1340

Internal problem ID [6275]
Internal file name [OUTPUT/5523_Sunday_June_05_2022_03_42_38_PM_47340201/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
2 y^{\prime \prime}+2 y^{\prime}+3 y=0
\]

\subsection*{9.7.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=2, B=2, C=3\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
2 \lambda^{2}+2 \lambda+3=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=2, B=2, C=3\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{2^{2}-(4)(2)(3)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{5}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{5}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{5}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{5}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{5}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{5}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x \sqrt{5}}{2}\right)+c_{2} \sin \left(\frac{x \sqrt{5}}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x \sqrt{5}}{2}\right)+c_{2} \sin \left(\frac{x \sqrt{5}}{2}\right)\right) \tag{1}
\end{equation*}
\]

Figure 260: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{x \sqrt{5}}{2}\right)+c_{2} \sin \left(\frac{x \sqrt{5}}{2}\right)\right)
\]

Verified OK.

\subsection*{9.7.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
2 y^{\prime \prime}+2 y^{\prime}+3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =2 \\
B & =2 \tag{3}\\
C & =3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-5}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-5 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{5 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 187: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{5}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{x \sqrt{5}}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{2} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{5} \tan \left(\frac{x \sqrt{5}}{2}\right)}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)\left(\frac{2 \sqrt{5} \tan \left(\frac{x \sqrt{5}}{2}\right)}{5}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{5} \sin \left(\frac{x \sqrt{5}}{2}\right)}{5} \tag{1}
\end{equation*}
\]

Figure 261: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{5} \sin \left(\frac{x \sqrt{5}}{2}\right)}{5}
\]

Verified OK.

\subsection*{9.7.3 Maple step by step solution}

Let's solve
\[
2 y^{\prime \prime}+2 y^{\prime}+3 y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-y^{\prime}-\frac{3 y}{2}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+y^{\prime}+\frac{3 y}{2}=0\)
- Characteristic polynomial of ODE
\[
r^{2}+r+\frac{3}{2}=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{(-1) \pm(\sqrt{ }-5)}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{5}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{5}}{2}\right)
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)
\]
- 2nd solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x \sqrt{5}}{2}\right)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{x \sqrt{5}}{2}\right)+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{x \sqrt{5}}{2}\right)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
```

dsolve(2*diff(y(x),x\$2)+2*diff(y(x),x)+3*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \sin \left(\frac{\sqrt{5} x}{2}\right)+c_{2} \cos \left(\frac{\sqrt{5} x}{2}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 42
DSolve[2*y' ' \([\mathrm{x}]+2 * \mathrm{y}\) ' \([\mathrm{x}]+3 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-x / 2}\left(c_{2} \cos \left(\frac{\sqrt{5} x}{2}\right)+c_{1} \sin \left(\frac{\sqrt{5} x}{2}\right)\right)
\]

\section*{9.8 problem 1(h)}
9.8.1 Solving as second order linear constant coeff ode 1343
\(\begin{array}{ll}\text { 9.8.2 } & \text { Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 1345]\end{array}\)
9.8.3 Solving using Kovacic algorithm 1346
9.8.4 Maple step by step solution . 1350

Internal problem ID [6276]
Internal file name [OUTPUT/5524_Sunday_June_05_2022_03_42_39_PM_51360054/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
\]

\subsection*{9.8.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=4, B=-12, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-12 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
4 \lambda^{2}-12 \lambda+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=4, B=-12, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{12}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(-12)^{2}-(4)(4)(9)} \\
& =\frac{3}{2}
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=-\frac{3}{2}\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
\]

Figure 262: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}
\]

Verified OK.

\subsection*{9.8.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-3\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-3 d x} \\
& =\mathrm{e}^{-\frac{3 x}{2}}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
& (M(x) y)^{\prime \prime}=0 \\
& \left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime \prime}=0
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{-\frac{3 x}{2}} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-\frac{3 x}{2}}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
\]

Figure 263: Slope field plot

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{\frac{3 x}{2}}+c_{2} \mathrm{e}^{\frac{3 x}{2}}
\]

Verified OK.

\subsection*{9.8.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
4 y^{\prime \prime}-12 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 \\
& B=-12 \tag{3}\\
& C=9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 189: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-12}{4} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{3 x}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-12}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)+c_{2}\left(\mathrm{e}^{\frac{3 x}{2}}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}} \tag{1}
\end{equation*}
\]

Figure 264: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}
\]

\section*{Verified OK.}

\subsection*{9.8.4 Maple step by step solution}

Let's solve
\[
4 y^{\prime \prime}-12 y^{\prime}+9 y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=3 y^{\prime}-\frac{9 y}{4}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-3 y^{\prime}+\frac{9 y}{4}=0\)
- Characteristic polynomial of ODE
\[
r^{2}-3 r+\frac{9}{4}=0
\]
- Factor the characteristic polynomial
\(\frac{(2 r-3)^{2}}{4}=0\)
- Root of the characteristic polynomial
\(r=\frac{3}{2}\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\frac{3 x}{2}}\)
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence \(y_{2}(x)=x \mathrm{e}^{\frac{3 x}{2}}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2} x \mathrm{e}^{\frac{3 x}{2}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
```

dsolve(4*diff(y(x),x\$2)-12*diff(y(x),x)+9*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{\frac{3 x}{2}}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[4*y''[x]-12*y'[x]+9*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{3 x / 2}\left(c_{2} x+c_{1}\right)
\]

\section*{9.9 problem 1(i)}
9.9.1 Solving as second order linear constant coeff ode 1352
9.9.2 Solving as second order ode can be made integrable ode 1354
9.9.3 Solving using Kovacic algorithm 1356
9.9.4 Maple step by step solution . 1360

Internal problem ID [6277]
Internal file name [OUTPUT/5525_Sunday_June_05_2022_03_42_40_PM_28163000/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+y=0
\]

\subsection*{9.9.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Figure 265: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{9.9.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{y^{2}}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-y^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-y^{2}+2 c_{1}}} d y & =\int d x \\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =c_{2}+x \tag{1}\\
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right) & =x+c_{3} \tag{2}
\end{align*}
\]

Figure 266: Slope field plot

Verification of solutions
\[
\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=c_{2}+x
\]

Verified OK.
\[
-\arctan \left(\frac{y}{\sqrt{-y^{2}+2 c_{1}}}\right)=x+c_{3}
\]

Verified OK.

\subsection*{9.9.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 191: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x) \tag{1}
\end{equation*}
\]

Figure 267: Slope field plot

Verification of solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Verified OK.

\subsection*{9.9.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- 1st solution of the ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
```

dsolve(diff(y(x),x\$2)+y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (x)+\cos (x) c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
```

DSolve[y''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{1} \cos (x)+c_{2} \sin (x)
\]

\subsection*{9.10 problem 1(j)}
9.10.1 Solving as second order linear constant coeff ode 1362
9.10.2 Solving using Kovacic algorithm 1364
9.10.3 Maple step by step solution . 1368

Internal problem ID [6278]
Internal file name [OUTPUT/5526_Sunday_June_05_2022_03_42_41_PM_11821967/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(j).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}-6 y^{\prime}+25 y=0
\]

\subsection*{9.10.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-6, C=25\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-6 \lambda+25=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-6, C=25\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(25)} \\
& =3 \pm 4 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3+4 i \\
& \lambda_{2}=3-4 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=3\) and \(\beta=4\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right) \tag{1}
\end{equation*}
\]

Figure 268: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{3 x}\left(c_{1} \cos (4 x)+c_{2} \sin (4 x)\right)
\]

Verified OK.

\subsection*{9.10.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-6 y^{\prime}+25 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=25
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-16}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-16 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-16 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 193: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-16\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (4 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{3 x} \cos (4 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (4 x)}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x} \cos (4 x)\right)+c_{2}\left(\mathrm{e}^{3 x} \cos (4 x)\left(\frac{\tan (4 x)}{4}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4} \tag{1}
\end{equation*}
\]

Figure 269: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+\frac{c_{2} \mathrm{e}^{3 x} \sin (4 x)}{4}
\]

Verified OK.

\subsection*{9.10.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-6 y^{\prime}+25 y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}-6 r+25=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{6 \pm(\sqrt{-64})}{2}\)
- Roots of the characteristic polynomial
\[
r=(3-4 \mathrm{I}, 3+4 \mathrm{I})
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{3 x} \cos (4 x)\)
- \(\quad 2\) nd solution of the ODE
\(y_{2}(x)=\mathrm{e}^{3 x} \sin (4 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{3 x} \cos (4 x)+c_{2} \mathrm{e}^{3 x} \sin (4 x)\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
dsolve(diff \((y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+25 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{3 x}\left(c_{1} \sin (4 x)+c_{2} \cos (4 x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 26
DSolve[y'' \([x]-6 * y\) ' \([x]+25 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{3 x}\left(c_{2} \cos (4 x)+c_{1} \sin (4 x)\right)
\]

\subsection*{9.11 problem 1(k)}
9.11.1 Solving as second order linear constant coeff ode 1370
9.11.2 Solving as linear second order ode solved by an integrating factor
ode . 1372
9.11.3 Solving using Kovacic algorithm 1373
9.11.4 Maple step by step solution . 1377

Internal problem ID [6279]
Internal file name [OUTPUT/5527_Sunday_June_05_2022_03_42_43_PM_67433330/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(k).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
4 y^{\prime \prime}+20 y^{\prime}+25 y=0
\]

\subsection*{9.11.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=4, B=20, C=25\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}+20 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
4 \lambda^{2}+20 \lambda+25=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=4, B=20, C=25\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-20}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{(20)^{2}-(4)(4)(25)} \\
& =-\frac{5}{2}
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=\frac{5}{2}\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}} \tag{1}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}} \tag{1}
\end{equation*}
\]

Figure 270: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}}
\]

Verified OK.

\subsection*{9.11.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=5\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 5 d x} \\
& =\mathrm{e}^{\frac{5 x}{2}}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{\frac{5 x}{2}} y\right)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{\frac{5 x}{2}} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{\frac{5 x}{2}} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{\frac{5 x}{2}}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-\frac{5 x}{2}}+\mathrm{e}^{-\frac{5 x}{2}} c_{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-\frac{5 x}{2}}+\mathrm{e}^{-\frac{5 x}{2}} c_{2} \tag{1}
\end{equation*}
\]

Figure 271: Slope field plot

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{-\frac{5 x}{2}}+\mathrm{e}^{-\frac{5 x}{2}} c_{2}
\]

Verified OK.

\subsection*{9.11.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
& 4 y^{\prime \prime}+20 y^{\prime}+25 y=0 \tag{1}\\
& A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 \\
& B=20 \tag{3}\\
& C=25
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 195: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{20}{4} d x} \\
& =z_{1} e^{-\frac{5 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{5 x}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{20}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{5 x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{5 x}{2}}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}} \tag{1}
\end{equation*}
\]

Figure 272: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}}
\]

Verified OK.

\subsection*{9.11.4 Maple step by step solution}

Let's solve
\(4 y^{\prime \prime}+20 y^{\prime}+25 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-5 y^{\prime}-\frac{25 y}{4}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+5 y^{\prime}+\frac{25 y}{4}=0\)
- Characteristic polynomial of ODE
\(r^{2}+5 r+\frac{25}{4}=0\)
- Factor the characteristic polynomial
\(\frac{(2 r+5)^{2}}{4}=0\)
- Root of the characteristic polynomial
\(r=-\frac{5}{2}\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}\)
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence \(y_{2}(x)=x \mathrm{e}^{-\frac{5 x}{2}}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{-\frac{5 x}{2}}+c_{2} x \mathrm{e}^{-\frac{5 x}{2}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
```

dsolve(4*diff(y(x),x\$2)+20*diff(y(x),x)+25*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{5 x}{2}}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 20
```

DSolve[4*y''[x]+20*y'[x]+25*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow e^{-5 x / 2}\left(c_{2} x+c_{1}\right)
\]

\subsection*{9.12 problem 1(1)}
9.12.1 Solving as second order linear constant coeff ode 1379
9.12.2 Solving using Kovacic algorithm 1381
9.12.3 Maple step by step solution . 1385

Internal problem ID [6280]
Internal file name [OUTPUT/5528_Sunday_June_05_2022_03_42_44_PM_3209467/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(1).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+2 y^{\prime}+3 y=0
\]

\subsection*{9.12.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=3\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda+3=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=3\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(3)} \\
& =-1 \pm i \sqrt{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{2} \\
& \lambda_{2}=-1-i \sqrt{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-1+i \sqrt{2} \\
& \lambda_{2}=-1-i \sqrt{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-1\) and \(\beta=\sqrt{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-x}\left(c_{1} \cos (x \sqrt{2})+c_{2} \sin (x \sqrt{2})\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (x \sqrt{2})+c_{2} \sin (x \sqrt{2})\right) \tag{1}
\end{equation*}
\]

Figure 273: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-x}\left(c_{1} \cos (x \sqrt{2})+c_{2} \sin (x \sqrt{2})\right)
\]

Verified OK.

\subsection*{9.12.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-2}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-2 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-2 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 197: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-2\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x \sqrt{2})
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x} \cos (x \sqrt{2})
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (x \sqrt{2})\right)+c_{2}\left(\mathrm{e}^{-x} \cos (x \sqrt{2})\left(\frac{\sqrt{2} \tan (x \sqrt{2})}{2}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{2})+\frac{c_{2} \mathrm{e}^{-x} \sqrt{2} \sin (x \sqrt{2})}{2} \tag{1}
\end{equation*}
\]

Figure 274: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{2})+\frac{c_{2} \mathrm{e}^{-x} \sqrt{2} \sin (x \sqrt{2})}{2}
\]

Verified OK.

\subsection*{9.12.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+2 y^{\prime}+3 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+2 r+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{-8})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-1-\mathrm{I} \sqrt{2},-1+\mathrm{I} \sqrt{2})
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-x} \cos (x \sqrt{2})\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{-x} \sin (x \sqrt{2})\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{-x} \cos (x \sqrt{2})+c_{2} \mathrm{e}^{-x} \sin (x \sqrt{2})\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
dsolve(diff \((y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+3 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-x}\left(c_{1} \sin (\sqrt{2} x)+c_{2} \cos (\sqrt{2} x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 34
DSolve [y' \(\quad[x]+2 * y^{\prime}[x]+3 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x}\left(c_{2} \cos (\sqrt{2} x)+c_{1} \sin (\sqrt{2} x)\right)
\]

\subsection*{9.13 problem 1(m)}
9.13.1 Solving as second order linear constant coeff ode 1387
9.13.2 Solving as second order ode can be made integrable ode 1389
9.13.3 Solving using Kovacic algorithm 1391
9.13.4 Maple step by step solution . 1395

Internal problem ID [6281]
Internal file name [OUTPUT/5529_Sunday_June_05_2022_03_42_45_PM_74314027/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(m).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "second_order_ode_can_be_made_integrable"
Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-4 y=0
\]

\subsection*{9.13.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=-4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-4)} \\
& = \pm 2
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 \\
& \lambda_{2}=-2
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-2) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
\]

Figure 275: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-2 x}
\]

Verified OK.

\subsection*{9.13.2 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}-4 y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}-4 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}-2 y^{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{4 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{4 y^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =c_{2}+x
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{c_{2}+x}
\]

Which simplifies to
\[
\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}=c_{3} \mathrm{e}^{x}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{4 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4} & =x+c_{4}
\end{aligned}
\]

Raising both side to exponential gives
\[
\mathrm{e}^{-\frac{\ln \left(y \sqrt{4}+\sqrt{4 y^{2}+2 c_{1}}\right) \sqrt{4}}{4}}=\mathrm{e}^{x+c_{4}}
\]

Which simplifies to
\[
\frac{1}{\sqrt{2 y+\sqrt{4 y^{2}+2 c_{1}}}}=c_{5} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}} \tag{1}\\
& y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}} \tag{2}
\end{align*}
\]

Figure 276: Slope field plot

Verification of solutions
\[
y=\frac{\left(\mathrm{e}^{4 x} c_{3}^{4}-2 c_{1}\right) \mathrm{e}^{-2 x}}{4 c_{3}^{2}}
\]

Verified OK.
\[
y=-\frac{\left(2 c_{1} c_{5}^{4} \mathrm{e}^{4 x}-1\right) \mathrm{e}^{-2 x}}{4 c_{5}^{2}}
\]

\section*{Verified OK.}

\subsection*{9.13.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{gathered}
s=4 \\
t=1
\end{gathered}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 199: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-2 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-2 x} \int \frac{1}{\mathrm{e}^{-4 x}} d x \\
& =\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4} \tag{1}
\end{equation*}
\]

Figure 277: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}
\]

Verified OK.

\subsection*{9.13.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-4 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}-4=0
\]
- Factor the characteristic polynomial
\[
(r-2)(r+2)=0
\]
- Roots of the characteristic polynomial
\[
r=(-2,2)
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-2 x}
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{2 x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)=4*y(x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 22
```

DSolve[y''[x]==4*y[x],y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow e^{-2 x}\left(c_{1} e^{4 x}+c_{2}\right)
\]

\subsection*{9.14 problem 1(n)}
9.14.1 Solving as second order linear constant coeff ode 1397
9.14.2 Solving using Kovacic algorithm 1399
9.14.3 Maple step by step solution . 1403

Internal problem ID [6282]
Internal file name [OUTPUT/5530_Sunday_June_05_2022_03_42_46_PM_92651194/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(n).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
4 y^{\prime \prime}-8 y^{\prime}+7 y=0
\]

\subsection*{9.14.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=4, B=-8, C=7\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
4 \lambda^{2} \mathrm{e}^{\lambda x}-8 \lambda \mathrm{e}^{\lambda x}+7 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
4 \lambda^{2}-8 \lambda+7=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=4, B=-8, C=7\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{8}{(2)(4)} \pm \frac{1}{(2)(4)} \sqrt{-8^{2}-(4)(4)(7)} \\
& =1 \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=1-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\frac{i \sqrt{3}}{2}+1 \\
& \lambda_{2}=1-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=1\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{x}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \tag{1}
\end{equation*}
\]

Figure 278: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{x}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Verified OK.

\subsection*{9.14.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
4 y^{\prime \prime}-8 y^{\prime}+7 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 \\
& B=-8 \tag{3}\\
& C=7
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 201: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-8}{4} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-8}{4} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{x} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3} \tag{1}
\end{equation*}
\]

Figure 279: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{x} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}
\]

Verified OK.

\subsection*{9.14.3 Maple step by step solution}

Let's solve
\(4 y^{\prime \prime}-8 y^{\prime}+7 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=2 y^{\prime}-\frac{7 y}{4}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-2 y^{\prime}+\frac{7 y}{4}=0\)
- Characteristic polynomial of ODE
\[
r^{2}-2 r+\frac{7}{4}=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{2 \pm(\sqrt{ }-3)}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(1-\frac{\mathrm{I} \sqrt{3}}{2}, \frac{\mathrm{I} \sqrt{3}}{2}+1\right)
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
- 2nd solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{x} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{x} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \mathrm{e}^{x} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]

Maple trace
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
```

dsolve(4*diff(y(x),x\$2)-8*diff(y(x),x)+7*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x}\left(c_{1} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 38
DSolve[4*y''[x]-8*y'[x]+7*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{x}\left(c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

\subsection*{9.15 problem 1(o)}
9.15.1 Solving as second order linear constant coeff ode 1406
9.15.2 Solving using Kovacic algorithm 1408
9.15.3 Maple step by step solution . 1412

Internal problem ID [6283]
Internal file name [OUTPUT/5531_Sunday_June_05_2022_03_42_47_PM_58331744/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(o).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
2 y^{\prime \prime}+y^{\prime}-y=0
\]

\subsection*{9.15.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=2, B=1, C=-1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
2 \lambda^{2}+\lambda-1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=2, B=1, C=-1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{1^{2}-(4)(2)(-1)} \\
& =-\frac{1}{4} \pm \frac{3}{4}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{4}+\frac{3}{4} \\
& \lambda_{2}=-\frac{1}{4}-\frac{3}{4}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =\frac{1}{2} \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{1}{2}\right) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 280: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\frac{x}{2}}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{9.15.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
2 y^{\prime \prime}+y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=2 \\
& B=1 \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{9}{16} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=9 \\
& t=16
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{16} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 203: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{9}{16}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{4}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{2} d x} \\
& =z_{1} e^{-\frac{x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{2 \mathrm{e}^{\frac{3 x}{2}}}{3}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}}}{3} \tag{1}
\end{equation*}
\]

Figure 281: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}}}{3}
\]

Verified OK.

\subsection*{9.15.3 Maple step by step solution}

Let's solve
\(2 y^{\prime \prime}+y^{\prime}-y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{y^{\prime}}{2}+\frac{y}{2}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{2}-\frac{y}{2}=0\)
- Characteristic polynomial of ODE
\(r^{2}+\frac{1}{2} r-\frac{1}{2}=0\)
- Factor the characteristic polynomial
\(\frac{(r+1)(2 r-1)}{2}=0\)
- Roots of the characteristic polynomial
\(r=\left(-1, \frac{1}{2}\right)\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- 2 nd solution of the ODE
\(y_{2}(x)=\mathrm{e}^{\frac{x}{2}}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{\frac{x}{2}}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(2*diff(y(x),x\$2)+diff(y(x),x)-y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(c_{1} \mathrm{e}^{\frac{3 x}{2}}+c_{2}\right) \mathrm{e}^{-x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 24
DSolve[2*y' ' \([x]+y\) ' \([x]-y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x}\left(c_{1} e^{3 x / 2}+c_{2}\right)
\]

\subsection*{9.16 problem 1(p)}
9.16.1 Solving as second order linear constant coeff ode 1414
9.16.2 Solving using Kovacic algorithm 1416
9.16.3 Maple step by step solution . 1420

Internal problem ID [6284]
Internal file name [OUTPUT/5532_Sunday_June_05_2022_03_42_49_PM_74376436/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(p).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]

\subsection*{9.16.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-2\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
\]

Figure 282: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Verified OK.

\subsection*{9.16.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 205: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x} \cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos (x)(\tan (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2} \tag{1}
\end{equation*}
\]

Figure 283: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}
\]

Verified OK.

\subsection*{9.16.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\(r^{2}+4 r+5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-4) \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-2-\mathrm{I},-2+\mathrm{I})
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-2 x} \cos (x)\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\sin (x) \mathrm{e}^{-2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff \((y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-2 x}\left(c_{1} \sin (x)+\cos (x) c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22
DSolve[y'' \([x]+4 * y\) ' \([x]+5 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-2 x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
\]

\subsection*{9.17 problem 1(q)}
9.17.1 Solving as second order linear constant coeff ode 1422
9.17.2 Solving using Kovacic algorithm 1424
9.17.3 Maple step by step solution . 1428

Internal problem ID [6285]
Internal file name [OUTPUT/5533_Sunday_June_05_2022_03_42_50_PM_37612645/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(q).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]

\subsection*{9.17.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-2\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
\]

Figure 284: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Verified OK.

\subsection*{9.17.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 207: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x} \cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos (x)(\tan (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2} \tag{1}
\end{equation*}
\]

Figure 285: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}
\]

Verified OK.

\subsection*{9.17.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+4 r+5=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-4) \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-2-\mathrm{I},-2+\mathrm{I})
\]
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-2 x} \cos (x)\)
- \(\quad 2 \mathrm{nd}\) solution of the ODE
\(y_{2}(x)=\sin (x) \mathrm{e}^{-2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff \((y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-2 x}\left(c_{1} \sin (x)+\cos (x) c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 22
DSolve[y'' \([x]+4 * y\) ' \([x]+5 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-2 x}\left(c_{2} \cos (x)+c_{1} \sin (x)\right)
\]

\subsection*{9.18 problem 1(r)}
9.18.1 Solving as second order linear constant coeff ode 1430
9.18.2 Solving using Kovacic algorithm 1432
9.18.3 Maple step by step solution . 1436

Internal problem ID [6286]
Internal file name [OUTPUT/5534_Sunday_June_05_2022_03_42_51_PM_2680923/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 1(r).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+4 y^{\prime}-5 y=0
\]

\subsection*{9.18.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=-5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}-5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda-5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=-5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(-5)} \\
& =-2 \pm 3
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-2+3 \\
& \lambda_{2}=-2-3
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-5
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-5) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-5 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
\]

Figure 286: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-5 x}
\]

Verified OK.

\subsection*{9.18.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}-5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=-5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{9}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=9 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=9 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 209: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=9\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-3 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-5 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{e^{6 x}}{6}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{6 x}}{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{x}}{6} \tag{1}
\end{equation*}
\]

Figure 287: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{x}}{6}
\]

Verified OK.

\subsection*{9.18.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y^{\prime}-5 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+4 r-5=0
\]
- Factor the characteristic polynomial
\[
(r+5)(r-1)=0
\]
- Roots of the characteristic polynomial
\(r=(-5,1)\)
- 1st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-5 x}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 17
dsolve(diff \((y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)-5 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\left(\mathrm{e}^{6 x} c_{2}+c_{1}\right) \mathrm{e}^{-5 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 20
DSolve [y'' \([x]+4 * y\) ' \([x]-5 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} e^{-5 x}+c_{2} e^{x}
\]

\subsection*{9.19 problem 2(a)}
9.19.1 Existence and uniqueness analysis 1438
9.19.2 Solving as second order linear constant coeff ode 1439
9.19.3 Solving using Kovacic algorithm 1441
9.19.4 Maple step by step solution . 1446

Internal problem ID [6287]
Internal file name [OUTPUT/5535_Sunday_June_05_2022_03_42_52_PM_50697687/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-5 y^{\prime}+6 y=0
\]

With initial conditions
\[
\left[y(1)=\mathrm{e}^{2}, y^{\prime}(1)=3 \mathrm{e}^{2}\right]
\]

\subsection*{9.19.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-5 \\
q(x) & =6 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-5 y^{\prime}+6 y=0
\]

The domain of \(p(x)=-5\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=6\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.19.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-5, C=6\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-5 \lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-5 \lambda+6=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-5, C=6\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{5}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-5^{2}-(4)(1)(6)} \\
& =\frac{5}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(2) x}
\end{aligned}
\]

Or
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{2 x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}^{2}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{2}=\mathrm{e}^{3} c_{1}+c_{2} \mathrm{e}^{2} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=3 \mathrm{e}^{3 x} c_{1}+2 c_{2} \mathrm{e}^{2 x}
\]
substituting \(y^{\prime}=3 \mathrm{e}^{2}\) and \(x=1\) in the above gives
\[
\begin{equation*}
3 \mathrm{e}^{2}=3 \mathrm{e}^{3} c_{1}+2 c_{2} \mathrm{e}^{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\mathrm{e}^{-1} \\
& c_{2}=0
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{3 x} \mathrm{e}^{-1}
\]

Which simplifies to
\[
y=\mathrm{e}^{3 x-1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{3 x-1} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{3 x-1}
\]

\section*{Verified OK.}

\subsection*{9.19.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-5 y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-5 \tag{3}\\
& C=6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 211: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-5}{1} d x} \\
& =z_{1} e^{\frac{5 x}{2}} \\
& =z_{1}\left(e^{\frac{5 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-5}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{5 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{2 x}\right)+c_{2}\left(\mathrm{e}^{2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}^{2}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{2}=c_{1} \mathrm{e}^{2}+c_{2} \mathrm{e}^{3} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+3 c_{2} \mathrm{e}^{3 x}
\]
substituting \(y^{\prime}=3 \mathrm{e}^{2}\) and \(x=1\) in the above gives
\[
\begin{equation*}
3 \mathrm{e}^{2}=2 c_{1} \mathrm{e}^{2}+3 c_{2} \mathrm{e}^{3} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=\mathrm{e}^{-1}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{3 x} \mathrm{e}^{-1}
\]

Which simplifies to
\[
y=\mathrm{e}^{3 x-1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{3 x-1} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{3 x-1}
\]

\section*{Verified OK.}

\subsection*{9.19.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-5 y^{\prime}+6 y=0, y(1)=\mathrm{e}^{2},\left.y^{\prime}\right|_{\{x=1\}}=3 \mathrm{e}^{2}\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}-5 r+6=0
\]
- Factor the characteristic polynomial
\[
(r-2)(r-3)=0
\]
- Roots of the characteristic polynomial
\[
r=(2,3)
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{2 x}
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{3 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- \(\quad\) Substitute in solutions
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{3 x}
\]

Check validity of solution \(y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{3 x}\)
- Use initial condition \(y(1)=\mathrm{e}^{2}\)
\[
\mathrm{e}^{2}=c_{1} \mathrm{e}^{2}+c_{2} \mathrm{e}^{3}
\]
- Compute derivative of the solution
\[
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}+3 c_{2} \mathrm{e}^{3 x}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=3 \mathrm{e}^{2}\)
\[
3 \mathrm{e}^{2}=2 c_{1} \mathrm{e}^{2}+3 c_{2} \mathrm{e}^{3}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=0, c_{2}=\frac{\mathrm{e}^{2}}{\mathrm{e}^{3}}\right\}\)
- Substitute constant values into general solution and simplify
\[
y=\mathrm{e}^{3 x-1}
\]
- \(\quad\) Solution to the IVP
\[
y=\mathrm{e}^{3 x-1}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 11
```

dsolve([diff(y(x),x\$2)-5*\operatorname{diff}(y(x),x)+6*y(x)=0,y(1) = exp(2), D(y)(1) = 3*exp(2)],y(x), sing

```
\[
y(x)=\mathrm{e}^{3 x-1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 12
DSolve \([\{y\) ' ' \([x]-5 * y\) ' \([x]+6 * y[x]==0,\{y[1]==\operatorname{Exp}[2], y\) ' \([1]==3 * \operatorname{Exp}[2]\}\}, y[x], x\), IncludeSingularSolut
\[
y(x) \rightarrow e^{3 x-1}
\]

\subsection*{9.20 problem 2(b)}
9.20.1 Existence and uniqueness analysis 1448
9.20.2 Solving as second order linear constant coeff ode 1449
9.20.3 Solving using Kovacic algorithm 1451
9.20.4 Maple step by step solution . 1455

Internal problem ID [6288]
Internal file name [OUTPUT/5536_Sunday_June_05_2022_03_42_54_PM_84101560/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-6 y^{\prime}+5 y=0
\]

With initial conditions
\[
\left[y(0)=3, y^{\prime}(0)=11\right]
\]

\subsection*{9.20.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-6 \\
q(x) & =5 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-6 y^{\prime}+5 y=0
\]

The domain of \(p(x)=-6\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=5\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.20.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-6, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-6 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-6, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-6^{2}-(4)(1)(5)} \\
& =3 \pm 2
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=3+2 \\
& \lambda_{2}=3-2
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=5 \\
& \lambda_{2}=1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(5) x}+c_{2} e^{(1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=3\) and \(x=0\) in the above gives
\[
\begin{equation*}
3=c_{1}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=5 c_{1} \mathrm{e}^{5 x}+c_{2} \mathrm{e}^{x}
\]
substituting \(y^{\prime}=11\) and \(x=0\) in the above gives
\[
\begin{equation*}
11=5 c_{1}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=2 \\
& c_{2}=1
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
\]

(a) Solution plot

\section*{Verification of solutions}
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]

Verified OK.

\subsection*{9.20.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 213: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-2 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1}} d x}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{5 x}}{4} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=3\) and \(x=0\) in the above gives
\[
\begin{equation*}
3=c_{1}+\frac{c_{2}}{4} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1} \mathrm{e}^{x}+\frac{5 c_{2} \mathrm{e}^{5 x}}{4}
\]
substituting \(y^{\prime}=11\) and \(x=0\) in the above gives
\[
\begin{equation*}
11=c_{1}+\frac{5 c_{2}}{4} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=8
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]

Verified OK.

\subsection*{9.20.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-6 y^{\prime}+5 y=0, y(0)=3,\left.y^{\prime}\right|_{\{x=0\}}=11\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}-6 r+5=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r-5)=0
\]
- Roots of the characteristic polynomial
\[
r=(1,5)
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{5 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{5 x}
\]
\(\square \quad\) Check validity of solution \(y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{5 x}\)
- Use initial condition \(y(0)=3\)
\[
3=c_{1}+c_{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=c_{1} \mathrm{e}^{x}+5 c_{2} \mathrm{e}^{5 x}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=11\)
\(11=c_{1}+5 c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=1, c_{2}=2\right\}\)
- Substitute constant values into general solution and simplify
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]
- \(\quad\) Solution to the IVP
\[
y=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 13
dsolve([diff \((y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(0)=3, D(y)(0)=11], y(x)\), singsol=all)
\[
y(x)=2 \mathrm{e}^{5 x}+\mathrm{e}^{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve \(\left[\left\{y\right.\right.\) '' \([x]-5 * y\) ' \(\left.[x]+6 * y[x]==0,\left\{y[0]==3, y^{\prime}[0]==11\right\}\right\}, y[x], x\), IncludeSingularSolutions \(->\) Tru
\[
y(x) \rightarrow e^{2 x}\left(5 e^{x}-2\right)
\]

\subsection*{9.21 problem 2(c)}
9.21.1 Existence and uniqueness analysis 1459
9.21.2 Solving as second order linear constant coeff ode 1459
9.21.3 Solving as linear second order ode solved by an integrating factor
ode . 1461
9.21.4 Solving using Kovacic algorithm 1463
9.21.5 Maple step by step solution . 1467

Internal problem ID [6289]
Internal file name [OUTPUT/5537_Sunday_June_05_2022_03_42_55_PM_27619051/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-6 y^{\prime}+9 y=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=5\right]
\]

\subsection*{9.21.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-6 \\
q(x) & =9 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-6 y^{\prime}+9 y=0
\]

The domain of \(p(x)=-6\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=9\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.21.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-6, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-6 \lambda+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-6, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-6)^{2}-(4)(1)(9)} \\
& =3
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=-3\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x} x \tag{1}
\end{equation*}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=3 \mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{3 x}+3 c_{2} x \mathrm{e}^{3 x}
\]
substituting \(y^{\prime}=5\) and \(x=0\) in the above gives
\[
\begin{equation*}
5=3 c_{1}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=5 \mathrm{e}^{3 x} x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=5 \mathrm{e}^{3 x} x \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=5 \mathrm{e}^{3 x} x
\]

Verified OK.

\subsection*{9.21.3 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-6\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-6 d x} \\
& =\mathrm{e}^{-3 x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{-3 x} y\right)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{-3 x} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{-3 x} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{-3 x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{3 x}+c_{2} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{2} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\mathrm{e}^{3 x} c_{1}+3 c_{1} x \mathrm{e}^{3 x}+3 c_{2} \mathrm{e}^{3 x}
\]
substituting \(y^{\prime}=5\) and \(x=0\) in the above gives
\[
\begin{equation*}
5=c_{1}+3 c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=5 \\
& c_{2}=0
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=5 \mathrm{e}^{3 x} x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=5 \mathrm{e}^{3 x} x \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=5 \mathrm{e}^{3 x} x
\]

Verified OK.

\subsection*{9.21.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-6 \tag{3}\\
& C=9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 215: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-6}{1} d x} \\
& =z_{1} e^{3 x} \\
& =z_{1}\left(\mathrm{e}^{3 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{3 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{3 x}\right)+c_{2}\left(\mathrm{e}^{3 x}(x)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} x \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=3 \mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{3 x}+3 c_{2} x \mathrm{e}^{3 x}
\]
substituting \(y^{\prime}=5\) and \(x=0\) in the above gives
\[
\begin{equation*}
5=3 c_{1}+c_{2} \tag{2A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=0 \\
& c_{2}=5
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=5 \mathrm{e}^{3 x} x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=5 \mathrm{e}^{3 x} x \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=5 \mathrm{e}^{3 x} x
\]

Verified OK.

\subsection*{9.21.5 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}-6 y^{\prime}+9 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=5\right]\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\(r^{2}-6 r+9=0\)
- Factor the characteristic polynomial
\((r-3)^{2}=0\)
- Root of the characteristic polynomial
\(r=3\)
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{3 x}
\]
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence \(y_{2}(x)=\mathrm{e}^{3 x} x\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- \(\quad\) Substitute in solutions
\(y=\mathrm{e}^{3 x} c_{1}+c_{2} x \mathrm{e}^{3 x}\)
Check validity of solution \(y=\mathrm{e}^{3 x} c_{1}+c_{2} x \mathrm{e}^{3 x}\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}\)
- Compute derivative of the solution
\(y^{\prime}=3 \mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{3 x}+3 c_{2} x \mathrm{e}^{3 x}\)
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=5\)
\(5=3 c_{1}+c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=0, c_{2}=5\right\}\)
- Substitute constant values into general solution and simplify
\[
y=5 \mathrm{e}^{3 x} x
\]
- \(\quad\) Solution to the IVP
\[
y=5 \mathrm{e}^{3 x} x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
dsolve([diff \((y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(0)=0, D(y)(0)=5], y(x)\), singsol=all)
\[
y(x)=5 x \mathrm{e}^{3 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 13
DSolve \([\{y\) '' \([x]-6 * y\) ' \([x]+9 * y[x]==0,\{y[0]==0, y\) ' \([0]==5\}\}, y[x], x\), IncludeSingularSolutions \(->\) True
\[
y(x) \rightarrow 5 e^{3 x} x
\]

\subsection*{9.22 problem 2(d)}
9.22.1 Existence and uniqueness analysis 1470
9.22.2 Solving as second order linear constant coeff ode 1471
9.22.3 Solving using Kovacic algorithm 1473
9.22.4 Maple step by step solution . 1477

Internal problem ID [6290]
Internal file name [OUTPUT/5538_Sunday_June_05_2022_03_42_57_PM_17264032/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=0\right]
\]

\subsection*{9.22.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =4 \\
q(x) & =5 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+4 y^{\prime}+5 y=0
\]

The domain of \(p(x)=4\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=5\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.22.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(5)} \\
& =-2 \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-2+i \\
& \lambda_{2}=-2-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-2\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-2 \mathrm{e}^{-2 x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\mathrm{e}^{-2 x}\left(-\sin (x) c_{1}+c_{2} \cos (x)\right)
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x)) \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
\]

Verified OK.

\subsection*{9.22.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 217: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x} \cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x} \cos (x)\right)+c_{2}\left(\mathrm{e}^{-2 x} \cos (x)(\tan (x))\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-2 \mathrm{e}^{-2 x} \cos (x) c_{1}-\mathrm{e}^{-2 x} \sin (x) c_{1}-2 \mathrm{e}^{-2 x} \sin (x) c_{2}+\mathrm{e}^{-2 x} \cos (x) c_{2}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-2 c_{1}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{-2 x} \cos (x)+2 \sin (x) \mathrm{e}^{-2 x}
\]

Which simplifies to
\[
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x)) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
\]

Verified OK.

\subsection*{9.22.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+4 y^{\prime}+5 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+4 r+5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-4) \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-2-\mathrm{I},-2+\mathrm{I})
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-2 x} \cos (x)
\]
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\sin (x) \mathrm{e}^{-2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- \(\quad\) Substitute in solutions
\(y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}\)
Check validity of solution \(y=\mathrm{e}^{-2 x} \cos (x) c_{1}+\mathrm{e}^{-2 x} \sin (x) c_{2}\)
- Use initial condition \(y(0)=1\)
\[
1=c_{1}
\]
- Compute derivative of the solution
\[
y^{\prime}=-2 \mathrm{e}^{-2 x} \cos (x) c_{1}-\mathrm{e}^{-2 x} \sin (x) c_{1}-2 \mathrm{e}^{-2 x} \sin (x) c_{2}+\mathrm{e}^{-2 x} \cos (x) c_{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=0\)
\(0=-2 c_{1}+c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=1, c_{2}=2\right\}\)
- Substitute constant values into general solution and simplify
\(y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))\)
- \(\quad\) Solution to the IVP
\(y=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 16
dsolve([diff \((y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(0)=1, D(y)(0)=0], y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-2 x}(2 \sin (x)+\cos (x))
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 18
DSolve \(\left\{\left\{y^{\prime}{ }^{\prime}[x]+4 * y\right.\right.\) ' \([x]+5 * y[x]==0,\{y[0]==1, y\) ' \(\left.[0]==0\}\right\}, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True
\[
y(x) \rightarrow e^{-2 x}(2 \sin (x)+\cos (x))
\]

\subsection*{9.23 problem 2(e)}
9.23.1 Existence and uniqueness analysis 1480
9.23.2 Solving as second order linear constant coeff ode 1481
9.23.3 Solving using Kovacic algorithm 1483
9.23.4 Maple step by step solution . 1487

Internal problem ID [6291]
Internal file name [OUTPUT/5539_Sunday_June_05_2022_03_42_58_PM_81195951/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 2(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+4 y^{\prime}+2 y=0
\]

With initial conditions
\[
\left[y(0)=-1, y^{\prime}(0)=2+3 \sqrt{2}\right]
\]

\subsection*{9.23.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =4 \\
q(x) & =2 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+4 y^{\prime}+2 y=0
\]

The domain of \(p(x)=4\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=2\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.23.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{4^{2}-(4)(1)(2)} \\
& =-2 \pm \sqrt{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-2+\sqrt{2} \\
& \lambda_{2}=-2-\sqrt{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-2+\sqrt{2} \\
& \lambda_{2}=-2-\sqrt{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-2+\sqrt{2}) x}+c_{2} e^{(-2-\sqrt{2}) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{(-2+\sqrt{2}) x}+c_{2} \mathrm{e}^{(-2-\sqrt{2}) x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{(-2+\sqrt{2}) x}+c_{2} \mathrm{e}^{(-2-\sqrt{2}) x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1}(-2+\sqrt{2}) \mathrm{e}^{(-2+\sqrt{2}) x}+c_{2}(-2-\sqrt{2}) \mathrm{e}^{(-2-\sqrt{2}) x}
\]
substituting \(y^{\prime}=2+3 \sqrt{2}\) and \(x=0\) in the above gives
\[
\begin{equation*}
2+3 \sqrt{2}=\left(c_{1}-c_{2}\right) \sqrt{2}-2 c_{1}-2 c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=-2
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]

Verified OK.

\subsection*{9.23.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =4 \tag{3}\\
C & =2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{2}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=2 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=2 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 219: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=2\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x \sqrt{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-(2+\sqrt{2}) x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \mathrm{e}^{2 x \sqrt{2}}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-(2+\sqrt{2}) x}\right)+c_{2}\left(\mathrm{e}^{-(2+\sqrt{2}) x}\left(\frac{\sqrt{2} \mathrm{e}^{2 x \sqrt{2}}}{4}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-(2+\sqrt{2}) x}+\frac{c_{2} \mathrm{e}^{(-2+\sqrt{2}) x} \sqrt{2}}{4} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1}+\frac{c_{2} \sqrt{2}}{4} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1}(-2-\sqrt{2}) \mathrm{e}^{-(2+\sqrt{2}) x}+\frac{c_{2}(-2+\sqrt{2}) \mathrm{e}^{(-2+\sqrt{2}) x} \sqrt{2}}{4}
\]
substituting \(y^{\prime}=2+3 \sqrt{2}\) and \(x=0\) in the above gives
\[
\begin{equation*}
2+3 \sqrt{2}=\frac{\left(-2 c_{1}-c_{2}\right) \sqrt{2}}{2}-2 c_{1}+\frac{c_{2}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-2 \\
& c_{2}=2 \sqrt{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]

Verified OK.

\subsection*{9.23.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+4 y^{\prime}+2 y=0, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=2+3 \sqrt{2}\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+4 r+2=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-4) \pm(\sqrt{8})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-2-\sqrt{2},-2+\sqrt{2})
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{(-2-\sqrt{2}) x}
\]
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{(-2+\sqrt{2}) x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- \(\quad\) Substitute in solutions
\[
y=c_{1} \mathrm{e}^{(-2-\sqrt{2}) x}+c_{2} \mathrm{e}^{(-2+\sqrt{2}) x}
\]
\(\square \quad\) Check validity of solution \(y=c_{1} \mathrm{e}^{(-2-\sqrt{2}) x}+c_{2} \mathrm{e}^{(-2+\sqrt{2}) x}\)
- Use initial condition \(y(0)=-1\)
\(-1=c_{1}+c_{2}\)
- Compute derivative of the solution
\[
y^{\prime}=c_{1}(-2-\sqrt{2}) \mathrm{e}^{(-2-\sqrt{2}) x}+c_{2}(-2+\sqrt{2}) \mathrm{e}^{(-2+\sqrt{2}) x}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=2+3 \sqrt{2}\)
\[
2+3 \sqrt{2}=(-2-\sqrt{2}) c_{1}+(-2+\sqrt{2}) c_{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=-2, c_{2}=1\right\}\)
- Substitute constant values into general solution and simplify
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]
- \(\quad\) Solution to the IVP
\[
y=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 24
dsolve \(([\operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(0)=-1, D(y)(0)=2+3 * \operatorname{sqrt}(2)], y(x)\), sings
\[
y(x)=\mathrm{e}^{(-2+\sqrt{2}) x}-2 \mathrm{e}^{-(2+\sqrt{2}) x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 30
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+4 * y\right.\right.\) ' \([x]+2 * y[x]==0,\left\{y[0]==-1, y^{\prime}[0]==2+3 *\right.\) Sqrt \(\left.\left.[2]\right\}\right\}, y[x], x\), IncludeSingularSoluti
\[
y(x) \rightarrow e^{-((2+\sqrt{2}) x)}\left(e^{2 \sqrt{2} x}-2\right)
\]

\subsection*{9.24 problem 2(f)}
9.24.1 Existence and uniqueness analysis 1490
9.24.2 Solving as second order linear constant coeff ode 1491
9.24.3 Solving using Kovacic algorithm 1493
9.24.4 Maple step by step solution . 1498

Internal problem ID [6292]
Internal file name [OUTPUT/5540_Sunday_June_05_2022_03_43_00_PM_87683680/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 2(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+8 y^{\prime}-9 y=0
\]

With initial conditions
\[
\left[y(1)=2, y^{\prime}(1)=0\right]
\]

\subsection*{9.24.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =8 \\
q(x) & =-9 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+8 y^{\prime}-9 y=0
\]

The domain of \(p(x)=8\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=-9\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{9.24.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=8, C=-9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+8 \lambda \mathrm{e}^{\lambda x}-9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+8 \lambda-9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=8, C=-9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-8}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{8^{2}-(4)(1)(-9)} \\
& =-4 \pm 5
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-4+5 \\
& \lambda_{2}=-4-5
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-9
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-9) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-9 x}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-9 x} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=2\) and \(x=1\) in the above gives
\[
\begin{equation*}
2=\left(c_{1} \mathrm{e}^{10}+c_{2}\right) \mathrm{e}^{-9} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1} \mathrm{e}^{x}-9 c_{2} \mathrm{e}^{-9 x}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\left(c_{1} \mathrm{e}^{10}-9 c_{2}\right) \mathrm{e}^{-9} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{9 \mathrm{e}^{-1}}{5} \\
& c_{2}=\frac{\mathrm{e}^{9}}{5}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5}
\]

Verified OK.

\subsection*{9.24.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+8 y^{\prime}-9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=8 \tag{3}\\
& C=-9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{25}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=25 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=25 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 221: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=25\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-5 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{8}{1} d x} \\
& =z_{1} e^{-4 x} \\
& =z_{1}\left(\mathrm{e}^{-4 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-9 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{8}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-8 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{10 x}}{10}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-9 x}\right)+c_{2}\left(\mathrm{e}^{-9 x}\left(\frac{\mathrm{e}^{10 x}}{10}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-9 x}+\frac{c_{2} \mathrm{e}^{x}}{10} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=2\) and \(x=1\) in the above gives
\[
\begin{equation*}
2=\frac{\left(c_{2} \mathrm{e}^{10}+10 c_{1}\right) \mathrm{e}^{-9}}{10} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-9 c_{1} \mathrm{e}^{-9 x}+\frac{c_{2} \mathrm{e}^{x}}{10}
\]
substituting \(y^{\prime}=0\) and \(x=1\) in the above gives
\[
\begin{equation*}
0=\frac{\left(c_{2} \mathrm{e}^{10}-90 c_{1}\right) \mathrm{e}^{-9}}{10} \tag{2A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{9}}{5} \\
& c_{2}=18 \mathrm{e}^{-1}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{9 \mathrm{e}^{x} \mathrm{e}^{-1}}{5}+\frac{\mathrm{e}^{-9 x} \mathrm{e}^{9}}{5}
\]

Verified OK.

\subsection*{9.24.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+8 y^{\prime}-9 y=0, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+8 r-9=0
\]
- Factor the characteristic polynomial
\[
(r+9)(r-1)=0
\]
- Roots of the characteristic polynomial
\[
r=(-9,1)
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-9 x}
\]
- \(\quad 2 n d\) solution of the ODE
\[
y_{2}(x)=\mathrm{e}^{x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}\)
- Use initial condition \(y(1)=2\)
\(2=c_{1} \mathrm{e}^{-9}+c_{2} \mathrm{e}\)
- Compute derivative of the solution
\[
y^{\prime}=-9 c_{1} \mathrm{e}^{-9 x}+c_{2} \mathrm{e}^{x}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=0\)
\(0=-9 c_{1} \mathrm{e}^{-9}+c_{2} \mathrm{e}\)
- Solve for \(c_{1}\) and \(c_{2}\) \(\left\{c_{1}=\frac{1}{5 \mathrm{e}^{-9}}, c_{2}=\frac{9}{5 \mathrm{e}}\right\}\)
- Substitute constant values into general solution and simplify
\[
y=\frac{9 \mathrm{e}^{x-1}}{5}+\frac{\mathrm{e}^{-9 x+9}}{5}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{9 \mathrm{e}^{x-1}}{5}+\frac{\mathrm{e}^{-9 x+9}}{5}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 19
dsolve([diff \((y(x), x \$ 2)+8 * \operatorname{diff}(y(x), x)-9 * y(x)=0, y(1)=2, D(y)(1)=0], y(x)\), singsol=all)
\[
y(x)=\frac{9 \mathrm{e}^{x-1}}{5}+\frac{\mathrm{e}^{9-9 x}}{5}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 26
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+8 * y\right.\right.\) ' \(\left.[x]-9 * y[x]==0,\left\{y[1]==2, y^{\prime}[1]==0\right\}\right\}, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True
\[
y(x) \rightarrow \frac{1}{5} e^{9-9 x}+\frac{9 e^{x-1}}{5}
\]

\subsection*{9.25 problem 5(a)}
9.25.1 Solving as second order euler ode ode 1500
9.25.2 Solving as second order change of variable on \(x\) method 2 ode . 1502
9.25.3 Solving as second order change of variable on \(x\) method 1 ode . 1505
9.25.4 Solving as second order change of variable on y method 2 ode . 1507
9.25.5 Solving using Kovacic algorithm 1509
9.25.6 Maple step by step solution . 1514

Internal problem ID [6293]
Internal file name [OUTPUT/5541_Sunday_June_05_2022_03_43_01_PM_56111531/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method__2"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0
\]

\subsection*{9.25.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}+10 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+3 r x^{r}+10 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+3 r+10=0
\]

Or
\[
\begin{equation*}
r^{2}+2 r+10=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-1-3 i \\
& r_{2}=-1+3 i
\end{aligned}
\]

The roots are complex conjugate of each others. Let the roots be
\[
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
\]

Where in this case \(\alpha=-1\) and \(\beta=-3\). Hence the solution becomes
\[
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
\]

Using the values for \(\alpha=-1, \beta=-3\), the above becomes
\[
y=x^{-1}\left(c_{1} e^{-3 i \ln (x)}+c_{2} e^{3 i \ln (x)}\right)
\]

Using Euler relation, the expression \(c_{1} e^{i A}+c_{2} e^{-i A}\) is transformed to \(c_{1} \cos A+c_{1} \sin A\) where the constants are free to change. Applying this to the above result gives
\[
y=\frac{1}{x}\left(c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))}{x}
\]

Verified OK.

\subsection*{9.25.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{10}{x^{2}}}{\frac{1}{x^{6}}} \\
& =10 x^{4} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+10 x^{4} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
10 x^{4}=\frac{5}{2 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{5 y(\tau)}{2 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
2\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+5 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
2 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+5 \tau^{r}=0
\]

Simplifying gives
\[
2 r(r-1) \tau^{r}+0 \tau^{r}+5 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
2 r(r-1)+0+5=0
\]

Or
\[
\begin{equation*}
2 r^{2}-2 r+5=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{3 i}{2} \\
& r_{2}=\frac{1}{2}+\frac{3 i}{2}
\end{aligned}
\]

The roots are complex conjugate of each others. Let the roots be
\[
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
\]

Where in this case \(\alpha=\frac{1}{2}\) and \(\beta=-\frac{3}{2}\). Hence the solution becomes
\[
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
\]

Using the values for \(\alpha=\frac{1}{2}, \beta=-\frac{3}{2}\), the above becomes
\[
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{3 i \ln (\tau)}{2}}+c_{2} e^{\frac{3 i \ln (\tau)}{2}}\right)
\]

Using Euler relation, the expression \(c_{1} e^{i A}+c_{2} e^{-i A}\) is transformed to \(c_{1} \cos A+c_{1} \sin A\) where the constants are free to change. Applying this to the above result gives
\[
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{3 \ln (\tau)}{2}\right)+c_{2} \sin \left(\frac{3 \ln (\tau)}{2}\right)\right)
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\right) \sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\right) \sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\left(c_{1} \cos \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)+c_{2} \sin \left(-\frac{3 \ln (2)}{2}+\frac{3 \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\right) \sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{2}
\]

Verified OK.

\subsection*{9.25.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{10}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{3}{x} \frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{c \sqrt{10}}{5}
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{c \sqrt{10}\left(\frac{d}{d \tau} y(\tau)\right)}{5}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{-\frac{\sqrt{10} c \tau}{10}}\left(c_{1} \cos \left(\frac{3 \sqrt{10} c \tau}{10}\right)+c_{2} \sin \left(\frac{3 \sqrt{10} c \tau}{10}\right)\right)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{10} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{10} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=\frac{c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))}{x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} \cos (3 \ln (x))+c_{2} \sin (3 \ln (x))}{x}
\]

Verified OK.

\subsection*{9.25.4 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{10}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{x^{2}}+\frac{10}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-1+3 i \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-2+6 i}{x}+\frac{3}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+6 i) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{(1+6 i) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-6 i) u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{-1-6 i}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-6 i}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-6 i}{x} d x \\
\ln (u) & =(-1-6 i) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-6 i) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-6 i) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x^{-6 i}}{x}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i c_{1} x^{-6 i}}{6}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{-1+3 i} \\
& =c_{2} x^{-1+3 i}+\frac{i c_{1} x^{-1-3 i}}{6}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{-1+3 i} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\frac{i c_{1} x^{-6 i}}{6}+c_{2}\right) x^{-1+3 i}
\]

Verified OK.

\subsection*{9.25.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=3 x \tag{3}\\
& C=10
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-37}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-37 \\
t & =4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{37}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\{1,2\},\{1,3\},\{2\},\{3\},\{3,
\end{tabular} & \\
\hline 3 & \(\{1,\{1,2\}\) & \(\{2\} .5\}\) \\
\hline
\end{tabular}

Table 223: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole
larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{37}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{37}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{37}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{37}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+3 i \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-3 i
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{37}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}+3 i\) & \(\frac{1}{2}-3 i\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}+3 i\) & \(\frac{1}{2}-3 i\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=\frac{1}{2}-3 i\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-3 i-\left(\frac{1}{2}-3 i\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-3 i}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-3 i}{x} \\
& =\frac{\frac{1}{2}-3 i}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-3 i}{x}\right)(0)+\left(\left(\frac{-\frac{1}{2}+3 i}{x^{2}}\right)+\left(\frac{\frac{1}{2}-3 i}{x}\right)^{2}-\left(-\frac{37}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-3 i} x d x \\
& =x^{\frac{1}{2}-3 i}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{-1-3 i}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{6 i}}{6}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-1-3 i}\right)+c_{2}\left(x^{-1-3 i}\left(-\frac{i x^{6 i}}{6}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-1-3 i}-\frac{i c_{2} x^{-1+3 i}}{6} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{-1-3 i}-\frac{i c_{2} x^{-1+3 i}}{6}
\]

Verified OK.

\subsection*{9.25.6 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{3 y^{\prime}}{x}-\frac{10 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{x}+\frac{10 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+10 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of \(y\) with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+3 \frac{d}{d t} y(t)+10 y(t)=0\)
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)+10 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}+2 r+10=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{-36})}{2}\)
- Roots of the characteristic polynomial
\(r=(-1-3 \mathrm{I},-1+3 \mathrm{I})\)
- 1st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-t} \cos (3 t)\)
- \(\quad 2\) nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{-t} \sin (3 t)\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{-t} \cos (3 t)+c_{2} \mathrm{e}^{-t} \sin (3 t)\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\(y=\frac{c_{1} \cos (3 \ln (x))}{x}+\frac{c_{2} \sin (3 \ln (x))}{x}\)
- \(\quad\) Simplify
\(y=\frac{c_{1} \cos (3 \ln (x))}{x}+\frac{c_{2} \sin (3 \ln (x))}{x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x\$2)+3*x*\operatorname{diff}(y(x),x)+10*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} \sin (3 \ln (x))+c_{2} \cos (3 \ln (x))}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 26
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+3 * x * y\) ' \([x]+10 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{2} \cos (3 \log (x))+c_{1} \sin (3 \log (x))}{x}
\]

\subsection*{9.26 problem 5(b)}
9.26.1 Solving as second order euler ode ode 1517
9.26.2 Solving as second order change of variable on \(x\) method 2 ode . 1518
9.26.3 Solving as second order change of variable on x method 1 ode. 1521
9.26.4 Solving as second order change of variable on y method 2 ode . 1523
9.26.5 Solving using Kovacic algorithm 1525
9.26.6 Maple step by step solution . 1530

Internal problem ID [6294]
Internal file name [OUTPUT/5542_Sunday_June_05_2022_03_43_02_PM_19522388/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method__2"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=0
\]

\subsection*{9.26.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
2 x^{2}(r(r-1)) x^{r-2}+10 x r x^{r-1}+8 x^{r}=0
\]

Simplifying gives
\[
2 r(r-1) x^{r}+10 r x^{r}+8 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
2 r(r-1)+10 r+8=0
\]

Or
\[
\begin{equation*}
2 r^{2}+8 r+8=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=-2
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r}\) and \(y_{2}=x^{r} \ln (x)\). Hence
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
\]

Verified OK.

\subsection*{9.26.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{5}{x} d x\right)} d x \\
& =\int e^{-5 \ln (x)} d x \\
& =\int \frac{1}{x^{5}} d x \\
& =-\frac{1}{4 x^{4}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{\frac{1}{x^{10}}} \\
& =4 x^{8} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+4 x^{8} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
4 x^{8}=\frac{1}{4 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
\]

Simplifying gives
\[
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
4 r(r-1)+0+1=0
\]

Or
\[
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r}\) and \(y_{2}=\tau^{r} \ln (\tau)\). Hence
\[
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{4}}\right)+c_{1}\right) \sqrt{-\frac{1}{x^{4}}}}{2}
\]

Verified OK.

\subsection*{9.26.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{5}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=\frac{c_{1}}{x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}
\]

Verified OK.

\subsection*{9.26.4 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{5}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{5 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x^{2}} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \ln (x)+c_{2}}{x^{2}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} \ln (x)+c_{2}}{x^{2}}
\]

Verified OK.

\subsection*{9.26.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=2 x^{2} \\
& B=10 x \tag{3}\\
& C=8
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 225: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to
determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{gathered}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{gathered}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{10 x}{2 x^{2}} d x} \\
& =z_{1} e^{-\frac{5 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{5}{2}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{10 x}{2 x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-5 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{2}}\right)+c_{2}\left(\frac{1}{x^{2}}(\ln (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
\]

Verified OK.

\subsection*{9.26.6 Maple step by step solution}

Let's solve
\(2 x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=0\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{5 y^{\prime}}{x}-\frac{4 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{5 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)+5 \frac{d}{d t} y(t)+4 y(t)=0\)
- \(\quad\) Simplify
\(\frac{d^{2}}{d t^{2}} y(t)+4 \frac{d}{d t} y(t)+4 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}+4 r+4=0\)
- Factor the characteristic polynomial
\((r+2)^{2}=0\)
- Root of the characteristic polynomial
\(r=-2\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-2 t}\)
- Repeated root, multiply \(y_{1}(t)\) by \(t\) to ensure linear independence
\(y_{2}(t)=t \mathrm{e}^{-2 t}\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} t \mathrm{e}^{-2 t}\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}
\]
- \(\quad\) Simplify
\(y=\frac{c_{1}}{x^{2}}+\frac{c_{2} \ln (x)}{x^{2}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve(2*x^2*diff(y(x),x\$2)+10*x*diff(y(x),x)+8*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{2} \ln (x)+c_{1}}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 18
```

DSolve[2*x^2*y''[x]+10*x*y'[x] +8*y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \frac{2 c_{2} \log (x)+c_{1}}{x^{2}}
\]

\subsection*{9.27 problem 5(c)}
9.27.1 Solving as second order euler ode ode 1533
9.27.2 Solving as second order change of variable on \(x\) method 2 ode . 1534
9.27.3 Solving as second order change of variable on y method 2 ode . 1537
9.27.4 Solving using Kovacic algorithm 1539
9.27.5 Maple step by step solution . 1544

Internal problem ID [6295]
Internal file name [OUTPUT/5543_Sunday_June_05_2022_03_43_03_PM_17006049/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0
\]

\subsection*{9.27.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-12 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+2 r x^{r}-12 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+2 r-12=0
\]

Or
\[
\begin{equation*}
r^{2}+r-12=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-4 \\
& r_{2}=3
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
\]

Verified OK.

\subsection*{9.27.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{12}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{12}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-12 x^{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-12 x^{2} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
-12 x^{2}=-\frac{12}{\tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{12 y(\tau)}{\tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-12 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-12 \tau^{r}=0
\]

Simplifying gives
\[
r(r-1) \tau^{r}+0 \tau^{r}-12 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
r(r-1)+0-12=0
\]

Or
\[
\begin{equation*}
r^{2}-r-12=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=4
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r_{1}}\) and \(y_{2}=\tau^{r_{2}}\). Hence
\[
y(\tau)=\frac{c_{1}}{\tau^{3}}+c_{2} \tau^{4}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-c_{1} x^{7}+c_{2}}{x^{4}}
\]

Verified OK.

\subsection*{9.27.3 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{12}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{12}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=3 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{8 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{8 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{8 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{8}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{8}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{8}{x} d x \\
\ln (u) & =-8 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-8 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{8}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{7 x^{7}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3} \\
& =\frac{7 c_{2} x^{7}-c_{1}}{7 x^{4}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(-\frac{c_{1}}{7 x^{7}}+c_{2}\right) x^{3}
\]

Verified OK.

\subsection*{9.27.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-12
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{12}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=12 \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{12}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
\hline \begin{tabular}{l}
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 227: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{12}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=12\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{12}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=12\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=4 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-3
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{12}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & 4 & -3 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & 4 & -3 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-3\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-3-(-3) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{3}{x}+(-)(0) \\
& =-\frac{3}{x} \\
& =-\frac{3}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{3}{x}\right)(0)+\left(\left(\frac{3}{x^{2}}\right)+\left(-\frac{3}{x}\right)^{2}-\left(\frac{12}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{3}{x} d x} \\
& =\frac{1}{x^{3}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{4}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{7}}{7}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{4}}\right)+c_{2}\left(\frac{1}{x^{4}}\left(\frac{x^{7}}{7}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{3}}{7} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{3}}{7}
\]

Verified OK.

\subsection*{9.27.5 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{12 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{12 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}-12 y=0
\]
- Make a change of variables
\[
t=\ln (x)
\]

Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+2 \frac{d}{d t} y(t)-12 y(t)=0\)
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-12 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}+r-12=0\)
- Factor the characteristic polynomial
\((r+4)(r-3)=0\)
- Roots of the characteristic polynomial
\[
r=(-4,3)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-4 t}\)
- \(\quad\) 2nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{3 t}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{3 t}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
\]
- \(\quad\) Simplify
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{3}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 15
```

dsolve(x^2*diff(y(x),x\$2)+2*x*diff(y(x),x)-12*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} x^{7}+c_{2}}{x^{4}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve \(\left[x^{\wedge} 2 * y^{\prime \prime}\right.\) ' \([x]+2 * x * y\) ' \([x]-12 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{2} x^{7}+c_{1}}{x^{4}}
\]

\subsection*{9.28 problem 5(d)}
9.28.1 Solving as second order euler ode ode 1547
9.28.2 Solving using Kovacic algorithm 1548
9.28.3 Maple step by step solution . 1553

Internal problem ID [6296]
Internal file name [OUTPUT/5544_Sunday_June_05_2022_03_43_04_PM_95902784/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
4 x^{2} y^{\prime \prime}-3 y=0
\]

\subsection*{9.28.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
4 x^{2}(r(r-1)) x^{r-2}+0 r x^{r-1}-3 x^{r}=0
\]

Simplifying gives
\[
4 r(r-1) x^{r}+0 x^{r}-3 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
4 r(r-1)+0-3=0
\]

Or
\[
\begin{equation*}
4 r^{2}-4 r-3=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-\frac{1}{2} \\
& r_{2}=\frac{3}{2}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=\frac{c_{1}}{\sqrt{x}}+c_{2} x^{\frac{3}{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{\sqrt{x}}+c_{2} x^{\frac{3}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{\sqrt{x}}+c_{2} x^{\frac{3}{2}}
\]

Verified OK.

\subsection*{9.28.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
4 x^{2} y^{\prime \prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=4 x^{2} \\
& B=0 \tag{3}\\
& C=-3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 229: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{3}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{3}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+(-)(0) \\
& =-\frac{1}{2 x} \\
& =-\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(-\frac{1}{2 x}\right)^{2}-\left(\frac{3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{1}{2 x} d x} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\frac{1}{\sqrt{x}}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{\sqrt{x}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\frac{1}{\sqrt{x}} \int \frac{1}{\frac{1}{x}} d x \\
& =\frac{1}{\sqrt{x}}\left(\frac{x^{2}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{\sqrt{x}}\right)+c_{2}\left(\frac{1}{\sqrt{x}}\left(\frac{x^{2}}{2}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2} x^{\frac{3}{2}}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{\sqrt{x}}+\frac{c_{2} x^{\frac{3}{2}}}{2}
\]

Verified OK.

\subsection*{9.28.3 Maple step by step solution}

Let's solve
\(4 x^{2} y^{\prime \prime}-3 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{3 y}{4 x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{3 y}{4 x^{2}}=0
\]
- Multiply by denominators of the ODE
\(4 x^{2} y^{\prime \prime}-3 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(4 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-3 y(t)=0\)
- \(\quad\) Simplify
\(4 \frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)-3 y(t)=0\)
- Isolate 2nd derivative
\[
\frac{d^{2}}{d t^{2}} y(t)=\frac{d}{d t} y(t)+\frac{3 y(t)}{4}
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)-\frac{3 y(t)}{4}=0\)
- Characteristic polynomial of ODE
\[
r^{2}-r-\frac{3}{4}=0
\]
- Factor the characteristic polynomial
\(\frac{(2 r+1)(2 r-3)}{4}=0\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{1}{2}, \frac{3}{2}\right)\)
- 1st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{-\frac{t}{2}}
\]
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{\frac{3 t}{2}}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{3 t}{2}}
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{\sqrt{x}}+c_{2} x^{\frac{3}{2}}
\]
- \(\quad\) Simplify
\[
y=\frac{c_{1}}{\sqrt{x}}+c_{2} x^{\frac{3}{2}}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
```

dsolve(4*x^2*diff(y(x),x\$2)-3*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{2} x^{2}+c_{1}}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 20
DSolve[4*x^2*y' ' \([x]-3 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{2} x^{2}+c_{1}}{\sqrt{x}}
\]

\subsection*{9.29 problem 5(e)}
9.29.1 Solving as second order euler ode ode 1557
9.29.2 Solving as second order change of variable on \(x\) method 2 ode . 1558
9.29.3 Solving as second order change of variable on \(x\) method 1 ode . 1561
9.29.4 Solving as second order change of variable on y method 2 ode . 1563
9.29.5 Solving using Kovacic algorithm 1565
9.29.6 Maple step by step solution . 1570

Internal problem ID [6297]
Internal file name [OUTPUT/5545_Sunday_June_05_2022_03_43_06_PM_80595365/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, ` with_symmetry_ [0, F(x)]•]
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0
\]

\subsection*{9.29.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}-3 x r x^{r-1}+4 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}-3 r x^{r}+4 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)-3 r+4=0
\]

Or
\[
\begin{equation*}
r^{2}-4 r+4=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r}\) and \(y_{2}=x^{r} \ln (x)\). Hence
\[
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\]

Verified OK.

\subsection*{9.29.2 Solving as second order change of variable on \(x\) method 2 ode} In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{3}{x} d x\right)} d x \\
& =\int e^{3 \ln (x)} d x \\
& =\int x^{3} d x \\
& =\frac{x^{4}}{4} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{x^{2}}}{x^{6}} \\
& =\frac{4}{x^{8}} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{4 y(\tau)}{x^{8}} & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
\frac{4}{x^{8}}=\frac{1}{4 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
\]

Simplifying gives
\[
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
4 r(r-1)+0+1=0
\]

Or
\[
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r}\) and \(y_{2}=\tau^{r} \ln (\tau)\). Hence
\[
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\left(-2 c_{2} \ln (2)+c_{2} \ln \left(x^{4}\right)+c_{1}\right) \sqrt{x^{4}}}{2}
\]

Verified OK.

\subsection*{9.29.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{3}{x} \frac{2 \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{2 \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-2 c
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{c \tau} c_{1}
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 2 \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{2 \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}
\]

Verified OK.

\subsection*{9.29.4 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{3 n}{x^{2}}+\frac{4}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2} \\
& =\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(c_{1} \ln (x)+c_{2}\right) x^{2}
\]

Verified OK.

\subsection*{9.29.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=-3 x \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 231: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3 x}{x^{2}} d x} \\
& =z_{1} e^{\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(x^{\frac{3}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{2}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{2}\right)+c_{2}\left(x^{2}(\ln (x))\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}+c_{2} x^{2} \ln (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\]

Verified OK.

\subsection*{9.29.6 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4 y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\(x^{2} y^{\prime \prime}-3 x y^{\prime}+4 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-3 \frac{d}{d t} y(t)+4 y(t)=0\)
- \(\quad\) Simplify
\(\frac{d^{2}}{d t^{2}} y(t)-4 \frac{d}{d t} y(t)+4 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}-4 r+4=0\)
- Factor the characteristic polynomial
\[
(r-2)^{2}=0
\]
- Root of the characteristic polynomial
\[
r=2
\]
- \(\quad 1\) st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{2 t}
\]
- Repeated root, multiply \(y_{1}(t)\) by \(t\) to ensure linear independence
\[
y_{2}(t)=t \mathrm{e}^{2 t}
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{2 t}+c_{2} t \mathrm{e}^{2 t}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=c_{1} x^{2}+c_{2} x^{2} \ln (x)
\]
- \(\quad\) Simplify
\[
y=x^{2}\left(c_{1}+c_{2} \ln (x)\right)
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve(x^2*diff(y(x),x\$2)-3*x*diff (y(x),x)+4*y(x)=0,y(x), singsol=all)

```
\[
y(x)=x^{2}\left(c_{2} \ln (x)+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 18
DSolve[\(x^{\wedge} 2 * y^{\prime \prime}\) ' \([\mathrm{x}]-3 * x * y\) ' \([x]+4 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x^{2}\left(2 c_{2} \log (x)+c_{1}\right)
\]

\subsection*{9.30 problem 5(f)}
9.30.1 Solving as second order euler ode ode 1573
9.30.2 Solving as second order change of variable on \(x\) method 2 ode . 1574
9.30.3 Solving as second order change of variable on y method 2 ode . 1577
9.30.4 Solving using Kovacic algorithm 1579
9.30.5 Maple step by step solution . 1584

Internal problem ID [6298]
Internal file name [OUTPUT/5546_Sunday_June_05_2022_03_43_07_PM_12118679/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_2", "second_order_change_of__variable_on_y__method__2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]•]
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
\]

\subsection*{9.30.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}-6 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+2 r x^{r}-6 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+2 r-6=0
\]

Or
\[
\begin{equation*}
r^{2}+r-6=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-3 \\
& r_{2}=2
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
\]

Verified OK.

\subsection*{9.30.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{6}{x^{2}}}{\frac{1}{x^{4}}} \\
& =-6 x^{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-6 x^{2} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
-6 x^{2}=-\frac{6}{\tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{6 y(\tau)}{\tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}-6 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}-6 \tau^{r}=0
\]

Simplifying gives
\[
r(r-1) \tau^{r}+0 \tau^{r}-6 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
r(r-1)+0-6=0
\]

Or
\[
\begin{equation*}
r^{2}-r-6=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-2 \\
& r_{2}=3
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r_{1}}\) and \(y_{2}=\tau^{r_{2}}\). Hence
\[
y(\tau)=\frac{c_{1}}{\tau^{2}}+c_{2} \tau^{3}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{5}-c_{2}}{x^{3}}
\]

Verified OK.

\subsection*{9.30.3 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=-\frac{6}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}-\frac{6}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{6 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{6 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{6 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{6}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{6}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{6}{x} d x \\
\ln (u) & =-6 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-6 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{6}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{5 x^{5}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \\
& =\frac{5 c_{2} x^{5}-c_{1}}{5 x^{3}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(-\frac{c_{1}}{5 x^{5}}+c_{2}\right) x^{2}
\]

Verified OK.

\subsection*{9.30.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=-6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{6}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=6 \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{6}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 233: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{6}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=6\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{6}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=6\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=3 \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-2
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{6}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & 3 & -2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & 3 & -2 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-2\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-2-(-2) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{2}{x}+(-)(0) \\
& =-\frac{2}{x} \\
& =-\frac{2}{x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{2}{x}\right)(0)+\left(\left(\frac{2}{x^{2}}\right)+\left(-\frac{2}{x}\right)^{2}-\left(\frac{6}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x^{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{3}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{5}}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{3}}\right)+c_{2}\left(\frac{1}{x^{3}}\left(\frac{x^{5}}{5}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{3}}+\frac{c_{2} x^{2}}{5}
\]

Verified OK.

\subsection*{9.30.5 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{6 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{6 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0
\]
- Make a change of variables
\[
t=\ln (x)
\]

Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 2 \frac{d}{x^{2}} y(t)-6 y(t)=0\right.\)
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-6 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}+r-6=0\)
- Factor the characteristic polynomial
\((r+3)(r-2)=0\)
- Roots of the characteristic polynomial
\[
r=(-3,2)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-3 t}\)
- \(\quad\) 2nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{2 t}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
\]
- \(\quad\) Simplify
\[
y=\frac{c_{1}}{x^{3}}+c_{2} x^{2}
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
<- LODE of Euler type successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
```

dsolve(x^2*diff(y(x),x\$2)+2*x*diff(y(x),x)-6*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} x^{5}+c_{2}}{x^{3}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 18
DSolve \([x \sim 2 * y\) ' ' \([x]+2 * x * y\) ' \([x]-6 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{2} x^{5}+c_{1}}{x^{3}}
\]

\subsection*{9.31 problem 5(g)}
9.31.1 Solving as second order euler ode ode 1587
9.31.2 Solving as second order change of variable on \(x\) method 2 ode . 1589
9.31.3 Solving as second order change of variable on \(x\) method 1 ode . 1592
9.31.4 Solving as second order change of variable on y method 2 ode . 1594
9.31.5 Solving using Kovacic algorithm 1597
9.31.6 Maple step by step solution . 1602

Internal problem ID [6299]
Internal file name [OUTPUT/5547_Sunday_June_05_2022_03_43_08_PM_87551141/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with
Constant Coefficients. Page 62
Problem number: 5(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on__x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0
\]

\subsection*{9.31.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+2 x r x^{r-1}+3 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+2 r x^{r}+3 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+2 r+3=0
\]

Or
\[
\begin{equation*}
r^{2}+r+3=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-\frac{1}{2}-\frac{i \sqrt{11}}{2} \\
& r_{2}=-\frac{1}{2}+\frac{i \sqrt{11}}{2}
\end{aligned}
\]

The roots are complex conjugate of each others. Let the roots be
\[
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
\]

Where in this case \(\alpha=-\frac{1}{2}\) and \(\beta=-\frac{\sqrt{11}}{2}\). Hence the solution becomes
\[
\begin{aligned}
y & =c_{1} x^{r_{1}}+c_{2} x^{r_{2}} \\
& =c_{1} x^{\alpha+i \beta}+c_{2} x^{\alpha-i \beta} \\
& =x^{\alpha}\left(c_{1} x^{i \beta}+c_{2} x^{-i \beta}\right) \\
& =x^{\alpha}\left(c_{1} e^{\ln \left(x^{i \beta}\right)}+c_{2} e^{\ln \left(x^{-i \beta}\right)}\right) \\
& =x^{\alpha}\left(c_{1} e^{i(\beta \ln x)}+c_{2} e^{-i(\beta \ln x)}\right)
\end{aligned}
\]

Using the values for \(\alpha=-\frac{1}{2}, \beta=-\frac{\sqrt{11}}{2}\), the above becomes
\[
y=x^{-\frac{1}{2}}\left(c_{1} e^{-\frac{i \sqrt{11} \ln (x)}{2}}+c_{2} e^{\frac{i \sqrt{11} \ln (x)}{2}}\right)
\]

Using Euler relation, the expression \(c_{1} e^{i A}+c_{2} e^{-i A}\) is transformed to \(c_{1} \cos A+c_{1} \sin A\) where the constants are free to change. Applying this to the above result gives
\[
y=\frac{1}{\sqrt{x}}\left(c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{9.31.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{2}{x} d x\right)} d x \\
& =\int e^{-2 \ln (x)} d x \\
& =\int \frac{1}{x^{2}} d x \\
& =-\frac{1}{x} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{3}{x^{2}}}{\frac{1}{x^{4}}} \\
& =3 x^{2} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+3 x^{2} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
3 x^{2}=\frac{3}{\tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{3 y(\tau)}{\tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+3 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
\tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+3 \tau^{r}=0
\]

Simplifying gives
\[
r(r-1) \tau^{r}+0 \tau^{r}+3 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
r(r-1)+0+3=0
\]

Or
\[
\begin{equation*}
r^{2}-r+3=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2}-\frac{i \sqrt{11}}{2} \\
& r_{2}=\frac{1}{2}+\frac{i \sqrt{11}}{2}
\end{aligned}
\]

The roots are complex conjugate of each others. Let the roots be
\[
\begin{aligned}
& r_{1}=\alpha+i \beta \\
& r_{2}=\alpha-i \beta
\end{aligned}
\]

Where in this case \(\alpha=\frac{1}{2}\) and \(\beta=-\frac{\sqrt{11}}{2}\). Hence the solution becomes
\[
\begin{aligned}
y(\tau) & =c_{1} \tau^{r_{1}}+c_{2} \tau^{r_{2}} \\
& =c_{1} \tau^{\alpha+i \beta}+c_{2} \tau^{\alpha-i \beta} \\
& =\tau^{\alpha}\left(c_{1} \tau^{i \beta}+c_{2} \tau^{-i \beta}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{\ln \left(\tau^{i \beta}\right)}+c_{2} e^{\ln \left(\tau^{-i \beta}\right)}\right) \\
& =\tau^{\alpha}\left(c_{1} e^{i(\beta \ln \tau)}+c_{2} e^{-i(\beta \ln \tau)}\right)
\end{aligned}
\]

Using the values for \(\alpha=\frac{1}{2}, \beta=-\frac{\sqrt{11}}{2}\), the above becomes
\[
y(\tau)=\tau^{\frac{1}{2}}\left(c_{1} e^{-\frac{i \sqrt{11} \ln (\tau)}{2}}+c_{2} e^{\frac{i \sqrt{11} \ln (\tau)}{2}}\right)
\]

Using Euler relation, the expression \(c_{1} e^{i A}+c_{2} e^{-i A}\) is transformed to \(c_{1} \cos A+c_{1} \sin A\) where the constants are free to change. Applying this to the above result gives
\[
y(\tau)=\sqrt{\tau}\left(c_{1} \cos \left(\frac{\sqrt{11} \ln (\tau)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (\tau)}{2}\right)\right)
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\sqrt{-\frac{1}{x}}\left(c_{1} \cos \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\sqrt{-\frac{1}{x}}\left(c_{1} \cos \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\sqrt{-\frac{1}{x}}\left(c_{1} \cos \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln \left(-\frac{1}{x}\right)}{2}\right)\right)
\]

Verified OK.

\subsection*{9.31.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{3}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{2}{x} \frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =\frac{c \sqrt{3}}{3}
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{c \sqrt{3}\left(\frac{d}{d \tau} y(\tau)\right)}{3}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{-\frac{\sqrt{3} c \tau}{6}}\left(c_{1} \cos \left(\frac{c \sqrt{33} \tau}{6}\right)+c_{2} \sin \left(\frac{c \sqrt{33} \tau}{6}\right)\right)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{3} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{3} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{9.31.4 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{2 n}{x^{2}}+\frac{3}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-\frac{1}{2}+\frac{i \sqrt{11}}{2} \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{-1+i \sqrt{11}}{x}+\frac{2}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(i \sqrt{11}+1) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{(i \sqrt{11}+1) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-i \sqrt{11}) u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{-1-i \sqrt{11}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-i \sqrt{11}}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-i \sqrt{11}}{x} d x \\
\ln (u) & =(-1-i \sqrt{11}) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-i \sqrt{11}) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-i \sqrt{11}) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x^{-i \sqrt{11}}}{x}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{i \sqrt{11} c_{1} x^{-i \sqrt{11}}}{11}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{i \sqrt{11} c_{1} x^{-i \sqrt{11}}}{11}+c_{2}\right) x^{-\frac{1}{2}+\frac{i \sqrt{11}}{2}} \\
& =\frac{x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}\left(i \sqrt{11} c_{1}+11 c_{2} x^{i \sqrt{11}}\right)}{11}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(\frac{i \sqrt{11} c_{1} x^{-i \sqrt{11}}}{11}+c_{2}\right) x^{-\frac{1}{2}+\frac{i \sqrt{11}}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\frac{i \sqrt{11} c_{1} x^{-i \sqrt{11}}}{11}+c_{2}\right) x^{-\frac{1}{2}+\frac{i \sqrt{11}}{2}}
\]

Verified OK.

\subsection*{9.31.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=2 x \tag{3}\\
& C=3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{3}{x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 235: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{3}{x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-3\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{i \sqrt{11}}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{i \sqrt{11}}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{3}{x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-3\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\frac{i \sqrt{11}}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\frac{i \sqrt{11}}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{3}{x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}+\frac{i \sqrt{11}}{2}\) & \(\frac{1}{2}-\frac{i \sqrt{11}}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}+\frac{i \sqrt{11}}{2}\) & \(\frac{1}{2}-\frac{i \sqrt{11}}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=\frac{1}{2}-\frac{i \sqrt{11}}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\frac{i \sqrt{11}}{2}-\left(\frac{1}{2}-\frac{i \sqrt{11}}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\frac{i \sqrt{11}}{2}}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-\frac{i \sqrt{11}}{2}}{x} \\
& =\frac{1-i \sqrt{11}}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-\frac{i \sqrt{11}}{2}}{x}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\frac{i \sqrt{11}}{2}}{x^{2}}\right)+\left(\frac{\frac{1}{2}-\frac{i \sqrt{11}}{2}}{x}\right)^{2}-\left(-\frac{3}{x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2}-\frac{i \sqrt{11}}{2}} d x \\
& =x^{\frac{1}{2}-\frac{i \sqrt{11}}{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\ln (x)} \\
& =z_{1}\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{i x^{i \sqrt{11}} \sqrt{11}}{11}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}\right)+c_{2}\left(x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}\left(-\frac{i x^{i \sqrt{11}} \sqrt{11}}{11}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}-\frac{i c_{2} \sqrt{11} x^{-\frac{1}{2}+\frac{i \sqrt{11}}{2}}}{11} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x^{-\frac{1}{2}-\frac{i \sqrt{11}}{2}}-\frac{i c_{2} \sqrt{11} x^{-\frac{1}{2}+\frac{i \sqrt{11}}{2}}}{11}
\]

Verified OK.

\subsection*{9.31.6 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}-\frac{3 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{2 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}+3 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\[
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
\]

Substitute the change of variables back into the ODE
\[
x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)+2 \frac{d}{d t} y(t)+3 y(t)=0
\]
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)+3 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}+r+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-11})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{11}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{11}}{2}\right)\)
- 1st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)\)
- \(\quad 2\) nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right)\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{11} t}{2}\right)+c_{2} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{11} t}{2}\right)\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\(y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}+\frac{c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}\)
- Simplify
\(y=\frac{c_{1} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}+\frac{c_{2} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 29
```

dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x\$2)+2*x*\operatorname{diff}(y(x),x)+3*y(x)=0,y(x), singsol=all

```
\[
y(x)=\frac{c_{1} \sin \left(\frac{\sqrt{11} \ln (x)}{2}\right)+c_{2} \cos \left(\frac{\sqrt{11} \ln (x)}{2}\right)}{\sqrt{x}}
\]

Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 42
DSolve [x~2*y' ' \([\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+3 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{2} \cos \left(\frac{1}{2} \sqrt{11} \log (x)\right)+c_{1} \sin \left(\frac{1}{2} \sqrt{11} \log (x)\right)}{\sqrt{x}}
\]

\subsection*{9.32 problem 5(h)}
9.32.1 Solving as second order euler ode ode 1605
9.32.2 Solving as second order change of variable on \(x\) method 2 ode . 1606
9.32.3 Solving as second order change of variable on \(x\) method 1 ode . 1609
9.32.4 Solving as second order change of variable on y method 2 ode . 1611
9.32.5 Solving using Kovacic algorithm 1613
9.32.6 Maple step by step solution . 1619

Internal problem ID [6300]
Internal file name [OUTPUT/5548_Sunday_June_05_2022_03_43_09_PM_86161255/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of_variable_on_x_method__2", "second_order_change_of_cvariable_on_y_method__2"

Maple gives the following as the ode type
```

[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(

``` x)] 〕]
\[
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0
\]

\subsection*{9.32.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-2 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+r x^{r}-2 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+r-2=0
\]

Or
\[
\begin{equation*}
r^{2}-2=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\sqrt{2} \\
& r_{2}=-\sqrt{2}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}
\]

Verified OK.

\subsection*{9.32.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{2}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-2 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-2 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-2\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-2 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-2)} \\
& = \pm \sqrt{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{2} \\
& \lambda_{2}=-\sqrt{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{2} \\
& \lambda_{2}=-\sqrt{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(\sqrt{2}) \tau}+c_{2} e^{(-\sqrt{2}) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{\sqrt{2} \tau}+c_{2} \mathrm{e}^{-\sqrt{2} \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}
\]

Verified OK.

\subsection*{9.32.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{-\frac{2}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{2}{c \sqrt{-\frac{2}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{c \sqrt{-\frac{2}{x^{2}}} x^{3}}+\frac{1}{x} \frac{\sqrt{-\frac{2}{x^{2}}}}{c}}{\left(\frac{\sqrt{-\frac{2}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{-\frac{2}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{-\frac{2}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cosh (\sqrt{2} \ln (x))+i c_{2} \sinh (\sqrt{2} \ln (x))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cosh (\sqrt{2} \ln (x))+i c_{2} \sinh (\sqrt{2} \ln (x)) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cosh (\sqrt{2} \ln (x))+i c_{2} \sinh (\sqrt{2} \ln (x))
\]

Verified OK.

\subsection*{9.32.4 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=\sqrt{2} \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2 \sqrt{2}}{x}+\frac{1}{x}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(1+2 \sqrt{2}) v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{(1+2 \sqrt{2}) u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{(-1-2 \sqrt{2}) u}{x}
\end{aligned}
\]

Where \(f(x)=\frac{-1-2 \sqrt{2}}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{-1-2 \sqrt{2}}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{-1-2 \sqrt{2}}{x} d x \\
\ln (u) & =(-1-2 \sqrt{2}) \ln (x)+c_{1} \\
u & =\mathrm{e}^{(-1-2 \sqrt{2}) \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{(-1-2 \sqrt{2}) \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x^{-2 \sqrt{2}}}{x}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{\sqrt{2} c_{1} x^{-2 \sqrt{2}}}{4}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{\sqrt{2} c_{1} x^{-2 \sqrt{2}}}{4}+c_{2}\right) x^{\sqrt{2}} \\
& =x^{\sqrt{2}} c_{2}-\frac{x^{-\sqrt{2}} c_{1} \sqrt{2}}{4}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{\sqrt{2} c_{1} x^{-2 \sqrt{2}}}{4}+c_{2}\right) x^{\sqrt{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(-\frac{\sqrt{2} c_{1} x^{-2 \sqrt{2}}}{4}+c_{2}\right) x^{\sqrt{2}}
\]

Verified OK.

\subsection*{9.32.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{7}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=7 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{7}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 237: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{7}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition
of \(r\) given above. Therefore \(b=\frac{7}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\sqrt{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\sqrt{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{7}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{7}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2}+\sqrt{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}-\sqrt{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{7}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}+\sqrt{2}\) & \(\frac{1}{2}-\sqrt{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}+\sqrt{2}\) & \(\frac{1}{2}-\sqrt{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=\frac{1}{2}-\sqrt{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\sqrt{2}-\left(\frac{1}{2}-\sqrt{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{\frac{1}{2}-\sqrt{2}}{x}+(-)(0) \\
& =\frac{\frac{1}{2}-\sqrt{2}}{x} \\
& =\frac{1-2 \sqrt{2}}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{\frac{1}{2}-\sqrt{2}}{x}\right)(0)+\left(\left(-\frac{\frac{1}{2}-\sqrt{2}}{x^{2}}\right)+\left(\frac{\frac{1}{2}-\sqrt{2}}{x}\right)^{2}-\left(\frac{7}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\frac{\frac{1}{2}-\sqrt{2}}{x} d x} \\
& =x^{\frac{1}{2}-\sqrt{2}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x^{-\sqrt{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} x^{2 \sqrt{2}}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(x^{-\sqrt{2}}\right)+c_{2}\left(x^{-\sqrt{2}}\left(\frac{\sqrt{2} x^{2 \sqrt{2}}}{4}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x^{-\sqrt{2}} c_{1}+\frac{c_{2} \sqrt{2} x^{\sqrt{2}}}{4} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=x^{-\sqrt{2}} c_{1}+\frac{c_{2} \sqrt{2} x^{\sqrt{2}}}{4}
\]

Verified OK.

\subsection*{9.32.6 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{2 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{2 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+x y^{\prime}-2 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\[
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
\]

Substitute the change of variables back into the ODE
\[
x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-2 y(t)=0
\]
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)-2 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}-2=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{8})}{2}\)
- Roots of the characteristic polynomial
\[
r=(\sqrt{2},-\sqrt{2})
\]
- 1st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{\sqrt{2} t}
\]
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{-\sqrt{2} t}
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{\sqrt{2} t}+c_{2} \mathrm{e}^{-\sqrt{2} t}
\]
- Change variables back using \(t=\ln (x)\)
\(y=c_{1} \mathrm{e}^{\sqrt{2} \ln (x)}+c_{2} \mathrm{e}^{-\sqrt{2} \ln (x)}\)
- \(\quad\) Simplify
\(y=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
dsolve (\(x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} x^{\sqrt{2}}+c_{2} x^{-\sqrt{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 28
DSolve \([x \wedge 2 * y\) '' \([x]+x * y\) ' \([x]-2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True \(]\)
\[
y(x) \rightarrow c_{1} x^{-\sqrt{2}}+c_{2} x^{\sqrt{2}}
\]

\subsection*{9.33 problem 5(i)}
9.33.1 Solving as second order euler ode ode 1622
9.33.2 Solving as second order change of variable on \(x\) method 2 ode . 1623
9.33.3 Solving as second order change of variable on \(x\) method 1 ode . 1626
9.33.4 Solving as second order change of variable on y method 2 ode . 1628
9.33.5 Solving using Kovacic algorithm 1630
9.33.6 Maple step by step solution . 1635

Internal problem ID [6301]
Internal file name [OUTPUT/5549_Sunday_June_05_2022_03_43_11_PM_13904494/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.1. Linear Equations with Constant Coefficients. Page 62
Problem number: 5(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_variable_on_x_method_1", "second_order_change__of__variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, - with_symmetry_ [0, F(x)]•]
\[
x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0
\]

\subsection*{9.33.1 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+x r x^{r-1}-16 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+r x^{r}-16 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+r-16=0
\]

Or
\[
\begin{equation*}
r^{2}-16=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-4 \\
& r_{2}=4
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+c_{2} x^{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{4}
\]

Verified OK.

\subsection*{9.33.2 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{16}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{1}{x} d x\right)} d x \\
& =\int e^{-\ln (x)} d x \\
& =\int \frac{1}{x} d x \\
& =\ln (x) \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{16}{x^{2}}}{\frac{1}{x^{2}}} \\
& =-16 \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-16 y(\tau) & =0
\end{aligned}
\]

The above ode is now solved for \(y(\tau)\).This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(\tau)+B y^{\prime}(\tau)+C y(\tau)=0
\]

Where in the above \(A=1, B=0, C=-16\). Let the solution be \(y(\tau)=e^{\lambda \tau}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda \tau}-16 \mathrm{e}^{\lambda \tau}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda \tau}\) gives
\[
\begin{equation*}
\lambda^{2}-16=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-16\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-16)} \\
& = \pm 4
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+4 \\
& \lambda_{2}=-4
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-4
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y(\tau)=c_{1} e^{\lambda_{1} \tau}+c_{2} e^{\lambda_{2} \tau} \\
& y(\tau)=c_{1} e^{(4) \tau}+c_{2} e^{(-4) \tau}
\end{aligned}
\]

Or
\[
y(\tau)=c_{1} \mathrm{e}^{4 \tau}+c_{2} \mathrm{e}^{-4 \tau}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} x^{8}+c_{2}}{x^{4}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} x^{8}+c_{2}}{x^{4}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} x^{8}+c_{2}}{x^{4}}
\]

Verified OK.

\subsection*{9.33.3 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{16}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{4 \sqrt{-\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =\frac{4}{c \sqrt{-\frac{1}{x^{2}}}} x^{3}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{4}{c \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{1}{x} \frac{4 \sqrt{-\frac{1}{x^{2}}}}{c}}{\left(\frac{4 \sqrt{-\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =0
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=c_{1} \cos (c \tau)+c_{2} \sin (c \tau)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int 4 \sqrt{-\frac{1}{x^{2}}} d x}{c} \\
& =\frac{4 \sqrt{-\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=c_{1} \cosh (4 \ln (x))+i c_{2} \sinh (4 \ln (x))
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cosh (4 \ln (x))+i c_{2} \sinh (4 \ln (x)) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \cosh (4 \ln (x))+i c_{2} \sinh (4 \ln (x))
\]

Verified OK.

\subsection*{9.33.4 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=-\frac{16}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n}{x^{2}}-\frac{16}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=4 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{9 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{9 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{9 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{9 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{9}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{9}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{9}{x} d x \\
\ln (u) & =-9 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-9 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{9}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{8 x^{8}}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{8 x^{8}}+c_{2}\right) x^{4} \\
& =\frac{8 c_{2} x^{8}-c_{1}}{8 x^{4}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\frac{c_{1}}{8 x^{8}}+c_{2}\right) x^{4} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\left(-\frac{c_{1}}{8 x^{8}}+c_{2}\right) x^{4}
\]

Verified OK.

\subsection*{9.33.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}-16 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=x \tag{3}\\
& C=-16
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{63}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =63 \\
t & =4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{63}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 239: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{63}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{63}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{9}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{7}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=\frac{63}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=\frac{63}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{9}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{7}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{63}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{9}{2}\) & \(-\frac{7}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{9}{2}\) & \(-\frac{7}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{7}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{7}{2}-\left(-\frac{7}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{7}{2 x}+(-)(0) \\
& =-\frac{7}{2 x} \\
& =-\frac{7}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{7}{2 x}\right)(0)+\left(\left(\frac{7}{2 x^{2}}\right)+\left(-\frac{7}{2 x}\right)^{2}-\left(\frac{63}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int-\frac{7}{2 x} d x} \\
& =\frac{1}{x^{\frac{7}{2}}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{\ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{\sqrt{x}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x^{4}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{x^{8}}{8}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x^{4}}\right)+c_{2}\left(\frac{1}{x^{4}}\left(\frac{x^{8}}{8}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{4}}{8} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x^{4}}+\frac{c_{2} x^{4}}{8}
\]

Verified OK.

\subsection*{9.33.6 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{16 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{16 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}+x y^{\prime}-16 y=0
\]
- Make a change of variables
\[
t=\ln (x)
\]

Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-16 y(t)=0\)
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)-16 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}-16=0\)
- Factor the characteristic polynomial
\((r-4)(r+4)=0\)
- Roots of the characteristic polynomial
\[
r=(-4,4)
\]
- 1st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-4 t}\)
- \(\quad\) 2nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{4 t}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-4 t}+c_{2} \mathrm{e}^{4 t}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{4}
\]
- \(\quad\) Simplify
\[
y=\frac{c_{1}}{x^{4}}+c_{2} x^{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
```

dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)-16*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\frac{c_{1} x^{8}+c_{2}}{x^{4}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 18
DSolve \(\left[x^{\sim} 2 * y\right.\) '' \([x]+x * y\) ' \([x]-16 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{2} x^{8}+c_{1}}{x^{4}}
\]
10 Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
10.1 problem 1(a) 1639
10.2 problem 1(b) 1650
10.3 problem 1(c) 1661
10.4 problem 1(d) 1673
10.5 problem 1(e) 1684
10.6 problem 1(f) 1695
10.7 problem \(1(\mathrm{~g})\) 1705
10.8 problem 1(h) 1716
10.9 problem 1(i) 1736
10.10problem 1(j) 1748
10.11problem 1(k) 1759
10.12problem 3(a) 1779
10.13problem 3(b) 1790
10.14problem 4(a) 1801
10.15problem 4(b) 1812

\section*{10.1 problem 1(a)}
10.1.1 Solving as second order linear constant coeff ode 1639
10.1.2 Solving using Kovacic algorithm 1642
10.1.3 Maple step by step solution . 1647

Internal problem ID [6302]
Internal file name [OUTPUT/5550_Sunday_June_05_2022_03_43_12_PM_7678405/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+3 y^{\prime}-10 y=6 \mathrm{e}^{4 x}
\]

\subsection*{10.1.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=3, C=-10, f(x)=6 \mathrm{e}^{4 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}-10 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=3, C=-10\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}-10 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+3 \lambda-10=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=3, C=-10\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(-10)} \\
& =-\frac{3}{2} \pm \frac{7}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{7}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{7}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-5
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-5) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
6 \mathrm{e}^{4 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{4 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-5 x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{4 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
18 A_{1} \mathrm{e}^{4 x}=6 \mathrm{e}^{4 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{3}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{4 x}}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}\right)+\left(\frac{\mathrm{e}^{4 x}}{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}+\frac{\mathrm{e}^{4 x}}{3} \tag{1}
\end{equation*}
\]

Figure 301: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-5 x}+\frac{\mathrm{e}^{4 x}}{3}
\]

Verified OK.

\subsection*{10.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}-10 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=-10
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{49}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=49 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{49 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 241: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{49}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{7 x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-5 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{7 x}}{7}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}\left(\frac{\mathrm{e}^{7 x}}{7}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}-10 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
6 \mathrm{e}^{4 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{4 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{2 x}}{7}, \mathrm{e}^{-5 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{4 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
18 A_{1} \mathrm{e}^{4 x}=6 \mathrm{e}^{4 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{3}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{4 x}}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7}\right)+\left(\frac{\mathrm{e}^{4 x}}{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7}+\frac{\mathrm{e}^{4 x}}{3} \tag{1}
\end{equation*}
\]

Figure 302: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-5 x}+\frac{c_{2} \mathrm{e}^{2 x}}{7}+\frac{\mathrm{e}^{4 x}}{3}
\]

Verified OK.

\subsection*{10.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+3 y^{\prime}-10 y=6 \mathrm{e}^{4 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+3 r-10=0
\]
- Factor the characteristic polynomial
\[
(r+5)(r-2)=0
\]
- Roots of the characteristic polynomial
\(r=(-5,2)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-5 x}\)
- \(\quad\) 2nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)\)Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 \mathrm{e}^{4 x}\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-5 x} & \mathrm{e}^{2 x} \\ -5 \mathrm{e}^{-5 x} & 2 \mathrm{e}^{2 x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=7 \mathrm{e}^{-3 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=\frac{6\left(\mathrm{e}^{7 x}\left(\int \mathrm{e}^{2 x} d x\right)-\left(\int \mathrm{e}^{9 x} d x\right)\right) \mathrm{e}^{-5 x}}{7}\)
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{4 x}}{3}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{4 x}}{3}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 25
```

dsolve(diff(y(x),x\$2)+3*diff(y(x),x)-10*y(x)=6*exp(4*x),y(x), singsol=all)

```
\[
y(x)=\frac{\left(\mathrm{e}^{9 x}+3 \mathrm{e}^{7 x} c_{1}+3 c_{2}\right) \mathrm{e}^{-5 x}}{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 31
DSolve[y''[x] \(+3 * y\) ' \([x]-10 * y[x]==6 * \operatorname{Exp}[4 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{4 x}}{3}+c_{1} e^{-5 x}+c_{2} e^{2 x}
\]

\section*{10.2 problem 1(b)}
10.2.1 Solving as second order linear constant coeff ode 1650
10.2.2 Solving using Kovacic algorithm 1653
10.2.3 Maple step by step solution 1658

Internal problem ID [6303]
Internal file name [OUTPUT/5551_Sunday_June_05_2022_03_43_14_PM_75364838/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+4 y=3 \sin (x)
\]

\subsection*{10.2.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=4, f(x)=3 \sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Or
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
3 \sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (2 x), \sin (2 x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 A_{1} \cos (x)+3 A_{2} \sin (x)=3 \sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=0, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\sin (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+(\sin (x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\sin (x) \tag{1}
\end{equation*}
\]

Figure 303: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\sin (x)
\]

Verified OK.

\subsection*{10.2.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 243: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
3 \sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 A_{1} \cos (x)+3 A_{2} \sin (x)=3 \sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=0, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\sin (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+(\sin (x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\sin (x) \tag{1}
\end{equation*}
\]

Figure 304: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\sin (x)
\]

Verified OK.

\subsection*{10.2.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y=3 \sin (x)
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+4=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-16})}{2}\)
- Roots of the characteristic polynomial
\(r=(-2 \mathrm{I}, 2 \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (2 x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (2 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \sin (x)\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-3 \cos (2 x)\left(\int \cos (x) \sin (x)^{2} d x\right)+\frac{3 \sin (2 x)\left(\int(\sin (3 x)-\sin (x)) d x\right)}{4}\)
- Compute integrals
\[
y_{p}(x)=\sin (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\sin (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 19
```

dsolve(diff(y(x),x\$2)+4*y(x)=3*\operatorname{sin}(x),y(x), singsol=all)

```
\[
y(x)=\sin (2 x) c_{2}+\cos (2 x) c_{1}+\sin (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 22
DSolve[y'' \([x]+4 * y[x]==3 * \operatorname{Sin}[x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \sin (x)+c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

\section*{10.3 problem 1(c)}
10.3.1 Solving as second order linear constant coeff ode

1661
10.3.2 Solving as linear second order ode solved by an integrating factor
ode . 1664
10.3.3 Solving using Kovacic algorithm 1666
10.3.4 Maple step by step solution . 1671

Internal problem ID [6304]
Internal file name [OUTPUT/5552_Sunday_June_05_2022_03_43_16_PM_66884/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+10 y^{\prime}+25 y=14 \mathrm{e}^{-5 x}
\]

\subsection*{10.3.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=10, C=25, f(x)=14 \mathrm{e}^{-5 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+10 y^{\prime}+25 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=10, C=25\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+10 \lambda \mathrm{e}^{\lambda x}+25 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+10 \lambda+25=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=10, C=25\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-10}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(10)^{2}-(4)(1)(25)} \\
& =-5
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=5\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
14 \mathrm{e}^{-5 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-5 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{-5 x}, \mathrm{e}^{-5 x}\right\}
\]

Since \(\mathrm{e}^{-5 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\left\{x \mathrm{e}^{-5 x}\right\}\right]
\]

Since \(x \mathrm{e}^{-5 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \mathrm{e}^{-5 x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \mathrm{e}^{-5 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{-5 x}=14 \mathrm{e}^{-5 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=7\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=7 x^{2} \mathrm{e}^{-5 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x}\right)+\left(7 x^{2} \mathrm{e}^{-5 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{-5 x}\left(c_{2} x+c_{1}\right)+7 x^{2} \mathrm{e}^{-5 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-5 x}\left(c_{2} x+c_{1}\right)+7 x^{2} \mathrm{e}^{-5 x} \tag{1}
\end{equation*}
\]

Figure 305: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-5 x}\left(c_{2} x+c_{1}\right)+7 x^{2} \mathrm{e}^{-5 x}
\]

Verified OK.

\subsection*{10.3.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=10\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 10 d x} \\
& =\mathrm{e}^{5 x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{array}{r}
(M(x) y)^{\prime \prime}=14 \mathrm{e}^{5 x} \mathrm{e}^{-5 x} \\
\left(\mathrm{e}^{5 x} y\right)^{\prime \prime}=14 \mathrm{e}^{5 x} \mathrm{e}^{-5 x}
\end{array}
\]

Integrating once gives
\[
\left(\mathrm{e}^{5 x} y\right)^{\prime}=14 x+c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{5 x} y\right)=x\left(c_{1}+7 x\right)+c_{2}
\]

Hence the solution is
\[
y=\frac{x\left(c_{1}+7 x\right)+c_{2}}{\mathrm{e}^{5 x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-5 x}+7 x^{2} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-5 x}
\]

Summary
The solution(s) found are the following

Figure 306: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} x \mathrm{e}^{-5 x}+7 x^{2} \mathrm{e}^{-5 x}+c_{2} \mathrm{e}^{-5 x}
\]

Verified OK.

\subsection*{10.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+10 y^{\prime}+25 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=10 \tag{3}\\
& C=25
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 245: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{10}{1} d x} \\
& =z_{1} e^{-5 x} \\
& =z_{1}\left(\mathrm{e}^{-5 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-5 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{10}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-10 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-5 x}\right)+c_{2}\left(\mathrm{e}^{-5 x}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+10 y^{\prime}+25 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
14 \mathrm{e}^{-5 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-5 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{-5 x}, \mathrm{e}^{-5 x}\right\}
\]

Since \(\mathrm{e}^{-5 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\left\{x \mathrm{e}^{-5 x}\right\}\right]
\]

Since \(x \mathrm{e}^{-5 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \mathrm{e}^{-5 x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \mathrm{e}^{-5 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{-5 x}=14 \mathrm{e}^{-5 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=7\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=7 x^{2} \mathrm{e}^{-5 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x}\right)+\left(7 x^{2} \mathrm{e}^{-5 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{-5 x}\left(c_{2} x+c_{1}\right)+7 x^{2} \mathrm{e}^{-5 x}
\]

Summary
The solution(s) found are the following

Figure 307: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-5 x}\left(c_{2} x+c_{1}\right)+7 x^{2} \mathrm{e}^{-5 x}
\]

Verified OK.

\subsection*{10.3.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+10 y^{\prime}+25 y=14 \mathrm{e}^{-5 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+10 r+25=0\)
- Factor the characteristic polynomial
\((r+5)^{2}=0\)
- Root of the characteristic polynomial
\[
r=-5
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-5 x}
\]
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{-5 x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-5 x}+c_{2} x \mathrm{e}^{-5 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=14 \mathrm{e}^{-5 x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-5 x} & x \mathrm{e}^{-5 x} \\
-5 \mathrm{e}^{-5 x} & \mathrm{e}^{-5 x}-5 x \mathrm{e}^{-5 x}
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-10 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-14 \mathrm{e}^{-5 x}\left(\int x d x-\left(\int 1 d x\right) x\right)
\]
- Compute integrals
\[
y_{p}(x)=7 x^{2} \mathrm{e}^{-5 x}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{2} x \mathrm{e}^{-5 x}+7 x^{2} \mathrm{e}^{-5 x}+c_{1} \mathrm{e}^{-5 x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 19
```

dsolve(diff(y(x),x\$2)+10*diff(y(x),x)+25*y(x)=14*exp(-5*x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-5 x}\left(c_{1} x+7 x^{2}+c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 23
DSolve \([y\) ' ' \([x]+10 * y\) ' \([x]+25 * y[x]==14 * \operatorname{Exp}[-5 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-5 x}\left(7 x^{2}+c_{2} x+c_{1}\right)
\]

\section*{10.4 problem 1(d)}
10.4.1 Solving as second order linear constant coeff ode 1673
10.4.2 Solving using Kovacic algorithm 1676
10.4.3 Maple step by step solution . 1681

Internal problem ID [6305]
Internal file name [OUTPUT/5553_Sunday_June_05_2022_03_43_18_PM_32183444/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-2 y^{\prime}+5 y=25 x^{2}+12
\]

\subsection*{10.4.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=5, f(x)=25 x^{2}+12\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+5 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(5)} \\
& =1 \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=1+2 i \\
& \lambda_{2}=1-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=1\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x^{2}+1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{1, x, x^{2}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x} \cos (2 x), \mathrm{e}^{x} \sin (2 x)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 A_{3} x^{2}+5 A_{2} x-4 x A_{3}+5 A_{1}-2 A_{2}+2 A_{3}=25 x^{2}+12
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=4, A_{3}=5\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=5 x^{2}+4 x+2
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(5 x^{2}+4 x+2\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+5 x^{2}+4 x+2 \tag{1}
\end{equation*}
\]

Figure 308: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+5 x^{2}+4 x+2
\]

Verified OK.

\subsection*{10.4.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 247: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x} \cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+5 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (2 x) \mathrm{e}^{x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{x} c_{2}}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x^{2}+1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{1, x, x^{2}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x} \cos (2 x), \frac{\mathrm{e}^{x} \sin (2 x)}{2}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{3} x^{2}+A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 A_{3} x^{2}+5 A_{2} x-4 x A_{3}+5 A_{1}-2 A_{2}+2 A_{3}=25 x^{2}+12
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=4, A_{3}=5\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=5 x^{2}+4 x+2
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (2 x) \mathrm{e}^{x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{x} c_{2}}{2}\right)+\left(5 x^{2}+4 x+2\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (2 x) \mathrm{e}^{x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{x} c_{2}}{2}+5 x^{2}+4 x+2 \tag{1}
\end{equation*}
\]

Figure 309: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (2 x) \mathrm{e}^{x} c_{1}+\frac{\sin (2 x) \mathrm{e}^{x} c_{2}}{2}+5 x^{2}+4 x+2
\]

Verified OK.

\subsection*{10.4.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}+5 y=25 x^{2}+12
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-2 r+5=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{2 \pm(\sqrt{-16})}{2}
\]
- Roots of the characteristic polynomial
\(r=(1-2 \mathrm{I}, 1+2 \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{x} \cos (2 x)\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{x} \sin (2 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\cos (2 x) \mathrm{e}^{x} c_{1}+\sin (2 x) \mathrm{e}^{x} c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=25 x^{2}+12\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} \cos (2 x) & \mathrm{e}^{x} \sin (2 x) \\
\mathrm{e}^{x} \cos (2 x)-2 \mathrm{e}^{x} \sin (2 x) & \mathrm{e}^{x} \sin (2 x)+2 \mathrm{e}^{x} \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{\mathrm{e}^{x}\left(\cos (2 x)\left(\int \mathrm{e}^{-x} \sin (2 x)\left(25 x^{2}+12\right) d x\right)-\sin (2 x)\left(\int \mathrm{e}^{-x} \cos (2 x)\left(25 x^{2}+12\right) d x\right)\right)}{2}\)
- Compute integrals
\[
y_{p}(x)=5 x^{2}+4 x+2
\]
- \(\quad\) Substitute particular solution into general solution to ODE
\(y=\sin (2 x) \mathrm{e}^{x} c_{2}+\cos (2 x) \mathrm{e}^{x} c_{1}+5 x^{2}+4 x+2\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
```

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+5*y(x)=25*x^2+12,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x} \sin (2 x) c_{2}+\mathrm{e}^{x} \cos (2 x) c_{1}+5 x^{2}+4 x+2
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 35
DSolve[y''[x]-2*y'[x]+5*y[x]==25*x^2+12,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow 5 x^{2}+4 x+c_{2} e^{x} \cos (2 x)+c_{1} e^{x} \sin (2 x)+2
\]

\section*{10.5 problem 1(e)}
10.5.1 Solving as second order linear constant coeff ode 1684
10.5.2 Solving using Kovacic algorithm 1687
10.5.3 Maple step by step solution 1692

Internal problem ID [6306]
Internal file name [OUTPUT/5554_Sunday_June_05_2022_03_43_20_PM_43368877/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-y^{\prime}-6 y=20 \mathrm{e}^{-2 x}
\]

\subsection*{10.5.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-1, C=-6, f(x)=20 \mathrm{e}^{-2 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-6 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-1, C=-6\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-1, C=-6\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
\]

Or
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
20 \mathrm{e}^{-2 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{3 x}\right\}
\]

Since \(\mathrm{e}^{-2 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x \mathrm{e}^{-2 x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \mathrm{e}^{-2 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-5 A_{1} \mathrm{e}^{-2 x}=20 \mathrm{e}^{-2 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-4\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-4 x \mathrm{e}^{-2 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-4 x \mathrm{e}^{-2 x}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following

Figure 310: Slope field plot
Verification of solutions
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-4 x \mathrm{e}^{-2 x}
\]

Verified OK.

\subsection*{10.5.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 249: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{25}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-6 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
20 \mathrm{e}^{-2 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-2 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{3 x}}{5}, \mathrm{e}^{-2 x}\right\}
\]

Since \(\mathrm{e}^{-2 x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x \mathrm{e}^{-2 x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \mathrm{e}^{-2 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-5 A_{1} \mathrm{e}^{-2 x}=20 \mathrm{e}^{-2 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-4\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-4 x \mathrm{e}^{-2 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}\right)+\left(-4 x \mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}-4 x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
\]

Figure 311: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}-4 x \mathrm{e}^{-2 x}
\]

Verified OK.

\subsection*{10.5.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y^{\prime}-6 y=20 \mathrm{e}^{-2 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE \(r^{2}-r-6=0\)
- Factor the characteristic polynomial
\[
(r+2)(r-3)=0
\]
- Roots of the characteristic polynomial
\[
r=(-2,3)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-2 x}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{3 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)
\]Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=20 \mathrm{e}^{-2 x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{3 x} \\
-2 \mathrm{e}^{-2 x} & 3 \mathrm{e}^{3 x}
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-4\left(-\mathrm{e}^{5 x}\left(\int \mathrm{e}^{-5 x} d x\right)+\int 1 d x\right) \mathrm{e}^{-2 x}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{4(5 x+1) \mathrm{e}^{-2 x}}{5}
\]
- Substitute particular solution into general solution to ODE \(y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}-\frac{4(5 x+1) \mathrm{e}^{-2 x}}{5}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
```

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=20*exp(-2*x),y(x), singsol=all)

```
\[
y(x)=\left(c_{2} \mathrm{e}^{5 x}+c_{1}-4 x\right) \mathrm{e}^{-2 x}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 32
DSolve[y'' \([x]-y\) ' \([x]-6 * y[x]==20 * \operatorname{Exp}[-2 * x], y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{1}{5} e^{-2 x}\left(-20 x+5 c_{2} e^{5 x}-4+5 c_{1}\right)
\]

\section*{10.6 problem 1(f)}
10.6.1 Solving as second order linear constant coeff ode 1695
10.6.2 Solving using Kovacic algorithm 1698
10.6.3 Maple step by step solution . 1703

Internal problem ID [6307]
Internal file name [OUTPUT/5555_Sunday_June_05_2022_03_43_21_PM_40034600/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}-3 y^{\prime}+2 y=14 \sin (2 x)-18 \cos (2 x)
\]

\subsection*{10.6.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-3, C=2, f(x)=14 \sin (2 x)-18 \cos (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-3, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-3, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
14 \sin (2 x)-18 \cos (2 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (2 x), \sin (2 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \cos (2 x)-2 A_{2} \sin (2 x)+6 A_{1} \sin (2 x)-6 A_{2} \cos (2 x)=14 \sin (2 x)-18 \cos (2 x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=3, A_{2}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=3 \cos (2 x)+2 \sin (2 x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+(3 \cos (2 x)+2 \sin (2 x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+3 \cos (2 x)+2 \sin (2 x) \tag{1}
\end{equation*}
\]

Figure 312: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+3 \cos (2 x)+2 \sin (2 x)
\]

Verified OK.

\subsection*{10.6.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 251: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
14 \sin (2 x)-18 \cos (2 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (2 x), \sin (2 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC__set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \cos (2 x)-2 A_{2} \sin (2 x)+6 A_{1} \sin (2 x)-6 A_{2} \cos (2 x)=14 \sin (2 x)-18 \cos (2 x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=3, A_{2}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=3 \cos (2 x)+2 \sin (2 x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}\right)+(3 \cos (2 x)+2 \sin (2 x))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+3 \cos (2 x)+2 \sin (2 x) \tag{1}
\end{equation*}
\]

Figure 313: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+3 \cos (2 x)+2 \sin (2 x)
\]

Verified OK.

\subsection*{10.6.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-3 y^{\prime}+2 y=14 \sin (2 x)-18 \cos (2 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}-3 r+2=0\)
- Factor the characteristic polynomial
\((r-1)(r-2)=0\)
- Roots of the characteristic polynomial
\(r=(1,2)\)
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad 2\) nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=14 \sin (2 x)-18 \cos (2 x\right.
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=2 \mathrm{e}^{x}\left(\int(-7 \sin (2 x)+9 \cos (2 x)) \mathrm{e}^{-x} d x\right)-2 \mathrm{e}^{2 x}\left(\int(-7 \sin (2 x)+9 \cos (2 x)) \mathrm{e}^{-2 x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=3 \cos (2 x)+2 \sin (2 x)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+3 \cos (2 x)+2 \sin (2 x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve(diff (y (x),x\$2)-3*diff (y(x),x)+2*y(x)=14*\operatorname{sin}(2*x)-18*\operatorname{cos}(2*x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{2 x} c_{1}+\mathrm{e}^{x} c_{2}+2 \sin (2 x)+3 \cos (2 x)
\]

Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 31
DSolve \([y\) '' \([x]-3 * y\) ' \([x]+2 * y[x]==14 * \operatorname{Sin}[2 * x]-18 * \operatorname{Cos}[2 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
y(x) \rightarrow 2 \sin (2 x)+3 \cos (2 x)+e^{x}\left(c_{2} e^{x}+c_{1}\right)
\]

\section*{10.7 problem 1(g)}
10.7.1 Solving as second order linear constant coeff ode 1705
10.7.2 Solving using Kovacic algorithm 1708
10.7.3 Maple step by step solution . 1713

Internal problem ID [6308]
Internal file name [OUTPUT/5556_Sunday_June_05_2022_03_43_23_PM_88038474/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=2 \cos (x)
\]

\subsection*{10.7.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=2 \cos (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
2 \cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
[\{\cos (x) x, \sin (x) x\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x) x+A_{2} \sin (x) x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=2 \cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=0, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\sin (x) x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\sin (x) x)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\sin (x) x \tag{1}
\end{equation*}
\]

Figure 314: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\sin (x) x
\]

Verified OK.

\subsection*{10.7.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 253: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
2 \cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{\cos (x) x, \sin (x) x\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x) x+A_{2} \sin (x) x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x)+2 A_{2} \cos (x)=2 \cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=0, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\sin (x) x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\sin (x) x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\sin (x) x \tag{1}
\end{equation*}
\]

Figure 315: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\sin (x) x
\]

Verified OK.

\subsection*{10.7.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=2 \cos (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\) \(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \cos (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (2 x) d x\right)+2 \sin (x)\left(\int \cos (x)^{2} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{\cos (x)}{2}+\sin (x) x
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x)}{2}+\sin (x) x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve(diff \((y(x), x \$ 2)+y(x)=2 * \cos (x), y(x)\), singsol=all)
\[
y(x)=\left(x+c_{2}\right) \sin (x)+\cos (x) c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 20
DSolve[y''[x]+y[x]==2*Cos[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow\left(1+c_{1}\right) \cos (x)+\left(x+c_{2}\right) \sin (x)
\]

\section*{10.8 problem 1(h)}
\[
\text { 10.8.1 Solving as second order linear constant coeff ode } 1716
\]
10.8.2 Solving as second order integrable as is ode 1720
10.8.3 Solving as second order ode missing y ode 1722
10.8.4 Solving as type second_order_integrable_as_is (not using ABC version) 1724
10.8.5 Solving using Kovacic algorithm 1726
10.8.6 Solving as exact linear second order ode ode 1730
10.8.7 Maple step by step solution 1733

Internal problem ID [6309]
Internal file name [OUTPUT/5557_Sunday_June_05_2022_03_43_25_PM_97123339/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```
\[
y^{\prime \prime}-2 y^{\prime}=12 x-10
\]

\subsection*{10.8.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=0, f(x)=12 x-10\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=0\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(0)} \\
& =1 \pm 1
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+1 \\
& \lambda_{2}=1-1
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=0
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(0) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1+x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{2 x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x, x^{2}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{2} x^{2}+A_{1} x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 x A_{2}-2 A_{1}+2 A_{2}=12 x-10
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=-3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-3 x^{2}+2 x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2}\right)+\left(-3 x^{2}+2 x\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} \mathrm{e}^{2 x}+c_{2}-3 x^{2}+2 x
\end{aligned}
\]

Figure 316: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2}-3 x^{2}+2 x
\]

Verified OK.

\subsection*{10.8.2 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \quad \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int(12 x-10) d x \\
& y^{\prime}-2 y=6 x^{2}-10 x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-2 \\
& q(x)=6 x^{2}+c_{1}-10 x
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=6 x^{2}+c_{1}-10 x
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(6 x^{2}+c_{1}-10 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(6 x^{2}+c_{1}-10 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=-\frac{\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=-\frac{\mathrm{e}^{2 x}\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 317: Slope field plot

Verification of solutions
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{10.8.3 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)-2 p(x)-12 x+10=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-2 \\
q(x) & =12 x-10
\end{aligned}
\]

Hence the ode is
\[
p^{\prime}(x)-2 p(x)=12 x-10
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(12 x-10) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} p\right) & =\left(\mathrm{e}^{-2 x}\right)(12 x-10) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} p\right) & =\left((12 x-10) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{-2 x} p=\int(12 x-10) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} p=-2 \mathrm{e}^{-2 x}(3 x-1)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
p(x)=-2 \mathrm{e}^{2 x} \mathrm{e}^{-2 x}(3 x-1)+c_{1} \mathrm{e}^{2 x}
\]
which simplifies to
\[
p(x)=-6 x+2+c_{1} \mathrm{e}^{2 x}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-6 x+2+c_{1} \mathrm{e}^{2 x}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-6 x+2+c_{1} \mathrm{e}^{2 x} \mathrm{~d} x \\
& =2 x+\frac{c_{1} \mathrm{e}^{2 x}}{2}-3 x^{2}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 x+\frac{c_{1} \mathrm{e}^{2 x}}{2}-3 x^{2}+c_{2} \tag{1}
\end{equation*}
\]

Figure 318: Slope field plot

\section*{Verification of solutions}
\[
y=2 x+\frac{c_{1} \mathrm{e}^{2 x}}{2}-3 x^{2}+c_{2}
\]

Verified OK.

\subsection*{10.8.4 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}-2 y^{\prime}=12 x-10
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int(12 x-10) d x \\
& y^{\prime}-2 y=6 x^{2}-10 x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-2 \\
& q(x)=6 x^{2}+c_{1}-10 x
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=6 x^{2}+c_{1}-10 x
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(6 x^{2}+c_{1}-10 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(6 x^{2}+c_{1}-10 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=-\frac{\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=-\frac{\mathrm{e}^{2 x}\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 319: Slope field plot
Verification of solutions
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{10.8.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-2 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 255: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
\]
\[
\begin{aligned}
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1+x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \frac{\mathrm{e}^{2 x}}{2}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\left\{x, x^{2}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{2} x^{2}+A_{1} x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 x A_{2}-2 A_{1}+2 A_{2}=12 x-10
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=-3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-3 x^{2}+2 x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)+\left(-3 x^{2}+2 x\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}-3 x^{2}+2 x \tag{1}
\end{equation*}
\]

Figure 320: Slope field plot

Verification of solutions
\[
y=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}-3 x^{2}+2 x
\]

Verified OK.

\subsection*{10.8.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
r(x) & =0 \\
s(x) & =12 x-10
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y^{\prime}-2 y=\int 12 x-10 d x
\]

We now have a first order ode to solve which is
\[
y^{\prime}-2 y=6 x^{2}+c_{1}-10 x
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-2 \\
& q(x)=6 x^{2}+c_{1}-10 x
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=6 x^{2}+c_{1}-10 x
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(6 x^{2}+c_{1}-10 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(6 x^{2}+c_{1}-10 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(6 x^{2}+c_{1}-10 x\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=-\frac{\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=-\frac{\mathrm{e}^{2 x}\left(6 x^{2}+c_{1}-4 x-2\right) \mathrm{e}^{-2 x}}{2}+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 321: Slope field plot

\section*{Verification of solutions}
\[
y=-3 x^{2}-\frac{c_{1}}{2}+2 x+1+c_{2} \mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{10.8.7 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}=12 x-10
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-2 r=0
\]
- Factor the characteristic polynomial
\[
r(r-2)=0
\]
- Roots of the characteristic polynomial
\[
r=(0,2)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=1
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
\]
\(\square \quad\) Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=12 x-10\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
1 & \mathrm{e}^{2 x} \\
0 & 2 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\left(\int(6 x-5) d x\right)+\mathrm{e}^{2 x}\left(\int(6 x-5) \mathrm{e}^{-2 x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-3 x^{2}+2 x+1
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1}+c_{2} \mathrm{e}^{2 x}-3 x^{2}+2 x+1\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = 2*_b(_a)+12*_a-10, _b(_a)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(diff (y (x), x\$2)-2*diff (y (x),x)=12*x-10,y(x), singsol=all)

```
\[
y(x)=\frac{\mathrm{e}^{2 x} c_{1}}{2}-3 x^{2}+2 x+c_{2}
\]

Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 27
DSolve[y''[x]-2*y'[x]==12*x-10,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-3 x^{2}+2 x+\frac{1}{2} c_{1} e^{2 x}+c_{2}
\]

\section*{10.9 problem 1(i)}
10.9.1 Solving as second order linear constant coeff ode
10.9.2 Solving as linear second order ode solved by an integrating factor
ode . 1739\(]\)
10.9.3 Solving using Kovacic algorithm 1741
10.9.4 Maple step by step solution . 1746

Internal problem ID [6310]
Internal file name [OUTPUT/5558_Sunday_June_05_2022_03_43_26_PM_74812156/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(i).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_ccoeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-2 y^{\prime}+y=6 \mathrm{e}^{x}
\]

\subsection*{10.9.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=1, f(x)=6 \mathrm{e}^{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=-1\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
6 \mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
\]

Since \(\mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x \mathrm{e}^{x}\right\}\right]
\]

Since \(x \mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \mathrm{e}^{x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{x}=6 \mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=3 x^{2} \mathrm{e}^{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+\left(3 x^{2} \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 322: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{10.9.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-2\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =6 \mathrm{e}^{-x} \mathrm{e}^{x} \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime} & =6 \mathrm{e}^{-x} \mathrm{e}^{x}
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{-x} y\right)^{\prime}=6 x+c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{-x} y\right)=x\left(3 x+c_{1}\right)+c_{2}
\]

Hence the solution is
\[
y=\frac{x\left(3 x+c_{1}\right)+c_{2}}{\mathrm{e}^{-x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following

Figure 323: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{10.9.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 257: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
6 \mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
\]

Since \(\mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\left\{x \mathrm{e}^{x}\right\}\right]
\]

Since \(x \mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \mathrm{e}^{x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{x}=6 \mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=3 x^{2} \mathrm{e}^{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+\left(3 x^{2} \mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 324: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+3 x^{2} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{10.9.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}+y=6 \mathrm{e}^{x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}-2 r+1=0\)
- Factor the characteristic polynomial
\((r-1)^{2}=0\)
- Root of the characteristic polynomial
\[
r=1
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=6 \mathrm{e}^{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-6 \mathrm{e}^{x}\left(\int x d x-\left(\int 1 d x\right) x\right)
\]
- Compute integrals
\[
y_{p}(x)=3 x^{2} \mathrm{e}^{x}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{2} x \mathrm{e}^{x}+3 x^{2} \mathrm{e}^{x}+c_{1} \mathrm{e}^{x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)-2*diff (y (x),x)+y(x)=6*exp(x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x}\left(c_{1} x+3 x^{2}+c_{2}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 21
DSolve[y''[x]-2*y'[x]+y[x]==6*Exp[x],y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{x}\left(3 x^{2}+c_{2} x+c_{1}\right)
\]

\subsection*{10.10 problem \(\mathbf{1}(\mathrm{j})\)}
10.10.1 Solving as second order linear constant coeff ode 1748
10.10.2 Solving using Kovacic algorithm 1751
10.10.3 Maple step by step solution . 1756

Internal problem ID [6311]
Internal file name [OUTPUT/5559_Sunday_June_05_2022_03_43_28_PM_75454561/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(j).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}-2 y^{\prime}+2 y=\sin (x) \mathrm{e}^{x}
\]

\subsection*{10.10.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=2, f(x)=\sin (x) \mathrm{e}^{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(2)} \\
& =1 \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=1\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x) \mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
\]

Since \(\cos (x) \mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{\cos (x) \mathrm{e}^{x} x, \sin (x) \mathrm{e}^{x} x\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x) \mathrm{e}^{x} x+A_{2} \sin (x) \mathrm{e}^{x} x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \cos (x) \mathrm{e}^{x}=\sin (x) \mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x) \mathrm{e}^{x} x}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)\right)+\left(-\frac{\cos (x) \mathrm{e}^{x} x}{2}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)-\frac{\cos (x) \mathrm{e}^{x} x}{2} \tag{1}
\end{equation*}
\]

Figure 325: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)-\frac{\cos (x) \mathrm{e}^{x} x}{2}
\]

Verified OK.

\subsection*{10.10.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 259: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x) \mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\cos (x) \mathrm{e}^{x}\right)+c_{2}\left(\cos (x) \mathrm{e}^{x}(\tan (x))\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x) \mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}\right\}
\]

Since \(\cos (x) \mathrm{e}^{x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{\cos (x) \mathrm{e}^{x} x, \sin (x) \mathrm{e}^{x} x\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x) \mathrm{e}^{x} x+A_{2} \sin (x) \mathrm{e}^{x} x
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \sin (x) \mathrm{e}^{x}+2 A_{2} \cos (x) \mathrm{e}^{x}=\sin (x) \mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x) \mathrm{e}^{x} x}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}\right)+\left(-\frac{\cos (x) \mathrm{e}^{x} x}{2}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)-\frac{\cos (x) \mathrm{e}^{x} x}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)-\frac{\cos (x) \mathrm{e}^{x} x}{2} \tag{1}
\end{equation*}
\]

Figure 326: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)-\frac{\cos (x) \mathrm{e}^{x} x}{2}
\]

Verified OK.

\subsection*{10.10.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}+2 y=\sin (x) \mathrm{e}^{x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-2 r+2=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{2 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(1-\mathrm{I}, 1+\mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x) \mathrm{e}^{x}
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x) \mathrm{e}^{x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x) \mathrm{e}^{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) \mathrm{e}^{x} & \sin (x) \mathrm{e}^{x} \\
-\sin (x) \mathrm{e}^{x}+\cos (x) \mathrm{e}^{x} & \cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{\mathrm{e}^{x}\left(\sin (x)\left(\int \sin (2 x) d x\right)-2 \cos (x)\left(\int \sin (x)^{2} d x\right)\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{(\sin (x)-2 \cos (x) x) \mathrm{e}^{x}}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (x) \mathrm{e}^{x}+c_{2} \sin (x) \mathrm{e}^{x}+\frac{(\sin (x)-2 \cos (x) x) \mathrm{e}^{x}}{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
```

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+2*y(x)=exp(x)*sin(x),y(x), singsol=all)

```
\[
y(x)=-\frac{\left(\left(-2 c_{1}+x\right) \cos (x)+\left(-2 c_{2}-1\right) \sin (x)\right) \mathrm{e}^{x}}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.052 (sec). Leaf size: 28
DSolve[y''[x]-2*y'[x]+2*y[x]==Exp[x]*Sin[x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-\frac{1}{2} e^{x}\left(\left(x-2 c_{2}\right) \cos (x)-2 c_{1} \sin (x)\right)
\]

\subsection*{10.11 problem \(1(k)\)}
10.11.1 Solving as second order linear constant coeff ode 1759
10.11.2 Solving as second order integrable as is ode 1763
10.11.3 Solving as second order ode missing y ode 1765
10.11.4 Solving as type second_order_integrable_as_is (not using ABC
version) . 1767 .
10.11.5 Solving using Kovacic algorithm 1769
10.11.6 Solving as exact linear second order ode ode 1773
10.11.7 Maple step by step solution . 1776

Internal problem ID [6312]
Internal file name [OUTPUT/5560_Sunday_June_05_2022_03_43_29_PM_43068580/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 1(k).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```
\[
y^{\prime \prime}+y^{\prime}=10 x^{4}+2
\]

\subsection*{10.11.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=0, f(x)=10 x^{4}+2\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=0\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(0)} \\
& =-\frac{1}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(0) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x^{4}+1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{1, x, x^{2}, x^{3}, x^{4}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{-x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x, x^{2}, x^{3}, x^{4}, x^{5}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{5} x^{5}+A_{4} x^{4}+A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 x^{4} A_{5}+4 x^{3} A_{4}+20 x^{3} A_{5}+3 x^{2} A_{3}+12 x^{2} A_{4}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2}=10 x^{4}+2
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=242, A_{2}=-120, A_{3}=40, A_{4}=-10, A_{5}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{-x}+2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x \tag{1}
\end{equation*}
\]

Figure 327: Slope field plot

Verification of solutions
\[
y=c_{1}+c_{2} \mathrm{e}^{-x}+2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x
\]

Verified OK.

\subsection*{10.11.2 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}+y^{\prime}\right) d x=\int\left(10 x^{4}+2\right) d x \\
y+y^{\prime}= & 2 x^{5}+2 x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =2 x^{5}+c_{1}+2 x
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=2 x^{5}+c_{1}+2 x
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{5}+c_{1}+2 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(2 x^{5}+c_{1}+2 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 328: Slope field plot

Verification of solutions
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{10.11.3 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p(x)+p^{\prime}(x)-10 x^{4}-2=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
p^{\prime}(x)+p(x) p(x)=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =10 x^{4}+2
\end{aligned}
\]

Hence the ode is
\[
p(x)+p^{\prime}(x)=10 x^{4}+2
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)\left(10 x^{4}+2\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{x} p\right) & =\left(\mathrm{e}^{x}\right)\left(10 x^{4}+2\right) \\
\mathrm{d}\left(\mathrm{e}^{x} p\right) & =\left(\left(10 x^{4}+2\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{x} p=\int\left(10 x^{4}+2\right) \mathrm{e}^{x} \mathrm{~d} x \\
& \mathrm{e}^{x} p=2 \mathrm{e}^{x}\left(5 x^{4}-20 x^{3}+60 x^{2}-120 x+121\right)+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
p(x)=2 \mathrm{e}^{-x} \mathrm{e}^{x}\left(5 x^{4}-20 x^{3}+60 x^{2}-120 x+121\right)+c_{1} \mathrm{e}^{-x}
\]
which simplifies to
\[
p(x)=10 x^{4}-40 x^{3}+120 x^{2}-240 x+242+c_{1} \mathrm{e}^{-x}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=10 x^{4}-40 x^{3}+120 x^{2}-240 x+242+c_{1} \mathrm{e}^{-x}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int 10 x^{4}-40 x^{3}+120 x^{2}-240 x+242+c_{1} \mathrm{e}^{-x} \mathrm{~d} x \\
& =242 x-c_{1} \mathrm{e}^{-x}-120 x^{2}+40 x^{3}-10 x^{4}+2 x^{5}+c_{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=242 x-c_{1} \mathrm{e}^{-x}-120 x^{2}+40 x^{3}-10 x^{4}+2 x^{5}+c_{2} \tag{1}
\end{equation*}
\]

Figure 329: Slope field plot

\section*{Verification of solutions}
\[
y=242 x-c_{1} \mathrm{e}^{-x}-120 x^{2}+40 x^{3}-10 x^{4}+2 x^{5}+c_{2}
\]

Verified OK.

\subsection*{10.11.4 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}+y^{\prime}=10 x^{4}+2
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}+y^{\prime}\right) d x=\int\left(10 x^{4}+2\right) d x \\
y+y^{\prime}= & 2 x^{5}+2 x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =2 x^{5}+c_{1}+2 x
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=2 x^{5}+c_{1}+2 x
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int 1 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{5}+c_{1}+2 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(2 x^{5}+c_{1}+2 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 330: Slope field plot

\section*{Verification of solutions}
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{10.11.5 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 261: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x}
\end{aligned}
\]
\[
\begin{aligned}
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x^{4}+1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{1, x, x^{2}, x^{3}, x^{4}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{-x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x, x^{2}, x^{3}, x^{4}, x^{5}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{5} x^{5}+A_{4} x^{4}+A_{3} x^{3}+A_{2} x^{2}+A_{1} x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 x^{4} A_{5}+4 x^{3} A_{4}+20 x^{3} A_{5}+3 x^{2} A_{3}+12 x^{2} A_{4}+2 x A_{2}+6 x A_{3}+A_{1}+2 A_{2}=10 x^{4}+2
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=242, A_{2}=-120, A_{3}=40, A_{4}=-10, A_{5}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2}\right)+\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x \tag{1}
\end{equation*}
\]

Figure 331: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}+2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x
\]

Verified OK.

\subsection*{10.11.6 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =1 \\
r(x) & =0 \\
s(x) & =10 x^{4}+2
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y+y^{\prime}=\int 10 x^{4}+2 d x
\]

We now have a first order ode to solve which is
\[
y+y^{\prime}=2 x^{5}+c_{1}+2 x
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =2 x^{5}+c_{1}+2 x
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=2 x^{5}+c_{1}+2 x
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(2 x^{5}+c_{1}+2 x\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)\left(2 x^{5}+c_{1}+2 x\right) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int\left(2 x^{5}+c_{1}+2 x\right) \mathrm{e}^{x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242\right) \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 332: Slope field plot

\section*{Verification of solutions}
\[
y=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+c_{1}+242 x-242+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{10.11.7 Maple step by step solution}

Let's solve
\[
y^{\prime}+y^{\prime \prime}=10 x^{4}+2
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r=0
\]
- Factor the characteristic polynomial
\[
r(r+1)=0
\]
- Roots of the characteristic polynomial
\[
r=(-1,0)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-x}
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=1
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}+y_{p}(x)
\]
\(\square \quad\) Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=10 x^{4}+2\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 1 \\
-\mathrm{e}^{-x} & 0
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-2 \mathrm{e}^{-x}\left(\int\left(5 x^{4}+1\right) \mathrm{e}^{x} d x\right)+2\left(\int\left(5 x^{4}+1\right) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x-242
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}+2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x-242
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable -> Calling odsolve with the ODE`, diff(_b(_a), _a) = 10*_a^4-_b(_a)+2, _b(_a)
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 36
```

dsolve(diff(y(x),x\$2)+diff(y(x),x)=10*x^4+2,y(x), singsol=all)

```
\[
y(x)=-c_{1} \mathrm{e}^{-x}-120 x^{2}+40 x^{3}-10 x^{4}+2 x^{5}+242 x+c_{2}
\]

Solution by Mathematica
Time used: 0.106 (sec). Leaf size: 40
DSolve[y''[x]+y'[x]==10*x^4+2,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow 2 x^{5}-10 x^{4}+40 x^{3}-120 x^{2}+242 x-c_{1} e^{-x}+c_{2}
\]

\subsection*{10.12 problem 3(a)}
10.12.1 Solving as second order linear constant coeff ode 1779
10.12.2 Solving using Kovacic algorithm 1783
10.12.3 Maple step by step solution . 1788

Internal problem ID [6313]
Internal file name [OUTPUT/5561_Sunday_June_05_2022_03_43_31_PM_45233317/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+4 y=4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x
\]

\subsection*{10.12.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=4, f(x)=4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Or
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\{\cos (x), \sin (x)\},\{\cos (2 x), \sin (2 x)\},\left\{1, x, x^{2}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (2 x), \sin (2 x)\}
\]

Since \(\cos (2 x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\{\cos (x), \sin (x)\},\{x \cos (2 x), x \sin (2 x)\},\left\{1, x, x^{2}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3} x \cos (2 x)+A_{4} x \sin (2 x)+A_{5}+A_{6} x+A_{7} x^{2}
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 3 A_{1} \cos (x)+3 A_{2} \sin (x)-4 A_{3} \sin (2 x)+4 A_{4} \cos (2 x)+2 A_{7}+4 A_{5}+4 A_{6} x+4 A_{7} x^{2} \\
& \quad=4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=0, A_{3}=0, A_{4}=1, A_{5}=-1, A_{6}=-1, A_{7}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+2 \cos (x)-1+x \sin (2 x)-x+2 x^{2} \tag{1}
\end{equation*}
\]

Figure 333: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}
\]

Verified OK.

\subsection*{10.12.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 263: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
8 \cos (x)^{2}-4+6 \cos (x)+8 x^{2}-4 x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\{\cos (x), \sin (x)\},\{\cos (2 x), \sin (2 x)\},\left\{1, x, x^{2}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sin (2 x)}{2}, \cos (2 x)\right\}
\]

Since \(\cos (2 x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\{\cos (x), \sin (x)\},\{x \cos (2 x), x \sin (2 x)\},\left\{1, x, x^{2}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)+A_{3} x \cos (2 x)+A_{4} x \sin (2 x)+A_{5}+A_{6} x+A_{7} x^{2}
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 3 A_{1} \cos (x)+3 A_{2} \sin (x)-4 A_{3} \sin (2 x)+4 A_{4} \cos (2 x)+2 A_{7}+4 A_{5}+4 A_{6} x+4 A_{7} x^{2} \\
& \quad=4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=2, A_{2}=0, A_{3}=0, A_{4}=1, A_{5}=-1, A_{6}=-1, A_{7}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+2 \cos (x)-1+x \sin (2 x)-x+2 x^{2} \tag{1}
\end{equation*}
\]

Figure 334: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+2 \cos (x)-1+x \sin (2 x)-x+2 x^{2}
\]

Verified OK.

\subsection*{10.12.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y=4 \cos (2 x)+6 \cos (x)+8 x^{2}-4 x
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+4=0\)
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-16})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-2 \mathrm{I}, 2 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (2 x)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (2 x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=4 \cos (2 x)+6 \cos (x)+\right.
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (2 x)\left(\int \sin (2 x)\left(2 \cos (2 x)+3 \cos (x)+4 x^{2}-2 x\right) d x\right)+\sin (2 x)\left(\int \cos (2 x)(-2+\right.
\]
- Compute integrals
\[
y_{p}(x)=2 \cos (x) \sin (x) x+\frac{\cos (x)^{2}}{2}+2 x^{2}+2 \cos (x)-x-\frac{5}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+2 \cos (x) \sin (x) x+\frac{\cos (x)^{2}}{2}+2 x^{2}+2 \cos (x)-x-\frac{5}{4}
\]

\section*{Maple trace}

\section*{- Methods for second order ODEs:}
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful-
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
```

dsolve(diff(y(x),x\$2)+4*y(x)=4*\operatorname{cos}(2*x)+6*\operatorname{cos}(x)+8*x`2-4*x,y(x), singsol=all)

```
\[
y(x)=-1+\frac{\left(4 c_{1}+1\right) \cos (2 x)}{4}+\left(x+c_{2}\right) \sin (2 x)+2 x^{2}-x+2 \cos (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.515 (sec). Leaf size: 43
DSolve \(\left[y\right.\) ' \(\quad[x]+4 * y[x]==4 * \operatorname{Cos}[2 * x]+6 * \operatorname{Cos}[x]+8 * x^{\wedge} 2-4 * x, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow 2 x^{2}-x+x \sin (2 x)+2 \cos (x)+\left(\frac{1}{2}+c_{1}\right) \cos (2 x)+c_{2} \sin (2 x)-1
\]

\subsection*{10.13 problem 3(b)}
10.13.1 Solving as second order linear constant coeff ode
10.13.2 Solving using Kovacic algorithm . 1794
10.13.3 Maple step by step solution 1799

Internal problem ID [6314]
Internal file name [OUTPUT/5562_Sunday_June_05_2022_03_43_33_PM_29618251/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+9 y=2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\]

\subsection*{10.13.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=9, f(x)=2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+3 i \\
\lambda_{2}=-3 i
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=3\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
\]

Or
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-2 x}\right\},\{\cos (x), \sin (x)\},\{\cos (3 x), \sin (3 x)\},\left\{1, x, x^{2}, x^{3}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (3 x), \sin (3 x)\}
\]

Since \(\cos (3 x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{\mathrm{e}^{-2 x}\right\},\{\cos (x), \sin (x)\},\{x \cos (3 x), x \sin (3 x)\},\left\{1, x, x^{2}, x^{3}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\(y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} \cos (x)+A_{3} \sin (x)+A_{4} x \cos (3 x)+A_{5} x \sin (3 x)+A_{6}+A_{7} x+A_{8} x^{2}+A_{9} x^{3}\)

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 13 A_{1} \mathrm{e}^{-2 x}+8 A_{2} \cos (x)+8 A_{3} \sin (x)-6 A_{4} \sin (3 x)+6 A_{5} \cos (3 x)+2 A_{8}+6 A_{9} x \\
& +9 A_{6}+9 A_{7} x+9 A_{8} x^{2}+9 A_{9} x^{3}=2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-2, A_{2}=0, A_{3}=\frac{1}{2}, A_{4}=-\frac{1}{3}, A_{5}=0, A_{6}=0, A_{7}=-2, A_{8}=0, A_{9}=3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3} \tag{1}
\end{equation*}
\]

Figure 335: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}
\]

\section*{Verified OK.}

\subsection*{10.13.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 265: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-9\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (3 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (3 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-2 x}\right\},\{\cos (x), \sin (x)\},\{\cos (3 x), \sin (3 x)\},\left\{1, x, x^{2}, x^{3}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
\]

Since \(\cos (3 x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{\mathrm{e}^{-2 x}\right\},\{\cos (x), \sin (x)\},\{x \cos (3 x), x \sin (3 x)\},\left\{1, x, x^{2}, x^{3}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\(y_{p}=A_{1} \mathrm{e}^{-2 x}+A_{2} \cos (x)+A_{3} \sin (x)+A_{4} x \cos (3 x)+A_{5} x \sin (3 x)+A_{6}+A_{7} x+A_{8} x^{2}+A_{9} x^{3}\)

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 13 A_{1} \mathrm{e}^{-2 x}+8 A_{2} \cos (x)+8 A_{3} \sin (x)-6 A_{4} \sin (3 x)+6 A_{5} \cos (3 x)+2 A_{8}+6 A_{9} x \\
& +9 A_{6}+9 A_{7} x+9 A_{8} x^{2}+9 A_{9} x^{3}=2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-2, A_{2}=0, A_{3}=\frac{1}{2}, A_{4}=-\frac{1}{3}, A_{5}=0, A_{6}=0, A_{7}=-2, A_{8}=0, A_{9}=3\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3} \tag{1}
\end{equation*}
\]

Figure 336: Slope field plot
Verification of solutions
\[
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-2 \mathrm{e}^{-2 x}+\frac{\sin (x)}{2}-\frac{x \cos (3 x)}{3}-2 x+3 x^{3}
\]

Verified OK.

\subsection*{10.13.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+9 y=2 \sin (3 x)+4 \sin (x)-26 \mathrm{e}^{-2 x}+27 x^{3}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+9=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-36})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-3 \mathrm{I}, 3 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (3 x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (3 x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 \sin (3 x)+4 \sin (x)-\right.
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=3\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{\cos (3 x)\left(\int \sin (3 x)\left(-2 \sin (3 x)-4 \sin (x)+26 \mathrm{e}^{-2 x}-27 x^{3}\right) d x\right)}{3}-\frac{\sin (3 x)\left(\int \cos (3 x)\left(-2 \sin (3 x)-4 \sin (x)+26 \mathrm{e}^{-2 x}-27 x^{3}\right) a\right.}{3}
\]
- Compute integrals
\[
y_{p}(x)=2 \cos (x)^{2} \sin (x)-\frac{4 \cos (x)^{3} x}{3}+3 x^{3}+\cos (x) x-2 \mathrm{e}^{-2 x}-2 x
\]
- \(\quad\) Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+2 \cos (x)^{2} \sin (x)-\frac{4 \cos (x)^{3} x}{3}+3 x^{3}+\cos (x) x-2 \mathrm{e}^{-2 x}-2 x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 47
```

dsolve(diff (y(x),x\$2)+9*y(x)=2*sin(3*x)+4*\operatorname{sin}(x)-26*exp(-2*x)+27*x^3,y(x), singsol=all)

```
\[
y(x)=\frac{\left(-2 x+6 c_{1}\right) \cos (3 x)}{6}+\frac{\left(6 c_{2}+3\right) \sin (3 x)}{6}+3 x^{3}-2 x+\frac{\sin (x)}{2}-2 \mathrm{e}^{-2 x}
\]

\section*{Solution by Mathematica}

Time used: 2.215 (sec). Leaf size: 55
DSolve \([y\) ' ' \([x]+9 * y[x]==2 * \operatorname{Sin}[3 * x]+4 * \operatorname{Sin}[x]-26 * \operatorname{Exp}[-2 * x]+27 * x \wedge 3, y[x], x\), IncludeSingularSolution
\[
y(x) \rightarrow 3 x^{3}-2 x-2 e^{-2 x}+\frac{\sin (x)}{2}+\frac{1}{18} \sin (3 x)+\left(-\frac{x}{3}+c_{1}\right) \cos (3 x)+c_{2} \sin (3 x)
\]

\subsection*{10.14 problem 4(a)}
10.14.1 Solving as second order linear constant coeff ode 1801
10.14.2 Solving using Kovacic algorithm 1804
10.14.3 Maple step by step solution . 1809

Internal problem ID [6315]
Internal file name [OUTPUT/5563_Sunday_June_05_2022_03_43_35_PM_96652659/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-3 y=\mathrm{e}^{2 x}
\]

\subsection*{10.14.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=-3, f(x)=\mathrm{e}^{2 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=-3\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-3=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-3\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-3)} \\
& = \pm \sqrt{3}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+\sqrt{3} \\
& \lambda_{2}=-\sqrt{3}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{3} \\
& \lambda_{2}=-\sqrt{3}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(\sqrt{3}) x}+c_{2} e^{(-\sqrt{3}) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{2 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{\sqrt{3} x}, \mathrm{e}^{-\sqrt{3} x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{2 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{1} \mathrm{e}^{2 x}=\mathrm{e}^{2 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\mathrm{e}^{2 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}\right)+\left(\mathrm{e}^{2 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}+\mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 337: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}+\mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{10.14.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{3}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=3 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=3 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 267: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=3\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\sqrt{3} x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-\sqrt{3} x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\sqrt{3} x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-\sqrt{3} x} \int \frac{1}{\mathrm{e}^{-2 \sqrt{3}} x} d x \\
& =\mathrm{e}^{-\sqrt{3} x}\left(\frac{\mathrm{e}^{2 \sqrt{3} x} \sqrt{3}}{6}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\sqrt{3} x}\right)+c_{2}\left(\mathrm{e}^{-\sqrt{3} x}\left(\frac{\mathrm{e}^{2 \sqrt{3} x} \sqrt{3}}{6}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-\sqrt{3} x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{\sqrt{3} x}}{6}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{2 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{2 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sqrt{3} \mathrm{e}^{\sqrt{3} x}}{6}, \mathrm{e}^{-\sqrt{3} x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{2 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{1} \mathrm{e}^{2 x}=\mathrm{e}^{2 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\mathrm{e}^{2 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\sqrt{3} x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{\sqrt{3} x}}{6}\right)+\left(\mathrm{e}^{2 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\sqrt{3} x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{\sqrt{3} x}}{6}+\mathrm{e}^{2 x} \tag{1}
\end{equation*}
\]

Figure 338: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-\sqrt{3} x}+\frac{c_{2} \sqrt{3} \mathrm{e}^{\sqrt{3} x}}{6}+\mathrm{e}^{2 x}
\]

Verified OK.

\subsection*{10.14.3 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}-3 y=\mathrm{e}^{2 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-3=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{12})}{2}
\]
- Roots of the characteristic polynomial
\(r=(\sqrt{3},-\sqrt{3})\)
- \(\quad\) 1st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{\sqrt{3} x}\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{-\sqrt{3} x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{2 x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{\sqrt{3} x} & \mathrm{e}^{-\sqrt{3} x} \\ \sqrt{3} \mathrm{e}^{\sqrt{3} x} & -\sqrt{3} \mathrm{e}^{-\sqrt{3} x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=-2 \sqrt{3}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=\frac{\sqrt{3}\left(\mathrm{e}^{\sqrt{3} x}\left(\int \mathrm{e}^{-x(-2+\sqrt{3})} d x\right)-\mathrm{e}^{-\sqrt{3} x}\left(\int \mathrm{e}^{x(2+\sqrt{3})} d x\right)\right)}{6}\)
- Compute integrals
\[
y_{p}(x)=\mathrm{e}^{2 x}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{\sqrt{3} x}+c_{2} \mathrm{e}^{-\sqrt{3} x}+\mathrm{e}^{2 x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
```

dsolve(diff(y(x),x\$2)-3*y(x)=exp(2*x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{\sqrt{3} x} c_{2}+\mathrm{e}^{-\sqrt{3} x} c_{1}+\mathrm{e}^{2 x}
\]

Solution by Mathematica
Time used: 0.103 (sec). Leaf size: 36
DSolve[y''[x]-3*y[x]==Exp[2*x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{2 x}+c_{1} e^{\sqrt{3} x}+c_{2} e^{-\sqrt{3} x}
\]

\subsection*{10.15 problem 4(b)}
10.15.1 Maple step by step solution

1816
Internal problem ID [6316]
Internal file name [OUTPUT/5564_Sunday_June_05_2022_03_43_37_PM_76520915/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.2. THE METHOD OF UNDETERMINED COEFFICIENTS. Page 67
Problem number: 4(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_3rd_order, _missing_y]]

```
\[
y^{\prime \prime \prime}+y^{\prime}=\sin (x)
\]

This is higher order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE And \(y_{p}\) is a particular solution to the nonhomogeneous ODE. \(y_{h}\) is the solution to
\[
y^{\prime \prime \prime}+y^{\prime}=0
\]

The characteristic equation is
\[
\lambda^{3}+\lambda=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =i \\
\lambda_{3} & =-i
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1}+\mathrm{e}^{-i x} c_{2}+\mathrm{e}^{i x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{-i x} \\
& y_{3}=\mathrm{e}^{i x}
\end{aligned}
\]

Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime}+y^{\prime}=\sin (x)
\]

Let the particular solution be
\[
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
\]

Where \(y_{i}\) are the basis solutions found above for the homogeneous solution \(y_{h}\) and \(U_{i}(x)\) are functions to be determined as follows
\[
U_{i}=(-1)^{n-i} \int \frac{F(x) W_{i}(x)}{a W(x)} d x
\]

Where \(W(x)\) is the Wronskian and \(W_{i}(x)\) is the Wronskian that results after deleting the last row and the \(i\)-th column of the determinant and \(n\) is the order of the ODE or equivalently, the number of basis solutions, and \(a\) is the coefficient of the leading derivative in the ODE, and \(F(x)\) is the RHS of the ODE. Therefore, the first step is to find the Wronskian \(W(x)\). This is given by
\[
W(x)=\left|\begin{array}{ccc}
y_{1} & y_{2} & y_{3} \\
y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} \\
y_{1}^{\prime \prime} & y_{2}^{\prime \prime} & y_{3}^{\prime \prime}
\end{array}\right|
\]

Substituting the fundamental set of solutions \(y_{i}\) found above in the Wronskian gives
\[
\begin{aligned}
& W=\left[\begin{array}{ccc}
1 & \mathrm{e}^{-i x} & \mathrm{e}^{i x} \\
0 & -i \mathrm{e}^{-i x} & i \mathrm{e}^{i x} \\
0 & -\mathrm{e}^{-i x} & -\mathrm{e}^{i x}
\end{array}\right] \\
&|W|=2 i \mathrm{e}^{-i x} \mathrm{e}^{i x}
\end{aligned}
\]

The determinant simplifies to
\[
|W|=2 i
\]

Now we determine \(W_{i}\) for each \(U_{i}\).
\[
\begin{aligned}
& W_{1}(x)=\operatorname{det}\left[\begin{array}{cc}
\mathrm{e}^{-i x} & \mathrm{e}^{i x} \\
-i \mathrm{e}^{-i x} & i \mathrm{e}^{i x}
\end{array}\right] \\
&=2 i \\
& W_{2}(x)=\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{i x} \\
0 & i \mathrm{e}^{i x}
\end{array}\right] \\
&=i \mathrm{e}^{i x} \\
& \begin{aligned}
W_{3}(x) & =\operatorname{det}\left[\begin{array}{cc}
1 & \mathrm{e}^{-i x} \\
0 & -i \mathrm{e}^{-i x}
\end{array}\right] \\
& =-i \mathrm{e}^{-i x}
\end{aligned}
\end{aligned}
\]

Now we are ready to evaluate each \(U_{i}(x)\).
\[
\begin{aligned}
U_{1} & =(-1)^{3-1} \int \frac{F(x) W_{1}(x)}{a W(x)} d x \\
& =(-1)^{2} \int \frac{(\sin (x))(2 i)}{(1)(2 i)} d x \\
& =\int \frac{2 i \sin (x)}{2 i} d x \\
& =\int(\sin (x)) d x \\
& =-\cos (x) \\
U_{2} & =(-1)^{3-2} \int \frac{F(x) W_{2}(x)}{a W(x)} d x \\
& =(-1)^{1} \int \frac{(\sin (x))\left(i \mathrm{e}^{i x}\right)}{(1)(2 i)} d x \\
& =-\int \frac{i \sin (x) \mathrm{e}^{i x}}{2 i} d x \\
& =-\int\left(\frac{\sin (x) \mathrm{e}^{i x}}{2}\right) d x \\
& =-\left(\int \frac{\sin (x) \mathrm{e}^{i x}}{2} d x\right)
\end{aligned}
\]
\[
\begin{aligned}
U_{3} & =(-1)^{3-3} \int \frac{F(x) W_{3}(x)}{a W(x)} d x \\
& =(-1)^{0} \int \frac{(\sin (x))\left(-i \mathrm{e}^{-i x}\right)}{(1)(2 i)} d x \\
& =\int \frac{-i \sin (x) \mathrm{e}^{-i x}}{2 i} d x \\
& =\int\left(-\frac{\sin (x) \mathrm{e}^{-i x}}{2}\right) d x \\
& =\int-\frac{\sin (x) \mathrm{e}^{-i x}}{2} d x
\end{aligned}
\]

Now that all the \(U_{i}\) functions have been determined, the particular solution is found from
\[
y_{p}=U_{1} y_{1}+U_{2} y_{2}+U_{3} y_{3}
\]

Hence
\[
\begin{aligned}
y_{p} & =(-\cos (x)) \\
& +\left(-\left(\int \frac{\sin (x) \mathrm{e}^{i x}}{2} d x\right)\right)\left(\mathrm{e}^{-i x}\right) \\
& +\left(\int-\frac{\sin (x) \mathrm{e}^{-i x}}{2} d x\right)\left(\mathrm{e}^{i x}\right)
\end{aligned}
\]

Therefore the particular solution is
\[
y_{p}=-\cos (x)-\frac{\left(\int \sin (x) \mathrm{e}^{i x} d x\right) \mathrm{e}^{-i x}}{2}-\frac{\left(\int \sin (x) \mathrm{e}^{-i x} d x\right) \mathrm{e}^{i x}}{2}
\]

Which simplifies to
\[
y_{p}=-\left(\int \sin (x)^{2} d x\right) \sin (x)-\frac{\cos (x)\left(\int \sin (2 x) d x+2\right)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\mathrm{e}^{-i x} c_{2}+\mathrm{e}^{i x} c_{3}\right)+\left(-\left(\int \sin (x)^{2} d x\right) \sin (x)-\frac{\cos (x)\left(\int \sin (2 x) d x+2\right)}{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+\mathrm{e}^{-i x} c_{2}+\mathrm{e}^{i x} c_{3}-\left(\int \sin (x)^{2} d x\right) \sin (x)-\frac{\cos (x)\left(\int \sin (2 x) d x+2\right)}{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1}+\mathrm{e}^{-i x} c_{2}+\mathrm{e}^{i x} c_{3}-\left(\int \sin (x)^{2} d x\right) \sin (x)-\frac{\cos (x)\left(\int \sin (2 x) d x+2\right)}{2}
\]

Verified OK.

\subsection*{10.15.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}+y^{\prime}=\sin (x)
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=\sin (x)-y_{2}(x)\)
Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=\sin (x)-y_{2}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}
0 \\
0 \\
\sin (x)
\end{array}\right]
\]
- Define the forcing function
\[
\vec{f}(x)=\left[\begin{array}{c}
0 \\
0 \\
\sin (x)
\end{array}\right]
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored \(\left[-\mathrm{I},\left[\begin{array}{c}-1 \\ \mathrm{I} \\ 1\end{array}\right]\right]\)
- \(\quad\) Solution from eigenpair
\[
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
\mathrm{I} \sin (x)-\cos (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{2}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\left[\begin{array}{c}
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{y}_{p}\) \(\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\vec{y}_{p}(x)\)
Fundamental matrix
- Let \(\phi(x)\) be the matrix whose columns are the independent solutions of the homogeneous syst \(\phi(x)=\left[\begin{array}{ccc}1 & -\cos (x) & \sin (x) \\ 0 & \sin (x) & \cos (x) \\ 0 & \cos (x) & -\sin (x)\end{array}\right]\)
- The fundamental matrix, \(\Phi(x)\) is a normalized version of \(\phi(x)\) satisfying \(\Phi(0)=I\) where \(I\) is t \(\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}\)
- Substitute the value of \(\phi(x)\) and \(\phi(0)\)
\[
\Phi(x)=\left[\begin{array}{ccc}
1 & -\cos (x) & \sin (x) \\
0 & \sin (x) & \cos (x) \\
0 & \cos (x) & -\sin (x)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(x)=\left[\begin{array}{ccc}
1 & \sin (x) & 1-\cos (x) \\
0 & \cos (x) & \sin (x) \\
0 & -\sin (x) & \cos (x)
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(x)\) and solve for \(\vec{v}(x)\) \(\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)\)
- Take the derivative of the particular solution \(\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)\)
- Substitute particular solution and its derivative into the system of ODEs
\(\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der \(A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)\)
- Cancel like terms
\[
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
\]
- Multiply by the inverse of the fundamental matrix
\(\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)\)
- Integrate to solve for \(\vec{v}(x)\)
\(\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\)
- Plug \(\vec{v}(x)\) into the equation for the particular solution \(\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)\)
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{y}_{p}(x)=\left[\begin{array}{c}
1-\frac{\sin (x) x}{2}-\cos (x) \\
\frac{\sin (x)}{2}-\frac{\cos (x) x}{2} \\
\frac{\sin (x) x}{2}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+\left[\begin{array}{c}
1-\frac{\sin (x) x}{2}-\cos (x) \\
\frac{\sin (x)}{2}-\frac{\cos (x) x}{2} \\
\frac{\sin (x) x}{2}
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=1+\left(-1-c_{2}\right) \cos (x)+\frac{\left(2 c_{3}-x\right) \sin (x)}{2}+c_{1}
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] -> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = __b(_a)+sin(_a), _b(_a)`
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
dsolve(diff \((y(x), x \$ 3)+\operatorname{diff}(y(x), x)=\sin (x), y(x)\), singsol=all)
\[
y(x)=\left(-1-c_{2}\right) \cos (x)+\frac{\left(2 c_{1}-x\right) \sin (x)}{2}+c_{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.118 (sec). Leaf size: 31
DSolve[y'' ' \([\mathrm{x}]+\mathrm{y}\) '[x]==Sin[x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-\frac{1}{2}\left(1+2 c_{2}\right) \cos (x)+\left(-\frac{x}{2}+c_{1}\right) \sin (x)+c_{3}
\]

\section*{11 Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71}
11.1 problem 1(a) 1823
11.2 problem 1(b) 1836
11.3 problem 1(c) 1851
11.4 problem 1(d) 1862
11.5 problem 1(e) 1875
11.6 problem 1(f) 1886
11.7 problem 2(a) 1898
11.8 problem 2(b) 1911
11.9 problem 2(c) 1924
11.10problem 2(d) 1938
11.11problem 2(e) 1949
11.12problem 2(f) 1962
11.13problem 2(g) 1975
11.14problem 3 1988
11.15problem 4 2000
11.16problem 5(a) 2011
11.17problem 5(b) 2030
11.18problem 5(c) 2046
11.19problem 5(d) 2066
11.20problem 5(e) 2081

\section*{11.1 problem 1(a)}
11.1.1 Solving as second order linear constant coeff ode 1823
11.1.2 Solving using Kovacic algorithm 1828
11.1.3 Maple step by step solution . 1834

Internal problem ID [6317]
Internal file name [OUTPUT/5565_Sunday_June_05_2022_03_43_39_PM_26639439/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+4 y=\tan (2 x)
\]

\subsection*{11.1.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=4, f(x)=\tan (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Or
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
\]

Which simplifies to
\[
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
\]

Which simplifies to
\[
W=2
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (2 x) \tan (2 x)}{2} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\sin (2 x) \tan (2 x)}{2} d x
\]

Hence
\[
u_{1}=\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (2 x) \tan (2 x)}{2} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\sin (2 x)}{2} d x
\]

Hence
\[
u_{2}=-\frac{\cos (2 x)}{4}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}\right) \cos (2 x)-\frac{\cos (2 x) \sin (2 x)}{4}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4} \tag{1}
\end{equation*}
\]

Figure 339: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]

Verified OK.

\subsection*{11.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 270: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
\]

Which simplifies to
\[
W=\cos (2 x)^{2}+\sin (2 x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\sin (2 x) \tan (2 x)}{2}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\sin (2 x) \tan (2 x)}{2} d x
\]

Hence
\[
u_{1}=\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (2 x) \tan (2 x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \sin (2 x) d x
\]

Hence
\[
u_{2}=-\frac{\cos (2 x)}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\frac{\sin (2 x)}{4}-\frac{\ln (\sec (2 x)+\tan (2 x))}{4}\right) \cos (2 x)-\frac{\cos (2 x) \sin (2 x)}{4}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right)+\left(-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4} \tag{1}
\end{equation*}
\]

Figure 340: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]

Verified OK.

\subsection*{11.1.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y=\tan (2 x)
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+4=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-16})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-2 \mathrm{I}, 2 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (2 x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\sin (2 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (2 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\cos (2 x)\left(\int \sin (2 x) \tan (2 x) d x\right)}{2}+\frac{\sin (2 x)\left(\int \sin (2 x) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 33
```

dsolve(diff(y(x),x\$2)+4*y(x)=tan(2*x),y(x), singsol=all)

```
\[
y(x)=\sin (2 x) c_{2}+\cos (2 x) c_{1}-\frac{\cos (2 x) \ln (\sec (2 x)+\tan (2 x))}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.048 (sec). Leaf size: 40
```

DSolve[y''[x]+4*y[x]==Tan[2*x],y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow-\frac{1}{4} \cos (2 x) \operatorname{arctanh}(\sin (2 x))+c_{1} \cos (2 x)+\frac{1}{4}\left(-1+4 c_{2}\right) \sin (2 x)
\]

\section*{11.2 problem 1(b)}
11.2.1 Solving as second order linear constant coeff ode 1836
11.2.2 \(\left.\begin{array}{l}\text { Solving as linear second order ode solved by an integrating factor } \\ \text { ode . } 1840\end{array}\right] .18\).
11.2.3 Solving using Kovacic algorithm 1842
11.2.4 Maple step by step solution . 1848

Internal problem ID [6318]
Internal file name [OUTPUT/5566_Sunday_June_05_2022_03_43_40_PM_41678587/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+2 y^{\prime}+y=\mathrm{e}^{-x} \ln (x)
\]

\subsection*{11.2.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=2, C=1, f(x)=\mathrm{e}^{-x} \ln (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(2)^{2}-(4)(1)(1)} \\
& =-1
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=1\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} x \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{-x}\right)\left(\mathrm{e}^{-x}-x \mathrm{e}^{-x}\right)-\left(x \mathrm{e}^{-x}\right)\left(-\mathrm{e}^{-x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x \mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \ln (x) x d x
\]

Hence
\[
u_{1}=-\frac{\ln (x) x^{2}}{2}+\frac{x^{2}}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \ln (x) d x
\]

Hence
\[
u_{2}=\ln (x) x-x
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=x(\ln (x)-1)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x^{2}(-1+2 \ln (x)) \mathrm{e}^{-x}}{4}+x^{2}(\ln (x)-1) \mathrm{e}^{-x}
\]

Which simplifies to
\[
y_{p}(x)=\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4} \tag{1}
\end{equation*}
\]

Figure 341: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Verified OK.
11.2.2 Solving as linear second order ode solved by an integrating factor ode

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=2\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 2 d x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =\mathrm{e}^{x} \mathrm{e}^{-x} \ln (x) \\
\left(y \mathrm{e}^{x}\right)^{\prime \prime} & =\mathrm{e}^{x} \mathrm{e}^{-x} \ln (x)
\end{aligned}
\]

Integrating once gives
\[
\left(y \mathrm{e}^{x}\right)^{\prime}=x(\ln (x)-1)+c_{1}
\]

Integrating again gives
\[
\left(y \mathrm{e}^{x}\right)=\frac{x\left(2 \ln (x) x+4 c_{1}-3 x\right)}{4}+c_{2}
\]

Hence the solution is
\[
y=\frac{\frac{x\left(2 \ln (x) x+4 c_{1}-3 x\right)}{4}+c_{2}}{\mathrm{e}^{x}}
\]

Or
\[
y=\frac{x^{2} \mathrm{e}^{-x} \ln (x)}{2}+c_{1} x \mathrm{e}^{-x}-\frac{3 x^{2} \mathrm{e}^{-x}}{4}+c_{2} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{2} \mathrm{e}^{-x} \ln (x)}{2}+c_{1} x \mathrm{e}^{-x}-\frac{3 x^{2} \mathrm{e}^{-x}}{4}+c_{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 342: Slope field plot

Verification of solutions
\[
y=\frac{x^{2} \mathrm{e}^{-x} \ln (x)}{2}+c_{1} x \mathrm{e}^{-x}-\frac{3 x^{2} \mathrm{e}^{-x}}{4}+c_{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{11.2.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+2 y^{\prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 272: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
\frac{d}{d x}\left(\mathrm{e}^{-x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{-x}\right)\left(\mathrm{e}^{-x}-x \mathrm{e}^{-x}\right)-\left(x \mathrm{e}^{-x}\right)\left(-\mathrm{e}^{-x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x \mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \ln (x) x d x
\]

Hence
\[
u_{1}=-\frac{\ln (x) x^{2}}{2}+\frac{x^{2}}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \ln (x) d x
\]

Hence
\[
u_{2}=\ln (x) x-x
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{x^{2}(-1+2 \ln (x))}{4} \\
& u_{2}=x(\ln (x)-1)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x^{2}(-1+2 \ln (x)) \mathrm{e}^{-x}}{4}+x^{2}(\ln (x)-1) \mathrm{e}^{-x}
\]

Which simplifies to
\[
y_{p}(x)=\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}\right)+\left(\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4} \tag{1}
\end{equation*}
\]

Figure 343: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]

Verified OK.

\subsection*{11.2.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 y^{\prime}+y=\mathrm{e}^{-x} \ln (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+2 r+1=0
\]
- Factor the characteristic polynomial
\[
(r+1)^{2}=0
\]
- Root of the characteristic polynomial
\[
r=-1
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{-x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+y_{p}(x)
\]

\section*{Find a particular solution \(y_{p}(x)\) of the ODE}
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-x} \ln (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & x \mathrm{e}^{-x} \\
-\mathrm{e}^{-x} & \mathrm{e}^{-x}-x \mathrm{e}^{-x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\mathrm{e}^{-x}\left(-\left(\int \ln (x) x d x\right)+\left(\int \ln (x) d x\right) x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}
\]
- Substitute particular solution into general solution to ODE \(y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\frac{x^{2} \mathrm{e}^{-x}(-3+2 \ln (x))}{4}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
```

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+y(x)=exp(-x)*\operatorname{ln}(x),y(x), singsol=all)

```
\[
y(x)=\frac{\mathrm{e}^{-x}\left(2 \ln (x) x^{2}+4 c_{1} x-3 x^{2}+4 c_{2}\right)}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 36
DSolve \(\left[\mathrm{y}{ }^{\prime \prime}[\mathrm{x}]+2 * \mathrm{y}\right.\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==\operatorname{Exp}[-\mathrm{x}] * \log [\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{4} e^{-x}\left(-3 x^{2}+2 x^{2} \log (x)+4 c_{2} x+4 c_{1}\right)
\]

\section*{11.3 problem 1(c)}
11.3.1 Solving as second order linear constant coeff ode 1851
11.3.2 Solving using Kovacic algorithm 1854
11.3.3 Maple step by step solution . 1859

Internal problem ID [6319]
Internal file name [OUTPUT/5567_Sunday_June_05_2022_03_43_42_PM_84385027/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}-2 y^{\prime}-3 y=64 x \mathrm{e}^{-x}
\]

\subsection*{11.3.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=-3, f(x)=64 x \mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}-3 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=-3\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda-3=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=-3\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-3)} \\
& =1 \pm 2
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=1+2 \\
\lambda_{2}=1-2
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
64 x \mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-x}, \mathrm{e}^{3 x}\right\}
\]

Since \(\mathrm{e}^{-x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \mathrm{e}^{-x}+A_{2} x^{2} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 A_{1} \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}-8 A_{2} x \mathrm{e}^{-x}=64 x \mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-4, A_{2}=-8\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}\right)+\left(-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 344: Slope field plot
Verification of solutions
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-x}-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{11.3.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 274: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-2 x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{4 x}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{4 x}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}-3 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
64 x \mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{x \mathrm{e}^{-x}, \mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{3 x}}{4}, \mathrm{e}^{-x}\right\}
\]

Since \(\mathrm{e}^{-x}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x \mathrm{e}^{-x}, x^{2} \mathrm{e}^{-x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x \mathrm{e}^{-x}+A_{2} x^{2} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 A_{1} \mathrm{e}^{-x}+2 A_{2} \mathrm{e}^{-x}-8 A_{2} x \mathrm{e}^{-x}=64 x \mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-4, A_{2}=-8\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}\right)+\left(-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 345: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{3 x}}{4}-4 x \mathrm{e}^{-x}-8 x^{2} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{11.3.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}-3 y=64 x \mathrm{e}^{-x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-2 r-3=0
\]
- Factor the characteristic polynomial
\((r+1)(r-3)=0\)
- Roots of the characteristic polynomial
\(r=(-1,3)\)
- 1st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{3 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=64 x \mathrm{e}^{-x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{3 x} \\ -\mathrm{e}^{-x} & 3 \mathrm{e}^{3 x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=4 \mathrm{e}^{2 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-16 \mathrm{e}^{-x}\left(\int x d x\right)+16 \mathrm{e}^{3 x}\left(\int \mathrm{e}^{-4 x} x d x\right)\)
- Compute integrals
\[
y_{p}(x)=\mathrm{e}^{-x}\left(-8 x^{2}-4 x-1\right)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}+\mathrm{e}^{-x}\left(-8 x^{2}-4 x-1\right)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
```

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-3*y(x)=64*x*exp(-x),y(x), singsol=all)

```
\[
y(x)=\left(-8 x^{2}+c_{1}-4 x\right) \mathrm{e}^{-x}+c_{2} \mathrm{e}^{3 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.049 (sec). Leaf size: 31
```

DSolve[y''[x]-2*y'[x]-3*y[x]==64*x*Exp[-x],y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow e^{-x}\left(-8 x^{2}-4 x+c_{2} e^{4 x}-1+c_{1}\right)
\]

\section*{11.4 problem 1(d)}
11.4.1 Solving as second order linear constant coeff ode 1862
11.4.2 Solving using Kovacic algorithm 1867
11.4.3 Maple step by step solution . 1873

Internal problem ID [6320]
Internal file name [OUTPUT/5568_Sunday_June_05_2022_03_43_43_PM_22734416/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+2 y^{\prime}+5 y=\mathrm{e}^{-x} \sec (2 x)
\]

\subsection*{11.4.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=2, C=5, f(x)=\mathrm{e}^{-x} \sec (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+5 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-1\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (2 x) \\
& y_{2}=\mathrm{e}^{-x} \sin (2 x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (2 x)\right) & \frac{d}{d x}\left(\mathrm{e}^{-x} \sin (2 x)\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & \left(\mathrm{e}^{-x} \cos (2 x)\right)\left(-\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)\right) \\
& -\left(\mathrm{e}^{-x} \sin (2 x)\right)\left(-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x)\right)
\end{aligned}
\]

Which simplifies to
\[
W=2 \mathrm{e}^{-2 x} \cos (2 x)^{2}+2 \mathrm{e}^{-2 x} \sin (2 x)^{2}
\]

Which simplifies to
\[
W=2 \mathrm{e}^{-2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\mathrm{e}^{-2 x} \sin (2 x) \sec (2 x)}{2 \mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\tan (2 x)}{2} d x
\]

Hence
\[
u_{1}=-\frac{\ln \left(1+\tan (2 x)^{2}\right)}{8}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \cos (2 x) \sec (2 x)}{2 \mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{1}{2} d x
\]

Hence
\[
u_{2}=\frac{x}{2}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{\ln \left(\sec (2 x)^{2}\right)}{8} \\
& u_{2}=\frac{x}{2}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln \left(\sec (2 x)^{2}\right) \mathrm{e}^{-x} \cos (2 x)}{8}+\frac{x \mathrm{e}^{-x} \sin (2 x)}{2}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8} \tag{1}
\end{equation*}
\]

Figure 346: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]

Verified OK.

\subsection*{11.4.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 276: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
\]
\[
\begin{aligned}
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x} \cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+5 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\mathrm{e}^{-x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (2 x) c_{2}}{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \cos (2 x) \\
& y_{2}=\frac{\mathrm{e}^{-x} \sin (2 x)}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \frac{\mathrm{e}^{-x} \sin (2 x)}{2} \\
\frac{d}{d x}\left(\mathrm{e}^{-x} \cos (2 x)\right) & \frac{d}{d x}\left(\frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \frac{\mathrm{e}^{-x} \sin (2 x)}{2} \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\frac{\mathrm{e}^{-x} \sin (2 x)}{2}+\mathrm{e}^{-x} \cos (2 x)
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & \left(\mathrm{e}^{-x} \cos (2 x)\right)\left(-\frac{\mathrm{e}^{-x} \sin (2 x)}{2}+\mathrm{e}^{-x} \cos (2 x)\right) \\
& -\left(\frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right)\left(-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x)\right)
\end{aligned}
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x} \cos (2 x)^{2}+\mathrm{e}^{-2 x} \sin (2 x)^{2}
\]

Which simplifies to
\[
W=\mathrm{e}^{-2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\mathrm{e}^{-2 x} \sin (2 x) \sec (2 x)}{2}}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\tan (2 x)}{2} d x
\]

Hence
\[
u_{1}=-\frac{\ln \left(1+\tan (2 x)^{2}\right)}{8}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \cos (2 x) \sec (2 x)}{\mathrm{e}^{-2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int 1 d x
\]

Hence
\[
u_{2}=x
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{\ln \left(\sec (2 x)^{2}\right)}{8} \\
& u_{2}=x
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln \left(\sec (2 x)^{2}\right) \mathrm{e}^{-x} \cos (2 x)}{8}+\frac{x \mathrm{e}^{-x} \sin (2 x)}{2}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (2 x) c_{2}}{2}\right)+\left(-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (2 x) c_{2}}{2}-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8} \tag{1}
\end{equation*}
\]

Figure 347: Slope field plot
Verification of solutions
\[
y=\mathrm{e}^{-x} \cos (2 x) c_{1}+\frac{\mathrm{e}^{-x} \sin (2 x) c_{2}}{2}-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]

Verified OK.

\subsection*{11.4.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 y^{\prime}+5 y=\mathrm{e}^{-x} \sec (2 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+2 r+5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{-16})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-1-2 \mathrm{I},-1+2 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)\)
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=\mathrm{e}^{-x} \cos (2 x) c_{1}+\mathrm{e}^{-x} \sin (2 x) c_{2}+y_{p}(x)
\]
\(\square \quad\) Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-x} \sec (2 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\
-\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-2 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\cos (2 x)\left(\int \tan (2 x) d x\right)-\sin (2 x)\left(\int 1 d x\right)\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]
- Substitute particular solution into general solution to ODE
\[
y=\mathrm{e}^{-x} \cos (2 x) c_{1}+\mathrm{e}^{-x} \sin (2 x) c_{2}-\frac{\mathrm{e}^{-x}\left(\ln \left(\sec (2 x)^{2}\right) \cos (2 x)-4 x \sin (2 x)\right)}{8}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 39
```

dsolve(diff(y(x),x\$2)+2*diff(y(x),x)+5*y(x)=exp(-x)*\operatorname{sec}(2*x),y(x), singsol=all)

```
\[
y(x)=\frac{\left(\frac{\cos (2 x) \ln (\cos (2 x))}{2}+2 \cos (2 x) c_{1}+\sin (2 x)\left(2 c_{2}+x\right)\right) \mathrm{e}^{-x}}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.068 (sec). Leaf size: 42
\[
\begin{aligned}
& \text { DSolve }\left[\mathrm{y} '^{\prime}[\mathrm{x}]+2 * \mathrm{y} \mathrm{'}^{[\mathrm{x}]+5 * \mathrm{y}[\mathrm{x}]==\operatorname{Exp}[-\mathrm{x}] * \operatorname{Sec}[2 * \mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}, \text { IncludeSingularSolutions } \rightarrow \text { True }]}\right. \\
& \qquad y(x) \rightarrow \frac{1}{4} e^{-x}\left(2\left(x+2 c_{1}\right) \sin (2 x)+\cos (2 x)\left(\log (\cos (2 x))+4 c_{2}\right)\right)
\end{aligned}
\]

\section*{11.5 problem 1(e)}
11.5.1 Solving as second order linear constant coeff ode 1875
11.5.2 Solving using Kovacic algorithm 1878
11.5.3 Maple step by step solution . 1883

Internal problem ID [6321]
Internal file name [OUTPUT/5569_Sunday_June_05_2022_03_43_45_PM_50315069/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 y^{\prime \prime}+3 y^{\prime}+y=\mathrm{e}^{-3 x}
\]

\subsection*{11.5.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=2, B=3, C=1, f(x)=\mathrm{e}^{-3 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
2 y^{\prime \prime}+3 y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=2, B=3, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
2 \lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
2 \lambda^{2}+3 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=2, B=3, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(2)} \pm \frac{1}{(2)(2)} \sqrt{3^{2}-(4)(2)(1)} \\
& =-\frac{3}{4} \pm \frac{1}{4}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{3}{4}+\frac{1}{4} \\
& \lambda_{2}=-\frac{3}{4}-\frac{1}{4}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2} \\
& \lambda_{2}=-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(-\frac{1}{2}\right) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-3 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-3 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-x}, \mathrm{e}^{-\frac{x}{2}}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-3 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
10 A_{1} \mathrm{e}^{-3 x}=\mathrm{e}^{-3 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{10}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-3 x}}{10}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{\mathrm{e}^{-3 x}}{10}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{-3 x}}{10} \tag{1}
\end{equation*}
\]

Figure 348: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-\frac{x}{2}}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{-3 x}}{10}
\]

Verified OK.

\subsection*{11.5.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
2 y^{\prime \prime}+3 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =2 \\
B & =3 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{16} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=16
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{16} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 278: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{16}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{4}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{2} d x} \\
& =z_{1} e^{-\frac{3 x}{4}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{4}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{2} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-\frac{3 x}{2}}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(2 \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(2 \mathrm{e}^{\frac{x}{2}}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
2 y^{\prime \prime}+3 y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{-\frac{x}{2}}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-3 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-3 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{2 \mathrm{e}^{-\frac{x}{2}}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-3 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
10 A_{1} \mathrm{e}^{-3 x}=\mathrm{e}^{-3 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{10}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-3 x}}{10}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{-\frac{x}{2}}\right)+\left(\frac{\mathrm{e}^{-3 x}}{10}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{-3 x}}{10} \tag{1}
\end{equation*}
\]

Figure 349: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+2 c_{2} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{-3 x}}{10}
\]

Verified OK.

\subsection*{11.5.3 Maple step by step solution}

Let's solve
\[
2 y^{\prime \prime}+3 y^{\prime}+y=\mathrm{e}^{-3 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{3 y^{\prime}}{2}-\frac{y}{2}+\frac{\mathrm{e}^{-3 x}}{2}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{2}+\frac{y}{2}=\frac{\mathrm{e}^{-3 x}}{2}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+\frac{3}{2} r+\frac{1}{2}=0
\]
- Factor the characteristic polynomial
\[
\frac{(r+1)(2 r+1)}{2}=0
\]
- Roots of the characteristic polynomial
\[
r=\left(-1,-\frac{1}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-x}
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-\frac{x}{2}}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{\mathrm{e}^{-3 x}}{2}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & \mathrm{e}^{-\frac{x}{2}} \\
-\mathrm{e}^{-x} & -\frac{\mathrm{e}^{-\frac{x}{2}}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\mathrm{e}^{-\frac{3 x}{2}}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{-x}\left(\int \mathrm{e}^{-2 x} d x\right)+\mathrm{e}^{-\frac{x}{2}}\left(\int \mathrm{e}^{-\frac{5 x}{2}} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{-3 x}}{10}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-\frac{x}{2}}+\frac{\mathrm{e}^{-3 x}}{10}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 24
```

dsolve(2*diff (y (x),x\$2)+3*diff (y(x),x)+y(x)=exp(-3*x),y(x), singsol=all)

```
\[
y(x)=-2 c_{1} \mathrm{e}^{-x}+\frac{\mathrm{e}^{-3 x}}{10}+\mathrm{e}^{-\frac{x}{2}} c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.11 (sec). Leaf size: 45
DSolve[y''[x]+3*y'[x]+y[x]==Exp[-3*x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-3 x}+c_{1} e^{-\frac{1}{2}(3+\sqrt{5}) x}+c_{2} e^{\frac{1}{2}(\sqrt{5}-3) x}
\]

\section*{11.6 problem 1(f)}
11.6.1 Solving as second order linear constant coeff ode 1886
11.6.2 Solving using Kovacic algorithm 1890
11.6.3 Maple step by step solution . 1895

Internal problem ID [6322]
Internal file name [OUTPUT/5570_Sunday_June_05_2022_03_43_47_PM_29822636/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+\mathrm{e}^{-x}}
\]

\subsection*{11.6.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-3, C=2, f(x)=\frac{1}{1+\mathrm{e}^{-x}}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-3, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-3, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{x} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & \mathrm{e}^{x} \\
2 \mathrm{e}^{2 x} & \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{2 x}\right)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)\left(2 \mathrm{e}^{2 x}\right)
\]

Which simplifies to
\[
W=-\mathrm{e}^{2 x} \mathrm{e}^{x}
\]

Which simplifies to
\[
W=-\mathrm{e}^{3 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{-x}}}{-\mathrm{e}^{3 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{\mathrm{e}^{-2 x}}{1+\mathrm{e}^{-x}} d x
\]

Hence
\[
u_{1}=\ln \left(1+\mathrm{e}^{x}\right)-\mathrm{e}^{-x}-\ln \left(\mathrm{e}^{x}\right)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{-x}}}{-\mathrm{e}^{3 x}} d x
\]

Which simplifies to
\[
u_{2}=\int-\frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} d x
\]

Hence
\[
u_{2}=\ln \left(1+\mathrm{e}^{-x}\right)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\ln \left(1+\mathrm{e}^{x}\right)-\mathrm{e}^{-x}-\ln \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{2 x}+\mathrm{e}^{x} \ln \left(1+\mathrm{e}^{-x}\right)
\]

Which simplifies to
\[
y_{p}(x)=\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]

Verified OK.

\subsection*{11.6.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is
\end{tabular} & no condition \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 280: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& \quad=c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}\left(\mathrm{e}^{2 x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{x}\right)\left(2 \mathrm{e}^{2 x}\right)-\left(\mathrm{e}^{2 x}\right)\left(\mathrm{e}^{x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{2 x} \mathrm{e}^{x}
\]

Which simplifies to
\[
W=\mathrm{e}^{3 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\mathrm{e}^{2 x}}{1+\mathrm{e}^{-x}}}{\mathrm{e}^{3 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} d x
\]

Hence
\[
u_{1}=\ln \left(1+\mathrm{e}^{-x}\right)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{\mathrm{e}^{x}}{1+\mathrm{e}^{-x}}}{\mathrm{e}^{3 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x}}{1+\mathrm{e}^{-x}} d x
\]

Hence
\[
u_{2}=\ln \left(1+\mathrm{e}^{x}\right)-\mathrm{e}^{-x}-\ln \left(\mathrm{e}^{x}\right)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\ln \left(1+\mathrm{e}^{x}\right)-\mathrm{e}^{-x}-\ln \left(\mathrm{e}^{x}\right)\right) \mathrm{e}^{2 x}+\mathrm{e}^{x} \ln \left(1+\mathrm{e}^{-x}\right)
\]

Which simplifies to
\[
y_{p}(x)=\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}\right)+\left(\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]

Verified OK.

\subsection*{11.6.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-3 y^{\prime}+2 y=\frac{1}{1+\mathrm{e}^{-x}}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-3 r+2=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r-2)=0
\]
- Roots of the characteristic polynomial
\[
r=(1,2)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{1+\mathrm{e}^{-x}}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{x}\left(\int \frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} d x\right)+\mathrm{e}^{2 x}\left(\int \frac{\mathrm{e}^{-2 x}}{1+\mathrm{e}^{-x}} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\mathrm{e}^{x}\left(\ln \left(1+\mathrm{e}^{x}\right) \mathrm{e}^{x}-\mathrm{e}^{x} \ln \left(\mathrm{e}^{x}\right)+\ln \left(1+\mathrm{e}^{-x}\right)-1\right)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
dsolve(diff \((y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+2 * y(x)=1 /(1+\exp (-x)), y(x)\), singsol=all)
\[
y(x)=\left(\ln \left(\mathrm{e}^{x}+1\right)\left(\mathrm{e}^{x}+1\right)+\left(-\mathrm{e}^{x}-1\right) \ln \left(\mathrm{e}^{x}\right)+\mathrm{e}^{x} c_{1}+c_{2}-1\right) \mathrm{e}^{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.086 (sec). Leaf size: 34
DSolve[y''[x]-3*y'[x]+2*y[x]==1/(1+Exp[-x]),y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{x}\left(2\left(e^{x}+1\right) \operatorname{arctanh}\left(2 e^{x}+1\right)+c_{2} e^{x}-1+c_{1}\right)
\]

\section*{11.7 problem 2(a)}
11.7.1 Solving as second order linear constant coeff ode 1898
11.7.2 Solving using Kovacic algorithm 1902
11.7.3 Maple step by step solution . 1908

Internal problem ID [6323]
Internal file name [OUTPUT/5571_Sunday_June_05_2022_03_43_48_PM_87300387/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sec (x)
\]

\subsection*{11.7.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sec (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \tan (x) d x
\]

Hence
\[
u_{1}=\ln (\cos (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int 1 d x
\]

Hence
\[
u_{2}=x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+\sin (x) x)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x \tag{1}
\end{equation*}
\]

Figure 350: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
\]

Verified OK.

\subsection*{11.7.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 282: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \sec (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \tan (x) d x
\]

Hence
\[
u_{1}=\ln (\cos (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\sec (x) \cos (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int 1 d x
\]

Hence
\[
u_{2}=x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(\ln (\cos (x)) \cos (x)+\sin (x) x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x \tag{1}
\end{equation*}
\]

Figure 351: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
\]

Verified OK.

\subsection*{11.7.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\sec (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\) \(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \tan (x) d x\right)+\sin (x)\left(\int 1 d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\ln (\cos (x)) \cos (x)+\sin (x) x
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\ln (\cos (x)) \cos (x)+\sin (x) x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
```

dsolve(diff(y(x),x\$2)+y(x)=sec(x),y(x), singsol=all)

```
\[
y(x)=-\ln (\sec (x)) \cos (x)+\cos (x) c_{1}+\left(x+c_{2}\right) \sin (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 22
DSolve[y''[x]+y[x]==Sec[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow\left(x+c_{2}\right) \sin (x)+\cos (x)\left(\log (\cos (x))+c_{1}\right)
\]

\section*{11.8 problem 2(b)}
11.8.1 Solving as second order linear constant coeff ode 1911
11.8.2 Solving using Kovacic algorithm 1916
11.8.3 Maple step by step solution . 1922

Internal problem ID [6324]
Internal file name [OUTPUT/5572_Sunday_June_05_2022_03_43_50_PM_43269960/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\cot (x)^{2}
\]

\subsection*{11.8.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\frac{1}{\tan (x)^{2}}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{gathered}
\lambda_{1}=+i \\
\lambda_{2}=-i
\end{gathered}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\sin (x)}{\tan (x)^{2}}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \cos (x) \cot (x) d x
\]

Hence
\[
u_{1}=-\cos (x)-\ln (\csc (x)-\cot (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{\cos (x)}{\tan (x)^{2}}}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \cos (x) \cot (x)^{2} d x
\]

Hence
\[
u_{2}=-\frac{\cos (x)^{4}}{\sin (x)}-\left(2+\cos (x)^{2}\right) \sin (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\cos (x)-\ln (\csc (x)-\cot (x)) \\
& u_{2}=\cos (x) \cot (x)-2 \csc (x)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(-\cos (x)-\ln (\csc (x)-\cot (x))) \cos (x)+(\cos (x) \cot (x)-2 \csc (x)) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\cos (x) \ln (\csc (x)-\cot (x))-2
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\csc (x)-\cot (x))-2)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\csc (x)-\cot (x))-2 \tag{1}
\end{equation*}
\]

Figure 352: Slope field plot
Verification of solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\csc (x)-\cot (x))-2
\]

Verified OK.

\subsection*{11.8.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-1 \\
t & =1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 284: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \cot (x)^{2}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \cos (x) \cot (x) d x
\]

Hence
\[
u_{1}=-\cos (x)-\ln (\csc (x)-\cot (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (x) \cot (x)^{2}}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \cos (x) \cot (x)^{2} d x
\]

Hence
\[
u_{2}=-\frac{\cos (x)^{4}}{\sin (x)}-\left(2+\cos (x)^{2}\right) \sin (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\cos (x)-\ln (\csc (x)-\cot (x)) \\
& u_{2}=\cos (x) \cot (x)-2 \csc (x)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(-\cos (x)-\ln (\csc (x)-\cot (x))) \cos (x)+(\cos (x) \cot (x)-2 \csc (x)) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\cos (x) \ln (\csc (x)-\cot (x))-2
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\csc (x)-\cot (x))-2)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\csc (x)-\cot (x))-2 \tag{1}
\end{equation*}
\]

Figure 353: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\csc (x)-\cot (x))-2
\]

\section*{Verified OK.}

\subsection*{11.8.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\frac{1}{\tan (x)^{2}}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2\) nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{1}{\tan (x)^{2}}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \cos (x) \cot (x) d x\right)+\sin (x)\left(\int \cos (x) \cot (x)^{2} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x) \ln (\csc (x)-\cot (x))-2
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\csc (x)-\cot (x))-2
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.016 (sec). Leaf size: 26
```

dsolve(diff(y(x),x\$2)+y(x)=cot(x)^2,y(x), singsol=all)

```
\[
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-2-\cos (x) \ln (\csc (x)-\cot (x))
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.075 (sec). Leaf size: 34
```

DSolve[y''[x]+y[x]==Cot[x]^2,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow c_{2} \sin (x)+\cos (x)\left(-\log \left(\sin \left(\frac{x}{2}\right)\right)+\log \left(\cos \left(\frac{x}{2}\right)\right)+c_{1}\right)-2
\]

\section*{11.9 problem 2(c)}
11.9.1 Solving as second order linear constant coeff ode 1924
11.9.2 Solving using Kovacic algorithm 1929
11.9.3 Maple step by step solution . 1935

Internal problem ID [6325]
Internal file name [OUTPUT/5573_Sunday_June_05_2022_03_43_51_PM_1270245/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\cot (2 x)
\]

\subsection*{11.9.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\cot (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \cot (2 x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(\cos (x)-\frac{\sec (x)}{2}\right) d x
\]

Hence
\[
u_{1}=-\sin (x)+\frac{\ln (\sec (x)+\tan (x))}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (x) \cot (2 x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int\left(\cos (x) \cot (x)-\frac{\csc (x)}{2}\right) d x
\]

Hence
\[
u_{2}=\cos (x)+\ln (\csc (x)-\cot (x))+\frac{\ln (\csc (x)+\cot (x))}{2}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\sin (x)+\frac{\ln (\sec (x)+\tan (x))}{2}\right) \cos (x) \\
& +\left(\cos (x)+\ln (\csc (x)-\cot (x))+\frac{\ln (\csc (x)+\cot (x))}{2}\right) \sin (x)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)= & \frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x)) \\
& +\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{aligned}
\]

Therefore the general solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& \begin{aligned}
&=\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x))\right. \\
&\left.+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2} \tag{1}\\
& +\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{align*}
\]

Figure 354: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2} \\
& +\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{aligned}
\]

Verified OK.

\subsection*{11.9.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 286: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \cot (2 x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(\cos (x)-\frac{\sec (x)}{2}\right) d x
\]

Hence
\[
u_{1}=-\sin (x)+\frac{\ln (\sec (x)+\tan (x))}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (x) \cot (2 x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int\left(\cos (x) \cot (x)-\frac{\csc (x)}{2}\right) d x
\]

Hence
\[
u_{2}=\cos (x)+\ln (\csc (x)-\cot (x))+\frac{\ln (\csc (x)+\cot (x))}{2}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\sin (x)+\frac{\ln (\sec (x)+\tan (x))}{2}\right) \cos (x) \\
& +\left(\cos (x)+\ln (\csc (x)-\cot (x))+\frac{\ln (\csc (x)+\cot (x))}{2}\right) \sin (x)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)= & \frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x)) \\
& +\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{aligned}
\]

Therefore the general solution is
\[
\begin{aligned}
& y=y_{h}+y_{p} \\
& \begin{aligned}
&=\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x))\right. \\
&\left.+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2} \tag{1}\\
& +\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{align*}
\]

Figure 355: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2} \\
& +\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\end{aligned}
\]

Verified OK.

\subsection*{11.9.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+y=\cot (2 x)\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cot (2 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\cos (x)\left(\int(2 \cos (x)-\sec (x)) d x\right)}{2}+\frac{\sin (x)\left(\int(2 \cos (x) \cot (x)-\csc (x)) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x))}{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}+\sin (x) \ln (\csc (x)-\cot (x))+\frac{\sin (x) \ln (\csc (x)+\cot (x}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
```

dsolve(diff (y(x),x\$2)+y(x)=cot(2*x),y(x), singsol=all)

```
\(y(x)=\sin (x) c_{2}+\cos (x) c_{1}+\frac{\sin (x) \ln (\csc (x)-\cot (x))}{2}+\frac{\cos (x) \ln (\sec (x)+\tan (x))}{2}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.082 (sec). Leaf size: 46
DSolve[y'' \([x]+y[x]==\operatorname{Cot}[2 * x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow \frac{1}{2}\left(\cos (x) \operatorname{arctanh}(\sin (x))+2 c_{1} \cos (x)\right. \\
& \left.\quad+\sin (x)\left(\log \left(\sin \left(\frac{x}{2}\right)\right)-\log \left(\cos \left(\frac{x}{2}\right)\right)+2 c_{2}\right)\right)
\end{aligned}
\]

\subsection*{11.10 problem 2(d)}
11.10.1 Solving as second order linear constant coeff ode
11.10.2 Solving using Kovacic algorithm 1942
11.10.3 Maple step by step solution 1946

Internal problem ID [6326]
Internal file name [OUTPUT/5574_Sunday_June_05_2022_03_43_53_PM_39095857/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\cos (x) x
\]

\subsection*{11.10.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\cos (x) x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x) x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x) x, \sin (x) x, \cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 2 A_{1} \sin (x)+4 A_{1} x \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+2 A_{4} \cos (x) \\
& \quad=\cos (x) x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{4}, A_{2}=\frac{1}{4}, A_{3}=0, A_{4}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4} \tag{1}
\end{equation*}
\]

Figure 356: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}
\]

Verified OK.

\subsection*{11.10.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 288: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x) x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x) x, \sin (x) x, \cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since \(\cos (x)\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2} \sin (x), \cos (x) x, \cos (x) x^{2}, \sin (x) x\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{2} \sin (x)+A_{2} \cos (x) x+A_{3} \cos (x) x^{2}+A_{4} \sin (x) x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& 2 A_{1} \sin (x)+4 A_{1} x \cos (x)-2 A_{2} \sin (x)-4 A_{3} \sin (x) x+2 A_{3} \cos (x)+2 A_{4} \cos (x) \\
& \quad=\cos (x) x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{4}, A_{2}=\frac{1}{4}, A_{3}=0, A_{4}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4} \tag{1}
\end{equation*}
\]

Figure 357: Slope field plot

Verification of solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{x^{2} \sin (x)}{4}+\frac{\cos (x) x}{4}
\]

Verified OK.

\subsection*{11.10.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\cos (x) x
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x) x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\cos (x)\left(\int x \sin (2 x) d x\right)}{2}+\sin (x)\left(\int \cos (x)^{2} x d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{x^{2} \sin (x)}{4}-\frac{\sin (x)}{4}+\frac{\cos (x) x}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{x^{2} \sin (x)}{4}-\frac{\sin (x)}{4}+\frac{\cos (x) x}{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
```

dsolve(diff(y(x),x\$2)+y(x)=x*\operatorname{cos}(x),y(x), singsol=all)

```
\[
y(x)=\frac{\left(x^{2}+4 c_{2}-1\right) \sin (x)}{4}+\frac{\cos (x)\left(4 c_{1}+x\right)}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 34
DSolve[y' ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==\mathrm{x} * \operatorname{Cos}[\mathrm{x}], \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{8}\left(\left(2 x^{2}-1+8 c_{2}\right) \sin (x)+2\left(x+4 c_{1}\right) \cos (x)\right)
\]

\subsection*{11.11 problem 2(e)}
11.11.1 Solving as second order linear constant coeff ode 1949
11.11.2 Solving using Kovacic algorithm 1954
11.11.3 Maple step by step solution . 1959

Internal problem ID [6327]
Internal file name [OUTPUT/5575_Sunday_June_05_2022_03_43_54_PM_39686071/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\tan (x)
\]

\subsection*{11.11.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\tan (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \sin (x) \tan (x) d x
\]

Hence
\[
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x) \cos (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \sin (x) d x
\]

Hence
\[
u_{2}=-\cos (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\cos (x) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
\]

Figure 358: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
\]

\section*{Verified OK.}

\subsection*{11.11.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 290: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \sin (x) \tan (x) d x
\]

Hence
\[
u_{1}=\sin (x)-\ln (\sec (x)+\tan (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x) \cos (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \sin (x) d x
\]

Hence
\[
u_{2}=-\cos (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(\sin (x)-\ln (\sec (x)+\tan (x))) \cos (x)-\cos (x) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x)))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x)) \tag{1}
\end{equation*}
\]

Figure 359: Slope field plot

Verification of solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
\]

Verified OK.

\subsection*{11.11.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\tan (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sin (x) \tan (x) d x\right)+\sin (x)\left(\int \sin (x) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$2)+y(x)=tan(x),y(x), singsol=all)

```
\[
y(x)=\sin (x) c_{2}+\cos (x) c_{1}-\cos (x) \ln (\sec (x)+\tan (x))
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Tan[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \cos (x)(-\operatorname{arctanh}(\sin (x)))+c_{1} \cos (x)+c_{2} \sin (x)
\]

\subsection*{11.12 problem 2(f)}
11.12.1 Solving as second order linear constant coeff ode 1962
11.12.2 Solving using Kovacic algorithm 1967
11.12.3 Maple step by step solution . 1972

Internal problem ID [6328]
Internal file name [OUTPUT/5576_Sunday_June_05_2022_03_43_56_PM_78572068/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=\sec (x) \tan (x)
\]

\subsection*{11.12.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sec (x) \tan (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sec (x) \sin (x) \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \tan (x)^{2} d x
\]

Hence
\[
u_{1}=-\tan (x)+x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x) \cos (x) \sec (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \tan (x) d x
\]

Hence
\[
u_{2}=-\ln (\cos (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(-\tan (x)+x) \cos (x)-\ln (\cos (x)) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x) \tag{1}
\end{equation*}
\]

Figure 360: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]

\section*{Verified OK.}

\subsection*{11.12.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 292: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sec (x) \sin (x) \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \tan (x)^{2} d x
\]

Hence
\[
u_{1}=-\tan (x)+x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x) \cos (x) \sec (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \tan (x) d x
\]

Hence
\[
u_{2}=-\ln (\cos (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=(-\tan (x)+x) \cos (x)-\ln (\cos (x)) \sin (x)
\]

Which simplifies to
\[
y_{p}(x)=-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x) \tag{1}
\end{equation*}
\]

Figure 361: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]

Verified OK.

\subsection*{11.12.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\sec (x) \tan (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x) \tan (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \tan (x)^{2} d x\right)+\sin (x)\left(\int \tan (x) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\sin (x)+\cos (x) x-\ln (\cos (x)) \sin (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$2)+y(x)=sec(x)*tan(x),y(x), singsol=all)

```
\[
y(x)=\ln (\sec (x)) \sin (x)+\left(c_{2}-1\right) \sin (x)+\cos (x)\left(x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 29
DSolve[y'' \([x]+y[x]==\operatorname{Sec}[x] * \operatorname{Tan}[x], y[x], x\), IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \cos (x) \arctan (\tan (x))+c_{1} \cos (x)+\sin (x)\left(-\log (\cos (x))-1+c_{2}\right)
\]

\subsection*{11.13 problem 2(g)}
11.13.1 Solving as second order linear constant coeff ode 1975
11.13.2 Solving using Kovacic algorithm 1979
11.13.3 Maple step by step solution . 1985

Internal problem ID [6329]
Internal file name [OUTPUT/5577_Sunday_June_05_2022_03_43_57_PM_17656438/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 2(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y=\sec (x) \csc (x)
\]

\subsection*{11.13.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\sec (x) \csc (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \sec (x) \csc (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \sec (x) d x
\]

Hence
\[
u_{1}=-\ln (\sec (x)+\tan (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (x) \sec (x) \csc (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \csc (x) d x
\]

Hence
\[
u_{2}=-\ln (\csc (x)+\cot (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x)))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Figure 362: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Verified OK.

\subsection*{11.13.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 294: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (x) \\
& y_{2}=\sin (x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
\frac{d}{d x}(\cos (x)) & \frac{d}{d x}(\sin (x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (x))(\cos (x))-(\sin (x))(-\sin (x))
\]

Which simplifies to
\[
W=\cos (x)^{2}+\sin (x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (x) \sec (x) \csc (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \sec (x) d x
\]

Hence
\[
u_{1}=-\ln (\sec (x)+\tan (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (x) \sec (x) \csc (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \csc (x) d x
\]

Hence
\[
u_{2}=-\ln (\csc (x)+\cot (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+(-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x)))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x \in)
\]

Figure 363: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Verified OK.

\subsection*{11.13.3 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}+y=\sec (x) \csc (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (x) \csc (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \sec (x) d x\right)+\sin (x)\left(\int \csc (x) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)-\cos (x) \ln (\sec (x)+\tan (x))-\sin (x) \ln (\csc (x)+\cot (x))
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
```

dsolve(diff(y(x),x\$2)+y(x)=sec(x)*csc(x),y(x), singsol=all)

```
\(y(x)=\sin (x) c_{2}+\cos (x) c_{1}+\sin (x) \ln (\csc (x)-\cot (x))-\cos (x) \ln (\sec (x)+\tan (x))\)
\(\checkmark\) Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 30
DSolve[y'' \([x]+y[x]==\operatorname{Sec}[x] * \operatorname{Csc}[x], y[x], x\), IncludeSingularSolutions -> True]
\[
y(x) \rightarrow-\sin (x) \operatorname{arctanh}(\cos (x))+c_{1} \cos (x)+c_{2} \sin (x)+\cos (x)\left(-\operatorname{coth}^{-1}(\sin (x))\right)
\]

\subsection*{11.14 problem 3}
11.14.1 Solving as second order linear constant coeff ode 1988
11.14.2 Solving as linear second order ode solved by an integrating factor ode

1991
11.14.3 Solving using Kovacic algorithm 1993
11.14.4 Maple step by step solution . 1998

Internal problem ID [6330]
Internal file name [OUTPUT/5578_Sunday_June_05_2022_03_43_59_PM_97172001/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-2 y^{\prime}+y=2 x
\]

\subsection*{11.14.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=1, f(x)=2 x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(-2)^{2}-(4)(1)(1)} \\
& =1
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=-1\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{2} x+A_{1}-2 A_{2}=2 x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=4, A_{2}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 x+4
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+(2 x+4)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4 \tag{1}
\end{equation*}
\]

Figure 364: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4
\]

Verified OK.

\subsection*{11.14.2 Solving as linear second order ode solved by an integrating factor} ode

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-2\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-2 d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{array}{r}
(M(x) y)^{\prime \prime}=2 x \mathrm{e}^{-x} \\
\left(\mathrm{e}^{-x} y\right)^{\prime \prime}=2 x \mathrm{e}^{-x}
\end{array}
\]

Integrating once gives
\[
\left(\mathrm{e}^{-x} y\right)^{\prime}=-2(1+x) \mathrm{e}^{-x}+c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{-x} y\right)=(2 x+4) \mathrm{e}^{-x}+c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{(2 x+4) \mathrm{e}^{-x}+c_{1} x+c_{2}}{\mathrm{e}^{-x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+2 x+4
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+2 x+4 \tag{1}
\end{equation*}
\]

Figure 365: Slope field plot

Verification of solutions
\[
y=c_{1} x \mathrm{e}^{x}+c_{2} \mathrm{e}^{x}+2 x+4
\]

Verified OK.

\subsection*{11.14.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 296: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{x \mathrm{e}^{x}, \mathrm{e}^{x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
A_{2} x+A_{1}-2 A_{2}=2 x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=4, A_{2}=2\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=2 x+4
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}\right)+(2 x+4)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4 \tag{1}
\end{equation*}
\]

Figure 366: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{x}\left(c_{2} x+c_{1}\right)+2 x+4
\]

Verified OK.

\subsection*{11.14.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}+y=2 x
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-2 r+1=0
\]
- Factor the characteristic polynomial
\[
(r-1)^{2}=0
\]
- Root of the characteristic polynomial
\[
r=1
\]
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & x \mathrm{e}^{x} \\
\mathrm{e}^{x} & x \mathrm{e}^{x}+\mathrm{e}^{x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-2 \mathrm{e}^{x}\left(\int x^{2} \mathrm{e}^{-x} d x-\left(\int x \mathrm{e}^{-x} d x\right) x\right)
\]
- Compute integrals
\[
y_{p}(x)=2 x+4
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{2} x \mathrm{e}^{x}+c_{1} \mathrm{e}^{x}+2 x+4
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)+y(x)=2*x,y(x), singsol=all)

```
\[
y(x)=\left(c_{1} x+c_{2}\right) \mathrm{e}^{x}+2 x+4
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 26
DSolve[y'' \([x]+2 * y\) ' \([x]+y[x]==2 * x, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-x}\left(2 e^{x}(x-2)+c_{2} x+c_{1}\right)
\]

\subsection*{11.15 problem 4}
11.15.1 Solving as second order linear constant coeff ode 2000
11.15.2 Solving using Kovacic algorithm 2003
11.15.3 Maple step by step solution . 2008

Internal problem ID [6331]
Internal file name [OUTPUT/5579_Sunday_June_05_2022_03_44_00_PM_17667703/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-y^{\prime}-6 y=\mathrm{e}^{-x}
\]

\subsection*{11.15.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-1, C=-6, f(x)=\mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-6 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-1, C=-6\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-\lambda-6=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-1, C=-6\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-6)} \\
& =\frac{1}{2} \pm \frac{5}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{5}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{5}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =3 \\
\lambda_{2} & =-2
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(3) x}+c_{2} e^{(-2) x}
\end{aligned}
\]

Or
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{3 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{4}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\mathrm{e}^{-x}}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}\right)+\left(-\frac{\mathrm{e}^{-x}}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
\]

Figure 367: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{3 x} c_{1}+c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-x}}{4}
\]

Verified OK.

\subsection*{11.15.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y^{\prime}-6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{25}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=25 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{25 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 298: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{25}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{5 x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{5 x}}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\frac{\mathrm{e}^{5 x}}{5}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-6 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{3 x}}{5}, \mathrm{e}^{-2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-4 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{4}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\mathrm{e}^{-x}}{4}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}\right)+\left(-\frac{\mathrm{e}^{-x}}{4}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}-\frac{\mathrm{e}^{-x}}{4} \tag{1}
\end{equation*}
\]

Figure 368: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-2 x}+\frac{c_{2} \mathrm{e}^{3 x}}{5}-\frac{\mathrm{e}^{-x}}{4}
\]

Verified OK.

\subsection*{11.15.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y^{\prime}-6 y=\mathrm{e}^{-x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE \(r^{2}-r-6=0\)
- Factor the characteristic polynomial
\[
(r+2)(r-3)=0
\]
- Roots of the characteristic polynomial
\(r=(-2,3)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-2 x}\)
- \(\quad\) 2nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{3 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}+y_{p}(x)\)Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-x}\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-2 x} & \mathrm{e}^{3 x} \\ -2 \mathrm{e}^{-2 x} & 3 \mathrm{e}^{3 x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=5 \mathrm{e}^{x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=\frac{\left(\mathrm{e}^{5 x}\left(\int \mathrm{e}^{-4 x} d x\right)-\left(\int \mathrm{e}^{x} d x\right)\right) \mathrm{e}^{-2 x}}{5}\)
- Compute integrals
\[
y_{p}(x)=-\frac{\mathrm{e}^{-x}}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{3 x}-\frac{\mathrm{e}^{-x}}{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$2)-diff(y(x),x)-6*y(x)=exp(-x),y(x), singsol=all)

```
\[
y(x)=-\frac{\left(-4 c_{2} \mathrm{e}^{5 x}+\mathrm{e}^{x}-4 c_{1}\right) \mathrm{e}^{-2 x}}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 31
DSolve[y''[x]-y'[x]-6*y[x]==Exp[-x],y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow-\frac{e^{-x}}{4}+c_{1} e^{-2 x}+c_{2} e^{3 x}
\]

\subsection*{11.16 problem 5(a)}
11.16.1 Solving as second order change of variable on y method 2 ode . 2011
11.16.2 Solving as second order ode non constant coeff transformation on B ode
11.16.3 Solving using Kovacic algorithm 2021

Internal problem ID [6332]
Internal file name [OUTPUT/5580_Sunday_June_05_2022_03_44_02_PM_71792521/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 5(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=\left(x^{2}-1\right)^{2}
\]

\subsection*{11.16.1 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}-1, B=-2 x, C=2, f(x)=x^{4}-2 x^{2}+1\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

In normal form the ode
\[
\begin{equation*}
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2 x}{x^{2}-1} \\
& q(x)=\frac{2}{x^{2}-1}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}-1}+\frac{2}{x^{2}-1}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{2 x}{x^{2}-1}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)-\frac{2 v^{\prime}(x)}{x^{3}-x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)-\frac{2 u(x)}{x^{3}-x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x\left(x^{2}-1\right)}
\end{aligned}
\]

Where \(f(x)=\frac{2}{x\left(x^{2}-1\right)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x\left(x^{2}-1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x\left(x^{2}-1\right)} d x \\
\ln (u) & =\ln (1+x)+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{\ln (1+x)+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln (1+x)+\ln (x-1)-2 \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1}\left(1-\frac{1}{x^{2}}\right)
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1}\left(x+\frac{1}{x}\right)+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x \\
& =c_{1} x^{2}+c_{2} x+c_{1}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=x^{4}-2 x^{2}+1
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}+1
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & x^{2}+1 \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}+1\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & x^{2}+1 \\
1 & 2 x
\end{array}\right|
\]

Therefore
\[
W=(x)(2 x)-\left(x^{2}+1\right)(1)
\]

Which simplifies to
\[
W=x^{2}-1
\]

Which simplifies to
\[
W=x^{2}-1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(x^{2}+1\right)\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(x^{2}+1\right) d x
\]

Hence
\[
u_{1}=-\frac{1}{3} x^{3}-x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} d x
\]

Which simplifies to
\[
u_{2}=\int x d x
\]

Hence
\[
u_{2}=\frac{x^{2}}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(-\frac{1}{3} x^{3}-x\right) x+\frac{\left(x^{2}+1\right) x^{2}}{2}
\]

Which simplifies to
\[
y_{p}(x)=\frac{1}{6} x^{4}-\frac{1}{2} x^{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x\right)+\left(\frac{1}{6} x^{4}-\frac{1}{2} x^{2}\right) \\
& =\frac{x^{4}}{6}-\frac{x^{2}}{2}+\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) x
\end{aligned}
\]

Which simplifies to
\[
y=\frac{1}{6} x^{4}-\frac{1}{2} x^{2}+c_{1} x^{2}+c_{2} x+c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{6} x^{4}-\frac{1}{2} x^{2}+c_{1} x^{2}+c_{2} x+c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{1}{6} x^{4}-\frac{1}{2} x^{2}+c_{1} x^{2}+c_{2} x+c_{1}
\]

Verified OK.

\subsection*{11.16.2 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x^{2}-1 \\
& B=-2 x \\
& C=2 \\
& F=x^{4}-2 x^{2}+1
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}-1\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-2 x^{3}+2 x v^{\prime \prime}+(4) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
\left(-2 x^{3}+2 x\right) u^{\prime}(x)+4 u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{2 u}{x\left(x^{2}-1\right)}
\end{aligned}
\]

Where \(f(x)=\frac{2}{x\left(x^{2}-1\right)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{2}{x\left(x^{2}-1\right)} d x \\
\int \frac{1}{u} d u & =\int \frac{2}{x\left(x^{2}-1\right)} d x \\
\ln (u) & =\ln (1+x)+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{\ln (1+x)+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{\ln (1+x)+\ln (x-1)-2 \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1}\left(1-\frac{1}{x^{2}}\right)
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(1-\frac{1}{x^{2}}\right)
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int \frac{c_{1}\left(x^{2}-1\right)}{x^{2}} \mathrm{~d} x \\
& =c_{1}\left(x+\frac{1}{x}\right)+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2 x)\left(c_{1}\left(x+\frac{1}{x}\right)+c_{2}\right) \\
& =-2 c_{1} x^{2}-2 c_{2} x-2 c_{1}
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=-2 x^{2}-2
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & -2 x^{2}-2 \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(-2 x^{2}-2\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & -2 x^{2}-2 \\
1 & -4 x
\end{array}\right|
\]

Therefore
\[
W=(x)(-4 x)-\left(-2 x^{2}-2\right)(1)
\]

Which simplifies to
\[
W=-2 x^{2}+2
\]

Which simplifies to
\[
W=-2 x^{2}+2
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(-2 x^{2}-2\right)\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)\left(-2 x^{2}+2\right)} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(x^{2}+1\right) d x
\]

Hence
\[
u_{1}=-\frac{1}{3} x^{3}-x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)\left(-2 x^{2}+2\right)} d x
\]

Which simplifies to
\[
u_{2}=\int-\frac{x}{2} d x
\]

Hence
\[
u_{2}=-\frac{x^{2}}{4}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(-\frac{1}{3} x^{3}-x\right) x-\frac{x^{2}\left(-2 x^{2}-2\right)}{4}
\]

Which simplifies to
\[
y_{p}(x)=\frac{1}{6} x^{4}-\frac{1}{2} x^{2}
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-2 c_{1} x^{2}-2 c_{2} x-2 c_{1}\right)+\left(\frac{1}{6} x^{4}-\frac{1}{2} x^{2}\right) \\
& =\frac{x^{4}}{6}+\frac{\left(-1-4 c_{1}\right) x^{2}}{2}-2 c_{2} x-2 c_{1}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{4}}{6}+\frac{\left(-1-4 c_{1}\right) x^{2}}{2}-2 c_{2} x-2 c_{1} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{x^{4}}{6}+\frac{\left(-1-4 c_{1}\right) x^{2}}{2}-2 c_{2} x-2 c_{1}
\]

Verified OK.

\subsection*{11.16.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2}-1 \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{3}{\left(x^{2}-1\right)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=3 \\
& t=\left(x^{2}-1\right)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{3}{\left(x^{2}-1\right)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is
\end{tabular} & no condition \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 300: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =4-0 \\
& =4
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=\left(x^{2}-1\right)^{2}\). There is a pole at \(x=1\) of order 2 . There is a pole at \(x=-1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 4 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 4 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{3}{4(x-1)^{2}}-\frac{3}{4(x-1)}+\frac{3}{4(1+x)}+\frac{3}{4(1+x)^{2}}
\]

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac{1}{(x-1)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac{1}{(1+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(4>2\) then
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =0 \\
\alpha_{\infty}^{-} & =1
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{3}{\left(x^{2}-1\right)^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 1 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline-1 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 4 & 0 & 0 & 1 \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=1\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}+\alpha_{c_{2}}^{+}\right) \\
& =1-(1) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+\left((+)[\sqrt{r}]_{c_{2}}+\frac{\alpha_{c_{2}}^{+}}{x-c_{2}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x-1)}+\frac{3}{2(1+x)}+(-)(0) \\
& =-\frac{1}{2(x-1)}+\frac{3}{2(1+x)} \\
& =\frac{-2+x}{x^{2}-1}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(-\frac{1}{2(x-1)}+\frac{3}{2(1+x)}\right)(0)+\left(\left(\frac{1}{2(x-1)^{2}}-\frac{3}{2(1+x)^{2}}\right)+\left(-\frac{1}{2(x-1)}+\frac{3}{2(1+x)}\right)^{2}-(\right.\)

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x-1)}+\frac{3}{2(1+x)}\right) d x} \\
& =\frac{(1+x)^{\frac{3}{2}}}{\sqrt{x-1}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2 x}{x^{2}-1} d x} \\
& =z_{1} e^{\frac{\ln (x-1)}{2}+\frac{\ln (1+x)}{2}} \\
& =z_{1}(\sqrt{x-1} \sqrt{1+x})
\end{aligned}
\]

Which simplifies to
\[
y_{1}=(1+x)^{2}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}-1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{\ln (x-1)+\ln (1+x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-\frac{x}{(1+x)^{2}}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left((1+x)^{2}\right)+c_{2}\left((1+x)^{2}\left(-\frac{x}{(1+x)^{2}}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}(1+x)^{2}-c_{2} x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=(1+x)^{2} \\
& y_{2}=-x
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
(1+x)^{2} & -x \\
\frac{d}{d x}\left((1+x)^{2}\right) & \frac{d}{d x}(-x)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
(1+x)^{2} & -x \\
2+2 x & -1
\end{array}\right|
\]

Therefore
\[
W=\left((1+x)^{2}\right)(-1)-(-x)(2+2 x)
\]

Which simplifies to
\[
W=x^{2}-1
\]

Which simplifies to
\[
W=x^{2}-1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{-x\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} d x
\]

Which simplifies to
\[
u_{1}=-\int-x d x
\]

Hence
\[
u_{1}=\frac{x^{2}}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{(1+x)^{2}\left(x^{4}-2 x^{2}+1\right)}{\left(x^{2}-1\right)^{2}} d x
\]

Which simplifies to
\[
u_{2}=\int(1+x)^{2} d x
\]

Hence
\[
u_{2}=\frac{(1+x)^{3}}{3}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{x^{2}(1+x)^{2}}{2}-\frac{(1+x)^{3} x}{3}
\]

Which simplifies to
\[
y_{p}(x)=\frac{x\left(x^{3}-3 x-2\right)}{6}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}(1+x)^{2}-c_{2} x\right)+\left(\frac{x\left(x^{3}-3 x-2\right)}{6}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}(1+x)^{2}-c_{2} x+\frac{x\left(x^{3}-3 x-2\right)}{6} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}(1+x)^{2}-c_{2} x+\frac{x\left(x^{3}-3 x-2\right)}{6}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
```

dsolve((x^2-1)*diff(y(x),x\$2)-2*x*diff(y(x),x)+2*y(x)=(x^2-1)^2,y(x), singsol=all)

```
\[
y(x)=c_{2} x+c_{1} x^{2}+c_{1}+\frac{1}{2}+\frac{1}{6} x^{4}
\]

Solution by Mathematica
Time used: 0.375 (sec). Leaf size: 111
DSolve \(\left[\left(x^{\wedge} 2-1\right) * y{ }^{\prime} '[x]-2 * x * y\right.\) ' \([x]+2 * y[x]==\left(x^{\wedge} 2-1\right)^{\wedge} 2, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x)\)
\(\rightarrow \frac{-x^{6}+4 x^{4}-2 x^{3}+3 x^{2}\left(-1+2 c_{1} \sqrt{-\left(x^{2}-1\right)^{2}}\right)+2 x\left(-6 c_{1} \sqrt{-\left(x^{2}-1\right)^{2}}+3 c_{2} \sqrt{-\left(x^{2}-1\right)^{2}}+1\right)}{6-6 x^{2}}\)

\subsection*{11.17 problem 5(b)}
11.17.1 Solving as second order change of variable on y method 2 ode . 2030
11.17.2 Solving using Kovacic algorithm 2035

Internal problem ID [6333]
Internal file name [OUTPUT/5581_Sunday_June_05_2022_03_44_04_PM_12485339/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 5(b).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_change_of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}-(x+2) y=x(1+x)^{2}
\]

\subsection*{11.17.1 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}+x, B=-x^{2}+2, C=-x-2, f(x)=x(1+x)^{2}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(-x-2) y=0
\]

In normal form the ode
\[
\begin{equation*}
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(-x-2) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =\frac{-x^{2}+2}{x(1+x)} \\
q(x) & =\frac{-x-2}{x(1+x)}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n\left(-x^{2}+2\right)}{x^{2}(1+x)}+\frac{-x-2}{x(1+x)}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\left(-\frac{2}{x}+\frac{-x^{2}+2}{x(1+x)}\right) v^{\prime}(x) & =0 \\
v^{\prime \prime}(x)+\frac{(-x-2) v^{\prime}(x)}{1+x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{(-x-2) u(x)}{1+x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u(x+2)}{1+x}
\end{aligned}
\]

Where \(f(x)=\frac{x+2}{1+x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{x+2}{1+x} d x \\
\int \frac{1}{u} d u & =\int \frac{x+2}{1+x} d x \\
\ln (u) & =x+\ln (1+x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (1+x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (1+x)}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{x c_{1} \mathrm{e}^{x+\ln (1+x)}}{1+x}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& y=v(x) x^{n} \\
&=\frac{x c_{1} \mathrm{e}^{x+\ln (1+x)}}{1+x}+c_{2} \\
& x \\
&=\frac{c_{1} x \mathrm{e}^{x}+c_{2}}{x}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(-x-2) y=x(1+x)^{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x} \\
-\frac{1}{x^{2}} & \frac{2 \mathrm{e}^{x}}{1+x}-\frac{x \mathrm{e}^{x}}{(1+x)^{2}}+\frac{x \mathrm{e}^{x}}{1+x}-\frac{\mathrm{e}^{x}}{(1+x)^{2}}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x}\right)\left(\frac{2 \mathrm{e}^{x}}{1+x}-\frac{x \mathrm{e}^{x}}{(1+x)^{2}}+\frac{x \mathrm{e}^{x}}{1+x}-\frac{\mathrm{e}^{x}}{(1+x)^{2}}\right)-\left(\frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x}\right)\left(-\frac{1}{x^{2}}\right)
\]

Which simplifies to
\[
W=\frac{(1+x) \mathrm{e}^{x}}{x^{2}}
\]

Which simplifies to
\[
W=\frac{(1+x) \mathrm{e}^{x}}{x^{2}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(\frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x}\right) x(1+x)^{2}}{\frac{\left(x^{2}+x\right)(1+x) \mathrm{e}^{x}}{x^{2}}} d x
\]

Which simplifies to
\[
u_{1}=-\int x^{2} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{3}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{(1+x)^{2}}{\frac{\left(x^{2}+x\right)(1+x) \mathrm{e}^{x}}{x^{2}}} d x
\]

Which simplifies to
\[
u_{2}=\int x \mathrm{e}^{-x} d x
\]

Hence
\[
u_{2}=-(1+x) \mathrm{e}^{-x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x^{2}}{3}-(1+x) \mathrm{e}^{-x}\left(\frac{x \mathrm{e}^{x}}{1+x}+\frac{\mathrm{e}^{x}}{1+x}\right)
\]

Which simplifies to
\[
y_{p}(x)=-\frac{1}{3} x^{2}-1-x
\]

Therefore the general solution is
\[
\left.\begin{array}{rl}
y & =y_{h}+y_{p} \\
& =\left(\frac{x c_{1} \mathrm{e}^{x+\ln (1+x)}}{1+x}+c_{2}\right. \\
x
\end{array}\right)+\left(-\frac{1}{3} x^{2}-1-x\right)
\]

Which simplifies to
\[
y=\frac{3 c_{1} x \mathrm{e}^{x}-x^{3}-3 x^{2}+3 c_{2}-3 x}{3 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{3 c_{1} x \mathrm{e}^{x}-x^{3}-3 x^{2}+3 c_{2}-3 x}{3 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{3 c_{1} x \mathrm{e}^{x}-x^{3}-3 x^{2}+3 c_{2}-3 x}{3 x}
\]

Verified OK.

\subsection*{11.17.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(-x-2) y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2}+x \\
& B=-x^{2}+2 \tag{3}\\
& C=-x-2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{2}+4 x+6}{4(1+x)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{2}+4 x+6 \\
& t=4(1+x)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}+4 x+6}{4(1+x)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 301: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4(1+x)^{2}\). There is a pole at \(x=-1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{1}{4}+\frac{1}{2+2 x}+\frac{3}{4(1+x)^{2}}
\]

For the pole at \(x=-1\) let \(b\) be the coefficient of \(\frac{1}{(1+x)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}+\frac{1}{2 x}-\frac{1}{x^{3}}+\frac{11}{4 x^{4}}-\frac{21}{4 x^{5}}+\frac{15}{2 x^{6}}-\frac{6}{x^{7}}-\frac{117}{16 x^{8}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{1}{2}
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}+4 x+6}{4 x^{2}+8 x+4} \\
& =Q+\frac{R}{4 x^{2}+8 x+4} \\
& =\left(\frac{1}{4}\right)+\left(\frac{2 x+5}{4 x^{2}+8 x+4}\right) \\
& =\frac{1}{4}+\frac{2 x+5}{4 x^{2}+8 x+4}
\end{aligned}
\]

Since the degree of \(t\) is 2 , then we see that the coefficient of the term \(x\) in the remainder \(R\) is 2 . Dividing this by leading coefficient in \(t\) which is 4 gives \(\frac{1}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(\frac{1}{2}\right)-(0) \\
& =\frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{x^{2}+4 x+6}{4(1+x)^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline-1 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{-}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(1+x)}+(-)\left(\frac{1}{2}\right) \\
& =-\frac{1}{2(1+x)}-\frac{1}{2} \\
& =-\frac{x+2}{2(1+x)}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(-\frac{1}{2(1+x)}-\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2(1+x)^{2}}\right)+\left(-\frac{1}{2(1+x)}-\frac{1}{2}\right)^{2}-\left(\frac{x^{2}+4 x+6}{4(1+x)^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(1+x)}-\frac{1}{2}\right) d x} \\
& =\frac{\mathrm{e}^{-\frac{x}{2}}}{\sqrt{1+x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1-x^{2}+2}{x^{2}+x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{\ln (1+x)}{2}-\ln (x)} \\
& =z_{1}\left(\frac{\sqrt{1+x} \mathrm{e}^{\frac{x}{2}}}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-x^{2}+2}{x^{2}+x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+\ln (1+x)-2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(x \mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}\left(x \mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
\left(x^{2}+x\right) y^{\prime \prime}+\left(-x^{2}+2\right) y^{\prime}+(-x-2) y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1}}{x}+c_{2} \mathrm{e}^{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \mathrm{e}^{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \mathrm{e}^{x} \\
-\frac{1}{x^{2}} & \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x}\right)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)\left(-\frac{1}{x^{2}}\right)
\]

Which simplifies to
\[
W=\frac{(1+x) \mathrm{e}^{x}}{x^{2}}
\]

Which simplifies to
\[
W=\frac{(1+x) \mathrm{e}^{x}}{x^{2}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\mathrm{e}^{x} x(1+x)^{2}}{\frac{\left(x^{2}+x\right)(1+x) \mathrm{e}^{x}}{x^{2}}} d x
\]

Which simplifies to
\[
u_{1}=-\int x^{2} d x
\]

Hence
\[
u_{1}=-\frac{x^{3}}{3}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{(1+x)^{2}}{\frac{\left(x^{2}+x\right)(1+x) \mathrm{e}^{x}}{x^{2}}} d x
\]

Which simplifies to
\[
u_{2}=\int x \mathrm{e}^{-x} d x
\]

Hence
\[
u_{2}=-(1+x) \mathrm{e}^{-x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{x^{2}}{3}-(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{1}{3} x^{2}-1-x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+c_{2} \mathrm{e}^{x}\right)+\left(-\frac{1}{3} x^{2}-1-x\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} \mathrm{e}^{x}-\frac{x^{2}}{3}-1-x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}}{x}+c_{2} \mathrm{e}^{x}-\frac{x^{2}}{3}-1-x
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Reducible group (found another exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 32
```

dsolve((x^2+x)*diff (y(x),x\$2)+(2-x^2)*diff (y(x),x)-(2+x)*y(x)=x*(x+1)^2,y(x), singsol=all)

```
\[
y(x)=\frac{3 x \mathrm{e}^{x} c_{1}-x^{3}-3 x^{2}+3 c_{2}-3 x}{3 x}
\]

Solution by Mathematica
Time used: 0.143 (sec). Leaf size: 45
```

DSolve[(x^2+x)*y''[x]+(2-x^2)*y'[x]-(2+x)*y[x]==x*(x+1)^2,y[x],x,IncludeSingularSolutions ->

```
\[
y(x) \rightarrow-\frac{x^{2}}{3}-x+\sqrt{2} c_{2} e^{x+\frac{1}{2}}+\frac{c_{1}}{\sqrt{2 e} x}-1
\]

\subsection*{11.18 problem 5(c)}
11.18.1 Solving as second order change of variable on y method 2 ode . 2046
11.18.2 Solving as second order ode non constant coeff transformation on B ode
11.18.3 Solving using Kovacic algorithm

2056
Internal problem ID [6334]
Internal file name [OUTPUT/5582_Sunday_June_05_2022_03_44_07_PM_42183739/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 5(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_change__of_variable_on_y__method_2", "second_order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
(1-x) y^{\prime \prime}+x y^{\prime}-y=(1-x)^{2}
\]

\subsection*{11.18.1 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1-x, B=x, C=-1, f(x)=(x-1)^{2}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
(1-x) y^{\prime \prime}+x y^{\prime}-y=0
\]

In normal form the ode
\[
\begin{equation*}
(1-x) y^{\prime \prime}+x y^{\prime}-y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{x}{x-1} \\
q(x) & =\frac{1}{x-1}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{n}{x-1}+\frac{1}{x-1}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}-\frac{x}{x-1}\right) u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-2 x+2\right)}{x(x-1)}
\end{aligned}
\]

Where \(f(x)=\frac{x^{2}-2 x+2}{x(x-1)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-2 x+2}{x(x-1)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-2 x+2}{x(x-1)} d x \\
\ln (u) & =x+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (x-1)-2 \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x \\
& =c_{1} \mathrm{e}^{x}+c_{2} x
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
(1-x) y^{\prime \prime}+x y^{\prime}-y=(x-1)^{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
1 & \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
W=(x)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)(1)
\]

Which simplifies to
\[
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
\]

Which simplifies to
\[
W=(x-1) \mathrm{e}^{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{(x-1)^{2} \mathrm{e}^{x}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int(-1) d x
\]

Hence
\[
u_{1}=x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x(x-1)^{2}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{2}=\int-x \mathrm{e}^{-x} d x
\]

Hence
\[
u_{2}=(1+x) \mathrm{e}^{-x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=x^{2}+x+1
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x\right)+\left(x^{2}+x+1\right) \\
& =x^{2}+x+1+\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) x
\end{aligned}
\]

Which simplifies to
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1
\]

Verified OK.

\subsection*{11.18.2 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=1-x \\
& B=x \\
& C=-1 \\
& F=(x-1)^{2}
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(1-x)(0)+(x)(1)+(-1)(x) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-x(x-1) v^{\prime \prime}+\left(x^{2}-2 x+2\right) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
\left(-x^{2}+x\right) u^{\prime}(x)+\left(x^{2}-2 x+2\right) u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(x^{2}-2 x+2\right)}{x(x-1)}
\end{aligned}
\]

Where \(f(x)=\frac{x^{2}-2 x+2}{x(x-1)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}-2 x+2}{x(x-1)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}-2 x+2}{x(x-1)} d x \\
\ln (u) & =x+\ln (x-1)-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{x+\ln (x-1)-2 \ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x+\ln (x-1)-2 \ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}\left(\frac{\mathrm{e}^{x}}{x}-\frac{\mathrm{e}^{x}}{x^{2}}\right)
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int \frac{c_{1}(x-1) \mathrm{e}^{x}}{x^{2}} \mathrm{~d} x \\
& =\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(x)\left(\frac{\mathrm{e}^{x} c_{1}}{x}+c_{2}\right) \\
& =c_{1} \mathrm{e}^{x}+c_{2} x
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & \mathrm{e}^{x} \\
1 & \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
\begin{equation*}
W=(x)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
\]

Which simplifies to
\[
W=(x-1) \mathrm{e}^{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{(x-1)^{2} \mathrm{e}^{x}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int(-1) d x
\]

Hence
\[
u_{1}=x
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x(x-1)^{2}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{2}=\int-x \mathrm{e}^{-x} d x
\]

Hence
\[
u_{2}=(1+x) \mathrm{e}^{-x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=x^{2}+x+1
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} x\right)+\left(x^{2}+x+1\right) \\
& =c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x+x^{2}+x+1
\]

Verified OK.

\subsection*{11.18.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
(1-x) y^{\prime \prime}+x y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1-x \\
& B=x \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{2}-4 x+6}{4(x-1)^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{2}-4 x+6 \\
& t=4(x-1)^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}-4 x+6}{4(x-1)^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 302: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4(x-1)^{2}\). There is a pole at \(x=1\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{1}{4}+\frac{3}{4(x-1)^{2}}-\frac{1}{2(x-1)}
\]

For the pole at \(x=1\) let \(b\) be the coefficient of \(\frac{1}{(x-1)^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 x}+\frac{1}{x^{3}}+\frac{11}{4 x^{4}}+\frac{21}{4 x^{5}}+\frac{15}{2 x^{6}}+\frac{6}{x^{7}}-\frac{117}{16 x^{8}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{1}{2}
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}-4 x+6}{4 x^{2}-8 x+4} \\
& =Q+\frac{R}{4 x^{2}-8 x+4} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 x+5}{4 x^{2}-8 x+4}\right) \\
& =\frac{1}{4}+\frac{-2 x+5}{4 x^{2}-8 x+4}
\end{aligned}
\]

Since the degree of \(t\) is 2 , then we see that the coefficient of the term \(x\) in the remainder \(R\) is -2 . Dividing this by leading coefficient in \(t\) which is 4 gives \(-\frac{1}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{x^{2}-4 x+6}{4(x-1)^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 1 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(\frac{1}{2}\) & \(-\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2(x-1)}+\left(\frac{1}{2}\right) \\
& =-\frac{1}{2(x-1)}+\frac{1}{2} \\
& =\frac{-2+x}{2 x-2}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\((0)+2\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right)(0)+\left(\left(\frac{1}{2(x-1)^{2}}\right)+\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right)^{2}-\left(\frac{x^{2}-4 x+6}{4(x-1)^{2}}\right)\right)=0\)
\(0=0\)
The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(-\frac{1}{2(x-1)}+\frac{1}{2}\right) d x} \\
& =\frac{\mathrm{e}^{\frac{x}{2}}}{\sqrt{x-1}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{x}{1-x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{\ln (x-1)}{2}} \\
& =z_{1}\left(\sqrt{x-1} \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{x}{1-x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+\ln (x-1)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-x \mathrm{e}^{-x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(-x \mathrm{e}^{-x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
(1-x) y^{\prime \prime}+x y^{\prime}-y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}-c_{2} x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=-x
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -x \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}(-x)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -x \\
\mathrm{e}^{x} & -1
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{x}\right)(-1)-(-x)\left(\mathrm{e}^{x}\right)
\]

Which simplifies to
\[
W=x \mathrm{e}^{x}-\mathrm{e}^{x}
\]

Which simplifies to
\[
W=(x-1) \mathrm{e}^{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{-x(x-1)^{2}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int x \mathrm{e}^{-x} d x
\]

Hence
\[
u_{1}=(1+x) \mathrm{e}^{-x}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{(x-1)^{2} \mathrm{e}^{x}}{(1-x)(x-1) \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{2}=\int(-1) d x
\]

Hence
\[
u_{2}=-x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x^{2}+(1+x) \mathrm{e}^{-x} \mathrm{e}^{x}
\]

Which simplifies to
\[
y_{p}(x)=x^{2}+x+1
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}-c_{2} x\right)+\left(x^{2}+x+1\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-c_{2} x+x^{2}+x+1 \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}-c_{2} x+x^{2}+x+1
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Reducible group (found another exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
```

dsolve((1-x)*diff (y(x),x\$2)+x*diff (y (x),x)-y(x)=(1-x)^2,y(x), singsol=all)

```
\[
y(x)=c_{2} x+\mathrm{e}^{x} c_{1}+x^{2}+1
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.087 (sec). Leaf size: 22
DSolve[(1-x)*y' \([x]+x * y\) ' \([x]-y[x]==(1-x)^{\wedge} 2, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x^{2}+x-c_{2} x+c_{1} e^{x}+1
\]

\subsection*{11.19 problem 5(d)}
11.19.1 Solving as second order ode non constant coeff transformation on B ode
11.19.2 Solving using Kovacic algorithm 2071

Internal problem ID [6335]
Internal file name [OUTPUT/5583_Sunday_June_05_2022_03_44_09_PM_29873215/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 5(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}-(1+x) y^{\prime}+y=x^{2} \mathrm{e}^{2 x}
\]

\subsection*{11.19.1 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x \\
& B=-1-x \\
& C=1 \\
& F=x^{2} \mathrm{e}^{2 x}
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =(x)(0)+(-1-x)(-1)+(1)(-1-x) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-x(1+x) v^{\prime \prime}+\left(x^{2}+1\right) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
-x(1+x) u^{\prime}(x)+\left(x^{2}+1\right) u(x)=0
\]

Which is now solved for \(u\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{\left(x^{2}+1\right) u}{x(1+x)}
\end{aligned}
\]

Where \(f(x)=\frac{x^{2}+1}{x(1+x)}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{x^{2}+1}{x(1+x)} d x \\
\int \frac{1}{u} d u & =\int \frac{x^{2}+1}{x(1+x)} d x \\
\ln (u) & =x-2 \ln (1+x)+\ln (x)+c_{1} \\
u & =\mathrm{e}^{x-2 \ln (1+x)+\ln (x)+c_{1}} \\
& =c_{1} \mathrm{e}^{x-2 \ln (1+x)+\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{1} x \mathrm{e}^{x}}{(1+x)^{2}}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =\frac{c_{1} x \mathrm{e}^{x}}{(1+x)^{2}}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int \frac{c_{1} x \mathrm{e}^{x}}{(1+x)^{2}} \mathrm{~d} x \\
& =\frac{c_{1} \mathrm{e}^{x}}{1+x}+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(-1-x)\left(\frac{c_{1} \mathrm{e}^{x}}{1+x}+c_{2}\right) \\
& =-c_{1} \mathrm{e}^{x}-(1+x) c_{2}
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=-1-x \\
& y_{2}=\mathrm{e}^{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
-1-x & \mathrm{e}^{x} \\
\frac{d}{d x}(-1-x) & \frac{d}{d x}\left(\mathrm{e}^{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
-1-x & \mathrm{e}^{x} \\
-1 & \mathrm{e}^{x}
\end{array}\right|
\]

Therefore
\[
W=(-1-x)\left(\mathrm{e}^{x}\right)-\left(\mathrm{e}^{x}\right)(-1)
\]

Which simplifies to
\[
W=-x \mathrm{e}^{x}
\]

Which simplifies to
\[
W=-x \mathrm{e}^{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\mathrm{e}^{x} x^{2} \mathrm{e}^{2 x}}{-x^{2} \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\mathrm{e}^{2 x} d x
\]

Hence
\[
u_{1}=\frac{\mathrm{e}^{2 x}}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{(-1-x) x^{2} \mathrm{e}^{2 x}}{-x^{2} \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \mathrm{e}^{x}(1+x) d x
\]

Hence
\[
u_{2}=x \mathrm{e}^{x}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{\mathrm{e}^{2 x}(-1-x)}{2}+\mathrm{e}^{2 x} x
\]

Which simplifies to
\[
y_{p}(x)=\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-c_{1} \mathrm{e}^{x}-(1+x) c_{2}\right)+\left(\frac{(x-1) \mathrm{e}^{2 x}}{2}\right) \\
& =-c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

Verified OK.

\subsection*{11.19.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x y^{\prime \prime}+(-1-x) y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x \\
& B=-1-x \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{x^{2}-2 x+3}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=x^{2}-2 x+3 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(\frac{x^{2}-2 x+3}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 303: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-2 \\
& =0
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Therefore
\[
L=[1,2]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=\frac{1}{4}-\frac{1}{2 x}+\frac{3}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=\frac{3}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{3}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=-\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is \(O_{r}(\infty)=0\) then
\[
v=\frac{-O_{r}(\infty)}{2}=\frac{0}{2}=0
\]
\([\sqrt{r}]_{\infty}\) is the sum of terms involving \(x^{i}\) for \(0 \leq i \leq v\) in the Laurent series for \(\sqrt{r}\) at \(\infty\). Therefore
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{v} a_{i} x^{i} \\
& =\sum_{i=0}^{0} a_{i} x^{i} \tag{8}
\end{align*}
\]

Let \(a\) be the coefficient of \(x^{v}=x^{0}\) in the above sum. The Laurent series of \(\sqrt{r}\) at \(\infty\) is
\[
\begin{equation*}
\sqrt{r} \approx \frac{1}{2}-\frac{1}{2 x}+\frac{1}{2 x^{2}}+\frac{1}{2 x^{3}}+\frac{1}{4 x^{4}}-\frac{1}{4 x^{5}}-\frac{3}{4 x^{6}}-\frac{3}{4 x^{7}}+\ldots \tag{9}
\end{equation*}
\]

Comparing Eq. (9) with Eq. (8) shows that
\[
a=\frac{1}{2}
\]

From Eq. (9) the sum up to \(v=0\) gives
\[
\begin{align*}
{[\sqrt{r}]_{\infty} } & =\sum_{i=0}^{0} a_{i} x^{i} \\
& =\frac{1}{2} \tag{10}
\end{align*}
\]

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1}=x^{-1}=\frac{1}{x}\) in \(r\) minus the coefficient of same term but in \(\left([\sqrt{r}]_{\infty}\right)^{2}\) where \([\sqrt{r}]_{\infty}\) was found above in Eq (10). Hence
\[
\left([\sqrt{r}]_{\infty}\right)^{2}=\frac{1}{4}
\]

This shows that the coefficient of \(\frac{1}{x}\) in the above is 0 . Now we need to find the coefficient of \(\frac{1}{x}\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=0\) then starting from \(r=\frac{s}{t}\) and doing long division in the form
\[
r=Q+\frac{R}{t}
\]

Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(\frac{1}{x}\) in \(r\) will be the coefficient in \(R\) of the term in \(x\) of degree of \(t\) minus one, divided by the leading coefficient in \(t\). Doing long division gives
\[
\begin{aligned}
r & =\frac{s}{t} \\
& =\frac{x^{2}-2 x+3}{4 x^{2}} \\
& =Q+\frac{R}{4 x^{2}} \\
& =\left(\frac{1}{4}\right)+\left(\frac{-2 x+3}{4 x^{2}}\right) \\
& =\frac{1}{4}+\frac{-2 x+3}{4 x^{2}}
\end{aligned}
\]

Since the degree of \(t\) is 2 , then we see that the coefficient of the term \(x\) in the remainder \(R\) is -2 . Dividing this by leading coefficient in \(t\) which is 4 gives \(-\frac{1}{2}\). Now \(b\) can be found.
\[
\begin{aligned}
b & =\left(-\frac{1}{2}\right)-(0) \\
& =-\frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =\frac{1}{2} \\
\alpha_{\infty}^{+} & =\frac{1}{2}\left(\frac{b}{a}-v\right)=\frac{1}{2}\left(\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=-\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}\left(-\frac{b}{a}-v\right)=\frac{1}{2}\left(-\frac{-\frac{1}{2}}{\frac{1}{2}}-0\right)=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=\frac{x^{2}-2 x+3}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{3}{2}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 0 & \(\frac{1}{2}\) & \(-\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\). Trying \(\alpha_{\infty}^{+}=-\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{+}-\left(\alpha_{c_{1}}^{-}\right) \\
& =-\frac{1}{2}-\left(-\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

Substituting the above values in the above results in
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(+)[\sqrt{r}]_{\infty} \\
& =-\frac{1}{2 x}+\left(\frac{1}{2}\right) \\
& =\frac{1}{2}-\frac{1}{2 x} \\
& =\frac{x-1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{2}-\frac{1}{2 x}\right)(0)+\left(\left(\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2}-\frac{1}{2 x}\right)^{2}-\left(\frac{x^{2}-2 x+3}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int\left(\frac{1}{2}-\frac{1}{2 x}\right) d x} \\
& =\frac{\mathrm{e}^{\frac{x}{2}}}{\sqrt{x}}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1-x}{x} d x} \\
& =z_{1} e^{\frac{x}{2}+\frac{\ln (x)}{2}} \\
& =z_{1}\left(\sqrt{x} \mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1-x}{x} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x+\ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(-(1+x) \mathrm{e}^{-x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(-(1+x) \mathrm{e}^{-x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x y^{\prime \prime}+(-1-x) y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+(-1-x) c_{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=-1-x
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -1-x \\
\frac{d}{d x}\left(\mathrm{e}^{x}\right) & \frac{d}{d x}(-1-x)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{x} & -1-x \\
\mathrm{e}^{x} & -1
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{x}\right)(-1)-(-1-x)\left(\mathrm{e}^{x}\right)
\]

Which simplifies to
\[
W=x \mathrm{e}^{x}
\]

Which simplifies to
\[
W=x \mathrm{e}^{x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{(-1-x) x^{2} \mathrm{e}^{2 x}}{x^{2} \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\mathrm{e}^{x}(1+x) d x
\]

Hence
\[
u_{1}=x \mathrm{e}^{x}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{x} x^{2} \mathrm{e}^{2 x}}{x^{2} \mathrm{e}^{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \mathrm{e}^{2 x} d x
\]

Hence
\[
u_{2}=\frac{\mathrm{e}^{2 x}}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{\mathrm{e}^{2 x}(-1-x)}{2}+\mathrm{e}^{2 x} x
\]

Which simplifies to
\[
y_{p}(x)=\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+(-1-x) c_{2}\right)+\left(\frac{(x-1) \mathrm{e}^{2 x}}{2}\right)
\end{aligned}
\]

Which simplifies to
\[
y=c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}-(1+x) c_{2}+\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm         A Liouvillian solution exists         Reducible group (found an exponential solution)         Reducible group (found another exponential solution)     <- Kovacics algorithm successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 23
```

dsolve(x*diff (y (x),x\$2)-(1+x)*diff(y(x),x)+y(x)=x^2*exp(2*x),y(x), singsol=all)

```
\[
y(x)=(x+1) c_{2}+\mathrm{e}^{x} c_{1}+\frac{(x-1) \mathrm{e}^{2 x}}{2}
\]

\section*{Solution by Mathematica}

Time used: 0.066 (sec). Leaf size: 31
DSolve[x*y''[x]-(1+x)*y'[x]+y[x]==x^2*Exp[2*x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2} e^{2 x}(x-1)+c_{1} e^{x}-c_{2}(x+1)
\]

\subsection*{11.20 problem 5(e)}
11.20.1 Solving as second order euler ode ode 2082
11.20.2 Solving as linear second order ode solved by an integrating factor
ode . 2085 .
11.20.3 Solving as second order change of variable on \(x\) method 2 ode . 2086
11.20.4 Solving as second order change of variable on \(x\) method 1 ode . 2092
11.20.5 Solving as second order change of variable on y method 1 ode . 2096
11.20.6 Solving as second order change of variable on y method 2 ode . 2101
11.20.7 Solving as second order ode non constant coeff transformation on B ode

2106
11.20.8 Solving using Kovacic algorithm 2110

Internal problem ID [6336]
Internal file name [OUTPUT/5584_Sunday_June_05_2022_03_44_11_PM_30279075/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.3. THE METHOD OF VARIATION OF PARAMETERS. Page 71
Problem number: 5(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_1", "second__order_change_of__variable_on_y_method_2", "linear_second_order__ode_solved__by__an_integrating_factor", "second_order__ode__non_constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \mathrm{e}^{-x}
\]

\subsection*{11.20.1 Solving as second order euler ode ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=-2 x, C=2, f(x)=x \mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}-2 x r x^{r-1}+2 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}-2 r x^{r}+2 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)-2 r+2=0
\]

Or
\[
\begin{equation*}
r^{2}-3 r+2=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=c_{2} x^{2}+c_{1} x
\]

Next, we find the particular solution to the ODE
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \mathrm{e}^{-x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
1 & 2 x
\end{array}\right|
\]

Therefore
\[
W=(x)(2 x)-\left(x^{2}\right)(1)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\mathrm{e}^{-x}}{x} d x
\]

Hence
\[
u_{1}=\exp \text { Integral }_{1}(x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x^{2} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\mathrm{e}^{-x}}{x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{\mathrm{e}^{-x}}{x}+\exp \operatorname{Integral}_{1}(x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\operatorname{expIntegral}(x) \\
& u_{2}=\frac{\operatorname{expIntegral}_{1}(x) x-\mathrm{e}^{-x}}{x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\exp \operatorname{Integral}_{1}(x) x+\left(\exp \operatorname{Integral}_{1}(x) x-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)+c_{2} x+c_{1}\right) x
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\left(-\mathrm{e}^{-x}+(1+x) \exp \text { Integral }_{1}(x)+c_{2} x+c_{1}\right) x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(-\mathrm{e}^{-x}+(1+x) \exp \text { Integral }_{1}(x)+c_{2} x+c_{1}\right) x
\]

Verified OK.

\subsection*{11.20.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-\frac{2}{x}\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =\frac{\mathrm{e}^{-x}}{x^{2}} \\
\left(\frac{y}{x}\right)^{\prime \prime} & =\frac{\mathrm{e}^{-x}}{x^{2}}
\end{aligned}
\]

Integrating once gives
\[
\left(\frac{y}{x}\right)^{\prime}=\frac{\operatorname{expIntegral}_{1}(x) x-\mathrm{e}^{-x}}{x}+c_{1}
\]

Integrating again gives
\[
\left(\frac{y}{x}\right)=\exp \operatorname{Integral}_{1}(x) x+\exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}
\]

Hence the solution is
\[
\left.y=\frac{\operatorname{expIntegral}_{1}(x) x+\operatorname{expIntegral}}{1} 1(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}\right)
\]

Or
\[
y=c_{1} x^{2}+x^{2} \exp \operatorname{Integral}_{1}(x)+c_{2} x+x \exp \operatorname{Integral}_{1}(x)-x \mathrm{e}^{-x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}+x^{2} \exp \operatorname{Integral}_{1}(x)+c_{2} x+x \exp \operatorname{Integral}_{1}(x)-x \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}+x^{2} \exp \operatorname{Integral}_{1}(x)+c_{2} x+x \exp \operatorname{Integral}_{1}(x)-x \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{11.20.3 Solving as second order change of variable on \(x\) method 2 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)} d x \\
& =\int e^{2 \ln (x)} d x \\
& =\int x^{2} d x \\
& =\frac{x^{3}}{3} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{x^{4}} \\
& =\frac{2}{x^{6}} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{x^{6}} & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
\frac{2}{x^{6}}=\frac{2}{9 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
\]

Simplifying gives
\[
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
9 r(r-1)+0+2=0
\]

Or
\[
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r_{1}}\) and \(y_{2}=\tau^{r_{2}}\). Hence
\[
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\left(x^{3}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{3}\right)^{\frac{2}{3}}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{3}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{3}\right)^{\frac{2}{3}}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{ll}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}} & \frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}
\end{array}\right|
\]

Therefore
\[
W=\left(\left(x^{3}\right)^{\frac{1}{3}}\right)\left(\frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{3}\right)^{\frac{2}{3}}\right)\left(\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}}\right)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \exp \operatorname{Integral}_{1}(x)}{x^{2}}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{2}=-\frac{\left(x^{3}\right)^{\frac{1}{3}}\left(-x \exp \operatorname{Integral}_{1}(x)+\mathrm{e}^{-x}\right)}{x^{2}}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \exp \operatorname{Integral}_{1}(x)}{x^{2}} \\
& \left.u_{2}=\frac{\left(x^{3}\right)^{\frac{1}{3}}(x \operatorname{expIntegral}}{1}(x)-\mathrm{e}^{-x}\right) \\
& x^{2}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp ^{\operatorname{Integral}}{ }_{1}(x)+\left(x \operatorname{expIntegral}_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \operatorname{expIntegral}{ }_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}\right)+\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\]

Verified OK.

\subsection*{11.20.4 Solving as second order change of variable on \(x\) method 1 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=-2 x, C=2, f(x)=x \mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}} x^{3}}}-\frac{2}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \mathrm{e}^{-x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\left(x^{3}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{3}\right)^{\frac{2}{3}}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{3}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{3}\right)^{\frac{2}{3}}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{ll}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}} & \frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}
\end{array}\right|
\]

Therefore
\[
W=\left(\left(x^{3}\right)^{\frac{1}{3}}\right)\left(\frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{3}\right)^{\frac{2}{3}}\right)\left(\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}}\right)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \exp \operatorname{Integral}_{1}(x)}{x^{2}}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{2}=-\frac{\left(x^{3}\right)^{\frac{1}{3}}\left(-x \exp \operatorname{Integral}_{1}(x)+\mathrm{e}^{-x}\right)}{x^{2}}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \operatorname{expIntegral}_{1}(x)}{x^{2}} \\
& u_{2}=\frac{\left(x^{3}\right)^{\frac{1}{3}}\left(x \operatorname{expIntegral}_{1}(x)-\mathrm{e}^{-x}\right)}{x^{2}}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp \operatorname{Integral}_{1}(x)+\left(x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \text { expIntegral }{ }_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)\right)+\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right) \\
& =x\left(-\mathrm{e}^{-x}+(1+x)\right. \text { expIntegral } \\
1 & (x))+x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\end{aligned}
\]

Which simplifies to
\[
y=x\left(-\mathrm{e}^{-x}+(1+x) \text { expIntegral } 1(x)\right)+x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
y=x\left(-\mathrm{e}^{-x}+(1+x) \text { expIntegral }{ }_{1}(x)\right)+x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)_{1}\right)
\]

Verification of solutions
\[
y=x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)+x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\]

Verified OK.

\subsection*{11.20.5 Solving as second order change of variable on y method 1 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{2}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{2}{x^{2}}\right)}{2}-\frac{\left(\frac{4}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2}{x}} \\
& =x \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) x \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x^{2} v^{\prime \prime}(x)=\mathrm{e}^{-x}
\]

Which is now solved for \(v(x)\) Simplyfing the ode gives
\[
v^{\prime \prime}(x)=\frac{\mathrm{e}^{-x}}{x^{2}}
\]

Integrating once gives
\[
v^{\prime}(x)=-\frac{\mathrm{e}^{-x}}{x}+\exp \operatorname{Integral}_{1}(x)+c_{1}
\]

Integrating again gives
\[
v(x)=x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}+\exp \operatorname{Integral}_{1}(x)+c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(x \operatorname{expIntegral}_{1}(x)+\operatorname{expIntegral}_{1}(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=x
\]

Hence (7) becomes
\[
y=\left(x \exp \operatorname{Integral}_{1}(x)+\exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}\right) x
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\left(x \exp \operatorname{Integral}_{1}(x)+\exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}\right) x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\left(x^{3}\right)^{\frac{1}{3}} \\
& y_{2}=\left(x^{3}\right)^{\frac{2}{3}}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{d}{d x}\left(\left(x^{3}\right)^{\frac{1}{3}}\right) & \frac{d}{d x}\left(\left(x^{3}\right)^{\frac{2}{3}}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{ll}
\left(x^{3}\right)^{\frac{1}{3}} & \left(x^{3}\right)^{\frac{2}{3}} \\
\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}} & \frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}
\end{array}\right|
\]

Therefore
\[
W=\left(\left(x^{3}\right)^{\frac{1}{3}}\right)\left(\frac{2 x^{2}}{\left(x^{3}\right)^{\frac{1}{3}}}\right)-\left(\left(x^{3}\right)^{\frac{2}{3}}\right)\left(\frac{x^{2}}{\left(x^{3}\right)^{\frac{2}{3}}}\right)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\left(x^{3}\right)^{\frac{2}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \exp \operatorname{Integral}_{1}(x)}{x^{2}}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} x \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\left(x^{3}\right)^{\frac{1}{3}} \mathrm{e}^{-x}}{x^{3}} d x
\]

Hence
\[
u_{2}=-\frac{\left(x^{3}\right)^{\frac{1}{3}}\left(-x \exp \operatorname{Integral}_{1}(x)+\mathrm{e}^{-x}\right)}{x^{2}}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\frac{\left(x^{3}\right)^{\frac{2}{3}} \operatorname{expIntegral}}{1}(x) \\
& x^{2} \\
& u_{2}=\frac{\left(x^{3}\right)^{\frac{1}{3}}\left(x \operatorname{expIntegral}_{1}(x)-\mathrm{e}^{-x}\right)}{x^{2}}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp ^{\operatorname{Entegral}}{ }_{1}(x)+\left(x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \operatorname{expIntegral}{ }_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(\left(x \exp \operatorname{Integral}_{1}(x)+\exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}+c_{1} x+c_{2}\right) x\right) \\
& +\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right)
\end{aligned}
\]

Which simplifies to
\(y=\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)+c_{1} x+c_{2}\right) x+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)+c_{1} x+c_{2}\right) x \tag{1}\\
& +x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\end{align*}
\]

Verification of solutions
\(y=\left(-\mathrm{e}^{-x}+(1+x) \exp\right.\) Integral \(\left._{1}(x)+c_{1} x+c_{2}\right) x+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\)
Verified OK.

\subsection*{11.20.6 Solving as second order change of variable on \(y\) method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=-2 x, C=2, f(x)=x \mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \\
& =\left(c_{2} x-c_{1}\right) x
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=x \mathrm{e}^{-x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
1 & 2 x
\end{array}\right|
\]

Therefore
\[
W=(x)(2 x)-\left(x^{2}\right)(1)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\mathrm{e}^{-x}}{x} d x
\]

Hence
\[
u_{1}=\exp \text { Integral }_{1}(x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x^{2} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\mathrm{e}^{-x}}{x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{\mathrm{e}^{-x}}{x}+\operatorname{expIntegral}{ }_{1}(x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\exp \operatorname{Integral}_{1}(x) \\
& u_{2}=\frac{x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}}{x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp ^{\operatorname{Entegral}}{ }_{1}(x)+\left(x \operatorname{expIntegral}_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \operatorname{expIntegral}{ }_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}\right)+\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right) \\
& =x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)+\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2}
\end{aligned}
\]

Which simplifies to
\[
y=x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)+c_{2} x-c_{1}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x\left(-\mathrm{e}^{-x}+(1+x) \exp \text { Integral }_{1}(x)+c_{2} x-c_{1}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)+c_{2} x-c_{1}\right)
\]

Verified OK.

\subsection*{11.20.7 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{align*}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v & =0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v & =0 \tag{1}
\end{align*}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
& A=x^{2} \\
& B=-2 x \\
& C=2 \\
& F=x \mathrm{e}^{-x}
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-2 x^{3} v^{\prime \prime}+(0) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
-2 x^{3} u^{\prime}(x)=0
\]

Which is now solved for \(u\). Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =B v \\
& =(-2 x)\left(c_{1} x+c_{2}\right) \\
& =-2 x\left(c_{1} x+c_{2}\right)
\end{aligned}
\]

And now the particular solution \(y_{p}(x)\) will be found. The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
1 & 2 x
\end{array}\right|
\]

Therefore
\[
W=(x)(2 x)-\left(x^{2}\right)(1)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\mathrm{e}^{-x}}{x} d x
\]

Hence
\[
u_{1}=\exp \text { Integral }_{1}(x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x^{2} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\mathrm{e}^{-x}}{x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{\mathrm{e}^{-x}}{x}+\exp \operatorname{Integral}_{1}(x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\exp \operatorname{Integral}_{1}(x) \\
& u_{2}=\frac{x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}}{x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp \operatorname{Integral}_{1}(x)+\left(x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\]

Hence the complete solution is
\[
\begin{aligned}
y(x) & =y_{h}+y_{p} \\
& =\left(-2 x\left(c_{1} x+c_{2}\right)\right)+\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right) \\
& =-x\left(-x \exp \operatorname{Integral}_{1}(x)+2 c_{1} x+\mathrm{e}^{-x}-\exp \operatorname{Integral}_{1}(x)+2 c_{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-x\left(-x \exp \operatorname{Integral}_{1}(x)+2 c_{1} x+\mathrm{e}^{-x}-\exp \operatorname{Integral}_{1}(x)+2 c_{2}\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=-x\left(-x \exp \operatorname{Integral}_{1}(x)+2 c_{1} x+\mathrm{e}^{-x}-\exp \operatorname{Integral}_{1}(x)+2 c_{2}\right)
\]

Verified OK.

\subsection*{11.20.8 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=-2 x \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 304: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{x^{2}} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(x))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{2} x^{2}+c_{1} x
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=x^{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
\frac{d}{d x}(x) & \frac{d}{d x}\left(x^{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
x & x^{2} \\
1 & 2 x
\end{array}\right|
\]

Therefore
\[
W=(x)(2 x)-\left(x^{2}\right)(1)
\]

Which simplifies to
\[
W=x^{2}
\]

Which simplifies to
\[
W=x^{2}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{3} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\mathrm{e}^{-x}}{x} d x
\]

Hence
\[
u_{1}=\operatorname{expIntegral}{ }_{1}(x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{x^{2} \mathrm{e}^{-x}}{x^{4}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\mathrm{e}^{-x}}{x^{2}} d x
\]

Hence
\[
u_{2}=-\frac{\mathrm{e}^{-x}}{x}+\operatorname{expIntegral}{ }_{1}(x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\exp \operatorname{Integral}_{1}(x) \\
& u_{2}=\frac{x \exp \operatorname{Integral}_{1}(x)-\mathrm{e}^{-x}}{x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=x \exp \operatorname{Integral}_{1}(x)+\left(x \operatorname{expIntegral}{ }_{1}(x)-\mathrm{e}^{-x}\right) x
\]

Which simplifies to
\[
y_{p}(x)=x\left(-\mathrm{e}^{-x}+(1+x) \operatorname{expIntegral}{ }_{1}(x)\right)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x^{2}+c_{1} x\right)+\left(x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)\right)
\end{aligned}
\]

Which simplifies to
\[
y=x\left(c_{2} x+c_{1}\right)+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x\left(c_{2} x+c_{1}\right)+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=x\left(c_{2} x+c_{1}\right)+x\left(-\mathrm{e}^{-x}+(1+x) \exp \operatorname{Integral}_{1}(x)\right)
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     <- LODE of Euler type successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 24
```

dsolve(x^2*diff(y(x),x\$2)-2*x*diff (y(x), x)+2*y(x)=x*exp(-x),y(x), singsol=all)

```
\[
y(x)=\left(-\mathrm{e}^{-x}+\operatorname{expIntegral}_{1}(x)(x+1)+c_{2} x+c_{1}\right) x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.073 (sec). Leaf size: 30
DSolve [x~2*y' ' \([x]-2 * x * y\) ' \([x]+2 * y[x]==x * \operatorname{Exp}[-x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x\left(-(x+1) \text { ExpIntegralEi }(-x)-e^{-x}+c_{2} x+c_{1}\right)
\]
12 Chapter 2. Second-Order Linear Equations.Section 2.4. THE USE OF A KNOWNSOLUTION TO FIND ANOTHER. Page 74
12.1 problem 1(a) 2118
12.2 problem 1(b) 2122
12.3 problem 2 2126
12.4 problem 3 2130
12.5 problem 4 2135
12.6 problem 5 2140
12.7 problem 6(a) 2145
12.8 problem 6(b) 2150
12.9 problem 6(c) 2154
12.10problem 7 2159
12.11problem 8 2163

\section*{12.1 problem 1(a)}
12.1.1 Maple step by step solution 2120

Internal problem ID [6337]
Internal file name [OUTPUT/5585_Sunday_June_05_2022_03_44_13_PM_9921427/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff", "second_order_ode__can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+y=0
\]

Given that one solution of the ode is
\[
y_{1}=\sin (x)
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=0
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)}}{\sin (x)^{2}} d x\right) \\
& y_{2}(x)=\sin (x) \int \frac{1}{\sin (x)^{2}}, d x \\
& y_{2}(x)=\sin (x)\left(\int \csc (x)^{2} d x\right) \\
& y_{2}(x)=-\sin (x) \cot (x)
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\sin (x) c_{1}-c_{2} \sin (x) \cot (x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\sin (x) c_{1}-c_{2} \sin (x) \cot (x) \tag{1}
\end{equation*}
\]

Figure 369: Slope field plot

\section*{Verification of solutions}
\[
y=\sin (x) c_{1}-c_{2} \sin (x) \cot (x)
\]

Verified OK.
12.1.1 Maple step by step solution

Let's solve
\(y^{\prime \prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\cos (x)\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 13
dsolve([diff \((y(x), x \$ 2)+y(x)=0, \sin (x)]\), singsol=all)
\[
y(x)=c_{1} \sin (x)+\cos (x) c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 16
DSolve[y'' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} \cos (x)+c_{2} \sin (x)
\]

\section*{12.2 problem 1(b)}
12.2.1 Maple step by step solution 2124

Internal problem ID [6338]
Internal file name [OUTPUT/5586_Sunday_June_05_2022_03_44_14_PM_46831161/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff", "second_order_ode__can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-y=0
\]

Given that one solution of the ode is
\[
y_{1}=\mathrm{e}^{x}
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=0
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int 0 d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{1}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=-\frac{\mathrm{e}^{x} \mathrm{e}^{-2 x}}{2}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x}-\frac{c_{2} \mathrm{e}^{x} \mathrm{e}^{-2 x}}{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-\frac{c_{2} \mathrm{e}^{x} \mathrm{e}^{-2 x}}{2} \tag{1}
\end{equation*}
\]

Figure 370: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}-\frac{c_{2} \mathrm{e}^{x} \mathrm{e}^{-2 x}}{2}
\]

Verified OK.

\subsection*{12.2.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}-1=0\)
- Factor the characteristic polynomial
\((r-1)(r+1)=0\)
- Roots of the characteristic polynomial
\(r=(-1,1)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad 2 \mathrm{nd}\) solution of the ODE
\(y_{2}(x)=\mathrm{e}^{x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve([diff \((y(x), x \$ 2)-y(x)=0, \exp (x)]\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
DSolve[y'' \([x]-y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} e^{x}+c_{2} e^{-x}
\]

\section*{12.3 problem 2}
12.3.1 Maple step by step solution 2127

Internal problem ID [6339]
Internal file name [OUTPUT/5587_Sunday_June_05_2022_03_44_15_PM_23721771/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
x y^{\prime \prime}+3 y^{\prime}=0
\]

Given that one solution of the ode is
\[
y_{1}=1
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{3}{x}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& y_{2}(x)=1 \int \frac{1}{x^{3}} \\
& 1
\end{aligned} d x \quad \begin{aligned}
& y_{2}(x)=\int \frac{1}{x^{3}} d x \\
& y_{2}(x)=-\frac{1}{2 x^{2}}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}-\frac{c_{2}}{2 x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}-\frac{c_{2}}{2 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}-\frac{c_{2}}{2 x^{2}}
\]

Verified OK.

\subsection*{12.3.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime} x+3 y^{\prime}=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{3 y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{x}=0\)
- Multiply by denominators of the ODE
\[
y^{\prime \prime} x+3 y^{\prime}=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right) x+\frac{3\left(\frac{d}{d t} y(t)\right)}{x}=0\)
- \(\quad\) Simplify
\[
\frac{\frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)}{x}=0
\]
- Isolate 2nd derivative
\[
\frac{d^{2}}{d t^{2}} y(t)=-2 \frac{d}{d t} y(t)
\]
- \(\quad\) Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{2}}{d t^{2}} y(t)+2 \frac{d}{d t} y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}+2 r=0\)
- Factor the characteristic polynomial
\(r(r+2)=0\)
- Roots of the characteristic polynomial
\(r=(-2,0)\)
- 1st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-2 t}\)
- \(\quad\) 2nd solution of the ODE
\[
y_{2}(t)=1
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2}
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{2}}+c_{2}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
```

dsolve([x*diff(y(x),x\$2)+3*diff(y(x),x)=0,1], singsol=all)

```
\[
y(x)=c_{1}+\frac{c_{2}}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 17
DSolve[x*y' ' \([x]+3 * y\) ' \([x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{2}-\frac{c_{1}}{2 x^{2}}
\]

\section*{12.4 problem 3}
12.4.1 Maple step by step solution 2132

Internal problem ID [6340]
Internal file name [OUTPUT/5588_Sunday_June_05_2022_03_44_16_PM_95367239/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_culer_ode", "second_order_change__of_cvariable_on_x_method_1", "second_order_change_of_cvariable_on_x_method_2", "second__order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
```

[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(     x)]`]

```
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]

Given that one solution of the ode is
\[
y_{1}=x^{2}
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{1}{x}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{\frac{1}{x}}{x^{4}}, d x \\
& y_{2}(x)=x^{2}\left(\int \frac{1}{x^{5}} d x\right) \\
& y_{2}(x)=-\frac{1}{4 x^{2}}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}-\frac{c_{2}}{4 x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}-\frac{c_{2}}{4 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}-\frac{c_{2}}{4 x^{2}}
\]

Verified OK.

\subsection*{12.4.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{y^{\prime}}{x}+\frac{4 y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{y^{\prime}}{x}-\frac{4 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\(x^{2} y^{\prime \prime}+x y^{\prime}-4 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule
\[
y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)
\]
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d} t y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-4 y(t)=0\)
- \(\quad\) Simplify
\(\frac{d^{2}}{d t^{2}} y(t)-4 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}-4=0\)
- Factor the characteristic polynomial
\[
(r-2)(r+2)=0
\]
- Roots of the characteristic polynomial
\[
r=(-2,2)
\]
- 1st solution of the ODE
\[
y_{1}(t)=\mathrm{e}^{-2 t}
\]
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{2 t}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{2 t}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
\]
- \(\quad\) Simplify
\[
y=\frac{c_{1}}{x^{2}}+c_{2} x^{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
```

dsolve([x^2*diff(y(x),x\$2)+x*diff(y(x),x)-4*y(x)=0, x^2],singsol=all)

```
\[
y(x)=\frac{c_{1} x^{4}+c_{2}}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 18
DSolve \(\left[x^{\wedge} 2 * y\right.\) '' \([x]+x * y\) ' \([x]-4 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{2} x^{4}+c_{1}}{x^{2}}
\]

\section*{12.5 problem 4}
12.5.1 Maple step by step solution 2136

Internal problem ID [6341]
Internal file name [OUTPUT/5589_Sunday_June_05_2022_03_44_17_PM_96299379/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[_Gegenbauer]
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

Given that one solution of the ode is
\[
y_{1}=x
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=-\frac{2 x}{-x^{2}+1}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{2 x}{-x^{2}+1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{-\ln (x-1)-\ln (1+x)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{1}{x^{2}\left(x^{2}-1\right)} d x\right) \\
& y_{2}(x)=x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x+c_{2} x\left(-\frac{\ln (1+x)}{2}+\frac{\ln (x-1)}{2}+\frac{1}{x}\right)
\]

Verified OK.

\subsection*{12.5.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{2 x y^{\prime}}{x^{2}-1}+\frac{2 y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{2 y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{2}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=-1\)
- Multiply by denominators
\(\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0\)
- Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)-2 y(u)=0\)
- Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\(-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(k+r+2)(k+r-1)\right) u^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=0\)
- Each term in the series must be 0 , giving the recursion relation
\(-2 a_{k+1}(k+1)^{2}+a_{k}(k+2)(k-1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}\)
- Recursion relation for \(r=0\); series terminates at \(k=1\)
\(a_{k+1}=\frac{a_{k}(k+2)(k-1)}{2(k+1)^{2}}\)
- Apply recursion relation for \(k=0\)
\(a_{1}=-a_{0}\)
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li \(y(u)=a_{0} \cdot(-u+1)\)
- \(\quad\) Revert the change of variables \(u=1+x\)
[\(\left.y=-a_{0} x\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
```

dsolve([(1-x^2)*diff(y(x),x\$2)-2*x*diff (y (x),x)+2*y(x)=0,x], singsol=all)

```
\[
y(x)=-\frac{c_{2} \ln (x+1) x}{2}+\frac{c_{2} \ln (x-1) x}{2}+c_{1} x+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 33
DSolve[(1- \(\left.x^{\wedge} 2\right) * y^{\prime}\) '[x]-2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{1} x-\frac{1}{2} c_{2}(x \log (1-x)-x \log (x+1)+2)
\]

\section*{12.6 problem 5}
12.6.1 Maple step by step solution . 2141

Internal problem ID [6342]
Internal file name [OUTPUT/5590_Sunday_June_05_2022_03_44_19_PM_36590290/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 5 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_bessel_ode", "second__order_change_of__variable_on_y_method_1"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

Given that one solution of the ode is
\[
y_{1}=\frac{\sin (x)}{\sqrt{x}}
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{1}{x}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\frac{\sin (x)\left(\int \frac{\mathrm{e}^{-\left(\int \frac{1}{x} x x\right)}}{\sin (x)^{2}} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=\frac{\sin (x)}{\sqrt{x}} \int \frac{\frac{1}{x}}{\frac{\sin (x)^{2}}{x}} d x \\
& y_{2}(x)=\frac{\sin (x)\left(\int \csc (x)^{2} d x\right)}{\sqrt{x}} \\
& y_{2}(x)=-\frac{\sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\sin (x) c_{1}}{\sqrt{x}}-\frac{c_{2} \sin (x) \cot (x)}{\sqrt{x}}
\]

Verified OK.

\subsection*{12.6.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0
\]
- Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k-}\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}\)
- \(\quad\) Each term must be 0
\(a_{1}(3+2 r)(1+2 r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}\)
- \(\quad\) Recursion relation for \(r=-\frac{1}{2}\)
\(a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}\)
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]\)
- Recursion relation for \(r=\frac{1}{2}\)
\(a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}\)
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]\)
- \(\quad\) Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 17
dsolve \(\left(\left[x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)+\left(x^{\wedge} 2-1 / 4\right) * y(x)=0, x^{\wedge}(-1 / 2) * \sin (x)\right]\right.\), singsol=all)
\[
y(x)=\frac{c_{1} \sin (x)+\cos (x) c_{2}}{\sqrt{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 39
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' \([x]+x * y\) ' \([x]+\left(x^{\wedge} 2-1 / 4\right) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{-i x}\left(2 c_{1}-i c_{2} e^{2 i x}\right)}{2 \sqrt{x}}
\]

\section*{12.7 problem 6(a)}
12.7.1 Maple step by step solution

Internal problem ID [6343]
Internal file name [OUTPUT/5591_Sunday_June_05_2022_03_44_20_PM_15281440/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 6(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change_of__variable_on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{y}{x-1}=0
\]

Given that one solution of the ode is
\[
y_{1}=x
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=-\frac{x}{x-1}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int-\frac{x}{x-1} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{x+\ln (x-1)}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{x}(x-1)}{x^{2}} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} \mathrm{e}^{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x+c_{2} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x+c_{2} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{12.7.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-\frac{x y^{\prime}}{x-1}+\frac{y}{x-1}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]

Check to see if \(x_{0}=1\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{x}{x-1}, P_{3}(x)=\frac{1}{x-1}\right]
\]
- \((x-1) \cdot P_{2}(x)\) is analytic at \(x=1\)
\[
\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-1
\]
- \((x-1)^{2} \cdot P_{3}(x)\) is analytic at \(x=1\)
\[
\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0
\]
- \(\quad x=1\) is a regular singular point

Check to see if \(x_{0}=1\) is a regular singular point \(x_{0}=1\)
- Multiply by denominators
\((x-1) y^{\prime \prime}-x y^{\prime}+y=0\)
- Change variables using \(x=u+1\) so that the regular singular point is at \(u=0\) \(u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(-u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}\)
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}\)
- \(\quad\) Shift index using \(k->k+1\)
\(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-2+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)-a_{k}(k+r-1)\right) u^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of r that satisfy the indicial equation
\(r \in\{0,2\}\)
- Each term in the series must be 0, giving the recursion relation
\[
(k+r-1)\left(a_{k+1}(k+1+r)-a_{k}\right)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}}{k+1+r}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}}{k+1}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]\)
- \(\quad\) Revert the change of variables \(u=x-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+1}=\frac{a_{k}}{k+1}\right]\)
- \(\quad\) Recursion relation for \(r=2\)
\(a_{k+1}=\frac{a_{k}}{k+3}\)
- \(\quad\) Solution for \(r=2\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]
\]
- Revert the change of variables \(u=x-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k+2}, a_{k+1}=\frac{a_{k}}{k+3}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+3}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 12
```

dsolve([diff(y(x),x\$2)-x/(x-1)*diff (y (x),x)+1/(x-1)*y(x)=0,x], singsol=all)

```
\[
y(x)=c_{1} x+\mathrm{e}^{x} c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.061 (sec). Leaf size: 17
DSolve[y''[x]-x/(x-1)*y'[x]+1/(x-1)*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} e^{x}-c_{2} x
\]

\section*{12.8 problem 6(b)}
12.8.1 Maple step by step solution . 2151

Internal problem ID [6344]
Internal file name [OUTPUT/5592_Sunday_June_05_2022_03_44_21_PM_71927023/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 6(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_culer_ode", "second_order_change__of_cvariable_on_x_method_2", "second_order__change__of__variable__on_y_method_2", "second_order_ode__non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0
\]

Given that one solution of the ode is
\[
y_{1}=x
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{2}{x}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int \frac{2}{x} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\frac{1}{x^{2}}}{x^{2}}, d x \\
& y_{2}(x)=x\left(\int \frac{1}{x^{4}} d x\right) \\
& y_{2}(x)=-\frac{1}{3 x^{2}}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x-\frac{c_{2}}{3 x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x-\frac{c_{2}}{3 x^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x-\frac{c_{2}}{3 x^{2}}
\]

Verified OK.

\subsection*{12.8.1 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 y^{\prime}}{x}-\frac{2 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\(x^{2} y^{\prime \prime}+2 x y^{\prime}-2 y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 2 \frac{d}{x^{2}} y(t)-2 y(t)=0\right.\)
- \(\quad\) Simplify
\(\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-2 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}+r-2=0\)
- Factor the characteristic polynomial
\((r+2)(r-1)=0\)
- Roots of the characteristic polynomial
\(r=(-2,1)\)
- \(\quad\) 1st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{-2 t}\)
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{t}
\]
- General solution of the ODE
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- \(\quad\) Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{t}
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x^{2}}+c_{2} x
\]
- Simplify
\[
y=\frac{c_{1}}{x^{2}}+c_{2} x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 15
```

dsolve([x^2*diff(y(x),x\$2)+2*x*diff(y(x),x)-2*y(x)=0, x],singsol=all)

```
\[
y(x)=\frac{c_{2} x^{3}+c_{1}}{x^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.01 (sec). Leaf size: 16
DSolve \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+2 * x * y\) ' \([x]-2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{c_{1}}{x^{2}}+c_{2} x
\]

\section*{12.9 problem 6(c)}
12.9.1 Maple step by step solution . 2155

Internal problem ID [6345]
Internal file name [OUTPUT/5593_Sunday_June_05_2022_03_44_22_PM_15722899/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 6(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_change__of_variable_on_y_method_1", "second_order_change_of_cvariable_on_y__method__2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0
\]

Given that one solution of the ode is
\[
y_{1}=x
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{-x^{2}-2 x}{x^{2}}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x\left(\int \frac{\mathrm{e}^{-\left(\int \frac{-x^{2}-2 x}{x^{2}} d x\right)}}{x^{2}} d x\right) \\
& y_{2}(x)=x \int \frac{\mathrm{e}^{x+2 \ln (x)}}{x^{2}}, d x \\
& y_{2}(x)=\left(\int \mathrm{e}^{x} d x\right) x \\
& y_{2}(x)=x \mathrm{e}^{x}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x+c_{2} x \mathrm{e}^{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x+c_{2} x \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x+c_{2} x \mathrm{e}^{x}
\]

Verified OK.

\subsection*{12.9.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+\left(-x^{2}-2 x\right) y^{\prime}+(x+2) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(x+2) y}{x^{2}}+\frac{(x+2) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x+2) y^{\prime}}{x}+\frac{(x+2) y}{x^{2}}=0\)Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{x+2}{x}, P_{3}(x)=\frac{x+2}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-2
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2
\]
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(-1+r)(-2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-1)(k+r-2)-a_{k-1}(k+r-2)\right) x^{k+r}\right)=0
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(-1+r)(-2+r)=0
\]
- Values of \(r\) that satisfy the indicial equation \(r \in\{1,2\}\)
- Each term in the series must be 0 , giving the recursion relation
\((k+r-2)\left(a_{k}(k+r-1)-a_{k-1}\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\((k+r-1)\left(a_{k+1}(k+r)-a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}}{k+r}
\]
- Recursion relation for \(r=1\)
\(a_{k+1}=\frac{a_{k}}{k+1}\)
- \(\quad\) Solution for \(r=1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{k+1}\right]\)
- Recursion relation for \(r=2\)
\[
a_{k+1}=\frac{a_{k}}{k+2}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=\frac{a_{k}}{k+2}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+1}=\frac{a_{k}}{k+1}, b_{k+1}=\frac{b_{k}}{k+2}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 12
```

dsolve([x^2*diff(y(x),x\$2)-x*(x+2)*diff(y(x),x)+(x+2)*y(x)=0,x], singsol=all)

```
\[
y(x)=x\left(\mathrm{e}^{x} c_{2}+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 16
DSolve \(\left[x^{\sim} 2 * y\right.\) ' ' \([x]-x *(x+2) * y^{\prime}[x]+(x+2) * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x\left(c_{2} e^{x}+c_{1}\right)
\]

\subsection*{12.10 problem 7}
12.10.1 Solving as second order change of variable on y method 2 ode . 2159

Internal problem ID [6346]
Internal file name [OUTPUT/5594_Sunday_June_05_2022_03_44_24_PM_57895568/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 7 .
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second__order_change__of_cvariable_on_y__method_2"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-x f(x) y^{\prime}+f(x) y=0
\]

\subsection*{12.10.1 Solving as second order change of variable on y method 2 ode}

In normal form the ode
\[
\begin{equation*}
y^{\prime \prime}-x f(x) y^{\prime}+f(x) y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
p(x) & =-f(x) x \\
q(x) & =f(x)
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-n f(x)+f(x)=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\left(\frac{2}{x}-f(x) x\right) v^{\prime}(x)=0 \\
& v^{\prime \prime}(x)+\left(\frac{2}{x}-f(x) x\right) v^{\prime}(x)=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\left(\frac{2}{x}-f(x) x\right) u(x)=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(f(x) x^{2}-2\right)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{f(x) x^{2}-2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{f(x) x^{2}-2}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{f(x) x^{2}-2}{x} d x \\
\ln (u) & =\int \frac{f(x) x^{2}-2}{x} d x+c_{1} \\
u & =\mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x+c_{1}} \\
& =c_{1} \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =\int c_{1} \mathrm{e}^{\frac{f(x) x^{2}-2}{x} d x} d x+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(\int c_{1} \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x+c_{2}\right) x \\
& =\left(c_{1}\left(\int \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x\right)+c_{2}\right) x
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\left(\int c_{1} \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x+c_{2}\right) x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\left(\int c_{1} \mathrm{e}^{\int \frac{f(x) x^{2}-2}{x} d x} d x+c_{2}\right) x
\]

Verified OK.
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1([\) a
\(\rightarrow\) Trying changes of variables to rationalize or make the ODE simpler
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
<- linear symmetries successful`
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 27
dsolve(\(\operatorname{diff}(y(x), x \$ 2)-x * f(x) * \operatorname{diff}(y(x), x)+f(x) * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=x\left(\left(\int \mathrm{e}^{\int \frac{-2+f(x) x^{2}}{x} d x} d x\right) c_{1}+c_{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.287 (sec). Leaf size: 44
DSolve[y''[x]-x*f[x]*y'[x]+f[x]*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow x\left(c_{2} \int_{1}^{x} \frac{\exp \left(-\int_{1}^{K[2]}-f(K[1]) K[1] d K[1]\right)}{K[2]^{2}} d K[2]+c_{1}\right)
\]

\subsection*{12.11 problem 8}
12.11.1 Maple step by step solution

2164
Internal problem ID [6347]
Internal file name [OUTPUT/5595_Sunday_June_05_2022_03_44_26_PM_43339838/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Second-Order Linear Equations. Section 2.4. THE USE OF A KNOWN SOLUTION TO FIND ANOTHER. Page 74
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order"
Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}-(1+2 x) y^{\prime}+(1+x) y=0
\]

Given that one solution of the ode is
\[
y_{1}=\mathrm{e}^{x}
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=\frac{-1-2 x}{x}
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{x}\left(\int \mathrm{e}^{-\left(\int \frac{-1-2 x}{x} d x\right)} \mathrm{e}^{-2 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{x} \int \frac{\mathrm{e}^{2 x+\ln (x)}}{\mathrm{e}^{2 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{x}\left(\int x d x\right) \\
& y_{2}(x)=\frac{x^{2} \mathrm{e}^{x}}{2}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{x}+\frac{c_{2} x^{2} \mathrm{e}^{x}}{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} x^{2} \mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} x^{2} \mathrm{e}^{x}}{2}
\]

Verified OK.

\subsection*{12.11.1 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime} x+(-1-2 x) y^{\prime}+(1+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y}{x}+\frac{(1+2 x) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{(1+2 x) y^{\prime}}{x}+\frac{(1+x) y}{x}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{1+2 x}{x}, P_{3}(x)=\frac{1+x}{x}\right]
\]
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\[
\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0
\]
- \(\quad x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
y^{\prime \prime} x+(-1-2 x) y^{\prime}+(1+x) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\) \(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-2+r) x^{-1+r}+\left(a_{1}(1+r)(-1+r)-a_{0}(-1+2 r)\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)\right.\right.\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,2\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(-1+r)-a_{0}(-1+2 r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+r-1)+a_{k}(-2 k-2 r+1)+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+r)+a_{k+1}(-2 k-1-2 r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{2 k a_{k+1}+2 r a_{k+1}-a_{k}+a_{k+1}}{(k+2+r)(k+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+a_{k+1}}{(k+2) k}\)
- Series not valid for \(r=0\), division by 0 in the recursion relation at \(k=0\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+a_{k+1}}{(k+2) k}\)
- \(\quad\) Recursion relation for \(r=2\)
\(a_{k+2}=\frac{2 k a_{k+1}-a_{k}+5 a_{k+1}}{(k+4)(k+2)}\)
- \(\quad\) Solution for \(r=2\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=\frac{2 k a_{k+1}-a_{k}+5 a_{k+1}}{(k+4)(k+2)}, 3 a_{1}-3 a_{0}=0\right]\)

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve([x*diff (y(x),x\$2)-(2*x+1)*diff (y(x),x)+(x+1)*y(x)=0, exp(x)],singsol=all)

```
\[
y(x)=\mathrm{e}^{x}\left(c_{2} x^{2}+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 23
DSolve[x*y' ' \([\mathrm{x}]-(2 * x+1) * y\) ' \([\mathrm{x}]+(\mathrm{x}+1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2} e^{x}\left(c_{2} x^{2}+2 c_{1}\right)
\]
13 Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
13.1 problem 1 2169
13.2 problem 2 2174
13.3 problem 3 2179
13.4 problem 4 2184
13.5 problem 5 2189
13.6 problem 6 2191
13.7 problem 7 2193
13.8 problem 8 2199
13.9 problem 9 2205
13.10problem 10 2207
13.11problem 11 2209
13.12problem 12 2216
13.13problem 13 2223
13.14problem 14 2228
13.15problem 15 2230
13.16problem 16(a) 2238
13.17problem 16(b) 2244
13.18problem 17 2248
13.19problem 18 2256
13.20problem 19(a) 2266
13.21 problem 19(b) 2273
13.22problem 19(c) 2280
13.23problem 20 2287

\section*{13.1 problem 1}
13.1.1 Maple step by step solution

2170
Internal problem ID [6348]
Internal file name [OUTPUT/5596_Sunday_June_05_2022_03_44_27_PM_11838903/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 1.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
\]

The characteristic equation is
\[
\lambda^{3}-3 \lambda^{2}+2 \lambda=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=0 \\
& \lambda_{2}=2 \\
& \lambda_{3}=1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
\]

Verified OK.

\subsection*{13.1.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 3
\[
y^{\prime \prime \prime}
\]

Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\[
y_{3}^{\prime}(x)=3 y_{3}(x)-2 y_{2}(x)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)-2 y_{2}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & 3
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -2 & 3
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\(\vec{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\)
- Consider eigenpair
\(\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{1} \\
0 \\
0
\end{array}\right]
\]
- First component of the vector is the solution to the ODE \(y=c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{2 x} c_{3}}{4}+c_{1}\)

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff \((y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 25
DSolve[y'''[x]-3*y''[x]+2*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{1} e^{x}+\frac{1}{2} c_{2} e^{2 x}+c_{3}
\]

\section*{13.2 problem 2}
13.2.1 Maple step by step solution

2175
Internal problem ID [6349]
Internal file name [OUTPUT/5597_Sunday_June_05_2022_03_44_29_PM_35554333/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 2.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y^{\prime}-2 y=0
\]

The characteristic equation is
\[
\lambda^{3}-3 \lambda^{2}+4 \lambda-2=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =1-i \\
\lambda_{3} & =1+i
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{(1+i) x} \\
& y_{3}=\mathrm{e}^{(1-i) x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{(1+i) x} c_{2}+\mathrm{e}^{(1-i) x} c_{3}
\]

Verified OK.

\subsection*{13.2.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime \prime}-3 y^{\prime \prime}+4 y^{\prime}-2 y=0\)
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\) \(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=3 y_{3}(x)-4 y_{2}(x)+2 y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=3 y_{3}(x)-4 y_{2}(x)+2 y_{1}(x)\right]\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -4 & 3
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -4 & 3
\end{array}\right]
\]
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[1-\mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[1+\mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \\
\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[1-\mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution from eigenpair
\[
\mathrm{e}^{(1-\mathrm{I}) x} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \\
\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2}(\cos (x)-\mathrm{I} \sin (x)) \\
\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{2} \\
\frac{\cos (x)}{2}-\frac{\sin (x)}{2} \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\sin (x)}{2} \\
\frac{\sin (x)}{2}+\frac{\cos (x)}{2} \\
\cos (x)
\end{array}\right]+c_{3} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
\frac{\cos (x)}{2} \\
\frac{\cos (x)}{2}-\frac{\sin (x)}{2} \\
-\sin (x)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\(y=\frac{\mathrm{e}^{x}\left(c_{2} \sin (x)+c_{3} \cos (x)+2 c_{1}\right)}{2}\)

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve(diff (y (x),x\$3)-3*diff (y (x),x\$2)+4*diff (y (x),x)-2*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x}\left(c_{1}+\sin (x) c_{2}+c_{3} \cos (x)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 22
DSolve[y'' ' \([x]-3 * y\) '' \([x]+4 * y\) ' \([x]-2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{x}\left(c_{2} \cos (x)+c_{1} \sin (x)+c_{3}\right)
\]

\section*{13.3 problem 3}
13.3.1 Maple step by step solution

2180
Internal problem ID [6350]
Internal file name [OUTPUT/5598_Sunday_June_05_2022_03_44_31_PM_84736631/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 3.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]
\[
y^{\prime \prime \prime}-y=0
\]

The characteristic equation is
\[
\lambda^{3}-1=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+\mathrm{e}^{\left(-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(-\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
\]

Verified OK.

\subsection*{13.3.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}-y=0
\]
- Highest derivative means the order of the ODE is 3 \(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=y_{1}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- \(\quad\) System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and cos
\[
\mathrm{e}^{-\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{-\frac{1}{2}-\frac{\sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{-\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=-\frac{\mathrm{e}^{-\frac{x}{2}}\left(c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2}}\left(\sqrt{3} c_{2}-c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{1} \mathrm{e}^{x}
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
```

dsolve(diff(y(x),x\$3)-y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x} c_{1}+c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 52
DSolve[y''' \([x]-y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x / 2}\left(c_{1} e^{3 x / 2}+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

\section*{13.4 problem 4}
13.4.1 Maple step by step solution

2185
Internal problem ID [6351]
Internal file name [OUTPUT/5599_Sunday_June_05_2022_03_44_32_PM_83856143/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 4.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_3rd_order, _missing_x]]

```
\[
y^{\prime \prime \prime}+y=0
\]

The characteristic equation is
\[
\lambda^{3}+1=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2} \\
& \lambda_{3}=\frac{1}{2}+\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} \\
& y_{3}=\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{\left(\frac{1}{2}+\frac{i \sqrt{3}}{2}\right) x} c_{2}+\mathrm{e}^{\left(\frac{1}{2}-\frac{i \sqrt{3}}{2}\right) x} c_{3}
\]

Verified OK.

\subsection*{13.4.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}+y=0
\]
- Highest derivative means the order of the ODE is 3 \(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=-y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=-y_{1}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- \(\quad\) System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution from eigenpair
\[
\mathrm{e}^{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) x} \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
\mathrm{e}^{\frac{x}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{1}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right)^{2}} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)}{\frac{1}{2}-\frac{\mathrm{I} 3}{2}} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{2}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right], \vec{y}_{3}(x)=\mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\(\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)\)
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2} \\
\cos \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]+c_{3} \mathrm{e}^{\frac{x}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}+\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
\frac{\cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}-\frac{\sin \left(\frac{\sqrt{3} x}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} x}{2}\right)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=\mathrm{e}^{-x}\left(-\frac{\mathrm{e}^{\frac{3 x}{2}}\left(-c_{3} \sqrt{3}+c_{2}\right) \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{3 x}{2}}\left(\sqrt{3} c_{2}+c_{3}\right) \sin \left(\frac{\sqrt{3} x}{2}\right)}{2}+c_{1}\right)
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 37
```

dsolve(diff(y(x),x\$3)+y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(c_{2} \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{3} \mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1}\right) \mathrm{e}^{-x}
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 56
DSolve[y'''[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-x}\left(c_{3} e^{3 x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} e^{3 x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{1}\right)
\]

\section*{13.5 problem 5}

Internal problem ID [6352]
Internal file name [OUTPUT/5600_Sunday_June_05_2022_03_44_33_PM_8107633/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 5.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]
\[
y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0
\]

The characteristic equation is
\[
\lambda^{3}+3 \lambda^{2}+3 \lambda+1=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =-1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}
\]

Verified OK.
Maple trace
- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
dsolve(\(\operatorname{diff}(y(x), x \$ 3)+3 * \operatorname{diff}(y(x), x \$ 2)+3 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-x}\left(c_{3} x^{2}+c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 23
DSolve[y'' \(\quad[x]+3 * y\) ' ' \([x]+3 * y\) ' \([x]+y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x}\left(x\left(c_{3} x+c_{2}\right)+c_{1}\right)
\]

\section*{13.6 problem 6}

Internal problem ID [6353]
Internal file name [OUTPUT/5601_Sunday_June_05_2022_03_44_35_PM_64782230/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 6.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}+4 y^{\prime \prime \prime}+6 y^{\prime \prime}+4 y^{\prime}+y=0
\]

The characteristic equation is
\[
\lambda^{4}+4 \lambda^{3}+6 \lambda^{2}+4 \lambda+1=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-1 \\
& \lambda_{3}=-1 \\
& \lambda_{4}=-1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+x^{3} \mathrm{e}^{-x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x} \\
& y_{4}=x^{3} \mathrm{e}^{-x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+x^{3} \mathrm{e}^{-x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+x^{3} \mathrm{e}^{-x} c_{4}
\]

Verified OK.
Maple trace
'Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
dsolve (diff \((y(x), x \$ 4)+4 * \operatorname{diff}(y(x), x \$ 3)+6 * \operatorname{diff}(y(x), x \$ 2)+4 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)\), singsol=
\[
y(x)=\mathrm{e}^{-x}\left(c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 28
DSolve [y''' \([x]+4 * y\) ' ' \([x]+6 * y\) ' ' \([x]+4 * y\) ' \([x]+y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-x}\left(x\left(x\left(c_{4} x+c_{3}\right)+c_{2}\right)+c_{1}\right)
\]

\section*{13.7 problem 7}
13.7.1 Maple step by step solution

2194
Internal problem ID [6354]
Internal file name [OUTPUT/5602_Sunday_June_05_2022_03_44_36_PM_20432115/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 7.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_high_order, _missing_x]]

```
\[
y^{\prime \prime \prime \prime}-y=0
\]

The characteristic equation is
\[
\lambda^{4}-1=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =i \\
\lambda_{4} & =-i
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
y_{1} & =\mathrm{e}^{-x} \\
y_{2} & =\mathrm{e}^{x} \\
y_{3} & =\mathrm{e}^{-i x} \\
y_{4} & =\mathrm{e}^{i x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

Verified OK.

\subsection*{13.7.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime \prime}-y=0
\]
- Highest derivative means the order of the ODE is 4
\(y^{\prime \prime \prime \prime}\)Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Define new variable \(y_{4}(x)\)
\(y_{4}(x)=y^{\prime \prime \prime}\)
- Isolate for \(y_{4}^{\prime}(x)\) using original ODE
\(y_{4}^{\prime}(x)=y_{1}(x)\)
Convert linear ODE into a system of first order ODEs \(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=y_{1}(x)\right]\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
\]
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- \(\quad\) To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)

- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{3} \sin (x)-c_{4} \cos (x) \\
-c_{3} \cos (x)+c_{4} \sin (x) \\
c_{3} \sin (x)+c_{4} \cos (x) \\
c_{3} \cos (x)-c_{4} \sin (x)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE \(y=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}-c_{4} \cos (x)-c_{3} \sin (x)\)

Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$4)-y(x)=0,y(x), singsol=all)

```
\[
y(x)=c_{1} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{2}+c_{3} \sin (x)+c_{4} \cos (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y'' '' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}]\), x , IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} e^{x}+c_{3} e^{-x}+c_{2} \cos (x)+c_{4} \sin (x)
\]

\section*{13.8 problem 8}
13.8.1 Maple step by step solution

2200
Internal problem ID [6355]
Internal file name [OUTPUT/5603_Sunday_June_05_2022_03_44_37_PM_61774592/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 8.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_high_order, _missing_x]]

```
\[
y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=0
\]

The characteristic equation is
\[
\lambda^{4}+5 \lambda^{2}+4=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i \\
& \lambda_{3}=i \\
& \lambda_{4}=-i
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-i x} \\
& y_{2}=\mathrm{e}^{-2 i x} \\
& y_{3}=\mathrm{e}^{2 i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-i x}+\mathrm{e}^{-2 i x} c_{2}+\mathrm{e}^{2 i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

Verified OK.

\subsection*{13.8.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime \prime \prime}+5 y^{\prime \prime}+4 y=0\)
- Highest derivative means the order of the ODE is 4
\(y^{\prime \prime \prime \prime}\)Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Define new variable \(y_{4}(x)\)
\(y_{4}(x)=y^{\prime \prime \prime}\)
- Isolate for \(y_{4}^{\prime}(x)\) using original ODE
\(y_{4}^{\prime}(x)=-5 y_{3}(x)-4 y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-5 y_{3}(x)-4 y_{1}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-4 & 0 & -5 & 0
\end{array}\right]
\]
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right],\left[2 \mathrm{I},\left[\begin{array}{c}
\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-2 \mathrm{I},\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{-2 \mathrm{I} x} \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and cos
\[
(\cos (2 x)-I \sin (2 x)) \cdot\left[\begin{array}{c}
-\frac{\mathrm{I}}{8} \\
-\frac{1}{4} \\
\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
-\frac{\mathrm{I}}{8}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
-\frac{\cos (2 x)}{4}+\frac{\mathrm{I} \sin (2 x)}{4} \\
\frac{\mathrm{I}}{2}(\cos (2 x)-\mathrm{I} \sin (2 x)) \\
\cos (2 x)-\mathrm{I} \sin (2 x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{1}(x)=\left[\begin{array}{c}
-\frac{\sin (2 x)}{8} \\
-\frac{\cos (2 x)}{4} \\
\frac{\sin (2 x)}{2} \\
\cos (2 x)
\end{array}\right], \vec{y}_{2}(x)=\left[\begin{array}{c}
-\frac{\cos (2 x)}{8} \\
\frac{\sin (2 x)}{4} \\
\frac{\cos (2 x)}{2} \\
-\sin (2 x)
\end{array}\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=\left[\begin{array}{c}
-c_{4} \cos (x)-c_{3} \sin (x)-\frac{c_{2} \cos (2 x)}{8}-\frac{\sin (2 x) c_{1}}{8} \\
-c_{3} \cos (x)+c_{4} \sin (x)+\frac{c_{2} \sin (2 x)}{4}-\frac{c_{1} \cos (2 x)}{4} \\
c_{3} \sin (x)+c_{4} \cos (x)+\frac{c_{2} \cos (2 x)}{2}+\frac{\sin (2 x) c_{1}}{2} \\
c_{3} \cos (x)-c_{4} \sin (x)-c_{2} \sin (2 x)+c_{1} \cos (2 x)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE \(y=-c_{4} \cos (x)-c_{3} \sin (x)-\frac{c_{2} \cos (2 x)}{8}-\frac{\sin (2 x) c_{1}}{8}\)

Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
```

dsolve(diff(y(x),x\$4)+5*\operatorname{diff}(y(x),x\$2)+4*y(x)=0,y(x), singsol=all)

```
\[
y(x)=2 c_{2} \cos (x)^{2}+\left(2 c_{1} \sin (x)+c_{4}\right) \cos (x)+c_{3} \sin (x)-c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y''''[x]+5*y''[x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow c_{1} \cos (2 x)+c_{4} \sin (x)+\cos (x)\left(2 c_{2} \sin (x)+c_{3}\right)
\]

\section*{13.9 problem 9}

Internal problem ID [6356]
Internal file name [OUTPUT/5604_Sunday_June_05_2022_03_44_38_PM_42445937/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 9.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}-2 a^{2} y^{\prime \prime}+y a^{4}=0
\]

The characteristic equation is
\[
a^{4}-2 a^{2} \lambda^{2}+\lambda^{4}=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =a \\
\lambda_{2} & =a \\
\lambda_{3} & =-a \\
\lambda_{4} & =-a
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}+\mathrm{e}^{-a x} c_{3}+x \mathrm{e}^{-a x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
y_{1} & =\mathrm{e}^{a x} \\
y_{2} & =x \mathrm{e}^{a x} \\
y_{3} & =\mathrm{e}^{-a x} \\
y_{4} & =x \mathrm{e}^{-a x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}+\mathrm{e}^{-a x} c_{3}+x \mathrm{e}^{-a x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{a x}+c_{2} x \mathrm{e}^{a x}+\mathrm{e}^{-a x} c_{3}+x \mathrm{e}^{-a x} c_{4}
\]

Verified OK.
Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 26
```

dsolve(diff(y(x),x\$4)-2*a^2*diff(y(x),x\$2)+a^4*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\left(c_{4} x+c_{3}\right) \mathrm{e}^{-a x}+\mathrm{e}^{a x}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 38
DSolve[y''''[x]-2*a^2*y''[x]+a^4*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-a x}\left(c_{3} e^{2 a x}+x\left(c_{4} e^{2 a x}+c_{2}\right)+c_{1}\right)
\]

\subsection*{13.10 problem 10}

Internal problem ID [6357]
Internal file name [OUTPUT/5605_Sunday_June_05_2022_03_44_40_PM_24673305/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 10.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}+2 a^{2} y^{\prime \prime}+y a^{4}=0
\]

The characteristic equation is
\[
a^{4}+2 a^{2} \lambda^{2}+\lambda^{4}=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =i a \\
\lambda_{2} & =-i a \\
\lambda_{3} & =i a \\
\lambda_{4} & =-i a
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=\mathrm{e}^{-i a x} c_{1}+x \mathrm{e}^{-i a x} c_{2}+\mathrm{e}^{i a x} c_{3}+x \mathrm{e}^{i a x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
y_{1} & =\mathrm{e}^{-i a x} \\
y_{2} & =x \mathrm{e}^{-i a x} \\
y_{3} & =\mathrm{e}^{i a x} \\
y_{4} & =x \mathrm{e}^{i a x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-i a x} c_{1}+x \mathrm{e}^{-i a x} c_{2}+\mathrm{e}^{i a x} c_{3}+x \mathrm{e}^{i a x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\mathrm{e}^{-i a x} c_{1}+x \mathrm{e}^{-i a x} c_{2}+\mathrm{e}^{i a x} c_{3}+x \mathrm{e}^{i a x} c_{4}
\]

Verified OK.
Maple trace
- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 25
dsolve(\(\operatorname{diff}(y(x), x \$ 4)+2 * a^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+a^{\wedge} 4 * y(x)=0, y(x), \quad\) singsol=all)
\[
y(x)=\left(c_{4} x+c_{2}\right) \cos (a x)+\sin (a x)\left(c_{3} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 30
DSolve[y'' '' \([\mathrm{x}]+2 * \mathrm{a}^{\wedge} 2 * \mathrm{y}\) '' \([\mathrm{x}]+\mathrm{a} \wedge 4 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow\left(c_{2} x+c_{1}\right) \cos (a x)+\left(c_{4} x+c_{3}\right) \sin (a x)
\]

\subsection*{13.11 problem 11}
13.11.1 Maple step by step solution . 2210

Internal problem ID [6358]
Internal file name [OUTPUT/5606_Sunday_June_05_2022_03_44_41_PM_46376091/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 11.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=0
\]

The characteristic equation is
\[
\lambda^{4}+2 \lambda^{3}+2 \lambda^{2}+2 \lambda+1=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i \\
\lambda_{3} & =-1 \\
\lambda_{4} & =-1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=\mathrm{e}^{-i x} \\
& y_{4}=\mathrm{e}^{i x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+\mathrm{e}^{-i x} c_{3}+\mathrm{e}^{i x} c_{4}
\]

Verified OK.

\subsection*{13.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+2 y^{\prime \prime}+2 y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 4 \(y^{\prime \prime \prime \prime}\)

Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Define new variable \(y_{4}(x)\)
\[
y_{4}(x)=y^{\prime \prime \prime}
\]
- Isolate for \(y_{4}^{\prime}(x)\) using original ODE
\[
y_{4}^{\prime}(x)=-2 y_{4}(x)-2 y_{3}(x)-2 y_{2}(x)-y_{1}(x)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-2 y_{4}(x)-2 y_{3}(x)-2 y_{2}(x)-y_{1}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
\]
- System to solve
\(\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & -2 & -2 & -2\end{array}\right] \cdot \vec{y}(x)\)
- Define the coefficient matrix
\(A=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & -2 & -2 & -2\end{array}\right]\)
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right],\left[-1,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
\mathrm{I} \\
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]\right.
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- First solution from eigenvalue - 1
\[
\vec{y}_{1}(x)=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
\]
- Form of the 2nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=-1\) is the eigenvalue, a
\[
\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})
\]
- \(\quad\) Note that the \(x\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obt
- \(\quad\) Substitute \(\vec{y}_{2}(x)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\[
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
\]
- \(\quad\) Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{y}_{2}(x)\) to be a solution to the homogeneous system
\[
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
\]
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue -1
\[
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & -2 & -2 & -2
\end{array}\right]-(-1) \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue - 1
\[
\vec{y}_{2}(x)=\mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\mathrm{I},\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{-\mathrm{I} x} \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}
-\mathrm{I} \\
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
-\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
-\cos (x)+\mathrm{I} \sin (x) \\
\mathrm{I}(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{3}(x)=\left[\begin{array}{c}
-\sin (x) \\
-\cos (x) \\
\sin (x) \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\left[\begin{array}{c}
-\cos (x) \\
\sin (x) \\
\cos (x) \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-x} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-x} \cdot\left(x \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)+\left[\begin{array}{c}
-c_{3} \sin (x)-c_{4} \cos (x) \\
-c_{3} \cos (x)+c_{4} \sin (x) \\
c_{3} \sin (x)+c_{4} \cos (x) \\
c_{3} \cos (x)-c_{4} \sin (x)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=\left((-1-x) c_{2}-c_{1}\right) \mathrm{e}^{-x}-c_{3} \sin (x)-c_{4} \cos (x)
\]

\section*{Maple trace}
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
dsolve (diff \((\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 4)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 3)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+2 * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x})\), singsol \(=\)
\[
y(x)=\mathrm{e}^{-x}\left(c_{2} x+c_{1}\right)+c_{3} \sin (x)+c_{4} \cos (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 34
DSolve[y''''[x]+2*y'''[x]+2*y''[x]+2*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x}\left(c_{4} x+c_{1} e^{x} \cos (x)+c_{2} e^{x} \sin (x)+c_{3}\right)
\]

\subsection*{13.12 problem 12}
13.12.1 Maple step by step solution

2217
Internal problem ID [6359]
Internal file name [OUTPUT/5607_Sunday_June_05_2022_03_44_42_PM_46403322/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 12.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-2 y^{\prime \prime}-6 y^{\prime}+5 y=0
\]

The characteristic equation is
\[
\lambda^{4}+2 \lambda^{3}-2 \lambda^{2}-6 \lambda+5=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=-2-i \\
& \lambda_{2}=-2+i \\
& \lambda_{3}=1 \\
& \lambda_{4}=1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{(-2+i) x} c_{3}+\mathrm{e}^{(-2-i) x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=x \mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{(-2+i) x} \\
& y_{4}=\mathrm{e}^{(-2-i) x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{(-2+i) x} c_{3}+\mathrm{e}^{(-2-i) x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} x \mathrm{e}^{x}+\mathrm{e}^{(-2+i) x} c_{3}+\mathrm{e}^{(-2-i) x} c_{4}
\]

Verified OK.

\subsection*{13.12.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}-2 y^{\prime \prime}-6 y^{\prime}+5 y=0
\]
- Highest derivative means the order of the ODE is 4
\(y^{\prime \prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Define new variable \(y_{4}(x)\)
\[
y_{4}(x)=y^{\prime \prime \prime}
\]
- Isolate for \(y_{4}^{\prime}(x)\) using original ODE
\[
y_{4}^{\prime}(x)=-2 y_{4}(x)+2 y_{3}(x)+6 y_{2}(x)-5 y_{1}(x)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=-2 y_{4}(x)+2 y_{3}(x)+6 y_{2}(x)-5 y_{1}(x)\right]
\]
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-5 & 6 & 2 & -2
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-5 & 6 & 2 & -2
\end{array}\right]
\]
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]\right]
\]
- \(\quad\) First solution from eigenvalue 1
\[
\vec{y}_{1}(x)=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
\]
- Form of the 2nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=1\) is the eigenvalue, an \(\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})\)
- \(\quad\) Note that the \(x\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obt
- \(\quad\) Substitute \(\vec{y}_{2}(x)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\[
\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})
\]
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- \(\quad\) Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{y}_{2}(x)\) to be a solution to the homogeneous system
\[
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
\]
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue 1
\[
\left(\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-5 & 6 & 2 & -2
\end{array}\right]-1 \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right]
\]
- Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue 1
\[
\vec{y}_{2}(x)=\mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-2-\mathrm{I},\left[\begin{array}{c}
-\frac{2}{125}+\frac{11 \mathrm{I}}{125} \\
\frac{3}{25}-\frac{41}{25} \\
-\frac{2}{5}+\frac{\mathrm{I}}{5} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\(\mathrm{e}^{(-2-\mathrm{I}) x} \cdot\left[\begin{array}{c}-\frac{2}{125}+\frac{11 \mathrm{I}}{125} \\ \frac{3}{25}-\frac{4 \mathrm{I}}{25} \\ -\frac{2}{5}+\frac{\mathrm{I}}{5} \\ 1\end{array}\right]\)
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\(\mathrm{e}^{-2 x} \cdot(\cos (x)-\mathrm{I} \sin (x)) \cdot\left[\begin{array}{c}-\frac{2}{125}+\frac{11 \mathrm{I}}{125} \\ \frac{3}{25}-\frac{4 \mathrm{I}}{25} \\ -\frac{2}{5}+\frac{\mathrm{I}}{5} \\ 1\end{array}\right]\)
- Simplify expression
\[
\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\left(-\frac{2}{125}+\frac{11 \mathrm{I}}{125}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\left(\frac{3}{25}-\frac{4 \mathrm{I}}{25}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\left(-\frac{2}{5}+\frac{\mathrm{I}}{5}\right)(\cos (x)-\mathrm{I} \sin (x)) \\
\cos (x)-\mathrm{I} \sin (x)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{3}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
-\frac{2 \cos (x)}{125}+\frac{11 \sin (x)}{125} \\
\frac{3 \cos (x)}{25}-\frac{4 \sin (x)}{25} \\
-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right], \vec{y}_{4}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{2 \sin (x)}{125}+\frac{11 \cos (x)}{125} \\
-\frac{3 \sin (x)}{25}-\frac{4 \cos (x)}{25} \\
\frac{2 \sin (x)}{5}+\frac{\cos (x)}{5} \\
-\sin (x)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)
\]
- Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{x} \cdot\left(x \cdot\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0 \\
0 \\
0
\end{array}\right]\right)+\mathrm{e}^{-2 x} c_{3} \cdot\left[\begin{array}{c}
-\frac{2 \cos (x)}{125}+\frac{11 \sin (x)}{125} \\
\frac{3 \cos (x)}{25}-\frac{4 \sin (x)}{25} \\
-\frac{2 \cos (x)}{5}+\frac{\sin (x)}{5} \\
\cos (x)
\end{array}\right]+\mathrm{e}^{-2 x} c_{4} \cdot
\]
- First component of the vector is the solution to the ODE
\[
y=\left(\left(c_{2}(x-1)+c_{1}\right) \mathrm{e}^{3 x}+\frac{\left(-2 c_{3}+11 c_{4}\right) \cos (x)}{125}+\frac{11\left(c_{3}+\frac{2 c_{4}}{11}\right) \sin (x)}{125}\right) \mathrm{e}^{-2 x}
\]

Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
dsolve (diff \((y(x), x \$ 4)+2 * \operatorname{diff}(y(x), x \$ 3)-2 * \operatorname{diff}(y(x), x \$ 2)-6 * \operatorname{diff}(y(x), x)+5 * y(x)=0, y(x)\), singso
\[
y(x)=\left(\left(c_{2} x+c_{1}\right) \mathrm{e}^{3 x}+c_{3} \sin (x)+c_{4} \cos (x)\right) \mathrm{e}^{-2 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 35

\[
y(x) \rightarrow e^{-2 x}\left(e^{3 x}\left(c_{4} x+c_{3}\right)+c_{2} \cos (x)+c_{1} \sin (x)\right)
\]

\subsection*{13.13 problem 13}
13.13.1 Maple step by step solution

2224
Internal problem ID [6360]
Internal file name [OUTPUT/5608_Sunday_June_05_2022_03_44_44_PM_58446449/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 13.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_3rd_order, _missing_x]]
\[
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
\]

The characteristic equation is
\[
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
\]

The roots of the above equation are
\[
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=3
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{x} \\
& y_{2}=\mathrm{e}^{2 x} \\
& y_{3}=\mathrm{e}^{3 x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+c_{3} \mathrm{e}^{3 x}
\]

Verified OK.

\subsection*{13.13.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\(y_{3}(x)=y^{\prime \prime}\)
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=6 y_{3}(x)-11 y_{2}(x)+6 y_{1}(x)\right]\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
6 & -11 & 6
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
\]
- \(\quad\) To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[3,\left[\begin{array}{c}\frac{1}{9} \\ \frac{1}{3} \\ 1\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{x} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+c_{3} \mathrm{e}^{3 x} \cdot\left[\begin{array}{c}
\frac{1}{9} \\
\frac{1}{3} \\
1
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=c_{1} \mathrm{e}^{x}+\frac{c_{2} \mathrm{e}^{2 x}}{4}+\frac{c_{3} \mathrm{e}^{3 x}}{9}
\]

\section*{Maple trace}
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff \((y(x), x \$ 3)-6 * \operatorname{diff}(y(x), x \$ 2)+11 * \operatorname{diff}(y(x), x)-6 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{2 x} c_{1}+c_{2} \mathrm{e}^{3 x}+c_{3} \mathrm{e}^{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 25
DSolve[y'''[x]-6*y''[x]+11*y'[x]-6*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{x}\left(e^{x}\left(c_{3} e^{x}+c_{2}\right)+c_{1}\right)
\]

\subsection*{13.14 problem 14}

Internal problem ID [6361]
Internal file name [OUTPUT/5609_Sunday_June_05_2022_03_44_45_PM_71354160/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 14.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}-3 y^{\prime \prime}-5 y^{\prime}-2 y=0
\]

The characteristic equation is
\[
\lambda^{4}+\lambda^{3}-3 \lambda^{2}-5 \lambda-2=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =-1 \\
\lambda_{4} & =-1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{4}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=x \mathrm{e}^{-x} \\
& y_{3}=x^{2} \mathrm{e}^{-x} \\
& y_{4}=\mathrm{e}^{2 x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{4} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-x}+x \mathrm{e}^{-x} c_{2}+c_{3} x^{2} \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{4}
\]

Verified OK.
Maple trace
'Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 26
dsolve(\(\operatorname{diff}(y(x), x \$ 4)+\operatorname{diff}(y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)-5 * \operatorname{diff}(y(x), x)-2 * y(x)=0, y(x)\), singsol=
\[
y(x)=\left(c_{4} x^{2}+c_{3} x+c_{2}\right) \mathrm{e}^{-x}+\mathrm{e}^{2 x} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 32
DSolve[y'C' \([x]+y\) ' '' \([x]-3 * y\) '' \([x]-5 * y\) ' \([x]-2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow e^{-x}\left(c_{3} x^{2}+c_{2} x+c_{4} e^{3 x}+c_{1}\right)
\]

\subsection*{13.15 problem 15}
13.15.1 Maple step by step solution

Internal problem ID [6362]
Internal file name [OUTPUT/5610_Sunday_June_05_2022_03_44_46_PM_33953325/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 15.
ODE order: 5.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _missing_x]]
\[
y^{(5)}-6 y^{\prime \prime \prime \prime}-8 y^{\prime \prime \prime}+48 y^{\prime \prime}+16 y^{\prime}-96 y=0
\]

The characteristic equation is
\[
\lambda^{5}-6 \lambda^{4}-8 \lambda^{3}+48 \lambda^{2}+16 \lambda-96=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =6 \\
\lambda_{2} & =2 \\
\lambda_{3} & =2 \\
\lambda_{4} & =-2 \\
\lambda_{5} & =-2
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}+x \mathrm{e}^{2 x} c_{4}+\mathrm{e}^{6 x} c_{5}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x} \\
& y_{3}=\mathrm{e}^{2 x} \\
& y_{4}=\mathrm{e}^{2 x} x \\
& y_{5}=\mathrm{e}^{6 x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}+x \mathrm{e}^{2 x} c_{4}+\mathrm{e}^{6 x} c_{5} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+\mathrm{e}^{2 x} c_{3}+x \mathrm{e}^{2 x} c_{4}+\mathrm{e}^{6 x} c_{5}
\]

Verified OK.

\subsection*{13.15.1 Maple step by step solution}

Let's solve
\(y^{(5)}-6 y^{\prime \prime \prime \prime}-8 y^{\prime \prime \prime}+48 y^{\prime \prime}+16 y^{\prime}-96 y=0\)
- Highest derivative means the order of the ODE is 5
\(y^{(5)}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\[
y_{1}(x)=y
\]
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Define new variable \(y_{4}(x)\)
\[
y_{4}(x)=y^{\prime \prime \prime}
\]
- Define new variable \(y_{5}(x)\)
\[
y_{5}(x)=y^{\prime \prime \prime \prime}
\]
- Isolate for \(y_{5}^{\prime}(x)\) using original ODE
\(y_{5}^{\prime}(x)=6 y_{5}(x)+8 y_{4}(x)-48 y_{3}(x)-16 y_{2}(x)+96 y_{1}(x)\)
Convert linear ODE into a system of first order ODEs
\(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{5}(x)=y_{4}^{\prime}(x), y_{5}^{\prime}(x)=6 y_{5}(x)+8 y_{4}(x)-48 y_{3}(x)\right.\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x) \\
y_{5}(x)
\end{array}\right]
\]
- \(\quad\) System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
96 & -16 & -48 & 8 & 6
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
96 & -16 & -48 & 8 & 6
\end{array}\right]
\]
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[-2,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right],\left[6,\left[\begin{array}{c}
\frac{1}{1296} \\
\frac{1}{216} \\
\frac{1}{36} \\
\frac{1}{6} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[-2,\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- \(\quad\) First solution from eigenvalue -2
\[
\vec{y}_{1}(x)=\mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]
- Form of the 2nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=-2\) is the eigenvalue, a \(\vec{y}_{2}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})\)
- \(\quad\) Note that the \(x\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obt
- \(\quad\) Substitute \(\vec{y}_{2}(x)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})\)
- \(\quad\) Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{y}_{2}(x)\) to be a solution to the homogeneous system
\[
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
\]
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue -2
\[
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
96 & -16 & -48 & 8 & 6
\end{array}\right]-(-2) \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue -2
\[
\vec{y}_{2}(x)=\mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\(\left[2,\left[\begin{array}{c}\frac{1}{16} \\ \frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\)
- First solution from eigenvalue 2
\[
\vec{y}_{3}(x)=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- Form of the 2 nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=2\) is the eigenvalue, an \(\vec{y}_{4}(x)=\mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})\)
- \(\quad\) Note that the \(x\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obt
- \(\quad\) Substitute \(\vec{y}_{4}(x)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\left(\mathrm{e}^{\lambda x} A\right) \cdot(x \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda x}(x \vec{v}+\vec{p})+\mathrm{e}^{\lambda x} \vec{v}=\mathrm{e}^{\lambda x}(\lambda x \vec{v}+A \cdot \vec{p})\)
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\((\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Condition \(\vec{p}\) must meet for \(\vec{y}_{4}(x)\) to be a solution to the homogeneous system
\[
(A-\lambda \cdot I) \cdot \vec{p}=\vec{v}
\]
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue 2
\[
\left(\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
96 & -16 & -48 & 8 & 6
\end{array}\right]-2 \cdot\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
-\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue 2
\[
\vec{y}_{4}(x)=\mathrm{e}^{2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)
\]
- Consider eigenpair
\(\left[6,\left[\begin{array}{c}\frac{1}{1296} \\ \frac{1}{216} \\ \frac{1}{36} \\ \frac{1}{6} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{5}=\mathrm{e}^{6 x} \cdot\left[\begin{array}{c}
\frac{1}{1296} \\
\frac{1}{216} \\
\frac{1}{36} \\
\frac{1}{6} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}(x)+c_{2} \vec{y}_{2}(x)+c_{3} \vec{y}_{3}(x)+c_{4} \vec{y}_{4}(x)+c_{5} \vec{y}_{5}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-2 x} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-2 x} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
-\frac{1}{8} \\
\frac{1}{4} \\
-\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{1}{32} \\
0 \\
0 \\
0 \\
0
\end{array}\right]\right)+\mathrm{e}^{2 x} c_{3} \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{2 x} c_{4} \cdot\left(x \cdot\left[\begin{array}{c}
\frac{1}{16} \\
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right.
\]
- First component of the vector is the solution to the ODE
\[
y=\frac{\left(c_{2}(1+2 x)+2 c_{1}\right) \mathrm{e}^{-2 x}}{32}+\frac{\left((2 x-1) c_{4}+2 c_{3}\right) \mathrm{e}^{2 x}}{32}+\frac{\mathrm{e}^{6 x} c_{5}}{1296}
\]

Maple trace
- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

Solution by Maple
Time used: 0.015 (sec). Leaf size: 31
dsolve(diff \((y(x), x \$ 5)-6 * \operatorname{diff}(y(x), x \$ 4)-8 * \operatorname{diff}(y(x), x \$ 3)+48 * \operatorname{diff}(y(x), x \$ 2)+16 * \operatorname{diff}(y(x), x)-96\)
\[
y(x)=\left(c_{5} x+c_{4}\right) \mathrm{e}^{-2 x}+\left(c_{3} x+c_{2}\right) \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{6 x}
\]

Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 43
DSolve[y'' '' ' \([\mathrm{x}]-6 * y\) ' ' ' ' \([\mathrm{x}]-8 * y\) ' ' ' \([\mathrm{x}]+48 * y\) ' \([\mathrm{x}]+16 * y\) ' \([\mathrm{x}]-96 * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSo
\[
y(x) \rightarrow e^{-2 x}\left(c_{2} x+c_{3} e^{4 x}+c_{4} e^{4 x} x+c_{5} e^{8 x}+c_{1}\right)
\]

\subsection*{13.16 problem 16(a)}
13.16.1 Maple step by step solution

Internal problem ID [6363]
Internal file name [OUTPUT/5611_Sunday_June_05_2022_03_44_47_PM_74242486/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 16(a).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _quadrature]]
\[
y^{\prime \prime \prime \prime}=0
\]

The characteristic equation is
\[
\lambda^{4}=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =0 \\
\lambda_{4} & =0
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=x^{3}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}
\]

Verified OK.

\subsection*{13.16.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime \prime \prime}=0\)
- Highest derivative means the order of the ODE is 4
\(y^{\prime \prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\(y_{3}(x)=y^{\prime \prime}\)
- Define new variable \(y_{4}(x)\)
\(y_{4}(x)=y^{\prime \prime \prime}\)
- Isolate for \(y_{4}^{\prime}(x)\) using original ODE
\(y_{4}^{\prime}(x)=0\)
Convert linear ODE into a system of first order ODEs \(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{4}(x)=y_{3}^{\prime}(x), y_{4}^{\prime}(x)=0\right]\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x) \\
y_{4}(x)
\end{array}\right]
\]
- System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] \cdot \vec{y}(x)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)

- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{y}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\)
- Consider eigenpair
\(\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\(\left[0,\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=\left[\begin{array}{c}
c_{1} \\
0 \\
0 \\
0
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=c_{1}
\]

Maple trace
- Methods for high order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
dsolve(diff(\(y(x), x \$ 4)=0, y(x)\), singsol=all)
\[
y(x)=\frac{1}{6} c_{1} x^{3}+\frac{1}{2} c_{2} x^{2}+c_{3} x+c_{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 22
DSolve[y''''[x]==0,y[x],x, IncludeSingularSolutions -> True]
\[
y(x) \rightarrow x\left(x\left(c_{4} x+c_{3}\right)+c_{2}\right)+c_{1}
\]

\subsection*{13.17 problem 16(b)}

Internal problem ID [6364]
Internal file name [OUTPUT/5612_Sunday_June_05_2022_03_44_49_PM_1015288/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 16(b).
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
[[_high_order, _quadrature]]
\[
y^{\prime \prime \prime \prime}=\sin (x)+24
\]

This is higher order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE And \(y_{p}\) is a particular solution to the nonhomogeneous ODE. \(y_{h}\) is the solution to
\[
y^{\prime \prime \prime \prime}=0
\]

The characteristic equation is
\[
\lambda^{4}=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =0 \\
\lambda_{3} & =0 \\
\lambda_{4} & =0
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x \\
& y_{3}=x^{2} \\
& y_{4}=x^{3}
\end{aligned}
\]

Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime \prime}=\sin (x)+24
\]

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)+24
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1\},\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, x, x^{2}, x^{3}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x\},\{\cos (x), \sin (x)\}]
\]

Since \(x\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{2}\right\},\{\cos (x), \sin (x)\}\right]
\]

Since \(x^{2}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
\left[\left\{x^{3}\right\},\{\cos (x), \sin (x)\}\right]
\]

Since \(x^{3}\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\left\{x^{4}\right\},\{\cos (x), \sin (x)\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x^{4}+A_{2} \cos (x)+A_{3} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
24 A_{1}+A_{2} \cos (x)+A_{3} \sin (x)=\sin (x)+24
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=1, A_{2}=0, A_{3}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=x^{4}+\sin (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}\right)+\left(x^{4}+\sin (x)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}+x^{4}+\sin (x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}+x^{4}+\sin (x)
\]

Verified OK.
Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature <- quadrature successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve(diff \((y(x), x \$ 4)=\sin (x)+24, y(x)\), singsol=all)
\[
y(x)=\frac{c_{1} x^{3}}{6}+x^{4}+\frac{c_{2} x^{2}}{2}+\sin (x)+c_{3} x+c_{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.033 (sec). Leaf size: 29
DSolve[y''''[x]==Sin[x]+24,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow x^{4}+c_{4} x^{3}+c_{3} x^{2}+\sin (x)+c_{2} x+c_{1}
\]

\subsection*{13.18 problem 17}
13.18.1 Maple step by step solution . 2250

Internal problem ID [6365]
Internal file name [OUTPUT/5613_Sunday_June_05_2022_03_44_50_PM_84082901/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 17.
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_3rd_order, _missing_y]]

```
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=10+42 \mathrm{e}^{3 x}
\]

This is higher order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE And \(y_{p}\) is a particular solution to the nonhomogeneous ODE. \(y_{h}\) is the solution to
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0
\]

The characteristic equation is
\[
\lambda^{3}-3 \lambda^{2}+2 \lambda=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =2 \\
\lambda_{3} & =1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\mathrm{e}^{x} \\
& y_{3}=\mathrm{e}^{2 x}
\end{aligned}
\]

Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=10+42 \mathrm{e}^{3 x}
\]

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
10+42 \mathrm{e}^{3 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\{1\},\left\{\mathrm{e}^{3 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC__set becomes
\[
\left[\{x\},\left\{\mathrm{e}^{3 x}\right\}\right]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x+A_{2} \mathrm{e}^{3 x}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
6 A_{2} \mathrm{e}^{3 x}+2 A_{1}=10+42 \mathrm{e}^{3 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=5, A_{2}=7\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=5 x+7 \mathrm{e}^{3 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}\right)+\left(5 x+7 \mathrm{e}^{3 x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+5 x+7 \mathrm{e}^{3 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x} c_{3}+5 x+7 \mathrm{e}^{3 x}
\]

Verified OK.

\subsection*{13.18.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=10+42 \mathrm{e}^{3 x}
\]
- Highest derivative means the order of the ODE is 3 \(y^{\prime \prime \prime}\)Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\[
y_{2}(x)=y^{\prime}
\]
- Define new variable \(y_{3}(x)\)
\[
y_{3}(x)=y^{\prime \prime}
\]
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=10+42 \mathrm{e}^{3 x}+3 y_{3}(x)-2 y_{2}(x)\)
Convert linear ODE into a system of first order ODEs
\(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=10+42 \mathrm{e}^{3 x}+3 y_{3}(x)-2 y_{2}(x)\right]\)
- Define vector
\(\vec{y}(x)=\left[\begin{array}{l}y_{1}(x) \\ y_{2}(x) \\ y_{3}(x)\end{array}\right]\)
- \(\quad\) System to solve
\(\vec{y}^{\prime}(x)=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & 3\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{c}0 \\ 0 \\ 10+42 \mathrm{e}^{3 x}\end{array}\right]\)
- Define the forcing function
\(\vec{f}(x)=\left[\begin{array}{c}0 \\ 0 \\ 10+42 \mathrm{e}^{3 x}\end{array}\right]\)
- Define the coefficient matrix
\(A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & 3\end{array}\right]\)
- Rewrite the system as
\(\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\(\left[1,\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[2,\left[\begin{array}{c}\frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{2 x} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{y}_{p}\) \(\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)\)
Fundamental matrix
- Let \(\phi(x)\) be the matrix whose columns are the independent solutions of the homogeneous syst
\(\phi(x)=\left[\begin{array}{ccc}1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\ 0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\ 0 & \mathrm{e}^{x} & \mathrm{e}^{2 x}\end{array}\right]\)
- The fundamental matrix, \(\Phi(x)\) is a normalized version of \(\phi(x)\) satisfying \(\Phi(0)=I\) where \(I\) is \(\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}\)
- Substitute the value of \(\phi(x)\) and \(\phi(0)\)
\[
\Phi(x)=\left[\begin{array}{ccc}
1 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{4} \\
0 & \mathrm{e}^{x} & \frac{\mathrm{e}^{2 x}}{2} \\
0 & \mathrm{e}^{x} & \mathrm{e}^{2 x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & \frac{1}{4} \\
0 & 1 & \frac{1}{2} \\
0 & 1 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{3}{2}+2 \mathrm{e}^{x}-\frac{\mathrm{e}^{2 x}}{2} & \frac{1}{2}-\mathrm{e}^{x}+\frac{\mathrm{e}^{2 x}}{2} \\
0 & 2 \mathrm{e}^{x}-\mathrm{e}^{2 x} & -\mathrm{e}^{x}+\mathrm{e}^{2 x} \\
0 & 2 \mathrm{e}^{x}-2 \mathrm{e}^{2 x} & -\mathrm{e}^{x}+2 \mathrm{e}^{2 x}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(x)\) and solve for \(\vec{v}(x)\) \(\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)\)
- Take the derivative of the particular solution
\(\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)\)
- Substitute particular solution and its derivative into the system of ODEs
\[
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
\]
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
\]
- Cancel like terms
\[
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
\]
- Multiply by the inverse of the fundamental matrix
\(\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)\)
- Integrate to solve for \(\vec{v}(x)\)
\[
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
\]
- Plug \(\vec{v}(x)\) into the equation for the particular solution
\[
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
\]
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{y}_{p}(x)=\left[\begin{array}{c}
5 x+7 \mathrm{e}^{3 x}+11 \mathrm{e}^{x}+\frac{1}{2}-\frac{37 \mathrm{e}^{2 x}}{2} \\
21 \mathrm{e}^{3 x}+5+11 \mathrm{e}^{x}-37 \mathrm{e}^{2 x} \\
63 \mathrm{e}^{3 x}+11 \mathrm{e}^{x}-74 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
5 x+7 \mathrm{e}^{3 x}+11 \mathrm{e}^{x}+\frac{1}{2}-\frac{37 \mathrm{e}^{2 x}}{2} \\
21 \mathrm{e}^{3 x}+5+11 \mathrm{e}^{x}-37 \mathrm{e}^{2 x} \\
63 \mathrm{e}^{3 x}+11 \mathrm{e}^{x}-74 \mathrm{e}^{2 x}
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=\frac{1}{2}+\frac{\left(c_{3}-74\right) \mathrm{e}^{2 x}}{4}+7 \mathrm{e}^{3 x}+\left(11+c_{2}\right) \mathrm{e}^{x}+5 x+c_{1}
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 3; linear nonhomogeneous with symmetry [0,1] -> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = 3*(diff(_b(_a)
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
<- double symmetry of the form [xi=0, eta=F(x)] successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 26
dsolve(diff \((y(x), x \$ 3)-3 * \operatorname{diff}(y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)=10+42 * \exp (3 * x), y(x), \quad\) singsol=all)
\[
y(x)=\frac{\mathrm{e}^{2 x} c_{1}}{2}+\mathrm{e}^{x} c_{2}+7 \mathrm{e}^{3 x}+5 x+c_{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.102 (sec). Leaf size: 35
DSolve[y'''[x]-3*y''[x]+2*y'[x]==10+42*Exp[3*x],y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow 5 x+7 e^{3 x}+c_{1} e^{x}+\frac{1}{2} c_{2} e^{2 x}+c_{3}
\]

\subsection*{13.19 problem 18}
13.19.1 Maple step by step solution

Internal problem ID [6366]
Internal file name [OUTPUT/5614_Sunday_June_05_2022_03_44_52_PM_11593060/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 18.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher__order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type
```

[[_3rd_order, _missing_x]]

```
\[
y^{\prime \prime \prime}-y^{\prime}=1
\]

With initial conditions
\[
\left[y(0)=4, y^{\prime}(0)=4, y^{\prime \prime}(0)=4\right]
\]

This is higher order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE And \(y_{p}\) is a particular solution to the nonhomogeneous ODE. \(y_{h}\) is the solution to
\[
y^{\prime \prime \prime}-y^{\prime}=0
\]

The characteristic equation is
\[
\lambda^{3}-\lambda=0
\]

The roots of the above equation are
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =1 \\
\lambda_{3} & =-1
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-x} \\
& y_{2}=1 \\
& y_{3}=\mathrm{e}^{x}
\end{aligned}
\]

Now the particular solution to the given ODE is found
\[
y^{\prime \prime \prime}-y^{\prime}=1
\]

The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{1, \mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
\]

Since 1 is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes
\[
[\{x\}]
\]

Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set.
\[
y_{p}=A_{1} x
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1}=1
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}\right)+(-x)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2}+c_{3} \mathrm{e}^{x}-x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=4\) and \(x=0\) in the above gives
\[
\begin{equation*}
4=c_{1}+c_{2}+c_{3} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}-1
\]
substituting \(y^{\prime}=4\) and \(x=0\) in the above gives
\[
\begin{equation*}
4=-c_{1}+c_{3}-1 \tag{2~A}
\end{equation*}
\]

Taking two derivatives of the solution gives
\[
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}
\]
substituting \(y^{\prime \prime}=4\) and \(x=0\) in the above gives
\[
\begin{equation*}
4=c_{1}+c_{3} \tag{3A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}, c_{3}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{1}{2} \\
& c_{2}=0 \\
& c_{3}=\frac{9}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{9 \mathrm{e}^{x}}{2}-x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{9 \mathrm{e}^{x}}{2}-x \tag{1}
\end{equation*}
\]

Figure 371: Solution plot

Verification of solutions
\[
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{9 \mathrm{e}^{x}}{2}-x
\]

Verified OK.

\subsection*{13.19.1 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime \prime}-y^{\prime}=1, y(0)=4,\left.y^{\prime}\right|_{\{x=0\}}=4,\left.y^{\prime \prime}\right|_{\{x=0\}}=4\right]
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(x)\)
\(y_{1}(x)=y\)
- Define new variable \(y_{2}(x)\)
\(y_{2}(x)=y^{\prime}\)
- Define new variable \(y_{3}(x)\)
\(y_{3}(x)=y^{\prime \prime}\)
- Isolate for \(y_{3}^{\prime}(x)\) using original ODE
\(y_{3}^{\prime}(x)=1+y_{2}(x)\)
Convert linear ODE into a system of first order ODEs
\(\left[y_{2}(x)=y_{1}^{\prime}(x), y_{3}(x)=y_{2}^{\prime}(x), y_{3}^{\prime}(x)=1+y_{2}(x)\right]\)
- Define vector
\[
\vec{y}(x)=\left[\begin{array}{l}
y_{1}(x) \\
y_{2}(x) \\
y_{3}(x)
\end{array}\right]
\]
- \(\quad\) System to solve
\[
\vec{y}^{\prime}(x)=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot \vec{y}(x)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\]
- Define the forcing function
\(\vec{f}(x)=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{y}^{\prime}(x)=A \cdot \vec{y}(x)+\vec{f}
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-x} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{x} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{y}_{p}\) \(\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\vec{y}_{p}(x)\)
Fundamental matrix
- Let \(\phi(x)\) be the matrix whose columns are the independent solutions of the homogeneous syst
\[
\phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & 0 & \mathrm{e}^{x} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{x}
\end{array}\right]
\]
- The fundamental matrix, \(\Phi(x)\) is a normalized version of \(\phi(x)\) satisfying \(\Phi(0)=I\) where \(I\) is t
\[
\Phi(x)=\phi(x) \cdot \frac{1}{\phi(0)}
\]
- Substitute the value of \(\phi(x)\) and \(\phi(0)\)
\[
\Phi(x)=\left[\begin{array}{ccc}
\mathrm{e}^{-x} & 1 & \mathrm{e}^{x} \\
-\mathrm{e}^{-x} & 0 & \mathrm{e}^{x} \\
\mathrm{e}^{-x} & 0 & \mathrm{e}^{x}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(x)=\left[\begin{array}{ccc}
1 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}-1+\frac{\mathrm{e}^{x}}{2} \\
0 & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
0 & -\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} & \frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(x)\) and solve for \(\vec{v}(x)\)
\[
\vec{y}_{p}(x)=\Phi(x) \cdot \vec{v}(x)
\]
- Take the derivative of the particular solution
\[
\vec{y}_{p}^{\prime}(x)=\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)
\]
- Substitute particular solution and its derivative into the system of ODEs
\[
\Phi^{\prime}(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
\]
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(x) \cdot \vec{v}(x)+\Phi(x) \cdot \vec{v}^{\prime}(x)=A \cdot \Phi(x) \cdot \vec{v}(x)+\vec{f}(x)
\]
- Cancel like terms
\[
\Phi(x) \cdot \vec{v}^{\prime}(x)=\vec{f}(x)
\]
- Multiply by the inverse of the fundamental matrix
\[
\vec{v}^{\prime}(x)=\frac{1}{\Phi(x)} \cdot \vec{f}(x)
\]
- Integrate to solve for \(\vec{v}(x)\)
\[
\vec{v}(x)=\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
\]
- Plug \(\vec{v}(x)\) into the equation for the particular solution
\[
\vec{y}_{p}(x)=\Phi(x) \cdot\left(\int_{0}^{x} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
\]
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{y}_{p}(x)=\left[\begin{array}{c}
-x-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2}-1+\frac{\mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{y}(x)=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+\left[\begin{array}{c}
-x-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2} \\
\frac{\mathrm{e}^{-x}}{2}-1+\frac{\mathrm{e}^{x}}{2} \\
-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}-x-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}+c_{2}
\]
- Use the initial condition \(y(0)=4\)
\[
4=c_{1}+c_{2}+c_{3}
\]
- Calculate the 1st derivative of the solution
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}+\frac{\mathrm{e}^{-x}}{2}-1+\frac{\mathrm{e}^{x}}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=4\)
\[
4=-c_{1}+c_{3}
\]
- Calculate the 2nd derivative of the solution
\[
y^{\prime \prime}=c_{1} \mathrm{e}^{-x}+c_{3} \mathrm{e}^{x}-\frac{\mathrm{e}^{-x}}{2}+\frac{\mathrm{e}^{x}}{2}
\]
- Use the initial condition \(\left.y^{\prime \prime}\right|_{\{x=0\}}=4\)
\[
4=c_{1}+c_{3}
\]
- \(\quad\) Solve for the unknown coefficients
\[
\left\{c_{1}=0, c_{2}=0, c_{3}=4\right\}
\]
- \(\quad\) Solution to the IVP
\[
y=-\frac{\mathrm{e}^{-x}}{2}+\frac{9 \mathrm{e}^{x}}{2}-x
\]

Maple trace
- Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 3; linear nonhomogeneous with symmetry [0,1]
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(\operatorname{diff}\left(_b\left(_a\right), \quad a\right), \quad, a\right)=\) _b(_a)+1, _b(_a)
Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve([diff \((y(x), x \$ 3)-\operatorname{diff}(y(x), x)=1, y(0)=4, D(y)(0)=4,(D @ @ 2)(y)(0)=4], y(x)\), singsol
\[
y(x)=-\frac{\mathrm{e}^{-x}}{2}+\frac{9 \mathrm{e}^{x}}{2}-x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 25

\[
y(x) \rightarrow-x-\frac{e^{-x}}{2}+\frac{9 e^{x}}{2}
\]

\subsection*{13.20 problem 19(a)}
13.20.1 Maple step by step solution

2268
Internal problem ID [6367]
Internal file name [OUTPUT/5615_Sunday_June_05_2022_03_44_54_PM_29400279/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 19(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _missing_y]]
\[
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}=0
\]

This is Euler ODE of higher order. Let \(y=x^{\lambda}\). Hence
\[
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
\]

Substituting these back into
\[
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}=0
\]
gives
\[
3 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}=0
\]

Which simplifies to
\[
3 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
3 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)=0
\]

Simplifying gives the characteristic equation as
\[
\lambda^{3}-\lambda=0
\]

Solving the above gives the following roots
\[
\begin{aligned}
\lambda_{1} & =0 \\
\lambda_{2} & =1 \\
\lambda_{3} & =-1
\end{aligned}
\]

This table summarises the result
\begin{tabular}{|l|l|l|}
\hline root & multiplicity & type of root \\
\hline-1 & 1 & real root \\
\hline 0 & 1 & real root \\
\hline 1 & 1 & real root \\
\hline
\end{tabular}

The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is
\[
y=\frac{c_{1}}{x}+c_{2}+c_{3} x
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
y_{1} & =\frac{1}{x} \\
y_{2} & =1 \\
y_{3} & =x
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2}+c_{3} x \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}}{x}+c_{2}+c_{3} x
\]

Verified OK.

\subsection*{13.20.1 Maple step by step solution}

Let's solve
\[
x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}=0
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
- Isolate 3rd derivative
\[
y^{\prime \prime \prime}=-\frac{3 y^{\prime \prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime \prime}+\frac{3 y^{\prime \prime}}{x}=0\)
- Multiply by denominators of the ODE
\[
y^{\prime \prime \prime} x+3 y^{\prime \prime}=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
- Calculate the 3 rd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\[
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
\]

Substitute the change of variables back into the ODE
\[
\left(\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right) x+\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{2}}-\frac{3\left(\frac{d}{(d t} y(t)\right)}{x^{2}}=0
\]
- \(\quad\) Simplify
\[
\frac{\frac{d^{3}}{d t^{3}} y(t)-\frac{d}{d t} y(t)}{x^{2}}=0
\]
- Isolate 3rd derivative
\[
\frac{d^{3}}{d t^{3}} y(t)=\frac{d}{d t} y(t)
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin
\[
\frac{d^{3}}{d t^{3}} y(t)-\frac{d}{d t} y(t)=0
\]

Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(t)\)
\[
y_{1}(t)=y(t)
\]
- Define new variable \(y_{2}(t)\)
\[
y_{2}(t)=\frac{d}{d t} y(t)
\]
- Define new variable \(y_{3}(t)\)
\[
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
\]
- Isolate for \(\frac{d}{d t} y_{3}(t)\) using original ODE
\[
\frac{d}{d t} y_{3}(t)=y_{2}(t)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{2}(t)\right]
\]
- Define vector
\[
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
\]
- System to solve
\[
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \cdot \vec{y}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\]
- Rewrite the system as
\[
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{2} \\
0 \\
0
\end{array}\right]
\]
- First component of the vector is the solution to the ODE \(y(t)=c_{1} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{t}+c_{2}\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=\frac{c_{1}}{x}+c_{2}+c_{3} x
\]

\section*{Maple trace}
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 14
dsolve (\(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+3 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)=0, y(x), \quad\) singsol=all)
\[
y(x)=c_{1}+\frac{c_{2}}{x}+c_{3} x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 21
DSolve [x^3*y'' \([x]+3 * x^{\wedge} 2 * y\) ' ' \([x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{c_{1}}{2 x}+c_{3} x+c_{2}
\]

\subsection*{13.21 problem 19(b)}
13.21.1 Maple step by step solution 2275

Internal problem ID [6368]
Internal file name [OUTPUT/5616_Sunday_June_05_2022_03_44_56_PM_29921558/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 19(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
```

[[_3rd_order, _exact, _linear, _homogeneous]]

```
\[
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

This is Euler ODE of higher order. Let \(y=x^{\lambda}\). Hence
\[
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
\]

Substituting these back into
\[
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]
gives
\[
-2 x \lambda x^{\lambda-1}+x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}+2 x^{\lambda}=0
\]

Which simplifies to
\[
-2 \lambda x^{\lambda}+\lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}+2 x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
-2 \lambda+\lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)+2=0
\]

Simplifying gives the characteristic equation as
\[
\lambda^{3}-2 \lambda^{2}-\lambda+2=0
\]

Solving the above gives the following roots
\[
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=2 \\
& \lambda_{3}=-1
\end{aligned}
\]

This table summarises the result
\begin{tabular}{|l|l|l|}
\hline root & multiplicity & type of root \\
\hline-1 & 1 & real root \\
\hline 1 & 1 & real root \\
\hline 2 & 1 & real root \\
\hline
\end{tabular}

The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is
\[
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=x \\
& y_{3}=x^{2}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{c_{1}}{x}+c_{2} x+c_{3} x^{2}
\]

Verified OK.

\subsection*{13.21.1 Maple step by step solution}

Let's solve
\[
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
- Isolate 3rd derivative
\[
y^{\prime \prime \prime}=-\frac{2 y}{x^{3}}-\frac{y^{\prime \prime} x-2 y^{\prime}}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime \prime}+\frac{y^{\prime \prime}}{x}-\frac{2 y^{\prime}}{x^{2}}+\frac{2 y}{x^{3}}=0\)
- Multiply by denominators of the ODE
\[
x^{3} y^{\prime \prime \prime}+x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
- Calculate the 3 rd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\[
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
\]

Substitute the change of variables back into the ODE
\[
x^{3}\left(\frac{\frac{d^{3}}{} d^{3} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)-2 \frac{d}{d t} y(t)+2 y(t)=0
\]
- Simplify
\(\frac{d^{3}}{d t^{3}} y(t)-2 \frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)+2 y(t)=0\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(t)\)
\[
y_{1}(t)=y(t)
\]
- Define new variable \(y_{2}(t)\)
\[
y_{2}(t)=\frac{d}{d t} y(t)
\]
- Define new variable \(y_{3}(t)\)
\[
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
\]
- Isolate for \(\frac{d}{d t} y_{3}(t)\) using original ODE
\[
\frac{d}{d t} y_{3}(t)=2 y_{3}(t)+y_{2}(t)-2 y_{1}(t)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=2 y_{3}(t)+y_{2}(t)-2 y_{1}(t)\right]
\]
- Define vector
\[
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
\]
- \(\quad\) System to solve
\[
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right] \cdot \vec{y}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-2 & 1 & 2
\end{array}\right]
\]
- Rewrite the system as
\[
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[2,\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right]+c_{3} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y(t)=c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}+\frac{c_{3} \mathrm{e}^{2 t}}{4}
\]
- Change variables back using \(t=\ln (x)\)
\(y=\frac{c_{1}}{x}+c_{2} x+\frac{c_{3} x^{2}}{4}\)

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
dsolve (\(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\frac{c_{1} x^{3}+c_{3} x^{2}+c_{2}}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve[x^3*y'' ' \([x]+x^{\wedge} 2 * y^{\prime \prime}[x]-2 * x * y\) ' \([x]+2 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{3} x^{2}+c_{2} x+\frac{c_{1}}{x}
\]

\subsection*{13.22 problem 19(c)}
13.22.1 Maple step by step solution 2282

Internal problem ID [6369]
Internal file name [OUTPUT/5617_Sunday_June_05_2022_03_44_57_PM_49950363/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 19(c).
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order__ODE_non_constant_coefficients_of_type_Euler"

Maple gives the following as the ode type
[[_3rd_order, _with_linear_symmetries]]
\[
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0
\]

This is Euler ODE of higher order. Let \(y=x^{\lambda}\). Hence
\[
\begin{aligned}
y^{\prime} & =\lambda x^{\lambda-1} \\
y^{\prime \prime} & =\lambda(\lambda-1) x^{\lambda-2} \\
y^{\prime \prime \prime} & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
\]

Substituting these back into
\[
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0
\]
gives
\[
x \lambda x^{\lambda-1}+2 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-x^{\lambda}=0
\]

Which simplifies to
\[
\lambda x^{\lambda}+2 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
\lambda+2 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-1=0
\]

Simplifying gives the characteristic equation as
\[
\lambda^{3}-\lambda^{2}+\lambda-1=0
\]

Solving the above gives the following roots
\[
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=i \\
& \lambda_{3}=-i
\end{aligned}
\]

This table summarises the result
\begin{tabular}{|l|l|l|}
\hline root & multiplicity & type of root \\
\hline 1 & 1 & real root \\
\hline\(\pm 1 i\) & 1 & complex conjugate root \\
\hline
\end{tabular}

The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is
\[
y=c_{1} x+c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& y_{1}=x \\
& y_{2}=\cos (\ln (x)) \\
& y_{3}=\sin (\ln (x))
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x+c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x)) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1} x+c_{2} \cos (\ln (x))+c_{3} \sin (\ln (x))
\]

Verified OK.

\subsection*{13.22.1 Maple step by step solution}

Let's solve
\[
x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 3
\(y^{\prime \prime \prime}\)
- Isolate 3rd derivative
\[
y^{\prime \prime \prime}=\frac{y}{x^{3}}-\frac{2 y^{\prime \prime} x+y^{\prime}}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime \prime}+\frac{2 y^{\prime \prime}}{x}+\frac{y^{\prime}}{x^{2}}-\frac{y}{x^{3}}=0\)
- Multiply by denominators of the ODE
\(x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+x y^{\prime}-y=0\)
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\[
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
\]
- Calculate the 3rd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\[
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
\]

Substitute the change of variables back into the ODE
\[
x^{3}\left(\frac{d^{3}}{d t^{3} y(t)} x^{3}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}\right)+2 x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right)+\frac{d}{d t} y(t)-y(t)=0
\]
- Simplify
\[
\frac{d^{3}}{d t^{3}} y(t)-\frac{d^{2}}{d t^{2}} y(t)+\frac{d}{d t} y(t)-y(t)=0
\]

Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(t)\)
\[
y_{1}(t)=y(t)
\]
- Define new variable \(y_{2}(t)\)
\[
y_{2}(t)=\frac{d}{d t} y(t)
\]
- Define new variable \(y_{3}(t)\)
\[
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
\]
- Isolate for \(\frac{d}{d t} y_{3}(t)\) using original ODE
\[
\frac{d}{d t} y_{3}(t)=y_{3}(t)-y_{2}(t)+y_{1}(t)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), \frac{d}{d t} y_{3}(t)=y_{3}(t)-y_{2}(t)+y_{1}(t)\right]
\]
- Define vector
\[
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right]
\]
- System to solve
\[
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right] \cdot \vec{y}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & -1 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right],\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right],\left[\mathrm{I},\left[\begin{array}{c}
-1 \\
-\mathrm{I} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\mathrm{I},\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution from eigenpair
\[
\mathrm{e}^{-\mathrm{I} t} \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of \(\sin\) and \(\cos\)
\[
(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{c}
-1 \\
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\left[\begin{array}{c}
-\cos (t)+\mathrm{I} \sin (t) \\
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{y}_{2}(t)=\left[\begin{array}{c}
-\cos (t) \\
\sin (t) \\
\cos (t)
\end{array}\right], \vec{y}_{3}(t)=\left[\begin{array}{c}
\sin (t) \\
\cos (t) \\
-\sin (t)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}(t)+c_{3} \vec{y}_{3}(t)
\]
- Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-c_{2} \cos (t)+c_{3} \sin (t) \\
c_{2} \sin (t)+c_{3} \cos (t) \\
c_{2} \cos (t)-c_{3} \sin (t)
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y(t)=c_{1} \mathrm{e}^{t}+c_{3} \sin (t)-c_{2} \cos (t)
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=c_{1} x+c_{3} \sin (\ln (x))-c_{2} \cos (\ln (x))
\]

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 18
dsolve (\(x^{\wedge} 3 * \operatorname{diff}(y(x), x \$ 3)+2 * x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)+x * \operatorname{diff}(y(x), x)-y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} x+\sin (\ln (x)) c_{2}+c_{3} \cos (\ln (x))
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 22
DSolve \(\left[x^{\wedge} 3 * y\right.\) '' ' \([x]+2 * x^{\wedge} 2 * y\) '' \([x]+x * y\) ' \([x]-y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow c_{3} x+c_{1} \cos (\log (x))+c_{2} \sin (\log (x))
\]

\subsection*{13.23 problem 20}
13.23.1 Maple step by step solution 2289

Internal problem ID [6370]
Internal file name [OUTPUT/5618_Sunday_June_05_2022_03_44_58_PM_22166040/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Section 2.7. HIGHER ORDER LINEAR EQUATIONS, COUPLED HARMONIC OSCILLATORS Page 98
Problem number: 20.
ODE order: 4.
ODE degree: 1 .

The type(s) of ODE detected by this program : "higher_order_missing_y"
Maple gives the following as the ode type
[[_high_order, _missing_y]]
\[
x^{3} y^{\prime \prime \prime \prime}+8 x^{2} y^{\prime \prime \prime}+8 x y^{\prime \prime}-8 y^{\prime}=0
\]

Since \(y\) is missing from the ode then we can use the substitution \(y^{\prime}=v(x)\) to reduce the order by one. The ODE becomes
\[
x^{3} v^{\prime \prime \prime}(x)+8 x^{2} v^{\prime \prime}(x)+8 v^{\prime}(x) x-8 v(x)=0
\]

This is Euler ODE of higher order. Let \(v(x)=x^{\lambda}\). Hence
\[
\begin{aligned}
v^{\prime}(x) & =\lambda x^{\lambda-1} \\
v^{\prime \prime}(x) & =\lambda(\lambda-1) x^{\lambda-2} \\
v^{\prime \prime \prime}(x) & =\lambda(\lambda-1)(\lambda-2) x^{\lambda-3}
\end{aligned}
\]

Substituting these back into
\[
x^{3} v^{\prime \prime \prime}(x)+8 x^{2} v^{\prime \prime}(x)+8 v^{\prime}(x) x-8 v(x)=0
\]
gives
\[
8 x \lambda x^{\lambda-1}+8 x^{2} \lambda(\lambda-1) x^{\lambda-2}+x^{3} \lambda(\lambda-1)(\lambda-2) x^{\lambda-3}-8 x^{\lambda}=0
\]

Which simplifies to
\[
8 \lambda x^{\lambda}+8 \lambda(\lambda-1) x^{\lambda}+\lambda(\lambda-1)(\lambda-2) x^{\lambda}-8 x^{\lambda}=0
\]

And since \(x^{\lambda} \neq 0\) then dividing through by \(x^{\lambda}\), the above becomes
\[
8 \lambda+8 \lambda(\lambda-1)+\lambda(\lambda-1)(\lambda-2)-8=0
\]

Simplifying gives the characteristic equation as
\[
\lambda^{3}+5 \lambda^{2}+2 \lambda-8=0
\]

Solving the above gives the following roots
\[
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=-4 \\
& \lambda_{3}=-2
\end{aligned}
\]

This table summarises the result
\begin{tabular}{|l|l|l|}
\hline root & multiplicity & type of root \\
\hline-2 & 1 & real root \\
\hline 1 & 1 & real root \\
\hline-4 & 1 & real root \\
\hline
\end{tabular}

The solution is generated by going over the above table. For each real root \(\lambda\) of multiplicity one generates a \(c_{1} x^{\lambda}\) basis solution. Each real root of multiplicty two, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) basis solutions. Each real root of multiplicty three, generates \(c_{1} x^{\lambda}\) and \(c_{2} x^{\lambda} \ln (x)\) and \(c_{3} x^{\lambda} \ln (x)^{2}\) basis solutions, and so on. Each complex root \(\alpha \pm i \beta\) of multiplicity one generates \(x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity two generates \(\ln (x) x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2} \sin (\beta \ln (x))\right)\) basis solutions. And each complex root \(\alpha \pm i \beta\) of multiplicity three generates \(\ln (x)^{2} x^{\alpha}\left(c_{1} \cos (\beta \ln (x))+c_{2}\right.\) basis solutions. And so on. Using the above show that the solution is
\[
v(x)=\frac{c_{1}}{x^{2}}+c_{2} x+\frac{c_{3}}{x^{4}}
\]

The fundamental set of solutions for the homogeneous solution are the following
\[
\begin{aligned}
& v_{1}=\frac{1}{x^{2}} \\
& v_{2}=x \\
& v_{3}=\frac{1}{x^{4}}
\end{aligned}
\]

But since \(y^{\prime}=v(x)\) then we now need to solve the ode \(y^{\prime}=\frac{c_{1}}{x^{2}}+c_{2} x+\frac{c_{3}}{x^{4}}\). Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{c_{2} x^{5}+c_{1} x^{2}+c_{3}}{x^{4}} \mathrm{~d} x \\
& =\frac{c_{2} x^{2}}{2}-\frac{c_{3}}{3 x^{3}}-\frac{c_{1}}{x}+c_{1}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{2} x^{2}}{2}-\frac{c_{3}}{3 x^{3}}-\frac{c_{1}}{x}+c_{1} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{2} x^{2}}{2}-\frac{c_{3}}{3 x^{3}}-\frac{c_{1}}{x}+c_{1}
\]

Verified OK.

\subsection*{13.23.1 Maple step by step solution}

Let's solve
\[
x^{3} y^{\prime \prime \prime \prime}+8 x^{2} y^{\prime \prime \prime}+8 y^{\prime \prime} x-8 y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 4
\[
y^{\prime \prime \prime \prime}
\]
- Isolate 4th derivative
\[
y^{\prime \prime \prime \prime}=-\frac{8\left(x^{2} y^{\prime \prime \prime}+y^{\prime \prime} x-y^{\prime}\right)}{x^{3}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime \prime \prime}+\frac{8 y^{\prime \prime \prime}}{x}+\frac{8 y^{\prime \prime}}{x^{2}}-\frac{8 y^{\prime}}{x^{3}}=0\)
- Multiply by denominators of the ODE
\[
x^{3} y^{\prime \prime \prime \prime}+8 x^{2} y^{\prime \prime \prime}+8 y^{\prime \prime} x-8 y^{\prime}=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\[
y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}
\]
- Calculate the 3rd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime}=\left(\frac{d^{3}}{d t^{3}} y(t)\right) t^{\prime}(x)^{3}+3 t^{\prime}(x) t^{\prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+t^{\prime \prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\[
y^{\prime \prime \prime}=\frac{\frac{d^{3}}{d t^{3}} y(t)}{x^{3}}-\frac{3\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}+\frac{2\left(\frac{d}{d t} y(t)\right)}{x^{3}}
\]
- Calculate the 4 th derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime \prime \prime}=\left(\frac{d^{4}}{d t^{4}} y(t)\right) t^{\prime}(x)^{4}+3 t^{\prime}(x)^{2} t^{\prime \prime}(x)\left(\frac{d^{3}}{d t^{3}} y(t)\right)+3 t^{\prime \prime}(x)^{2}\left(\frac{d^{2}}{d t^{2}} y(t)\right)+3\left(t^{\prime \prime \prime}(x)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(\frac{d^{3}}{d t^{3}} y(\right.\right.
\]
- Compute derivative
\[
y^{\prime \prime \prime \prime}=\frac{\frac{d^{4}}{d t^{4}} y(t)}{x^{4}}-\frac{3\left(\frac{d^{3}}{d t^{3}} y(t)\right)}{x^{4}}+\frac{5\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{4}}+\frac{3\left(\frac{2\left(\frac{d^{2}}{d t^{2}} y(t)\right)}{x^{3}}-\frac{d^{3} t^{3} y(t)}{x^{3}}\right)}{x}-\frac{6\left(\frac{d}{d t} y(t)\right)}{x^{4}}
\]

Substitute the change of variables back into the ODE
- \(\quad\) Simplify
\[
\frac{\frac{d^{4}}{d t^{4}} y(t)+2 \frac{d^{3}}{d t^{3}} y(t)-5 \frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)}{x}=0
\]
- Isolate 4th derivative
\[
\frac{d^{4}}{d t^{4}} y(t)=-2 \frac{d^{3}}{d t^{3}} y(t)+5 \frac{d^{2}}{d t^{2}} y(t)+6 \frac{d}{d t} y(t)
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{4}}{d t^{4}} y(t)+2 \frac{d^{3}}{d t^{3}} y(t)-5 \frac{d^{2}}{d t^{2}} y(t)-6 \frac{d}{d t} y(t)=0\)
Convert linear ODE into a system of first order ODEs
- Define new variable \(y_{1}(t)\)
\[
y_{1}(t)=y(t)
\]
- Define new variable \(y_{2}(t)\)
\[
y_{2}(t)=\frac{d}{d t} y(t)
\]
- Define new variable \(y_{3}(t)\)
\[
y_{3}(t)=\frac{d^{2}}{d t^{2}} y(t)
\]
- Define new variable \(y_{4}(t)\)
\[
y_{4}(t)=\frac{d^{3}}{d t^{3}} y(t)
\]
- Isolate for \(\frac{d}{d t} y_{4}(t)\) using original ODE
\[
\frac{d}{d t} y_{4}(t)=-2 y_{4}(t)+5 y_{3}(t)+6 y_{2}(t)
\]

Convert linear ODE into a system of first order ODEs
\[
\left[y_{2}(t)=\frac{d}{d t} y_{1}(t), y_{3}(t)=\frac{d}{d t} y_{2}(t), y_{4}(t)=\frac{d}{d t} y_{3}(t), \frac{d}{d t} y_{4}(t)=-2 y_{4}(t)+5 y_{3}(t)+6 y_{2}(t)\right]
\]
- Define vector
\[
\vec{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t) \\
y_{4}(t)
\end{array}\right]
\]
- System to solve
\[
\frac{d}{d t} \vec{y}(t)=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 6 & 5 & -2
\end{array}\right] \cdot \vec{y}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 6 & 5 & -2
\end{array}\right]
\]
- Rewrite the system as
\(\frac{d}{d t} \vec{y}(t)=A \cdot \vec{y}(t)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\(\left[\left[-3,\left[\begin{array}{c}-\frac{1}{27} \\ \frac{1}{9} \\ -\frac{1}{3} \\ 1\end{array}\right]\right],\left[-1,\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 1\end{array}\right]\right],\left[0,\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]\right],\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\right]\)
- Consider eigenpair
\[
\left[-3,\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{2}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[0,\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
\]
- Consider eigenpair
\(\left[2,\left[\begin{array}{c}\frac{1}{8} \\ \frac{1}{4} \\ \frac{1}{2} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{y}_{4}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{y}=c_{1} \vec{y}_{1}+c_{2} \vec{y}_{2}+c_{3} \vec{y}_{3}+c_{4} \vec{y}_{4}
\]
- \(\quad\) Substitute solutions into the general solution
\[
\vec{y}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-\frac{1}{27} \\
\frac{1}{9} \\
-\frac{1}{3} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+c_{4} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
\frac{1}{8} \\
\frac{1}{4} \\
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
c_{3} \\
0 \\
0 \\
0
\end{array}\right]
\]
- First component of the vector is the solution to the ODE
\[
y(t)=-\frac{\left(27 c_{2} \mathrm{e}^{2 t}-27 c_{3} \mathrm{e}^{3 t}-\frac{27 c_{4} 5^{5 t}}{8}+c_{1}\right) \mathrm{e}^{-3 t}}{27}
\]
- \(\quad\) Change variables back using \(t=\ln (x)\)
\[
y=-\frac{27 c_{2} x^{2}-27 c_{3} x^{3}-\frac{27}{8} c_{4} x^{5}+c_{1}}{27 x^{3}}
\]
- Simplify
\[
y=\frac{c_{4} x^{2}}{8}+c_{3}-\frac{c_{2}}{x}-\frac{c_{1}}{27 x^{3}}
\]

Maple trace
```

`Methods for high order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(x`3*diff(y(x),x$4)+8*x`2*diff(y(x),x\$3)+8*x*diff(y(x),x\$2)-8*\operatorname{diff}(y(x),x)=0,y(x), sin

```
\[
y(x)=c_{1}+c_{2} x^{2}+\frac{c_{3}}{x}+\frac{c_{4}}{x^{3}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 33

\[
y(x) \rightarrow-\frac{c_{1}}{3 x^{3}}+\frac{c_{3} x^{2}}{2}-\frac{c_{2}}{x}+c_{4}
\]

\section*{14 Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105}
14.1 problem 1(a) 2296
14.2 problem 1(b) 2304
14.3 problem 1(c) 2313
14.4 problem 1(d) 2322
14.5 problem 1(e) 2331
14.6 problem 1(f) 2342
14.7 problem \(1(\mathrm{~g})\) 2353
14.8 problem 1(h) 2365
14.9 problem 2(a) 2376
14.10problem 2(b) 2389
14.11problem 2(c) 2404
14.12problem 2(d) 2418
14.13problem 2(e) 2433
14.14problem 2(f) 2447
14.15problem 2(g) 2460
14.16problem 2(h) 2481
14.17problem 3(a) 2509
14.18problem 3(b) 2519
14.19problem 3(c) 2530
14.20problem 3(d) 2541
14.21problem 3(e) 2553
14.22problem 3(f) 2568
14.23problem 3(g) 2584
14.24problem 3(h) 2618
14.25 problem 4(a) 2632
14.26problem 4(b) 2639
14.27problem 4(c) 2646
14.28problem 4(d) 2654

\section*{14.1 problem 1(a)}
14.1.1 Solving as second order linear constant coeff ode 2296
14.1.2 Solving using Kovacic algorithm 2298
14.1.3 Maple step by step solution . 2302

Internal problem ID [6371]
Internal file name [OUTPUT/5619_Sunday_June_05_2022_03_44_59_PM_18712078/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-3 y^{\prime}+y=0
\]

\subsection*{14.1.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-3, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-3 \lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-3, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(1)} \\
& =\frac{3}{2} \pm \frac{\sqrt{5}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{\sqrt{5}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{\sqrt{5}}{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} e^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x} \tag{1}
\end{equation*}
\]

Figure 372: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x}
\]

Verified OK.

\subsection*{14.1.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{5}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=5 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{5 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 332: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{5}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x \sqrt{5}}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{5} \mathrm{e}^{x \sqrt{5}}}{5}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}\right)+c_{2}\left(\mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}\left(\frac{\sqrt{5} \mathrm{e}^{x \sqrt{5}}}{5}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{(3+\sqrt{5}) x}{2}}}{5} \tag{1}
\end{equation*}
\]

Figure 373: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}+\frac{c_{2} \sqrt{5} \mathrm{e}^{\frac{(3+\sqrt{5}) x}{2}}}{5}
\]

Verified OK.

\subsection*{14.1.3 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-3 y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}-3 r+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{3 \pm(\sqrt{5})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(\frac{3}{2}-\frac{\sqrt{5}}{2}, \frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x}\)
- 2 nd solution of the ODE
\(y_{2}(x)=\mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x}+c_{2} \mathrm{e}^{\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
dsolve(diff \((y(x), x \$ 2)-3 * \operatorname{diff}(y(x), x)+y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{\frac{(\sqrt{5}+3) x}{2}}+c_{2} \mathrm{e}^{-\frac{(\sqrt{5}-3) x}{2}}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 35
DSolve[y''[x]-3*y'[x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-\frac{1}{2}(\sqrt{5}-3) x}\left(c_{2} e^{\sqrt{5} x}+c_{1}\right)
\]

\section*{14.2 problem 1(b)}
14.2.1 Solving as second order linear constant coeff ode 2304
14.2.2 Solving using Kovacic algorithm 2306
14.2.3 Maple step by step solution . 2310

Internal problem ID [6372]
Internal file name [OUTPUT/5620_Sunday_June_05_2022_03_45_01_PM_40855532/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

\subsection*{14.2.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right) \tag{1}
\end{equation*}
\]

Figure 374: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Verified OK.

\subsection*{14.2.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =1 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 334: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3} \tag{1}
\end{equation*}
\]

Figure 375: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}
\]

Verified OK.

\subsection*{14.2.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{(-1) \pm(\sqrt{-3})}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
- 2 nd solution of the ODE
\(y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 28
```

dsolve(diff(y(x),x\$2)+diff(y(x),x)+y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \sin \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 42
DSolve[y'' \([\mathrm{x}]+\mathrm{y}\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x / 2}\left(c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

\section*{14.3 problem 1(c)}
14.3.1 Solving as second order linear constant coeff ode 2313
\(\begin{array}{ll}\text { 14.3.2 Solving as linear second order ode solved by an integrating factor } \\ & \text { ode . } 2315]\end{array}\)
14.3.3 Solving using Kovacic algorithm 2316
14.3.4 Maple step by step solution . 2320

Internal problem ID [6373]
Internal file name [OUTPUT/5621_Sunday_June_05_2022_03_45_02_PM_44670485/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+6 y^{\prime}+9 y=0
\]

\subsection*{14.3.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=6, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+6 \lambda \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+6 \lambda+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=6, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-6}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(6)^{2}-(4)(1)(9)} \\
& =-3
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=3\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+c_{2} x \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
\]

Summary
The solution(s) found are the following

Figure 376: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-3 x}+x \mathrm{e}^{-3 x} c_{2}
\]

Verified OK.

\subsection*{14.3.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=6\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 6 d x} \\
& =\mathrm{e}^{3 x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\mathrm{e}^{3 x} y\right)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{3 x} y\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{3 x} y\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\mathrm{e}^{3 x}}
\]

Or
\[
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x} \tag{1}
\end{equation*}
\]

Figure 377: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} x \mathrm{e}^{-3 x}+c_{2} \mathrm{e}^{-3 x}
\]

Verified OK.

\subsection*{14.3.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+6 y^{\prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=6 \tag{3}\\
& C=9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 336: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{d}{1} d x} \\
& =z_{1} e^{-3 x} \\
& =z_{1}\left(\mathrm{e}^{-3 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-3 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{6}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-6 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-3 x}\right)+c_{2}\left(\mathrm{e}^{-3 x}(x)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-3 x}+x \mathrm{e}^{-3 x} c_{2} \tag{1}
\end{equation*}
\]

Figure 378: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-3 x}+x \mathrm{e}^{-3 x} c_{2}
\]

Verified OK.

\subsection*{14.3.4 Maple step by step solution}

Let's solve
\(y^{\prime \prime}+6 y^{\prime}+9 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+6 r+9=0\)
- Factor the characteristic polynomial
\((r+3)^{2}=0\)
- Root of the characteristic polynomial
\[
r=-3
\]
- \(\quad\) 1st solution of the ODE
\[
y_{1}(x)=\mathrm{e}^{-3 x}
\]
- Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x \mathrm{e}^{-3 x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\(y=c_{1} \mathrm{e}^{-3 x}+x \mathrm{e}^{-3 x} c_{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
dsolve(diff \((y(x), x \$ 2)+6 * \operatorname{diff}(y(x), x)+9 * y(x)=0, y(x)\), singsol=all)
\[
y(x)=\mathrm{e}^{-3 x}\left(c_{2} x+c_{1}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve[y'' \([x]+6 * y\) ' \([x]+9 * y[x]==0, y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-3 x}\left(c_{2} x+c_{1}\right)
\]

\section*{14.4 problem 1(d)}
14.4.1 Solving as second order linear constant coeff ode 2322
14.4.2 Solving using Kovacic algorithm 2324
14.4.3 Maple step by step solution . 2328

Internal problem ID [6374]
Internal file name [OUTPUT/5622_Sunday_June_05_2022_03_45_03_PM_54715595/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}-y^{\prime}+6 y=0
\]

\subsection*{14.4.1 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-1, C=6\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}+6 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-\lambda+6=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-1, C=6\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(6)} \\
& =\frac{1}{2} \pm \frac{i \sqrt{23}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{23}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{23}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{23}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{23}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=\frac{1}{2}\) and \(\beta=\frac{\sqrt{23}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right) \tag{1}
\end{equation*}
\]

Figure 379: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)
\]

Verified OK.

\subsection*{14.4.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y^{\prime}+6 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=6
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-23}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-23 \\
t & =4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{23 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 338: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{23}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{23} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{23} \tan \left(\frac{\sqrt{23} x}{2}\right)}{23}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)\left(\frac{2 \sqrt{23} \tan \left(\frac{\sqrt{23} x}{2}\right)}{23}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{23} \sin \left(\frac{\sqrt{23} x}{2}\right)}{23} \tag{1}
\end{equation*}
\]

Figure 380: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{23} \sin \left(\frac{\sqrt{23} x}{2}\right)}{23}
\]

Verified OK.

\subsection*{14.4.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y^{\prime}+6 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}-r+6=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{1 \pm(\sqrt{-23})}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{23}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{23}}{2}\right)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)\)
- 2 nd solution of the ODE
\(y_{2}(x)=\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{23} x}{2}\right)
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 28
```

dsolve(diff(y(x),x\$2)-diff(y(x),x)+6*y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \sin \left(\frac{\sqrt{23} x}{2}\right)+c_{2} \cos \left(\frac{\sqrt{23} x}{2}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 42
DSolve[y''[x]-y'[x]+6*y[x]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{x / 2}\left(c_{2} \cos \left(\frac{\sqrt{23} x}{2}\right)+c_{1} \sin \left(\frac{\sqrt{23} x}{2}\right)\right)
\]

\section*{14.5 problem 1(e)}
14.5.1 Solving as second order linear constant coeff ode 2331
14.5.2 Solving using Kovacic algorithm 2334
14.5.3 Maple step by step solution . 2339

Internal problem ID [6375]
Internal file name [OUTPUT/5623_Sunday_June_05_2022_03_45_04_PM_72793540/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(e).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-2 y^{\prime}-5 y=x
\]

\subsection*{14.5.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=-5, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}-5 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=-5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}-5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda-5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=-5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(-5)} \\
& =1 \pm \sqrt{6}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+\sqrt{6} \\
& \lambda_{2}=1-\sqrt{6}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=1+\sqrt{6} \\
& \lambda_{2}=1-\sqrt{6}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1+\sqrt{6}) x}+c_{2} e^{(1-\sqrt{6}) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{(1-\sqrt{6}) x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{(1-\sqrt{6}) x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is

\section*{\(x\)}

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{(1-\sqrt{6}) x}, \mathrm{e}^{(1+\sqrt{6}) x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-5 A_{2} x-5 A_{1}-2 A_{2}=x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{2}{25}, A_{2}=-\frac{1}{5}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x}{5}+\frac{2}{25}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{(1-\sqrt{6}) x}\right)+\left(-\frac{x}{5}+\frac{2}{25}\right)
\end{aligned}
\]

Which simplifies to
\[
y=c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{-(-1+\sqrt{6}) x}-\frac{x}{5}+\frac{2}{25}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{-(-1+\sqrt{6}) x}-\frac{x}{5}+\frac{2}{25} \tag{1}
\end{equation*}
\]

Figure 381: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{(1+\sqrt{6}) x}+c_{2} \mathrm{e}^{-(-1+\sqrt{6}) x}-\frac{x}{5}+\frac{2}{25}
\]

Verified OK.

\subsection*{14.5.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-2 y^{\prime}-5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=-5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{6}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=6 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=6 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 340: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=6\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x \sqrt{6}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-(-1+\sqrt{6}) x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{6} \mathrm{e}^{2 x \sqrt{6}}}{12}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-(-1+\sqrt{6}) x}\right)+c_{2}\left(\mathrm{e}^{-(-1+\sqrt{6}) x}\left(\frac{\sqrt{6} \mathrm{e}^{2 x \sqrt{6}}}{12}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}-5 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-(-1+\sqrt{6}) x}+\frac{c_{2} \sqrt{6} \mathrm{e}^{(1+\sqrt{6}) x}}{12}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sqrt{6} \mathrm{e}^{(1+\sqrt{6}) x}}{12}, \mathrm{e}^{-(-1+\sqrt{6}) x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-5 A_{2} x-5 A_{1}-2 A_{2}=x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{2}{25}, A_{2}=-\frac{1}{5}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{x}{5}+\frac{2}{25}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-(-1+\sqrt{6}) x}+\frac{c_{2} \sqrt{6} \mathrm{e}^{(1+\sqrt{6}) x}}{12}\right)+\left(-\frac{x}{5}+\frac{2}{25}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-(-1+\sqrt{6}) x}+\frac{c_{2} \sqrt{6} \mathrm{e}^{(1+\sqrt{6}) x}}{12}-\frac{x}{5}+\frac{2}{25} \tag{1}
\end{equation*}
\]

Figure 382: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-(-1+\sqrt{6}) x}+\frac{c_{2} \sqrt{6} \mathrm{e}^{(1+\sqrt{6}) x}}{12}-\frac{x}{5}+\frac{2}{25}
\]

Verified OK.

\subsection*{14.5.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-2 y^{\prime}-5 y=x
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}-2 r-5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{2 \pm(\sqrt{24})}{2}\)
- Roots of the characteristic polynomial
\(r=(1-\sqrt{6}, 1+\sqrt{6})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{(1-\sqrt{6}) x}\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{(1+\sqrt{6}) x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{(1-\sqrt{6}) x}+c_{2} \mathrm{e}^{(1+\sqrt{6}) x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{(1-\sqrt{6}) x} & \mathrm{e}^{(1+\sqrt{6}) x} \\
(1-\sqrt{6}) \mathrm{e}^{(1-\sqrt{6}) x} & (1+\sqrt{6}) \mathrm{e}^{(1+\sqrt{6}) x}
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2 \sqrt{6} \mathrm{e}^{2 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\frac{\sqrt{6}\left(-\mathrm{e}^{-(-1+\sqrt{6}) x}\left(\int x \mathrm{e}^{(-1+\sqrt{6}) x} d x\right)+\mathrm{e}^{(1+\sqrt{6}) x}\left(\int x \mathrm{e}^{-(1+\sqrt{6}) x} d x\right)\right)}{12}
\]
- Compute integrals
\(y_{p}(x)=-\frac{x}{5}+\frac{2}{25}\)
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{(1-\sqrt{6}) x}+c_{2} \mathrm{e}^{(1+\sqrt{6}) x}-\frac{x}{5}+\frac{2}{25}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 30
```

dsolve(diff(y(x),x\$2)-2*diff(y(x),x)-5*y(x)=x,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{(1+\sqrt{6}) x} c_{2}+\mathrm{e}^{-(-1+\sqrt{6}) x} c_{1}-\frac{x}{5}+\frac{2}{25}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 43
```

DSolve[y''[x]-2*y'[x]-5*y[x]==x,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow-\frac{x}{5}+c_{1} e^{x-\sqrt{6} x}+c_{2} e^{(1+\sqrt{6}) x}+\frac{2}{25}
\]

\section*{14.6 problem 1(f)}
14.6.1 Solving as second order linear constant coeff ode 2342
14.6.2 Solving using Kovacic algorithm 2345
14.6.3 Maple step by step solution . 2350

Internal problem ID [6376]
Internal file name [OUTPUT/5624_Sunday_June_05_2022_03_45_06_PM_61507785/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y=\mathrm{e}^{x}
\]

\subsection*{14.6.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\mathrm{e}^{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \\
& \lambda_{2}=-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{2}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\mathrm{e}^{x}}{2}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
\]

Figure 383: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{x}}{2}
\]

Verified OK.

\subsection*{14.6.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 342: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{2}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\mathrm{e}^{x}}{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{x}}{2} \tag{1}
\end{equation*}
\]

Figure 384: Slope field plot

\section*{Verification of solutions}
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{x}}{2}
\]

Verified OK.

\subsection*{14.6.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=\mathrm{e}^{x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (x)\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(x)=\sin (x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\cos (x)\left(\int \sin (x) \mathrm{e}^{x} d x\right)+\sin (x)\left(\int \cos (x) \mathrm{e}^{x} d x\right)\)
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{x}}{2}
\]
- Substitute particular solution into general solution to ODE \(y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{x}}{2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 17
```

dsolve(diff(y(x),x\$2)+y(x)=exp(x),y(x), singsol=all)

```
\[
y(x)=\sin (x) c_{2}+\cos (x) c_{1}+\frac{\mathrm{e}^{x}}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.058 (sec). Leaf size: 23
DSolve[y''[x]+y[x]==Exp[x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{x}}{2}+c_{1} \cos (x)+c_{2} \sin (x)
\]

\section*{14.7 problem 1(g)}
14.7.1 Solving as second order linear constant coeff ode 2353
14.7.2 Solving using Kovacic algorithm 2357
14.7.3 Maple step by step solution . 2362

Internal problem ID [6377]
Internal file name [OUTPUT/5625_Sunday_June_05_2022_03_45_07_PM_38430624/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(g).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]

\subsection*{14.7.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=1, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=1, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\lambda \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+\lambda+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=1, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{1^{2}-(4)(1)(1)} \\
& =-\frac{1}{2} \pm \frac{i \sqrt{3}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{1}{2}\) and \(\beta=\frac{\sqrt{3}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)\right)+(-\cos (x))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)-\cos (x) \tag{1}
\end{equation*}
\]

Figure 385: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{-\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)-\cos (x)
\]

Verified OK.

\subsection*{14.7.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=1 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{3 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 344: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{3}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{3} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{-\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\left(\frac{2 \sqrt{3} \tan \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right), \frac{2 \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-A_{1} \sin (x)+A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-1, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\cos (x)
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
= & \left(\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}\right)+(-\cos (x))
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}-\cos (x) \tag{1}
\end{equation*}
\]

Figure 386: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{3}-\cos (x)
\]

Verified OK.

\subsection*{14.7.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}+y=\sin (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+r+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right)} \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}} \sin (x) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\cos (x)
\]
- Substitute particular solution into general solution to ODE
\[
y=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}-\cos (x)
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 35
```

dsolve(diff(y(x),x\$2)+diff(y(x),x)+y(x)=sin(x),y(x), singsol=all)

```
\[
y(x)=c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}-\cos (x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.371 (sec). Leaf size: 53
DSolve[y''[x]+y'[x]+y[x]==Sin[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow e^{-x / 2}\left(-e^{x / 2} \cos (x)+c_{2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} \sin \left(\frac{\sqrt{3} x}{2}\right)\right)
\]

\section*{14.8 problem 1(h)}
14.8.1 Solving as second order linear constant coeff ode
14.8.2 Solving using Kovacic algorithm 2368
14.8.3 Maple step by step solution . 2373

Internal problem ID [6378]
Internal file name [OUTPUT/5626_Sunday_June_05_2022_03_45_09_PM_98016615/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 1(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y=\mathrm{e}^{3 x}
\]

\subsection*{14.8.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=-1, f(x)=\mathrm{e}^{3 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=-1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{3 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{3 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
8 A_{1} \mathrm{e}^{3 x}=\mathrm{e}^{3 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{8}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{3 x}}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(\frac{\mathrm{e}^{3 x}}{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x}}{8} \tag{1}
\end{equation*}
\]

Figure 387: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}+\frac{\mathrm{e}^{3 x}}{8}
\]

Verified OK.

\subsection*{14.8.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 346: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{3 x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{3 x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{x}}{2}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{3 x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
8 A_{1} \mathrm{e}^{3 x}=\mathrm{e}^{3 x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{8}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{3 x}}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(\frac{\mathrm{e}^{3 x}}{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{3 x}}{8} \tag{1}
\end{equation*}
\]

Figure 388: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\frac{\mathrm{e}^{3 x}}{8}
\]

Verified OK.

\subsection*{14.8.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y=\mathrm{e}^{3 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE \(r^{2}-1=0\)
- Factor the characteristic polynomial
\[
(r-1)(r+1)=0
\]
- Roots of the characteristic polynomial
\(r=(-1,1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- 2nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{3 x}\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int \mathrm{e}^{4 x} d x\right)}{2}+\frac{\mathrm{e}^{x}\left(\int \mathrm{e}^{2 x} d x\right)}{2}\)
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{3 x}}{8}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{3 x}}{8}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 21
dsolve(diff \((y(x), x \$ 2)-y(x)=\exp (3 * x), y(x)\), singsol=all)
\[
y(x)=c_{2} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}+\frac{\mathrm{e}^{3 x}}{8}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 29
DSolve[y''[x]-y[x]==Exp[3*x],y[x],x,IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow \frac{e^{3 x}}{8}+c_{1} e^{x}+c_{2} e^{-x}
\]

\section*{14.9 problem 2(a)}
14.9.1 Existence and uniqueness analysis 2376
14.9.2 Solving as second order linear constant coeff ode 2377
14.9.3 Solving as second order ode can be made integrable ode 2379
14.9.4 Solving using Kovacic algorithm 2382
14.9.5 Maple step by step solution . 2386

Internal problem ID [6379]
Internal file name [OUTPUT/5627_Sunday_June_05_2022_03_45_11_PM_75680248/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant__coeff", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+9 y=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=2\right]
\]

\subsection*{14.9.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =9 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+9 y=0
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=9\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.9.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=3\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
\]

Or
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=3 c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=\frac{2}{3}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{2 \sin (3 x)}{3}+\cos (3 x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{2 \sin (3 x)}{3}+\cos (3 x) \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{2 \sin (3 x)}{3}+\cos (3 x)
\]

Verified OK.

\subsection*{14.9.3 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+9 y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+9 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{9 y^{2}}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-9 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-9 y^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-9 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=c_{2}+x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
\frac{\arctan \left(\frac{3}{\sqrt{-9+2 c_{1}}}\right)}{3}=c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{\left(3 \tan \left(3 c_{2}+3 x\right)^{2}+3\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(3 c_{2}+3 x\right)^{2}+1}}}{3}-\frac{\tan \left(3 c_{2}+3 x\right)^{2} \sqrt{2} c_{1}\left(3 \tan \left(3 c_{2}+3 x\right)^{2}+3\right)}{3 \sqrt{\frac{c_{1}}{\tan \left(3 c_{2}+3 x\right)^{2}+1}}\left(\tan \left(3 c_{2}+3 x\right)^{2}+1\right)^{2}}
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=\frac{\cos \left(3 c_{2}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \cos \left(3 c_{2}\right)^{2}}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{13}{2} \\
& c_{2}=\frac{\arctan \left(\frac{3}{2}\right)}{3}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+13}}\right)}{3}=\frac{\arctan \left(\frac{3}{2}\right)}{3}+x
\]

Looking at the Second solution
\[
\begin{equation*}
-\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+2 c_{1}}}\right)}{3}=x+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-\frac{\arctan \left(\frac{3}{\sqrt{-9+2 c_{1}}}\right)}{3}=c_{3} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\left(3 \tan \left(3 x+3 c_{3}\right)^{2}+3\right) \sqrt{2} \sqrt{\frac{c_{1}}{\tan \left(3 x+3 c_{3}\right)^{2}+1}}}{3}+\frac{\tan \left(3 x+3 c_{3}\right)^{2} \sqrt{2} c_{1}\left(3 \tan \left(3 x+3 c_{3}\right)^{2}+3\right)}{3 \sqrt{\frac{c_{1}}{\tan \left(3 x+3 c_{3}\right)^{2}+1}}\left(\tan \left(3 x+3 c_{3}\right)^{2}+1\right)^{2}}
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=-\frac{\cos \left(3 c_{3}\right)^{2} c_{1} \sqrt{2}}{\sqrt{c_{1} \cos \left(3 c_{3}\right)^{2}}} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). There is no solution for the constants of integrations. This solution is removed.
Summary
The solution(s) found are the following
\[
\begin{equation*}
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+13}}\right)}{3}=\frac{\arctan \left(\frac{3}{2}\right)}{3}+x \tag{1}
\end{equation*}
\]

Verification of solutions
\[
\frac{\arctan \left(\frac{3 y}{\sqrt{-9 y^{2}+13}}\right)}{3}=\frac{\arctan \left(\frac{3}{2}\right)}{3}+x
\]

Verified OK.

\subsection*{14.9.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 348: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-9\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (3 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (3 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=c_{1} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-3 c_{1} \sin (3 x)+c_{2} \cos (3 x)
\]
substituting \(y^{\prime}=2\) and \(x=0\) in the above gives
\[
\begin{equation*}
2=c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=1 \\
& c_{2}=2
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{2 \sin (3 x)}{3}+\cos (3 x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{2 \sin (3 x)}{3}+\cos (3 x) \tag{1}
\end{equation*}
\]

(a) Solution plot

Verification of solutions
\[
y=\frac{2 \sin (3 x)}{3}+\cos (3 x)
\]

Verified OK.

\subsection*{14.9.5 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+9 y=0, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=2\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}+9=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-36})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-3 \mathrm{I}, 3 \mathrm{I})
\]
- 1st solution of the ODE
\[
y_{1}(x)=\cos (3 x)
\]
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(x)=\sin (3 x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- \(\quad\) Substitute in solutions
\(y=c_{1} \cos (3 x)+c_{2} \sin (3 x)\)
\(\square\)
Check validity of solution \(y=c_{1} \cos (3 x)+c_{2} \sin (3 x)\)
- Use initial condition \(y(0)=1\)
\(1=c_{1}\)
- Compute derivative of the solution
\(y^{\prime}=-3 c_{1} \sin (3 x)+3 c_{2} \cos (3 x)\)
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=2\)
\(2=3 c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=1, c_{2}=\frac{2}{3}\right\}\)
- Substitute constant values into general solution and simplify \(y=\frac{2 \sin (3 x)}{3}+\cos (3 x)\)
- \(\quad\) Solution to the IVP
\(y=\frac{2 \sin (3 x)}{3}+\cos (3 x)\)

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 15
dsolve([diff \((y(x), x \$ 2)+9 * y(x)=0, y(0)=1, D(y)(0)=2], y(x)\), singsol=all)
\[
y(x)=\frac{2 \sin (3 x)}{3}+\cos (3 x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 18
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]+9 * y[x]==0,\left\{y[0]==1, y^{\prime}[0]==2\right\}\right\}, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{2}{3} \sin (3 x)+\cos (3 x)
\]

\subsection*{14.10 problem 2(b)}
14.10.1 Existence and uniqueness analysis 2389
14.10.2 Solving as second order linear constant coeff ode 2390
14.10.3 Solving using Kovacic algorithm 2395
14.10.4 Maple step by step solution . 2401

Internal problem ID [6380]
Internal file name [OUTPUT/5628_Sunday_June_05_2022_03_45_12_PM_67246059/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y^{\prime}+4 y=x
\]

With initial conditions
\[
\left[y(1)=2, y^{\prime}(1)=1\right]
\]

\subsection*{14.10.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-1 \\
q(x) & =4 \\
F & =x
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-y^{\prime}+4 y=x
\]

The domain of \(p(x)=-1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(q(x)=4\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. The domain of \(F=x\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.10.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-1, C=4, f(x)=x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-1, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-\lambda+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-1, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(4)} \\
& =\frac{1}{2} \pm \frac{i \sqrt{15}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{i \sqrt{15}}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{i \sqrt{15}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=\frac{1}{2}\) and \(\beta=\frac{\sqrt{15}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
4 A_{2} x+4 A_{1}-A_{2}=x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{16}, A_{2}=\frac{1}{4}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{x}{4}+\frac{1}{16}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)\right)+\left(\frac{x}{4}+\frac{1}{16}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)+\frac{x}{4}+\frac{1}{16} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=2\) and \(x=1\) in the above gives
\[
\begin{equation*}
2=\mathrm{e}^{\frac{1}{2}} \cos \left(\frac{\sqrt{15}}{2}\right) c_{1}+\mathrm{e}^{\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right) c_{2}+\frac{5}{16} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{\mathrm{e}^{\frac{x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{15} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)\right)}{2}+\mathrm{e}^{\frac{x}{2}}\left(-\frac{c_{1} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{c_{2} \sqrt{15} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}\right)+\frac{1}{4}
\]
substituting \(y^{\prime}=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=\frac{\mathrm{e}^{\frac{1}{2}}\left(\sqrt{15} c_{2}+c_{1}\right) \cos \left(\frac{\sqrt{15}}{2}\right)}{2}+\frac{1}{4}-\frac{\mathrm{e}^{\frac{1}{2}}\left(\sqrt{15} c_{1}-c_{2}\right) \sin \left(\frac{\sqrt{15}}{2}\right)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{15}\left(9 \sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)+\sin \left(\frac{\sqrt{15}}{2}\right)\right)}{80} \\
& c_{2}=\frac{\mathrm{e}^{-\frac{1}{2}} \sqrt{15}\left(9 \sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)-\cos \left(\frac{\sqrt{15}}{2}\right)\right)}{80}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{1}{16}+\frac{x}{4}+\frac{27 \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right)}{16}-\frac{\sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}} \sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)}{80}+\frac{27 \cos \left(\frac{\sqrt{15} x}{2}\right) \cos \left(\frac{\sqrt{15}}{2}\right.}{16}\)
Which simplifies to
\[
\begin{aligned}
y & =\frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \\
& +\frac{x}{4}+\frac{1}{16}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y & \frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \\
& +\frac{x}{4}+\frac{1}{16}
\end{aligned}
\]

(a) Solution plot (b) Slope field plot

Verification of solutions
\(y\)
\(\begin{aligned}= & \frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \\ & +\frac{x}{4}+\frac{1}{16}\end{aligned}\)
Verified OK.

\subsection*{14.10.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-15}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-15 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{15 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 350: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{15}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{15} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\left(\frac{2 \sqrt{15} \tan \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{15}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right), \frac{2 \mathrm{e}^{\frac{x}{2} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}}{15}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
4 A_{2} x+4 A_{1}-A_{2}=x
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{16}, A_{2}=\frac{1}{4}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{x}{4}+\frac{1}{16}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{15}\right)+\left(\frac{x}{4}+\frac{1}{16}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{15}+\frac{x}{4}+\frac{1}{16} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=2\) and \(x=1\) in the above gives
\[
\begin{equation*}
2=\mathrm{e}^{\frac{1}{2}} \cos \left(\frac{\sqrt{15}}{2}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{\frac{1}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)}{15}+\frac{5}{16} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\(y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{15}+c_{2} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\frac{1}{4}\)
substituting \(y^{\prime}=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=\frac{\mathrm{e}^{\frac{1}{2}}\left(c_{1}+2 c_{2}\right) \cos \left(\frac{\sqrt{15}}{2}\right)}{2}+\frac{1}{4}-\frac{\left(c_{1}-\frac{2 c_{2}}{15}\right) \sqrt{15} \mathrm{e}^{\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \mathrm{e}^{-\frac{1}{2}}}{80} \\
& c_{2}=\frac{3\left(9 \sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)-\cos \left(\frac{\sqrt{15}}{2}\right)\right) \mathrm{e}^{-\frac{1}{2}}}{32}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{1}{16}+\frac{x}{4}+\frac{27 \sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right)}{16}-\frac{\sin \left(\frac{\sqrt{15} x}{2}\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}} \sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)}{80}+\frac{27 \cos \left(\frac{\sqrt{15} x}{2}\right) \cos \left(\frac{\sqrt{15}}{2}\right.}{16}\)
Which simplifies to
\[
\begin{aligned}
= & \frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \\
& +\frac{x}{4}+\frac{1}{16}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y & \frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \tag{1}\\
& +\frac{x}{4}+\frac{1}{16}
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y & =\frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80} \\
& +\frac{x}{4}+\frac{1}{16}
\end{aligned}
\]

Verified OK.

\subsection*{14.10.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-y^{\prime}+4 y=x, y(1)=2,\left.y^{\prime}\right|_{\{x=1\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}-r+4=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{1 \pm(\sqrt{-15})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{15}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{15}}{2}\right)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)\)
- 2 nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\mathrm{e}^{\frac{x}{2}} c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) & \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) \\
\frac{\mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}-\frac{\mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2} & \frac{\mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{x}{2} \sqrt{15} \cos \left(\frac{\sqrt{15} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{15} \mathrm{e}^{x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \mathrm{e}^{\frac{x}{2}} \sqrt{15}\left(\cos \left(\frac{\sqrt{15} x}{2}\right)\left(\int x \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{15} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\int x \mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right) d x\right)\right)}{15}
\]
- Compute integrals
\[
y_{p}(x)=\frac{x}{4}+\frac{1}{16}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\mathrm{e}^{\frac{x}{2}} c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)+\frac{x}{4}+\frac{1}{16}
\]
\[
\text { Check validity of solution } y=c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)+\mathrm{e}^{\frac{x}{2}} c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)+\frac{x}{4}+\frac{1}{16}
\]
- Use initial condition \(y(1)=2\)
\[
2=\mathrm{e}^{\frac{1}{2}} \cos \left(\frac{\sqrt{15}}{2}\right) c_{1}+\mathrm{e}^{\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right) c_{2}+\frac{5}{16}
\]
- Compute derivative of the solution
\[
y^{\prime}=\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{\frac{x}{2}} \sqrt{15} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{x}{2}} c_{2} \sin \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{x}{2}} c_{2} \sqrt{15} \cos \left(\frac{\sqrt{15} x}{2}\right)}{2}+\frac{1}{4}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=1\)
\[
1=\frac{1}{4}+\frac{\mathrm{e}^{\frac{1}{2}} \cos \left(\frac{\sqrt{15}}{2}\right) c_{1}}{2}-\frac{\mathrm{e}^{\frac{1}{2}} c_{1} \sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)}{2}+\frac{\mathrm{e}^{\frac{1}{2}} \sin \left(\frac{\sqrt{15}}{2}\right) c_{2}}{2}+\frac{c_{2} \mathrm{e}^{\frac{1}{2}} \sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{\left(9 \sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)+\sin \left(\frac{\sqrt{15}}{2}\right)\right) \sqrt{15}}{80 \mathrm{e}^{\frac{1}{2}}\left(\sin \left(\frac{\sqrt{15}}{2}\right)^{2}+\cos \left(\frac{\sqrt{15}}{2}\right)^{2}\right)}, c_{2}=\frac{\sqrt{15}\left(9 \sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)-\cos \left(\frac{\sqrt{15}}{2}\right)\right)}{80 \mathrm{e}^{\frac{1}{2}}\left(\sin \left(\frac{\sqrt{15}}{2}\right)^{2}+\cos \left(\frac{\sqrt{15}}{2}\right)^{2}\right)}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80}+\frac{x}{4}+\frac{1}{16}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80}+\frac{x}{4}+\frac{1}{16}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.344 (sec). Leaf size: 73
```

dsolve([diff(y(x),x\$2)-diff(y(x),x)+4*y(x)=x,y(1) = 2, D(y)(1) = 1],y(x), singsol=all)

```
\(y(x)\)
\(=\frac{\left(\left(\sqrt{15} \sin \left(\frac{\sqrt{15}}{2}\right)+135 \cos \left(\frac{\sqrt{15}}{2}\right)\right) \cos \left(\frac{\sqrt{15} x}{2}\right)-\sin \left(\frac{\sqrt{15} x}{2}\right)\left(\sqrt{15} \cos \left(\frac{\sqrt{15}}{2}\right)-135 \sin \left(\frac{\sqrt{15}}{2}\right)\right)\right) \mathrm{e}^{\frac{x}{2}-\frac{1}{2}}}{80}\)
\(+\frac{x}{4}+\frac{1}{16}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 67
DSolve \(\left[\left\{y^{\prime}{ }^{\prime}[x]-y\right.\right.\) ' \(\left.[x]+4 * y[x]==x,\left\{y[1]==2, y^{\prime}[1]==1\right\}\right\}, y[x], x\), IncludeSingularSolutions \(->\) True \(]\)
\[
y(x) \rightarrow \frac{1}{80}\left(20 x-\sqrt{15} e^{\frac{x-1}{2}} \sin \left(\frac{1}{2} \sqrt{15}(x-1)\right)+135 e^{\frac{x-1}{2}} \cos \left(\frac{1}{2} \sqrt{15}(x-1)\right)+5\right)
\]

\subsection*{14.11 problem 2(c)}
14.11.1 Existence and uniqueness analysis 2404
14.11.2 Solving as second order linear constant coeff ode 2405
14.11.3 Solving using Kovacic algorithm 2409
14.11.4 Maple step by step solution . 2415

Internal problem ID [6381]
Internal file name [OUTPUT/5629_Sunday_June_05_2022_03_45_15_PM_77622315/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+2 y^{\prime}+5 y=\mathrm{e}^{x}
\]

With initial conditions
\[
\left[y(0)=-1, y^{\prime}(0)=1\right]
\]

\subsection*{14.11.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =2 \\
q(x) & =5 \\
F & =\mathrm{e}^{x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+2 y^{\prime}+5 y=\mathrm{e}^{x}
\]

The domain of \(p(x)=2\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=5\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. The domain of \(F=\mathrm{e}^{x}\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.11.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=2, C=5, f(x)=\mathrm{e}^{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+5 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=5\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}+5 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda+5=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=5\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(5)} \\
& =-1 \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-1+2 i \\
& \lambda_{2}=-1-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-1\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-x} \cos (2 x), \mathrm{e}^{-x} \sin (2 x)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
8 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{8}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{x}}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)\right)+\left(\frac{\mathrm{e}^{x}}{8}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\frac{\mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1}+\frac{1}{8} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\mathrm{e}^{-x}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\mathrm{e}^{-x}\left(-2 \sin (2 x) c_{1}+2 c_{2} \cos (2 x)\right)+\frac{\mathrm{e}^{x}}{8}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-c_{1}+\frac{1}{8}+2 c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
c_{1} & =-\frac{9}{8} \\
c_{2} & =-\frac{1}{8}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=-\frac{9 \mathrm{e}^{-x} \cos (2 x)}{8}-\frac{\mathrm{e}^{-x} \sin (2 x)}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Which simplifies to
\[
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Verified OK.

\subsection*{14.11.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}+5 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =2 \tag{3}\\
C & =5
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-4 \\
t & =1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 352: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x} \\
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x} \cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x} \cos (2 x)\right)+c_{2}\left(\mathrm{e}^{-x} \cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}+5 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{\mathrm{e}^{-x} c_{2} \sin (2 x)}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-x} \cos (2 x), \frac{\mathrm{e}^{-x} \sin (2 x)}{2}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
8 A_{1} \mathrm{e}^{x}=\mathrm{e}^{x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{8}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{x}}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{\mathrm{e}^{-x} c_{2} \sin (2 x)}{2}\right)+\left(\frac{\mathrm{e}^{x}}{8}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\frac{\mathrm{e}^{-x} c_{2} \sin (2 x)}{2}+\frac{\mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1}+\frac{1}{8} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (2 x)-2 c_{1} \mathrm{e}^{-x} \sin (2 x)-\frac{\mathrm{e}^{-x} c_{2} \sin (2 x)}{2}+\mathrm{e}^{-x} c_{2} \cos (2 x)+\frac{\mathrm{e}^{x}}{8}
\]
substituting \(y^{\prime}=1\) and \(x=0\) in the above gives
\[
\begin{equation*}
1=-c_{1}+\frac{1}{8}+c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
c_{1} & =-\frac{9}{8} \\
c_{2} & =-\frac{1}{4}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=-\frac{9 \mathrm{e}^{-x} \cos (2 x)}{8}-\frac{\mathrm{e}^{-x} \sin (2 x)}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Which simplifies to
\[
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Verified OK.

\subsection*{14.11.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+2 y^{\prime}+5 y=\mathrm{e}^{x}, y(0)=-1,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+2 r+5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{-16})}{2}\)
- Roots of the characteristic polynomial
\(r=(-1-2 \mathrm{I},-1+2 \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x} \cos (2 x)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{-x} \sin (2 x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\mathrm{e}^{-x} c_{2} \sin (2 x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{x}\right]
\]
- Wronskian of solutions of the homogeneous equation \(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} \cos (2 x) & \mathrm{e}^{-x} \sin (2 x) \\ -\mathrm{e}^{-x} \cos (2 x)-2 \mathrm{e}^{-x} \sin (2 x) & -\mathrm{e}^{-x} \sin (2 x)+2 \mathrm{e}^{-x} \cos (2 x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{-2 x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\cos (2 x)\left(\int \mathrm{e}^{2 x} \sin (2 x) d x\right)-\sin (2 x)\left(\int \mathrm{e}^{2 x} \cos (2 x) d x\right)\right)}{2}\)
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{x}}{8}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\mathrm{e}^{-x} c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{8}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-x} \cos (2 x)+\mathrm{e}^{-x} c_{2} \sin (2 x)+\frac{\mathrm{e}^{x}}{8}\)
- Use initial condition \(y(0)=-1\)
\[
-1=c_{1}+\frac{1}{8}
\]
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x} \cos (2 x)-2 c_{1} \mathrm{e}^{-x} \sin (2 x)-\mathrm{e}^{-x} c_{2} \sin (2 x)+2 \mathrm{e}^{-x} c_{2} \cos (2 x)+\frac{\mathrm{e}^{x}}{8}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=1\)
\(1=-c_{1}+\frac{1}{8}+2 c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{9}{8}, c_{2}=-\frac{1}{8}\right\}
\]
- Substitute constant values into general solution and simplify
\(y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}\)
- \(\quad\) Solution to the IVP
\[
y=\frac{(-9 \cos (2 x)-\sin (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]

Maple trace
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 29
dsolve([diff \((y(x), x \$ 2)+2 * \operatorname{diff}(y(x), x)+5 * y(x)=\exp (x), y(0)=-1, D(y)(0)=1], y(x)\), singsol=al
\[
y(x)=\frac{(-\sin (2 x)-9 \cos (2 x)) \mathrm{e}^{-x}}{8}+\frac{\mathrm{e}^{x}}{8}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.108 (sec). Leaf size: 32
DSolve[\{y' ' \([x]+2 * y\) ' \(\left.[x]+5 * y[x]==\operatorname{Exp}[x],\left\{y[0]==-1, y^{\prime}[0]==1\right\}\right\}, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow \frac{1}{8} e^{-x}\left(e^{2 x}-\sin (2 x)-9 \cos (2 x)\right)
\]

\subsection*{14.12 problem 2(d)}
14.12.1 Existence and uniqueness analysis 2418
14.12.2 Solving as second order linear constant coeff ode 2419
14.12.3 Solving using Kovacic algorithm 2424
14.12.4 Maple step by step solution . 2430

Internal problem ID [6382]
Internal file name [OUTPUT/5630_Sunday_June_05_2022_03_45_17_PM_47741063/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+3 y^{\prime}+4 y=\sin (x)
\]

With initial conditions
\[
\left[y\left(\frac{\pi}{2}\right)=1, y^{\prime}\left(\frac{\pi}{2}\right)=-1\right]
\]

\subsection*{14.12.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =3 \\
q(x) & =4 \\
F & =\sin (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+3 y^{\prime}+4 y=\sin (x)
\]

The domain of \(p(x)=3\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=\frac{\pi}{2}\) is inside this domain. The domain of \(q(x)=4\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=\frac{\pi}{2}\) is also inside this domain. The domain of \(F=\sin (x)\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=\frac{\pi}{2}\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.12.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=3, C=4, f(x)=\sin (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=3, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+3 \lambda+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=3, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(4)} \\
& =-\frac{3}{2} \pm \frac{i \sqrt{7}}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{7}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{i \sqrt{7}}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=-\frac{3}{2}\) and \(\beta=\frac{\sqrt{7}}{2}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{-\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\mathrm{e}^{-\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right), \mathrm{e}^{-\frac{3 x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 A_{1} \cos (x)+3 A_{2} \sin (x)-3 A_{1} \sin (x)+3 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{6}, A_{2}=\frac{1}{6}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\mathrm{e}^{-\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right)+\left(-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\mathrm{e}^{-\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)-\frac{\cos (x)}{6}+\frac{\sin (x)}{6} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=\frac{\pi}{2}\) in the above gives
\[
\begin{equation*}
1=\mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right) c_{1}+\mathrm{e}^{-\frac{3 \pi}{4}} \sin \left(\frac{\sqrt{7} \pi}{4}\right) c_{2}+\frac{1}{6} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{3 \mathrm{e}^{-\frac{3 x}{2}}\left(c_{1} \cos \left(\frac{\sqrt{7} x}{2}\right)+c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)\right)}{2}+\mathrm{e}^{-\frac{3 x}{2}}\left(-\frac{c_{1} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{c_{2} \sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}\right)+\frac{\sin (x)}{6}-
\]
substituting \(y^{\prime}=-1\) and \(x=\frac{\pi}{2}\) in the above gives
\[
\begin{equation*}
-1=-\frac{3\left(-\frac{\sqrt{7} c_{2}}{3}+c_{1}\right) \mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right)}{2}+\frac{1}{6}-\frac{\mathrm{e}^{-\frac{3 \pi}{4}}\left(\sqrt{7} c_{1}+3 c_{2}\right) \sin \left(\frac{\sqrt{7} \pi}{4}\right)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{\frac{3 \pi}{4}} \sqrt{7}\left(5 \sqrt{7} \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\right)}{42} \\
& c_{2}=\frac{\mathrm{e}^{\frac{3 \pi}{4}} \sqrt{7}\left(5 \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)+\cos \left(\frac{\sqrt{7} \pi}{4}\right)\right)}{42}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{6}-\frac{\cos (x)}{6}+\frac{5 \cos \left(\frac{\sqrt{7} x}{2}\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{6}-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42}+\frac{5 \sin \left(\frac{\sqrt{7} x}{2}\right.}{42}
\]

Which simplifies to
\[
\begin{aligned}
& =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& \quad-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y \tag{1}\\
& =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y & =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{aligned}
\]

Verified OK.

\subsection*{14.12.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}+4 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=3 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-7}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-7 \\
t & =4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-\frac{7 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 354: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-\frac{7}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos \left(\frac{\sqrt{7} x}{2}\right)
\]

Using the above, the solution for the original ode can now be found. The first solution
to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{2 \sqrt{7} \tan \left(\frac{\sqrt{7} x}{2}\right)}{7}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)\right)+c_{2}\left(\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)\left(\frac{2 \sqrt{7} \tan \left(\frac{\sqrt{7} x}{2}\right)}{7}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{7}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right), \frac{2 \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{7}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
3 A_{1} \cos (x)+3 A_{2} \sin (x)-3 A_{1} \sin (x)+3 A_{2} \cos (x)=\sin (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{6}, A_{2}=\frac{1}{6}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{7}\right)+\left(-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\frac{2 c_{2} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{7}-\frac{\cos (x)}{6}+\frac{\sin (x)}{6} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=\frac{\pi}{2}\) in the above gives
\[
\begin{equation*}
1=\mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right) c_{1}+\frac{2 c_{2} \mathrm{e}^{-\frac{3 \pi}{4}} \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)}{7}+\frac{1}{6} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{3 c_{2} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{7}+c_{2} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\frac{\sin (2}{6}
\]
substituting \(y^{\prime}=-1\) and \(x=\frac{\pi}{2}\) in the above gives
\[
\begin{equation*}
-1=-\frac{3\left(c_{1}-\frac{2 c_{2}}{3}\right) \mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right)}{2}+\frac{1}{6}-\frac{\sqrt{7}\left(c_{1}+\frac{6 c_{2}}{7}\right) \mathrm{e}^{-\frac{3 \pi}{4}} \sin \left(\frac{\sqrt{7} \pi}{4}\right)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{\left(\sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)-35 \cos \left(\frac{\sqrt{7} \pi}{4}\right)\right) \mathrm{e}^{\frac{3 \pi}{4}}}{42} \\
& c_{2}=\frac{\left(5 \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)+\cos \left(\frac{\sqrt{7} \pi}{4}\right)\right) \mathrm{e}^{\frac{3 \pi}{4}}}{12}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\sin (x)}{6}-\frac{\cos (x)}{6}+\frac{5 \cos \left(\frac{\sqrt{7} x}{2}\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{6}-\frac{\cos \left(\frac{\sqrt{7} x}{2}\right) \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42}+\frac{5 \sin \left(\frac{\sqrt{7} x}{2}\right.}{42}
\]

Which simplifies to
\[
\begin{aligned}
y & =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y \tag{1}\\
& =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y & =\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{aligned}
\]

Verified OK.

\subsection*{14.12.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+3 y^{\prime}+4 y=\sin (x), y\left(\frac{\pi}{2}\right)=1,\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=-1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+3 r+4=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{(-3) \pm(\sqrt{-7})}{2}
\]
- Roots of the characteristic polynomial
\[
r=\left(-\frac{3}{2}-\frac{\mathrm{I} \sqrt{7}}{2},-\frac{3}{2}+\frac{\mathrm{I} \sqrt{7}}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{3 x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\mathrm{e}^{-\frac{3 x}{2}} c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right) & \mathrm{e}^{-\frac{3 x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right) \\
-\frac{3 \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{3 x}{2} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}}{2} & -\frac{3 \mathrm{e}^{-\frac{3 x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{3 x}{2} \sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{7} \mathrm{e}^{-3 x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7}\left(\cos \left(\frac{\sqrt{7} x}{2}\right)\left(\int \sin (x) \mathrm{e}^{\frac{3 x}{2}} \sin \left(\frac{\sqrt{7} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{7} x}{2}\right)\left(\int \sin (x) \mathrm{e}^{\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right) d x\right)\right)}{7}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\]
- Substitute particular solution into general solution to ODE \(y=c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\mathrm{e}^{-\frac{3 x}{2}} c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}\) Check validity of solution \(y=c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)+\mathrm{e}^{-\frac{3 x}{2}} c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}\)
- Use initial condition \(y\left(\frac{\pi}{2}\right)=1\)
\[
1=\mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right) c_{1}+\mathrm{e}^{-\frac{3 \pi}{4}} \sin \left(\frac{\sqrt{7} \pi}{4}\right) c_{2}+\frac{1}{6}
\]
- Compute derivative of the solution
\[
y^{\prime}=-\frac{3 c_{1} \mathrm{e}^{-\frac{3 x}{2}} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{c_{1} \mathrm{e}^{-\frac{3 x}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}-\frac{3 \mathrm{e}^{-\frac{3 x}{2}} c_{2} \sin \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{\mathrm{e}^{-\frac{3 x}{2}} c_{2} \sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)}{2}+\frac{\sin (x)}{6}+\frac{\cos (x)}{6}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\left\{x=\frac{\pi}{2}\right\}}=-1\)
\[
-1=\frac{1}{6}-\frac{c_{1} \mathrm{e}^{-\frac{3 \pi}{4} \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)}}{2}-\frac{3 \mathrm{e}^{-\frac{3 \pi}{4}} \cos \left(\frac{\sqrt{7} \pi}{4}\right) c_{1}}{2}+\frac{\mathrm{e}^{-\frac{3 \pi}{4}} c_{2} \sqrt{7} \cos \left(\frac{\sqrt{7} \pi}{4}\right)}{2}-\frac{3 \mathrm{e}^{-\frac{3 \pi}{4} \sin \left(\frac{\sqrt{7} \pi}{4}\right) c_{2}}}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{\left(5 \sqrt{7} \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\right) \sqrt{7}}{42 \mathrm{e}^{-\frac{3 \pi}{4}}\left(\cos \left(\frac{\sqrt{7} \pi}{4}\right)^{2}+\sin \left(\frac{\sqrt{7} \pi}{4}\right)^{2}\right)}, c_{2}=\frac{\sqrt{7}\left(5 \sqrt{7} \sin \left(\frac{\sqrt{7} \pi}{4}\right)+\cos \left(\frac{\sqrt{7} \pi}{4}\right)\right)}{42 \mathrm{e}^{-\frac{3 \pi}{4}}\left(\cos \left(\frac{\sqrt{7} \pi}{4}\right)^{2}+\sin \left(\frac{\sqrt{7} \pi}{4}\right)^{2}\right)}\right\}
\]
- Substitute constant values into general solution and simplify
\(y=\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42}-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}\)
- \(\quad\) Solution to the IVP
\[
y=\frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42}-\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\]

\section*{Maple trace}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.547 (sec). Leaf size: 93
```

dsolve([diff (y(x),x\$2)+3*diff(y(x),x)+4*y(x)=sin}(x),y(1/2*Pi) = 1, D(y)(1/2*Pi) = -1],y(x)

```
\(y(x)\)
\[
\begin{aligned}
= & \frac{\left(\left(\sqrt{7} \sin \left(\frac{\sqrt{7} x}{2}\right)+35 \cos \left(\frac{\sqrt{7} x}{2}\right)\right) \cos \left(\frac{\sqrt{7} \pi}{4}\right)-\sin \left(\frac{\sqrt{7} \pi}{4}\right)\left(\sqrt{7} \cos \left(\frac{\sqrt{7} x}{2}\right)-35 \sin \left(\frac{\sqrt{7} x}{2}\right)\right)\right) \mathrm{e}^{-\frac{3 x}{2}+\frac{3 \pi}{4}}}{42} \\
& -\frac{\cos (x)}{6}+\frac{\sin (x)}{6}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 1.46 (sec). Leaf size: 79
DSolve \([\{y\) ' ' \([x]+3 * y\) ' \([x]+4 * y[x]==\operatorname{Sin}[x],\{y[P i / 2]==1, y\) ' \([\mathrm{Pi} / 2]==-1\}\}, y[x], x\), IncludeSingularSolut
\[
\begin{aligned}
& y(x) \rightarrow \frac{1}{42}\left(-\sqrt{7} e^{\frac{3}{4}(\pi-2 x)} \sin \left(\frac{1}{4} \sqrt{7}(\pi-2 x)\right)+7 \sin (x)\right. \\
&\left.+35 e^{\frac{3}{4}(\pi-2 x)} \cos \left(\frac{1}{4} \sqrt{7}(\pi-2 x)\right)-7 \cos (x)\right)
\end{aligned}
\]

\subsection*{14.13 problem 2(e)}
14.13.1 Existence and uniqueness analysis 2433
14.13.2 Solving as second order linear constant coeff ode 2434
14.13.3 Solving using Kovacic algorithm 2438
14.13.4 Maple step by step solution . 2444

Internal problem ID [6383]
Internal file name [OUTPUT/5631_Sunday_June_05_2022_03_45_20_PM_81601001/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y=\mathrm{e}^{-x}
\]

With initial conditions
\[
\left[y(2)=0, y^{\prime}(2)=-2\right]
\]

\subsection*{14.13.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =1 \\
F & =\mathrm{e}^{-x}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y=\mathrm{e}^{-x}
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=2\) is inside this domain. The domain of \(q(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=2\) is also inside this domain. The domain of \(F=\mathrm{e}^{-x}\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=2\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.13.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=\mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(1)} \\
& = \pm i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+i \\
& \lambda_{2}=-i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =i \\
\lambda_{2} & =-i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=1\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(\cos (x) c_{1}+c_{2} \sin (x)\right)
\]

Or
\[
y=\cos (x) c_{1}+c_{2} \sin (x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{2}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\mathrm{e}^{-x}}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\cos (2) c_{1}+c_{2} \sin (2)+\frac{\mathrm{e}^{-2}}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-\frac{\mathrm{e}^{-x}}{2}
\]
substituting \(y^{\prime}=-2\) and \(x=2\) in the above gives
\[
\begin{equation*}
-2=-\sin (2) c_{1}+c_{2} \cos (2)-\frac{\mathrm{e}^{-2}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{\mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (2) \mathrm{e}^{-2}}{2}+2 \sin (2) \\
& c_{2}=\frac{\mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (2) \mathrm{e}^{-2}}{2}-2 \cos (2)
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=-\frac{\cos (x) \mathrm{e}^{-2} \cos (2)}{2}-\frac{\cos (x) \sin (2) \mathrm{e}^{-2}}{2}+2 \cos (x) \sin (2)+\frac{\sin (x) \mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (x) \sin (2) \mathrm{e}^{-2}}{2}-
\]

Which simplifies to
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \tag{1}\\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{align*}
\]

(a) Solution plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{aligned}
\]

Verified OK.

\subsection*{14.13.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 356: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (x) \int \frac{1}{\cos (x)^{2}} d x \\
& =\cos (x)(\tan (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (x))+c_{2}(\cos (x)(\tan (x)))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\cos (x) c_{1}+c_{2} \sin (x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (x), \sin (x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{2}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-x}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\cos (x) c_{1}+c_{2} \sin (x)\right)+\left(\frac{\mathrm{e}^{-x}}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{-x}}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=2\) in the above gives
\[
\begin{equation*}
0=\cos (2) c_{1}+c_{2} \sin (2)+\frac{\mathrm{e}^{-2}}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-\frac{\mathrm{e}^{-x}}{2}
\]
substituting \(y^{\prime}=-2\) and \(x=2\) in the above gives
\[
\begin{equation*}
-2=-\sin (2) c_{1}+c_{2} \cos (2)-\frac{\mathrm{e}^{-2}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{\mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (2) \mathrm{e}^{-2}}{2}+2 \sin (2) \\
& c_{2}=\frac{\mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (2) \mathrm{e}^{-2}}{2}-2 \cos (2)
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=-\frac{\cos (x) \mathrm{e}^{-2} \cos (2)}{2}-\frac{\cos (x) \sin (2) \mathrm{e}^{-2}}{2}+2 \cos (x) \sin (2)+\frac{\sin (x) \mathrm{e}^{-2} \cos (2)}{2}-\frac{\sin (x) \sin (2) \mathrm{e}^{-2}}{2}-
\]

Which simplifies to
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \tag{1}\\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2} \\
& -2 \sin (x) \cos (2)+2 \cos (x) \sin (2)
\end{aligned}
\]

\section*{Verified OK.}

\subsection*{14.13.4 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y=\mathrm{e}^{-x}, y(2)=0,\left.y^{\prime}\right|_{\{x=2\}}=-2\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-4})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-\mathrm{I}, \mathrm{I})
\]
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- \(\quad 2 \mathrm{nd}\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-x}\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\cos (x) & \sin (x) \\ -\sin (x) & \cos (x)\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=1\)
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (x)\left(\int \mathrm{e}^{-x} \sin (x) d x\right)+\sin (x)\left(\int \mathrm{e}^{-x} \cos (x) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{-x}}{2}
\]
- Substitute particular solution into general solution to ODE
\(y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{-x}}{2}\)
Check validity of solution \(y=\cos (x) c_{1}+c_{2} \sin (x)+\frac{\mathrm{e}^{-x}}{2}\)
- Use initial condition \(y(2)=0\)
\[
0=\cos (2) c_{1}+c_{2} \sin (2)+\frac{\mathrm{e}^{-2}}{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=-\sin (x) c_{1}+c_{2} \cos (x)-\frac{\mathrm{e}^{-x}}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=2\}}=-2\)
\[
-2=-\sin (2) c_{1}+c_{2} \cos (2)-\frac{\mathrm{e}^{-2}}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{\mathrm{e}^{-2} \cos (2)+\sin (2) \mathrm{e}^{-2}-4 \sin (2)}{2\left(\cos (2)^{2}+\sin (2)^{2}\right)}, c_{2}=\frac{\mathrm{e}^{-2} \cos (2)-\sin (2) \mathrm{e}^{-2}-4 \cos (2)}{2\left(\cos (2)^{2}+\sin (2)^{2}\right)}\right\}
\]
- Substitute constant values into general solution and simplify
\(y=\frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2}-2 \sin (x) \cos (2)+2 \cos (x) \sin (2)\)
- \(\quad\) Solution to the IVP
\(y=\frac{\mathrm{e}^{-x}}{2}+\frac{((\sin (x)-\cos (x)) \cos (2)-\cos (x) \sin (2)-\sin (x) \sin (2)) \mathrm{e}^{-2}}{2}-2 \sin (x) \cos (2)+2 \cos (x) \sin (2)\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.234 (sec). Leaf size: 50
dsolve([diff \((y(x), x \$ 2)+y(x)=\exp (-x), y(2)=0, D(y)(2)=-2], y(x)\), singsol=all)
\[
\begin{aligned}
y(x)= & \frac{\mathrm{e}^{-x}}{2}+\frac{((-\cos (x)+\sin (x)) \cos (2)-\sin (2) \cos (x)-\sin (2) \sin (x)) \mathrm{e}^{-2}}{2} \\
& -2 \cos (2) \sin (x)+2 \sin (2) \cos (x)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.062 (sec). Leaf size: 48
DSolve[\{y''[x]+y[x]==Exp[-x],\{y[2]==0,y'[2]==-2\}\},y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2} e^{-x-2}\left(\left(4 e^{2}-1\right) e^{x} \sin (2-x)-e^{x} \cos (2-x)+e^{2}\right)
\]

\subsection*{14.14 problem 2(f)}
14.14.1 Solving as second order linear constant coeff ode 2447
14.14.2 Solving using Kovacic algorithm 2451
14.14.3 Maple step by step solution . 2457

Internal problem ID [6384]
Internal file name [OUTPUT/5632_Sunday_June_05_2022_03_45_22_PM_8971909/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}-y=\cos (x)
\]

With initial conditions
\[
\left[y(0)=3, y^{\prime}(2)=2\right]
\]

\subsection*{14.14.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=-1, f(x)=\cos (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=-1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=-1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(-1)} \\
& = \pm 1
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+1 \\
& \lambda_{2}=-1
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(1) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \cos (x)-2 A_{2} \sin (x)=\cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}\right)+\left(-\frac{\cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{-x}-\frac{\cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=3\) and \(x=0\) in the above gives
\[
\begin{equation*}
3=c_{1}+c_{2}-\frac{1}{2} \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1} \mathrm{e}^{x}-c_{2} \mathrm{e}^{-x}+\frac{\sin (x)}{2}
\]
substituting \(y^{\prime}=2\) and \(x=2\) in the above gives
\[
\begin{equation*}
2=c_{1} \mathrm{e}^{2}-c_{2} \mathrm{e}^{-2}+\frac{\sin (2)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-\frac{\sin (2) \mathrm{e}^{2}-4 \mathrm{e}^{2}-7}{2\left(\mathrm{e}^{4}+1\right)} \\
& c_{2}=\frac{\left(7 \mathrm{e}^{2}+\sin (2)-4\right) \mathrm{e}^{2}}{2 \mathrm{e}^{4}+2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{-\cos (x) \mathrm{e}^{8}-2 \cos (x) \mathrm{e}^{4}+\sin (2) \mathrm{e}^{2-x}+\sin (2) \mathrm{e}^{-x+6}-\sin (2) \mathrm{e}^{x+6}-\sin (2) \mathrm{e}^{x+2}-\cos (x)+7 \mathrm{e}^{8-x}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}
\]

Which simplifies to
\[
=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}
\]

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}\)

Figure 399: Solution plot

Verification of solutions
\(y\)
\(=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}\)
Verified OK.

\subsection*{14.14.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 358: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\mathrm{e}^{-x} \int \frac{1}{\mathrm{e}^{-2 x}} d x \\
& =\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{x}}{2}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-2 A_{1} \cos (x)-2 A_{2} \sin (x)=\cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{1}{2}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{\cos (x)}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}\right)+\left(-\frac{\cos (x)}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}-\frac{\cos (x)}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=3\) and \(x=0\) in the above gives
\[
\begin{equation*}
3=c_{1}+\frac{c_{2}}{2}-\frac{1}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{x}}{2}+\frac{\sin (x)}{2}
\]
substituting \(y^{\prime}=2\) and \(x=2\) in the above gives
\[
\begin{equation*}
2=-c_{1} \mathrm{e}^{-2}+\frac{c_{2} \mathrm{e}^{2}}{2}+\frac{\sin (2)}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\left(7 \mathrm{e}^{2}+\sin (2)-4\right) \mathrm{e}^{2}}{2 \mathrm{e}^{4}+2} \\
& c_{2}=-\frac{\sin (2) \mathrm{e}^{2}-4 \mathrm{e}^{2}-7}{\mathrm{e}^{4}+1}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{-\cos (x) \mathrm{e}^{8}-2 \cos (x) \mathrm{e}^{4}+\sin (2) \mathrm{e}^{2-x}+\sin (2) \mathrm{e}^{-x+6}-\sin (2) \mathrm{e}^{x+6}-\sin (2) \mathrm{e}^{x+2}-\cos (x)+7 \mathrm{e}^{8-x}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}
\]

Which simplifies to
\(y\)
\(=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}\)

Figure 400: Solution plot

\section*{Verification of solutions}
\(y\)
\(=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+(\sin (2)-4) \mathrm{e}^{-x+6}+7 \mathrm{e}^{4-x}+7 \mathrm{e}^{8-x}+(4-\sin (2)) \mathrm{e}^{x+2}+(4-\sin (2)) \mathrm{e}^{x+6}+7 \mathrm{e}^{x+}}{2 \mathrm{e}^{8}+4 \mathrm{e}^{4}+2}\)
Verified OK.

\subsection*{14.14.3 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-y=\cos (x), y(0)=3,\left.y^{\prime}\right|_{\{x=2\}}=2\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-1=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r+1)=0
\]
- Roots of the characteristic polynomial
\[
r=(-1,1)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-x}
\]
- \(\quad 2\) nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]\)
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=2
\]
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int \cos (x) \mathrm{e}^{x} d x\right)}{2}+\frac{\mathrm{e}^{x}\left(\int \mathrm{e}^{-x} \cos (x) d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=-\frac{\cos (x)}{2}\)
- Substitute particular solution into general solution to ODE \(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}-\frac{\cos (x)}{2}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}-\frac{\cos (x)}{2}\)
- Use initial condition \(y(0)=3\)
\[
3=c_{1}+c_{2}-\frac{1}{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=-c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\frac{\sin (x)}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=2\}}=2\)
\(2=-c_{1} \mathrm{e}^{-2}+c_{2} \mathrm{e}^{2}+\frac{\sin (2)}{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=\frac{7 \mathrm{e}^{2}+\sin (2)-4}{2\left(\mathrm{e}^{2}+\mathrm{e}^{-2}\right)}, c_{2}=\frac{7 \mathrm{e}^{-2}-\sin (2)+4}{2\left(\mathrm{e}^{2}+\mathrm{e}^{-2}\right)}\right\}\)
- Substitute constant values into general solution and simplify
\(y=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+7 \mathrm{e}^{4-x}+(4-\sin (2)) \mathrm{e}^{x+2}+\left(-\mathrm{e}^{4}-1\right) \cos (x)+7 \mathrm{e}^{x}}{2 \mathrm{e}^{4}+2}\)
- \(\quad\) Solution to the IVP
\(y=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+7 \mathrm{e}^{4-x}+(4-\sin (2)) \mathrm{e}^{x+2}+\left(-\mathrm{e}^{4}-1\right) \cos (x)+7 \mathrm{e}^{x}}{2 \mathrm{e}^{4}+2}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.406 (sec). Leaf size: 54
```

dsolve([diff(y(x),x\$2)-y(x)=cos(x),y(0) = 3, D(y)(2) = 2],y(x), singsol=all)

```
\[
y(x)=\frac{(\sin (2)-4) \mathrm{e}^{2-x}+7 \mathrm{e}^{4-x}+(-\sin (2)+4) \mathrm{e}^{x+2}+\left(-\mathrm{e}^{4}-1\right) \cos (x)+7 \mathrm{e}^{x}}{2 \mathrm{e}^{4}+2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 67
DSolve[\{y''[x]-y[x]==Cos[x],\{y[0]==3,y'[2]==2\}\},y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \frac{e^{-x}\left(7 e^{2 x}-e^{2 x+2}(\sin (2)-4)+\left(1+e^{4}\right)\left(-e^{x}\right) \cos (x)+7 e^{4}+e^{2}(\sin (2)-4)\right)}{2\left(1+e^{4}\right)}
\]

\subsection*{14.15 problem 2(g)}
14.15.1 Existence and uniqueness analysis 2461
14.15.2 Solving as second order ode quadrature ode 2461
14.15.3 Solving as second order linear constant coeff ode 2463
14.15.4 Solving as second order integrable as is ode 2467
14.15.5 Solving as second order ode missing y ode 2468
14.15.6 Solving using Kovacic algorithm 2470
14.15.7 Solving as exact linear second order ode ode 2476
14.15.8 Maple step by step solution . 2478

Internal problem ID [6385]
Internal file name [OUTPUT/5633_Sunday_June_05_2022_03_45_24_PM_52149414/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second__order_integrable_as_is", "second_order_ode_missing_y", "second_order_ode_quadrature", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _quadrature]]
\[
y^{\prime \prime}=\tan (x)
\]

With initial conditions
\[
\left[y(1)=1, y^{\prime}(1)=-1\right]
\]

\subsection*{14.15.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =0 \\
F & =\tan (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}=\tan (x)
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(F=\tan (x)\) is
\[
\left\{x<\frac{1}{2} \pi+\pi _Z 416 \vee \frac{1}{2} \pi+\pi _Z 416<x\right\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.15.2 Solving as second order ode quadrature ode}

Integrating once gives
\[
y^{\prime}=-\ln (\cos (x))+c_{1}
\]

Integrating again gives
\[
y=-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=-\frac{i}{2}-\ln (\cos (1))+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}+c_{1}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-i x-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}+\frac{2 i x \mathrm{e}^{2 i x}}{\mathrm{e}^{2 i x}+1}+c_{1}
\]
substituting \(y^{\prime}=-1\) and \(x=1\) in the above gives
\[
\begin{equation*}
-1=\frac{\left(i-\ln (\cos (1))+\tan (1)+c_{1}\right) \mathrm{e}^{2 i}-i+c_{1}+\tan (1)-\ln (\cos (1))}{\mathrm{e}^{2 i}+1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\(c_{1}=\frac{\mathrm{e}^{2 i} \ln (\cos (1))-i \mathrm{e}^{2 i}-\mathrm{e}^{2 i} \tan (1)-1+i-\mathrm{e}^{2 i}+\ln (\cos (1))-\tan (1)}{\mathrm{e}^{2 i}+1}\)
\(c_{2}=-\frac{-i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+2 \ln \left(\mathrm{e}^{2 i}+1\right) \mathrm{e}^{2 i}-3 i \mathrm{e}^{2 i}-2 \mathrm{e}^{2 i} \tan (1)-i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)-4 \mathrm{e}^{2 i}+2 \ln \left(\mathrm{e}^{2 i}+\right.}{2\left(\mathrm{e}^{2 i}+1\right)}\)
Substituting these values back in above solution results in
\(y=\underline{4-2 \mathrm{e}^{2 i} x-2 x+2 \tan (1)-i+4 \mathrm{e}^{2 i}-2 \ln \left(\mathrm{e}^{2 i}+1\right)+2 i x+i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+3 i \mathrm{e}^{2 i}+2 \mathrm{e}^{2 i} \tan (1)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)

\section*{Verification of solutions}
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verified OK.

\subsection*{14.15.3 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=0, f(x)=\tan (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=0\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(0)^{2}-(4)(1)(0)} \\
& =0
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=0\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} 1+c_{2} x \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{2} x+c_{1}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & x \\
\frac{d}{d x}(1) & \frac{d}{d x}(x)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|
\]

Therefore
\[
W=(1)(1)-(x)(0)
\]

Which simplifies to
\[
W=1
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int x \tan (x) d x
\]

Hence
\[
u_{1}=-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \tan (x) d x
\]

Hence
\[
u_{2}=-\ln (\cos (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x))\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{2} x+c_{1}-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x)) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=c_{2}+c_{1}-\frac{i \pi^{2}}{24}-\frac{i}{2}+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}-\ln (\cos (1)) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{2}-i x+\frac{2 i x \mathrm{e}^{2 i x}}{\mathrm{e}^{2 i x}+1}-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}
\]
substituting \(y^{\prime}=-1\) and \(x=1\) in the above gives
\[
\begin{equation*}
-1=\frac{\left(i-\ln (\cos (1))+\tan (1)+c_{2}\right) \mathrm{e}^{2 i}-i+c_{2}+\tan (1)-\ln (\cos (1))}{\mathrm{e}^{2 i}+1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\(c_{1}=-\frac{-i \pi^{2} \mathrm{e}^{2 i}-12 i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)-i \pi^{2}+24 \ln \left(\mathrm{e}^{2 i}+1\right) \mathrm{e}^{2 i}-36 i \mathrm{e}^{2 i}-24 \mathrm{e}^{2 i} \tan (1)-12 i \operatorname{dilog}\left(\mathrm{e}^{2 i}+\right.}{24\left(\mathrm{e}^{2 i}+1\right)}\)
\(c_{2}=\frac{\mathrm{e}^{2 i} \ln (\cos (1))-i \mathrm{e}^{2 i}-\mathrm{e}^{2 i} \tan (1)-1+i-\mathrm{e}^{2 i}+\ln (\cos (1))-\tan (1)}{\mathrm{e}^{2 i}+1}\)
Substituting these values back in above solution results in
\(y=\underline{4-2 \mathrm{e}^{2 i} x-2 x+2 \tan (1)-i+4 \mathrm{e}^{2 i}-2 \ln \left(\mathrm{e}^{2 i}+1\right)+2 i x+i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+3 i \mathrm{e}^{2 i}+2 \mathrm{e}^{2 i} \tan (1)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)

\section*{Verification of solutions}
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verified OK.

\subsection*{14.15.4 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int y^{\prime \prime} d x=\int \tan (x) d x \\
& y^{\prime}=-\ln (\cos (x))+c_{1}
\end{aligned}
\]

Which is now solved for \(y\). Integrating both sides gives
\[
\begin{aligned}
y & =\int-\ln (\cos (x))+c_{1} \mathrm{~d} x \\
& =-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \text { polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=-\frac{i}{2}-\ln (\cos (1))+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}+c_{1}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-i x-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}+\frac{2 i x \mathrm{e}^{2 i x}}{\mathrm{e}^{2 i x}+1}+c_{1}
\]
substituting \(y^{\prime}=-1\) and \(x=1\) in the above gives
\[
\begin{equation*}
-1=\frac{\left(i-\ln (\cos (1))+\tan (1)+c_{1}\right) \mathrm{e}^{2 i}-i+c_{1}+\tan (1)-\ln (\cos (1))}{\mathrm{e}^{2 i}+1} \tag{2A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\(c_{1}=\frac{\mathrm{e}^{2 i} \ln (\cos (1))-i \mathrm{e}^{2 i}-\mathrm{e}^{2 i} \tan (1)-1+i-\mathrm{e}^{2 i}+\ln (\cos (1))-\tan (1)}{\mathrm{e}^{2 i}+1}\)
\(c_{2}=-\frac{-i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+2 \ln \left(\mathrm{e}^{2 i}+1\right) \mathrm{e}^{2 i}-3 i \mathrm{e}^{2 i}-2 \mathrm{e}^{2 i} \tan (1)-i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)-4 \mathrm{e}^{2 i}+2 \ln \left(\mathrm{e}^{2 i}+\right.}{2\left(\mathrm{e}^{2 i}+1\right)}\)
Substituting these values back in above solution results in
\(y=\underline{4-2 \mathrm{e}^{2 i} x-2 x+2 \tan (1)-i+4 \mathrm{e}^{2 i}-2 \ln \left(\mathrm{e}^{2 i}+1\right)+2 i x+i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+3 i \mathrm{e}^{2 i}+2 \mathrm{e}^{2 i} \tan (1)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verification of solutions
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verified OK.

\subsection*{14.15.5 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)-\tan (x)=0
\]

Which is now solve for \(p(x)\) as first order ode. Integrating both sides gives
\[
\begin{aligned}
p(x) & =\int \tan (x) \mathrm{d} x \\
& =-\ln (\cos (x))+c_{1}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(p=-1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
-1=-\ln (\cos (1))+c_{1} \\
c_{1}=\ln (\cos (1))-1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=-\ln (\cos (x))+\ln (\cos (1))-1
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=-\ln (\cos (x))+\ln (\cos (1))-1
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\ln (\cos (x))+\ln (\cos (1))-1 \mathrm{~d} x \\
& =-x-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \text { polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}+\ln (\cos (1)) x+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=1\) and \(y=1\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
1=-1-\frac{i}{2}+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}+c_{2} \\
c_{2}=2+\frac{i}{2}-\ln \left(\mathrm{e}^{2 i}+1\right)+\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}
\end{gathered}
\]

Substituting \(c_{2}\) found above in the general solution gives
\(y=-x-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}+\ln (\cos (1)) x+2+\frac{i}{2}-\ln \left(\mathrm{e}^{2 i}+1\right.\)
Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & -x-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2} \tag{1}\\
& +\ln (\cos (1)) x+2+\frac{i}{2}-\ln \left(\mathrm{e}^{2 i}+1\right)+\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & -x-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2} \\
& +\ln (\cos (1)) x+2+\frac{i}{2}-\ln \left(\mathrm{e}^{2 i}+1\right)+\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.15.6 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime} & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 360: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{gathered}
y_{1}=z_{1} \\
=1
\end{gathered}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =1 \int \frac{1}{1} d x \\
& =1(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}(1(x))
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{2} x+c_{1}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=x
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & x \\
\frac{d}{d x}(1) & \frac{d}{d x}(x)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right|
\]

Therefore
\[
W=(1)(1)-(x)(0)
\]

Which simplifies to
\[
W=1
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x \tan (x)}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int x \tan (x) d x
\]

Hence
\[
u_{1}=-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \tan (x) d x
\]

Hence
\[
u_{2}=-\ln (\cos (x))
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x))
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{2} x+c_{1}\right)+\left(-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x))\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.

Looking at the above solution
\[
\begin{equation*}
y=c_{2} x+c_{1}-\frac{i \pi^{2}}{24}-\frac{i x^{2}}{2}+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}-x \ln (\cos (x)) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=c_{2}+c_{1}-\frac{i \pi^{2}}{24}-\frac{i}{2}+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}-\ln (\cos (1)) \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{2}-i x+\frac{2 i x \mathrm{e}^{2 i x}}{\mathrm{e}^{2 i x}+1}-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}
\]
substituting \(y^{\prime}=-1\) and \(x=1\) in the above gives
\[
\begin{equation*}
-1=\frac{\left(i-\ln (\cos (1))+\tan (1)+c_{2}\right) \mathrm{e}^{2 i}-i+c_{2}+\tan (1)-\ln (\cos (1))}{\mathrm{e}^{2 i}+1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\(c_{1}=-\frac{-i \pi^{2} \mathrm{e}^{2 i}-12 i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)-i \pi^{2}+24 \ln \left(\mathrm{e}^{2 i}+1\right) \mathrm{e}^{2 i}-36 i \mathrm{e}^{2 i}-24 \mathrm{e}^{2 i} \tan (1)-12 i \operatorname{dilog}\left(\mathrm{e}^{2 i}+\right.}{24\left(\mathrm{e}^{2 i}+1\right)}\)
\(c_{2}=\frac{\mathrm{e}^{2 i} \ln (\cos (1))-i \mathrm{e}^{2 i}-\mathrm{e}^{2 i} \tan (1)-1+i-\mathrm{e}^{2 i}+\ln (\cos (1))-\tan (1)}{\mathrm{e}^{2 i}+1}\)
Substituting these values back in above solution results in
\(y=\underline{4-2 \mathrm{e}^{2 i} x-2 x+2 \tan (1)-i+4 \mathrm{e}^{2 i}-2 \ln \left(\mathrm{e}^{2 i}+1\right)+2 i x+i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+3 i \mathrm{e}^{2 i}+2 \mathrm{e}^{2 i} \tan (1)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)

\section*{Verification of solutions}
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verified OK.

\subsection*{14.15.7 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =0 \\
r(x) & =0 \\
s(x) & =\tan (x)
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y^{\prime}=\int \tan (x) d x
\]

We now have a first order ode to solve which is
\[
y^{\prime}=-\ln (\cos (x))+c_{1}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int-\ln (\cos (x))+c_{1} \mathrm{~d} x \\
& =-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \text { polylog }\left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{i x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 i x}+1\right)-\frac{i \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)}{2}+c_{1} x+c_{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=1\) and \(x=1\) in the above gives
\[
\begin{equation*}
1=-\frac{i}{2}-\ln (\cos (1))+\ln \left(\mathrm{e}^{2 i}+1\right)-\frac{i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)}{2}+c_{1}+c_{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-i x-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}+\frac{2 i x \mathrm{e}^{2 i x}}{\mathrm{e}^{2 i x}+1}+c_{1}
\]
substituting \(y^{\prime}=-1\) and \(x=1\) in the above gives
\[
\begin{equation*}
-1=\frac{\left(i-\ln (\cos (1))+\tan (1)+c_{1}\right) \mathrm{e}^{2 i}-i+c_{1}+\tan (1)-\ln (\cos (1))}{\mathrm{e}^{2 i}+1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\(c_{1}=\frac{\mathrm{e}^{2 i} \ln (\cos (1))-i \mathrm{e}^{2 i}-\mathrm{e}^{2 i} \tan (1)-1+i-\mathrm{e}^{2 i}+\ln (\cos (1))-\tan (1)}{\mathrm{e}^{2 i}+1}\)
\(c_{2}=-\frac{-i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+2 \ln \left(\mathrm{e}^{2 i}+1\right) \mathrm{e}^{2 i}-3 i \mathrm{e}^{2 i}-2 \mathrm{e}^{2 i} \tan (1)-i \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)-4 \mathrm{e}^{2 i}+2 \ln \left(\mathrm{e}^{2 i}+\right.}{2\left(\mathrm{e}^{2 i}+1\right)}\)
Substituting these values back in above solution results in
\(y=\underline{4-2 \mathrm{e}^{2 i} x-2 x+2 \tan (1)-i+4 \mathrm{e}^{2 i}-2 \ln \left(\mathrm{e}^{2 i}+1\right)+2 i x+i \mathrm{e}^{2 i} \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+3 i \mathrm{e}^{2 i}+2 \mathrm{e}^{2 i} \tan (1)}\)

\section*{Summary}

The solution(s) found are the following
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)

\section*{Verification of solutions}
\(y\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{dilog}\left(\mathrm{e}^{2 i}+1\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln \left(\mathrm{e}^{2 i}-\right.}\)
Verified OK.

\subsection*{14.15.8 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}=\tan (x), y(1)=1,\left.y^{\prime}\right|_{\{x=1\}}=-1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{0})}{2}
\]
- Roots of the characteristic polynomial
\[
r=0
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=1
\]
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\[
y_{2}(x)=x
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1}+c_{2} x+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\left(\int x \tan (x) d x\right)+x\left(\int \tan (x) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\mathrm{I} x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 \mathrm{I} x}+1\right)-\frac{\mathrm{I} p o l y \log \left(2,-\mathrm{e}^{2 \mathrm{I} x}\right)}{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1}+c_{2} x-\frac{\mathrm{I} x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 \mathrm{I} x}+1\right)-\frac{\mathrm{Ipolylog}\left(2,-\mathrm{e}^{2 \mathrm{I} x}\right)}{2}
\]

Check validity of solution \(y=c_{1}+c_{2} x-\frac{\mathrm{I} x^{2}}{2}-x \ln (\cos (x))+x \ln \left(\mathrm{e}^{2 \mathrm{I} x}+1\right)-\frac{\mathrm{Ipolylog}\left(2,-\mathrm{e}^{2 \mathrm{I} x}\right)}{2}\)
- Use initial condition \(y(1)=1\)
\(1=c_{1}+c_{2}-\frac{\mathrm{I}}{2}-\ln (\cos (1))+\ln \left(\mathrm{e}^{2 \mathrm{I}}+1\right)-\frac{\mathrm{I} p o l y \log \left(2,-\mathrm{e}^{2 \mathrm{I}}\right)}{2}\)
- Compute derivative of the solution
\[
y^{\prime}=c_{2}-\mathrm{I} x+\frac{2 \mathrm{I} x \mathrm{e}^{2 I x}}{\mathrm{e}^{2 I x}+1}-\ln (\cos (x))+\frac{x \sin (x)}{\cos (x)}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=-1\)
\[
-1=c_{2}-\mathrm{I}+\frac{2 \mathrm{I}^{2 \mathrm{I}}}{\mathrm{e}^{2 \mathrm{I}}+1}-\ln (\cos (1))+\frac{\sin (1)}{\cos (1)}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{-\mathrm{I} p o l y \log \left(2,-\mathrm{e}^{2 \mathrm{I}}\right) \cos (1) \mathrm{e}^{2 \mathrm{I}}+2 \ln \left(\mathrm{e}^{2 \mathrm{I}}+1\right) \mathrm{e}^{2 \mathrm{I}} \cos (1)-3 \mathrm{I} \mathrm{e}^{2 \mathrm{I}} \cos (1)-\mathrm{I} p o l y \log \left(2,-\mathrm{e}^{2 \mathrm{I}}\right) \cos (1)-2 \mathrm{e}^{2 \mathrm{I}} \sin (1)-4 \mathrm{e}^{2 \mathrm{I}} \cos (1)+2}{2 \cos (1)\left(\mathrm{e}^{2 \mathrm{I}}+1\right)}\right.
\]
- Substitute constant values into general solution and simplify
\(y=\frac{\left(-\mathrm{I}^{2 \mathrm{I}}-\mathrm{I}\right) p o l y l o g\left(2,-\mathrm{e}^{2 \mathrm{I} x}\right)+2 x\left(\mathrm{e}^{2 \mathrm{I}}+1\right) \ln \left(\mathrm{e}^{2 \mathrm{I} x}+1\right)+\left(\mathrm{I}^{2 \mathrm{I}}+\mathrm{I}\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 \mathrm{I}}\right)+\left(-2 \mathrm{e}^{2 \mathrm{I}}-2\right) \ln \left(\mathrm{e}^{2 \mathrm{I}}+1\right)+(2 \ln (\cos (1)) x-2 x \ln \ln }{2 \mathrm{e}^{2 \mathrm{I}}}\)
- \(\quad\) Solution to the IVP
\(y=\frac{\left(-\mathrm{I} \mathrm{e}^{2 \mathrm{I}}-\mathrm{I}\right) p o l y l o g\left(2,-\mathrm{e}^{2 \mathrm{I} x}\right)+2 x\left(\mathrm{e}^{2 \mathrm{I}}+1\right) \ln \left(\mathrm{e}^{2 \mathrm{I} x}+1\right)+\left(\mathrm{I}^{2 \mathrm{I}}+\mathrm{I}\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 \mathrm{I}}\right)+\left(-2 \mathrm{e}^{2 \mathrm{I}}-2\right) \ln \left(\mathrm{e}^{2 \mathrm{I}}+1\right)+(2 \ln (\cos (1)) x-2 x \ln \ln }{2 \mathrm{e}^{2 \mathrm{I}}}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature <- quadrature successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.984 (sec). Leaf size: 135
```

dsolve([diff(y(x),x\$2)=tan(x),y(1) = 1, D(y)(1) = -1],y(x), singsol=all)

```
\(y(x)\)
\(=\underline{\left(-i \mathrm{e}^{2 i}-i\right) \operatorname{polylog}\left(2,-\mathrm{e}^{2 i x}\right)+2 x\left(\mathrm{e}^{2 i}+1\right) \ln \left(\mathrm{e}^{2 i x}+1\right)+\left(i \mathrm{e}^{2 i}+i\right) \operatorname{poly} \log \left(2,-\mathrm{e}^{2 i}\right)+\left(-2 \mathrm{e}^{2 i}-2\right) \ln (\mathrm{e}}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.038 (sec). Leaf size: 86
DSolve[\{y' ' \([\mathrm{x}]==\operatorname{Tan}[\mathrm{x}],\{\mathrm{y}[1]==1, \mathrm{y}\) ' \([1]==-1\}\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(\rightarrow\) True]
\(y(x) \rightarrow \frac{1}{2}\left(-i\right.\) PolyLog \(\left(2,-e^{2 i x}\right)+i \operatorname{PolyLog}\left(2,-e^{2 i}\right)-i x^{2}-2 x+2 x \log \left(1+e^{2 i x}\right)\)
\(\left.-2 x \log (\cos (x))+2 x \log (\cos (1))+(4+i)-2 \log \left(1+e^{2 i}\right)\right)\)

\subsection*{14.16 problem 2(h)}
14.16.1 Existence and uniqueness analysis 2482
14.16.2 Solving as second order linear constant coeff ode 2482
14.16.3 Solving as second order integrable as is ode 2487
14.16.4 Solving as second order ode missing y ode 2490
14.16.5 Solving as type second_order_integrable_as_is (not using ABC
version) . 2492
14.16.6 Solving using Kovacic algorithm 2495
14.16.7 Solving as exact linear second order ode ode 2502
14.16.8 Maple step by step solution . 2505

Internal problem ID [6386]
Internal file name [OUTPUT/5634_Sunday_June_05_2022_03_45_26_PM_96787947/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 2(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second__order_linear__constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_y]]
\[
y^{\prime \prime}-2 y^{\prime}=\ln (x)
\]

With initial conditions
\[
\left[y(1)=\mathrm{e}, y^{\prime}(1)=\mathrm{e}^{-1}\right]
\]

\subsection*{14.16.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-2 \\
q(x) & =0 \\
F & =\ln (x)
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-2 y^{\prime}=\ln (x)
\]

The domain of \(p(x)=-2\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=1\) is inside this domain. The domain of \(F=\ln (x)\) is
\[
\{0<x\}
\]

And the point \(x_{0}=1\) is also inside this domain. Hence solution exists and is unique.

\subsection*{14.16.2 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-2, C=0, f(x)=\ln (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-2, C=0\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-2 \lambda \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-2 \lambda=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-2, C=0\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-2^{2}-(4)(1)(0)} \\
& =1 \pm 1
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=1+1 \\
& \lambda_{2}=1-1
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=0
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(0) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=1
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & 1 \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}(1)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & 1 \\
2 \mathrm{e}^{2 x} & 0
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{2 x}\right)(0)-(1)\left(2 \mathrm{e}^{2 x}\right)
\]

Which simplifies to
\[
W=-2 \mathrm{e}^{2 x}
\]

Which simplifies to
\[
W=-2 \mathrm{e}^{2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\ln (x)}{-2 \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{\ln (x) \mathrm{e}^{-2 x}}{2} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x) \mathrm{e}^{-2 x}}{4}-\frac{\text { expIntegral }}{1}(2 x)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\ln (x) \mathrm{e}^{2 x}}{-2 \mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int-\frac{\ln (x)}{2} d x
\]

Hence
\[
u_{2}=-\frac{\ln (x) x}{2}+\frac{x}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(-\frac{\ln (x) \mathrm{e}^{-2 x}}{4}-\frac{\exp \operatorname{Integral}_{1}(2 x)}{4}\right) \mathrm{e}^{2 x}-\frac{\ln (x) x}{2}+\frac{x}{2}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2}\right)+\left(-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}=c_{1} \mathrm{e}^{2}+c_{2}-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{1}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{1} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}_{1}(2 x)}{2}+\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{4 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
substituting \(y^{\prime}=\mathrm{e}^{-1}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{-1}=\mathrm{e}^{2}\left(2 c_{1}-\frac{\operatorname{expIntegral} 1(2)}{2}\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\frac{\exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{-3}}{2} \\
& c_{2}=\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}-\frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}{ }_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \tag{1}\\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.3 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int \ln (x) d x \\
& y^{\prime}-2 y=\ln (x) x-x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-2 \\
q(x) & =\ln (x) x-x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=\ln (x) x-x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\ln (x) x-x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\ln (x) x-x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}(2 x)}{4}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=\mathrm{e}^{2 x}\left(\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\exp \text { Integral }_{1}(2 x)}{4}\right)+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}=-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{4}+c_{2} \mathrm{e}^{2}+\frac{1}{2}-\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}+\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{4 x}+2 c_{2} \mathrm{e}^{2 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
substituting \(y^{\prime}=\mathrm{e}^{-1}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{-1}=\mathrm{e}^{2}\left(-\frac{\exp \operatorname{Integral}_{1}(2)}{2}+2 c_{2}\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-2 \mathrm{e}+1+\mathrm{e}^{-1} \\
& c_{2}=\frac{\exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{-3}}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\[
y=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}-\frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2) \tag{1}\\
4 & \frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{align*}
\]

(a) Solution plot (b) Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.4 Solving as second order ode missing y ode}

This is second order ode with missing dependent variable \(y\). Let
\[
p(x)=y^{\prime}
\]

Then
\[
p^{\prime}(x)=y^{\prime \prime}
\]

Hence the ode becomes
\[
p^{\prime}(x)-2 p(x)-\ln (x)=0
\]

Which is now solve for \(p(x)\) as first order ode.
Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu p) & =(\mu)(\ln (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-2 x} p\right) & =\left(\mathrm{e}^{-2 x}\right)(\ln (x)) \\
\mathrm{d}\left(\mathrm{e}^{-2 x} p\right) & =\left(\ln (x) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{-2 x} p=\int \ln (x) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& \mathrm{e}^{-2 x} p=-\frac{\ln (x) \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}_{1}(2 x)}{2}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
p(x)=\mathrm{e}^{2 x}\left(-\frac{\ln (x) \mathrm{e}^{-2 x}}{2}-\frac{\exp \operatorname{Integral}_{1}(2 x)}{2}\right)+c_{1} \mathrm{e}^{2 x}
\]
which simplifies to
\[
p(x)=-\frac{\ln (x)}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}+c_{1} \mathrm{e}^{2 x}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=1\) and \(p=\mathrm{e}^{-1}\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
\mathrm{e}^{-1}=-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{2}+c_{1} \mathrm{e}^{2} \\
c_{1}=\frac{\left(\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)+2 \mathrm{e}^{-1}\right) \mathrm{e}^{-2}}{2}
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
p(x)=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{2}+\mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}-\frac{\ln (x)}{2}
\]

Since \(p=y^{\prime}\) then the new first order ode to solve is
\[
y^{\prime}=\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1} 1(2), \mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}-\frac{\ln (x)}{2}
\]

Integrating both sides gives
\[
\begin{aligned}
y & =\int \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2) \\
2 & \mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
2 & \frac{\ln (x)}{2} \mathrm{~d} x \\
& =\int\left(\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2)\right. \\
2 & \mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
2 & \left.-\frac{\ln (x)}{2}\right) d x+c_{2}
\end{aligned}
\]

Initial conditions are used to solve for \(c_{2}\). Substituting \(x=1\) and \(y=\mathrm{e}\) in the above solution gives an equation to solve for the constant of integration.
\[
\left.\begin{array}{l}
\mathrm{e}=\int^{1}\left(\frac{\mathrm{e}^{2} _a}{} \exp \operatorname{Integral}_{1}(2)\right. \\
2
\end{array}+\mathrm{e}^{2 _a-3}-\frac{\mathrm{e}^{2 _a} \operatorname{expIntegral} l_{1}\left(2 _a\right)}{2}-\frac{\ln \left(_a\right)}{2}\right) d _a+c_{2} .
\]

Substituting \(c_{2}\) found above in the general solution gives
\(y=\int\left(\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{2}+\mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}_{1}(2 x)}{2}-\frac{\ln (x)}{2}\right) d x-\frac{\left(\int^{1}\left(-\mathrm{e}^{2}-a \exp \operatorname{Integral}_{1}(2-\right.\right.}{}\)
Initial conditions are used to solve for the constants of integration.
Summary
The solution(s) found are the following
\[
\begin{align*}
& y \\
& =\int\left(\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{2}+\mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}-\frac{\ln (x)}{2}\right) d x \\
& \begin{array}{l}
\left.\left.-\frac{\left(\int ^ { 1 } \left(-\mathrm{e}^{2 _a} \operatorname{expIntegral}\right.\right.}{1}\left(2 _a\right)+\mathrm{e}^{2 _a} \operatorname{expIntegral}_{1}(2)+2 \mathrm{e}^{2 _a-3}-\ln \left(_a\right)\right) d _a\right) \\
+\mathrm{e}
\end{array} \tag{1}
\end{align*}
\]

Verification of solutions
\(y\)
\[
\begin{aligned}
= & \int\left(\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{2}+\mathrm{e}^{2 x-3}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}-\frac{\ln (x)}{2}\right) d x \\
& -\frac{\left(\int^{1}\left(-\mathrm{e}^{2 _a} \operatorname{expIntegral}_{1}\left(2 _a\right)+\mathrm{e}^{2 _a} \operatorname{expIntegral}_{1}(2)+2 \mathrm{e}^{2 _a-3}-\ln \left(_a\right)\right) d _a\right)}{2} \\
& +\mathrm{e}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.5 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
y^{\prime \prime}-2 y^{\prime}=\ln (x)
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(y^{\prime \prime}-2 y^{\prime}\right) d x=\int \ln (x) d x \\
& y^{\prime}-2 y=\ln (x) x-x+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-2 \\
q(x) & =\ln (x) x-x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=\ln (x) x-x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\ln (x) x-x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\ln (x) x-x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}(2 x)}{4}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=\mathrm{e}^{2 x}\left(\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\exp \operatorname{Integral}_{1}(2 x)}{4}\right)+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}=-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{4}+c_{2} \mathrm{e}^{2}+\frac{1}{2}-\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}+\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{4 x}+2 c_{2} \mathrm{e}^{2 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
substituting \(y^{\prime}=\mathrm{e}^{-1}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{-1}=\mathrm{e}^{2}\left(-\frac{\exp \operatorname{Integral}_{1}(2)}{2}+2 c_{2}\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-2 \mathrm{e}+1+\mathrm{e}^{-1} \\
& c_{2}=\frac{\operatorname{expIntegral}_{1}(2)}{4}+\frac{\mathrm{e}^{-3}}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}-\frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2) \tag{1}\\
4 & \frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2) \\
4 & \frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.6 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}-2 y^{\prime}=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-2 \tag{3}\\
& C=0
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 362: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=1\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-2}{1} d x} \\
& =z_{1} e^{x} \\
& =z_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=1
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(1)+c_{2}\left(1\left(\frac{\mathrm{e}^{2 x}}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-2 y^{\prime}=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=1 \\
& y_{2}=\frac{\mathrm{e}^{2 x}}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
1 & \frac{\mathrm{e}^{2 x}}{2} \\
\frac{d}{d x}(1) & \frac{d}{d x}\left(\frac{\mathrm{e}^{2 x}}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
1 & \frac{\mathrm{e}^{2 x}}{2} \\
0 & \mathrm{e}^{2 x}
\end{array}\right|
\]

Therefore
\[
W=(1)\left(\mathrm{e}^{2 x}\right)-\left(\frac{\mathrm{e}^{2 x}}{2}\right)(0)
\]

Which simplifies to
\[
W=\mathrm{e}^{2 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{2 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\ln (x) \mathrm{e}^{2 x}}{2}}{\mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\ln (x)}{2} d x
\]

Hence
\[
u_{1}=-\frac{\ln (x) x}{2}+\frac{x}{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\ln (x)}{\mathrm{e}^{2 x}} d x
\]

Which simplifies to
\[
u_{2}=\int \ln (x) \mathrm{e}^{-2 x} d x
\]

Hence
\[
u_{2}=-\frac{\ln (x) \mathrm{e}^{-2 x}}{2}-\frac{\exp \operatorname{Integral}_{1}(2 x)}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=-\frac{\ln (x) x}{2}+\frac{x}{2}+\frac{\mathrm{e}^{2 x}\left(-\frac{\ln (x) \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}(2 x)}{2}\right)}{2}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}
\]

Therefore the general solution is
\[
\left.\begin{array}{rl}
y & =y_{h}+y_{p} \\
& =\left(c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}\right)+\left(-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x)\right. \\
4
\end{array}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}\right)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1}+\frac{c_{2} \mathrm{e}^{2 x}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}=c_{1}+\frac{c_{2} \mathrm{e}^{2}}{2}-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{1}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{2} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{2}+\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{4 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
substituting \(y^{\prime}=\mathrm{e}^{-1}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{-1}=\mathrm{e}^{2}\left(c_{2}-\frac{\exp \text { Integral }_{1}(2)}{2}\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& c_{2}=\frac{\operatorname{expIntegral}_{1}(2)}{2}+\mathrm{e}^{-3}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}-\frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2) \tag{1}\\
4 & \frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.7 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =-2 \\
r(x) & =0 \\
s(x) & =\ln (x)
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =0 \\
q^{\prime}(x) & =0
\end{aligned}
\]

Therefore (1) becomes
\[
0-(0)+(0)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
y^{\prime}-2 y=\int \ln (x) d x
\]

We now have a first order ode to solve which is
\[
y^{\prime}-2 y=\ln (x) x-x+c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-2 \\
q(x) & =\ln (x) x-x+c_{1}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 y=\ln (x) x-x+c_{1}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-2) d x} \\
& =\mathrm{e}^{-2 x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\ln (x) x-x+c_{1}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{-2 x}\right) & =\left(\mathrm{e}^{-2 x}\right)\left(\ln (x) x-x+c_{1}\right) \\
\mathrm{d}\left(y \mathrm{e}^{-2 x}\right) & =\left(\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{-2 x}=\int\left(\ln (x) x-x+c_{1}\right) \mathrm{e}^{-2 x} \mathrm{~d} x \\
& y \mathrm{e}^{-2 x}=\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}(2 x)}{4}+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-2 x}\) results in
\[
y=\mathrm{e}^{2 x}\left(\left(-\frac{1}{4}-\frac{x}{2}\right) \mathrm{e}^{-2 x} \ln (x)-\frac{c_{1} \mathrm{e}^{-2 x}}{2}+\frac{x \mathrm{e}^{-2 x}}{2}-\frac{\operatorname{expIntegral}{ }_{1}(2 x)}{4}\right)+c_{2} \mathrm{e}^{2 x}
\]
which simplifies to
\[
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}+c_{2} \mathrm{e}^{2 x}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{c_{1}}{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=\mathrm{e}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}=-\frac{\mathrm{e}^{2} \exp \operatorname{Integral}_{1}(2)}{4}+c_{2} \mathrm{e}^{2}+\frac{1}{2}-\frac{c_{1}}{2} \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x), \mathrm{e}^{2 x} \mathrm{e}^{-2 x}{ }_{4 x}^{2}+2 c_{2} \mathrm{e}^{2 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
substituting \(y^{\prime}=\mathrm{e}^{-1}\) and \(x=1\) in the above gives
\[
\begin{equation*}
\mathrm{e}^{-1}=\mathrm{e}^{2}\left(-\frac{\exp \operatorname{Integral}_{1}(2)}{2}+2 c_{2}\right) \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
\begin{aligned}
& c_{1}=-2 \mathrm{e}+1+\mathrm{e}^{-1} \\
& c_{2}=\frac{\operatorname{expIntegral}_{1}(2)}{4}+\frac{\mathrm{e}^{-3}}{2}
\end{aligned}
\]

Substituting these values back in above solution results in
\(y=\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2}-\frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2 x)}{4}-\frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \frac{\mathrm{e}^{2 x} \exp \operatorname{Integral}_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \tag{1}\\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{align*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
\begin{aligned}
y= & \frac{\mathrm{e}^{2 x} \exp \text { Integral }_{1}(2)}{4}+\frac{\mathrm{e}^{2 x-3}}{2}+\mathrm{e}-\frac{1}{2}-\frac{\mathrm{e}^{-1}}{2} \\
& -\frac{\mathrm{e}^{2 x} \operatorname{expIntegral}}{1}(2 x) \\
4 & \frac{\ln (x) x}{2}-\frac{\ln (x)}{4}+\frac{x}{2}
\end{aligned}
\]

Verified OK.

\subsection*{14.16.8 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}-2 y^{\prime}=\ln (x), y(1)=\mathrm{e},\left.y^{\prime}\right|_{\{x=1\}}=\frac{1}{\mathrm{e}}\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}-2 r=0\)
- Factor the characteristic polynomial
\[
r(r-2)=0
\]
- Roots of the characteristic polynomial
\[
r=(0,2)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=1
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\ln (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
1 & \mathrm{e}^{2 x} \\
0 & 2 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=2 \mathrm{e}^{2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\left(\int \ln (x) d x\right)}{2}+\frac{\mathrm{e}^{2 x}\left(\int \ln (x) \mathrm{e}^{-2 x} d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1}+c_{2} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}\)
Check validity of solution \(y=c_{1}+c_{2} \mathrm{e}^{2 x}-\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2 x)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}\)
- Use initial condition \(y(1)=\mathrm{e}\)
\[
\mathrm{e}=c_{1}+c_{2} \mathrm{e}^{2}-\frac{\mathrm{e}^{2} \mathrm{Ei}_{1}(2)}{4}+\frac{1}{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=-\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2 x)}{2}+\frac{\mathrm{e}^{2 x} \mathrm{e}^{-2 x}}{4 x}+2 c_{2} \mathrm{e}^{2 x}-\frac{\ln (x)}{2}+\frac{-1-2 x}{4 x}+\frac{1}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=1\}}=\frac{1}{\mathrm{e}}\)
\[
\frac{1}{\mathrm{e}}=-\frac{\mathrm{e}^{2} \mathrm{Ei}_{1}(2)}{2}+\frac{\mathrm{e}^{2} \mathrm{e}^{-2}}{4}+2 c_{2} \mathrm{e}^{2}-\frac{1}{4}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{\mathrm{e}^{2} \mathrm{e}^{-2} \mathrm{e}+8(\mathrm{e})^{2}-5 \mathrm{e}-4}{8 \mathrm{e}}, c_{2}=-\frac{\mathrm{e}^{2} \mathrm{e}^{-2} \mathrm{e}-2 \mathrm{e}^{2} \mathrm{e} \mathrm{Ei}_{1}(2)-\mathrm{e}-4}{8 \mathrm{e}^{2} \mathrm{e}}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{\mathrm{e}^{2 x-3}}{2}-\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2 x)}{4}+\frac{\mathrm{e}^{2 x} \mathrm{Ei}_{1}(2)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{\mathrm{e}^{-1}}{2}+\mathrm{e}-\frac{1}{2}
\]
- Solution to the IVP
\[
y=\frac{\mathrm{e}^{2 x-3}}{2}-\frac{\mathrm{e}^{2 x} \operatorname{Ei}_{1}(2 x)}{4}+\frac{\mathrm{e}^{2 x} \operatorname{Ei}_{1}(2)}{4}+\frac{(-1-2 x) \ln (x)}{4}+\frac{x}{2}-\frac{\mathrm{e}^{-1}}{2}+\mathrm{e}-\frac{1}{2}
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, \(\operatorname{diff}\left(_b\left(_a\right), \quad a\right)=2 * _b\left(_a\right)+\ln \left(_a\right), \quad\) b (_a) - \(\quad\) *** Sublevel
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful-
\(\checkmark\) Solution by Maple
Time used: 0.171 (sec). Leaf size: 42
```

dsolve([diff(y(x),x\$2)-2*diff(y(x),x)=ln(x),y(1) = exp(1), D(y)(1) = 1/exp(1)],y(x), singsol

```
\(y(x)\)
\(\begin{aligned}= & \left.\left.\frac{\left(\int_{1}^{x}\left(\mathrm{e}^{2 _z 1} \operatorname{expIntegral}\right.\right.}{1}(2)-\mathrm{e}^{2 _z 1} \exp \operatorname{Integral}_{1}\left(2 _z 1\right)+2 \mathrm{e}^{2 _z 1-3}-\ln (\ldots z 1)\right) d _z 1\right) \\ & +\mathrm{e}\end{aligned}\)
\(+\mathrm{e}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.101 (sec). Leaf size: 66
DSolve[\{y' ' \([x]-2 * y\) ' \(\left.[x]==\log [x],\left\{y[1]==\operatorname{Exp}[1], y y^{\prime}[1]==1 / \operatorname{Exp}[1]\right\}\right\}, y[x], x\), IncludeSingularSolutio
\[
\begin{array}{r}
y(x) \rightarrow \frac{1}{4}\left(e^{2 x} \operatorname{ExpIntegralEi}(-2 x)-\operatorname{ExpIntegralEi}(-2) e^{2 x}+2 x+2 e^{2 x-3}-2 x \log (x)\right. \\
\left.-\log (-x)+i \pi+4 e-\frac{2}{e}-2\right)
\end{array}
\]

\subsection*{14.17 problem 3(a)}
14.17.1 Solving as second order linear constant coeff ode 2509
14.17.2 Solving using Kovacic algorithm 2512
14.17.3 Maple step by step solution . 2517

Internal problem ID [6387]
Internal file name [OUTPUT/5635_Sunday_June_05_2022_03_45_29_PM_41144827/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+3 y^{\prime}+2 y=2 x-1
\]

\subsection*{14.17.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=3, C=2, f(x)=2 x-1\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}+2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=3, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+3 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=3, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{3^{2}-(4)(1)(2)} \\
& =-\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=-\frac{3}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{gathered}
\lambda_{1}=-1 \\
\lambda_{2}=-2
\end{gathered}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(-1) x}+c_{2} e^{(-2) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1+x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{2} x+2 A_{1}+3 A_{2}=2 x-1
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-2, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-2+x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}\right)+(-2+x)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}-2+x \tag{1}
\end{equation*}
\]

Figure 406: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{-2 x}-2+x
\]

Verified OK.

\subsection*{14.17.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
y^{\prime \prime}+3 y^{\prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =3 \tag{3}\\
C & =2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 364: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3}{1} d x} \\
& =z_{1} e^{-\frac{3 x}{2}} \\
& =z_{1}\left(\mathrm{e}^{-\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+3 y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
1+x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{1, x\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-2 x}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{2} x+A_{1}
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
2 A_{2} x+2 A_{1}+3 A_{2}=2 x-1
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-2, A_{2}=1\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-2+x
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}\right)+(-2+x)
\end{aligned}
\]

Summary
The solution(s) found are the following

Figure 407: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}-2+x
\]

Verified OK.

\subsection*{14.17.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+3 y^{\prime}+2 y=2 x-1
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+3 r+2=0\)
- Factor the characteristic polynomial
\((r+2)(r+1)=0\)
- Roots of the characteristic polynomial
\[
r=(-2,-1)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-2 x}
\]
- \(\quad 2\) nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=2 x-1\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & \mathrm{e}^{-x} \\
-2 \mathrm{e}^{-2 x} & -\mathrm{e}^{-x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-3 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{-2 x}\left(\int(2 x-1) \mathrm{e}^{2 x} d x\right)+\mathrm{e}^{-x}\left(\int(2 x-1) \mathrm{e}^{x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=-2+x
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} \mathrm{e}^{-x}-2+x
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
```

dsolve(diff (y (x),x\$2)+3*\operatorname{diff}(y(x),x)+2*y(x)=2*x-1,y(x), singsol=all)

```
\[
y(x)=-\mathrm{e}^{-2 x} c_{1}+c_{2} \mathrm{e}^{-x}+x-2
\]

Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 24
```

DSolve[y''[x]+3*y'[x]+2*y[x]==2*x-1,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow x+c_{1} e^{-2 x}+c_{2} e^{-x}-2
\]

\subsection*{14.18 problem 3(b)}
14.18.1 Solving as second order linear constant coeff ode 2519
14.18.2 Solving using Kovacic algorithm 2522
14.18.3 Maple step by step solution 2527

Internal problem ID [6388]
Internal file name [OUTPUT/5636_Sunday_June_05_2022_03_45_31_PM_14675524/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^{-x}
\]

\subsection*{14.18.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-3, C=2, f(x)=\mathrm{e}^{-x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-3, C=2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-3 \lambda \mathrm{e}^{\lambda x}+2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-3 \lambda+2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-3, C=2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{3}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-3^{2}-(4)(1)(2)} \\
& =\frac{3}{2} \pm \frac{1}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{1}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{1}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
6 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{6}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-x}}{6}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}\right)+\left(\frac{\mathrm{e}^{-x}}{6}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{-x}}{6} \tag{1}
\end{equation*}
\]

Figure 408: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{x}+\frac{\mathrm{e}^{-x}}{6}
\]

Verified OK.

\subsection*{14.18.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-3 y^{\prime}+2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-3 \tag{3}\\
& C=2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{1}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=1 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 366: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{1}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{-3}{1} d x} \\
& =z_{1} e^{\frac{3 x}{2}} \\
& =z_{1}\left(e^{\frac{3 x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-3}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{3 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\mathrm{e}^{x}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{x}\right)+c_{2}\left(\mathrm{e}^{x}\left(\mathrm{e}^{x}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-3 y^{\prime}+2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\mathrm{e}^{-x}
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\mathrm{e}^{-x}\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \mathrm{e}^{-x}
\]

The unknowns \(\left\{A_{1}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
6 A_{1} \mathrm{e}^{-x}=\mathrm{e}^{-x}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{1}{6}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{\mathrm{e}^{-x}}{6}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}\right)+\left(\frac{\mathrm{e}^{-x}}{6}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-x}}{6} \tag{1}
\end{equation*}
\]

Figure 409: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-x}}{6}
\]

Verified OK.

\subsection*{14.18.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-3 y^{\prime}+2 y=\mathrm{e}^{-x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-3 r+2=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r-2)=0
\]
- Roots of the characteristic polynomial
\[
r=(1,2)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{x}
\]
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{2 x}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\mathrm{e}^{-x}\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{x} & \mathrm{e}^{2 x} \\
\mathrm{e}^{x} & 2 \mathrm{e}^{2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{3 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{x}\left(\int \mathrm{e}^{-2 x} d x\right)+\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-3 x} d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{-x}}{6}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{x}+c_{2} \mathrm{e}^{2 x}+\frac{\mathrm{e}^{-x}}{6}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] <- double symmetry of the form [xi=0, eta=F(x)] successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 21
```

dsolve(diff(y(x),x\$2)-3*diff(y(x),x)+2*y(x)=exp(-x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{2 x} c_{1}+\frac{\mathrm{e}^{-x}}{6}+\mathrm{e}^{x} c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 29
DSolve[y''[x]-3*y'[x]+2*y[x]==Exp[-x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{e^{-x}}{6}+c_{1} e^{x}+c_{2} e^{2 x}
\]

\subsection*{14.19 problem 3(c)}
14.19.1 Solving as second order linear constant coeff ode 2530
14.19.2 Solving using Kovacic algorithm 2533
14.19.3 Maple step by step solution 2538

Internal problem ID [6389]
Internal file name [OUTPUT/5637_Sunday_June_05_2022_03_45_32_PM_77945810/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(c).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}-y^{\prime}-2 y=\cos (x)
\]

\subsection*{14.19.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=-1, C=-2, f(x)=\cos (x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-2 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=-1, C=-2\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}-\lambda \mathrm{e}^{\lambda x}-2 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}-\lambda-2=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=-1, C=-2\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{1}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{-1^{2}-(4)(1)(-2)} \\
& =\frac{1}{2} \pm \frac{3}{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=\frac{1}{2}+\frac{3}{2} \\
& \lambda_{2}=\frac{1}{2}-\frac{3}{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
\lambda_{1} & =2 \\
\lambda_{2} & =-1
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(2) x}+c_{2} e^{(-1) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{-x}, \mathrm{e}^{2 x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-3 A_{1} \cos (x)-3 A_{2} \sin (x)+A_{1} \sin (x)-A_{2} \cos (x)=\cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3}{10}, A_{2}=-\frac{1}{10}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}\right)+\left(-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
\]

Figure 410: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{2 x}+c_{2} \mathrm{e}^{-x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\]

Verified OK.

\subsection*{14.19.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}-y^{\prime}-2 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=-1 \tag{3}\\
& C=-2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{9}{4} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=9 \\
& t=4
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\frac{9 z(x)}{4} \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 368: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=\frac{9}{4}\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-\frac{3 x}{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{1}{1} d x} \\
& =z_{1} e^{\frac{x}{2}} \\
& =z_{1}\left(\mathrm{e}^{\frac{x}{2}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-1}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\mathrm{e}^{3 x}}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-x}\right)+c_{2}\left(\mathrm{e}^{-x}\left(\frac{\mathrm{e}^{3 x}}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}-y^{\prime}-2 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\cos (x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (x), \sin (x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\mathrm{e}^{2 x}}{3}, \mathrm{e}^{-x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x)+A_{2} \sin (x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
-3 A_{1} \cos (x)-3 A_{2} \sin (x)+A_{1} \sin (x)-A_{2} \cos (x)=\cos (x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3}{10}, A_{2}=-\frac{1}{10}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}\right)+\left(-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10} \tag{1}
\end{equation*}
\]

Figure 411: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{-x}+\frac{c_{2} \mathrm{e}^{2 x}}{3}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\]

Verified OK.

\subsection*{14.19.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y^{\prime}-2 y=\cos (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}-r-2=0\)
- Factor the characteristic polynomial
\((r+1)(r-2)=0\)
- Roots of the characteristic polynomial
\(r=(-1,2)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}+y_{p}(x)\)Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\cos (x)\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{2 x} \\ -\mathrm{e}^{-x} & 2 \mathrm{e}^{2 x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=3 \mathrm{e}^{x}\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{\mathrm{e}^{-x}\left(\int \cos (x) \mathrm{e}^{x} d x\right)}{3}+\frac{\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-2 x} \cos (x) d x\right)}{3}\)
- Compute integrals
\(y_{p}(x)=-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{2 x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 25
```

dsolve(diff(y(x),x\$2)-diff(y(x),x)-2*y(x)=cos(x),y(x), singsol=all)

```
\[
y(x)=c_{2} \mathrm{e}^{2 x}+c_{1} \mathrm{e}^{-x}-\frac{3 \cos (x)}{10}-\frac{\sin (x)}{10}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.056 (sec). Leaf size: 34
DSolve[y''[x]-y'[x]-2*y[x]==Cos[x],y[x],x,IncludeSingularSolutions -> True]
\[
y(x) \rightarrow-\frac{\sin (x)}{10}-\frac{3 \cos (x)}{10}+c_{1} e^{-x}+c_{2} e^{2 x}
\]

\subsection*{14.20 problem 3(d)}

\subsection*{14.20.1 Solving as second order linear constant coeff ode}
14.20.2 Solving using Kovacic algorithm 2545
14.20.3 Maple step by step solution 2550

Internal problem ID [6390]
Internal file name [OUTPUT/5638_Sunday_June_05_2022_03_45_34_PM_63092397/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+2 y^{\prime}-y=\sin (x) \mathrm{e}^{x} x
\]

\subsection*{14.20.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=2, C=-1, f(x)=\sin (x) \mathrm{e}^{x} x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous \(\operatorname{ODE} A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}-y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=2, C=-1\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+2 \lambda \mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+2 \lambda-1=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=2, C=-1\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-2}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{2^{2}-(4)(1)(-1)} \\
& =-1 \pm \sqrt{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=-1+\sqrt{2} \\
& \lambda_{2}=-1-\sqrt{2}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=\sqrt{2}-1 \\
& \lambda_{2}=-1-\sqrt{2}
\end{aligned}
\]

Since roots are real and distinct, then the solution is
\[
\begin{aligned}
& y=c_{1} e^{\lambda_{1} x}+c_{2} e^{\lambda_{2} x} \\
& y=c_{1} e^{(\sqrt{2}-1) x}+c_{2} e^{(-1-\sqrt{2}) x}
\end{aligned}
\]

Or
\[
y=c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{(-1-\sqrt{2}) x}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{(-1-\sqrt{2}) x}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x) \mathrm{e}^{x} x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}, \cos (x) \mathrm{e}^{x} x, \sin (x) \mathrm{e}^{x} x\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\mathrm{e}^{(-1-\sqrt{2}) x}, \mathrm{e}^{(\sqrt{2}-1) x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \sin (x) \mathrm{e}^{x}+A_{3} \cos (x) \mathrm{e}^{x} x+A_{4} \sin (x) \mathrm{e}^{x} x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& -4 A_{1} \sin (x) \mathrm{e}^{x}+4 A_{2} \cos (x) \mathrm{e}^{x}-4 A_{3} \sin (x) \mathrm{e}^{x} x-2 A_{3} \sin (x) \mathrm{e}^{x} \\
& +4 A_{3} \cos (x) \mathrm{e}^{x}+4 A_{4} \cos (x) \mathrm{e}^{x} x+2 A_{4} \cos (x) \mathrm{e}^{x}+4 A_{4} \sin (x) \mathrm{e}^{x} \\
& +A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \sin (x) \mathrm{e}^{x}+A_{3} \cos (x) \mathrm{e}^{x} x+A_{4} \sin (x) \mathrm{e}^{x} x=\sin (x) \mathrm{e}^{x} x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{62}{289}, A_{2}=\frac{44}{289}, A_{3}=-\frac{4}{17}, A_{4}=\frac{1}{17}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{(-1-\sqrt{2}) x}\right) \\
& +\left(\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}\right)
\end{aligned}
\]

Which simplifies to
\(y=c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{62 \cos (x) \mathrm{e}^{x}}{289} \tag{1}\\
& +\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}
\end{align*}
\]

Figure 412: Slope field plot

\section*{Verification of solutions}
\(y=c_{1} \mathrm{e}^{(\sqrt{2}-1) x}+c_{2} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}\)
Verified OK.

\subsection*{14.20.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+2 y^{\prime}-y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=2 \tag{3}\\
& C=-1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{2}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=2 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=2 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 370: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=2\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\mathrm{e}^{-x \sqrt{2}}
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2}{1} d x}
\end{aligned}
\]
\[
\begin{aligned}
& =z_{1} e^{-x} \\
& =z_{1}\left(\mathrm{e}^{-x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-(1+\sqrt{2}) x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{2}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-2 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}\left(\frac{\sqrt{2} \mathrm{e}^{2 x \sqrt{2}}}{4}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-(1+\sqrt{2}) x}\right)+c_{2}\left(\mathrm{e}^{-(1+\sqrt{2}) x}\left(\frac{\sqrt{2} \mathrm{e}^{2 x \sqrt{2}}}{4}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+2 y^{\prime}-y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{c_{2} \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) x}}{4}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
\sin (x) \mathrm{e}^{x} x
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
\left[\left\{\cos (x) \mathrm{e}^{x}, \sin (x) \mathrm{e}^{x}, \cos (x) \mathrm{e}^{x} x, \sin (x) \mathrm{e}^{x} x\right\}\right]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sqrt{2} \mathrm{e}^{(\sqrt{2}-1) x}}{4}, \mathrm{e}^{-(1+\sqrt{2}) x}\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \sin (x) \mathrm{e}^{x}+A_{3} \cos (x) \mathrm{e}^{x} x+A_{4} \sin (x) \mathrm{e}^{x} x
\]

The unknowns \(\left\{A_{1}, A_{2}, A_{3}, A_{4}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
\begin{aligned}
& -4 A_{1} \sin (x) \mathrm{e}^{x}+4 A_{2} \cos (x) \mathrm{e}^{x}-4 A_{3} \sin (x) \mathrm{e}^{x} x-2 A_{3} \sin (x) \mathrm{e}^{x} \\
& +4 A_{3} \cos (x) \mathrm{e}^{x}+4 A_{4} \cos (x) \mathrm{e}^{x} x+2 A_{4} \cos (x) \mathrm{e}^{x}+4 A_{4} \sin (x) \mathrm{e}^{x} \\
& +A_{1} \cos (x) \mathrm{e}^{x}+A_{2} \sin (x) \mathrm{e}^{x}+A_{3} \cos (x) \mathrm{e}^{x} x+A_{4} \sin (x) \mathrm{e}^{x} x=\sin (x) \mathrm{e}^{x} x
\end{aligned}
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=\frac{62}{289}, A_{2}=\frac{44}{289}, A_{3}=-\frac{4}{17}, A_{4}=\frac{1}{17}\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{c_{2} \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) x}}{4}\right) \\
& +\left(\frac{62 \cos (x) \mathrm{e}^{x}}{289}+\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{c_{2} \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) x}}{4}+\frac{62 \cos (x) \mathrm{e}^{x}}{289} \tag{1}\\
& +\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}
\end{align*}
\]

Figure 413: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} \mathrm{e}^{-(1+\sqrt{2}) x}+\frac{c_{2} \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) x}}{4}+\frac{62 \cos (x) \mathrm{e}^{x}}{289} \\
& +\frac{44 \sin (x) \mathrm{e}^{x}}{289}-\frac{4 \cos (x) \mathrm{e}^{x} x}{17}+\frac{\sin (x) \mathrm{e}^{x} x}{17}
\end{aligned}
\]

Verified OK.

\subsection*{14.20.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+2 y^{\prime}-y=\sin (x) \mathrm{e}^{x} x
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+2 r-1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{8})}{2}\)
- Roots of the characteristic polynomial
\[
r=(-1-\sqrt{2}, \sqrt{2}-1)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{(-1-\sqrt{2}) x}\)
- \(\quad\) 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{(\sqrt{2}-1) x}
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{(-1-\sqrt{2}) x}+c_{2} \mathrm{e}^{(\sqrt{2}-1) x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sin (x) \mathrm{e}^{x} x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{(-1-\sqrt{2}) x} & \mathrm{e}^{(\sqrt{2}-1) x} \\
(-1-\sqrt{2}) \mathrm{e}^{(-1-\sqrt{2}) x} & (\sqrt{2}-1) \mathrm{e}^{(\sqrt{2}-1) x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=2 \sqrt{2} \mathrm{e}^{-2 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\sqrt{2}\left(\mathrm{e}^{-(1+\sqrt{2}) x}\left(\int x \mathrm{e}^{(2+\sqrt{2}) x} \sin (x) d x\right)-\mathrm{e}^{(\sqrt{2}-1) x}\left(\int x \mathrm{e}^{-(-2+\sqrt{2}) x} \sin (x) d x\right)\right)}{4}
\]
- Compute integrals
\[
y_{p}(x)=\frac{\mathrm{e}^{x}(17 \sin (x) x-68 \cos (x) x+44 \sin (x)+62 \cos (x))}{289}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{(-1-\sqrt{2}) x}+c_{2} \mathrm{e}^{(\sqrt{2}-1) x}+\frac{\mathrm{e}^{x}(17 \sin (x) x-68 \cos (x) x+44 \sin (x)+62 \cos (x))}{289}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 44
```

dsolve(diff (y (x),x\$2)+2*diff (y(x),x)-y(x)=x*exp (x)*sin}(\textrm{x}),\textrm{y}(\textrm{x}),\mathrm{ , singsol=all)

```
\[
y(x)=\mathrm{e}^{-(1+\sqrt{2}) x} c_{1}+\mathrm{e}^{(\sqrt{2}-1) x} c_{2}-\frac{4 \mathrm{e}^{x}\left(\left(x-\frac{31}{34}\right) \cos (x)-\frac{\sin (x)\left(x+\frac{44}{17}\right)}{4}\right)}{17}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 59
DSolve [y''[x] \(+2 * y^{\prime}[x]-y[x]==x * \operatorname{Exp}[x] * \operatorname{Sin}[x], y[x], x\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow c_{1} e^{-((1+\sqrt{2}) x)}+c_{2} e^{(\sqrt{2}-1) x}+\frac{1}{289} e^{x}((17 x+44) \sin (x)+(62-68 x) \cos (x))
\]

\subsection*{14.21 problem 3(e)}
14.21.1 Solving as second order linear constant coeff ode 2553
14.21.2 Solving using Kovacic algorithm 2558
14.21.3 Maple step by step solution 2565

Internal problem ID [6391]
Internal file name [OUTPUT/5639_Sunday_June_05_2022_03_45_36_PM_95764535/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+9 y=\sec (2 x)
\]

\subsection*{14.21.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=9, f(x)=\sec (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=3\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
\]

Or
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\sin (3 x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}(\sin (3 x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (3 x))(3 \cos (3 x))-(\sin (3 x))(-3 \sin (3 x))
\]

Which simplifies to
\[
W=3 \cos (3 x)^{2}+3 \sin (3 x)^{2}
\]

Which simplifies to
\[
W=3
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (3 x) \sec (2 x)}{3} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\sin (3 x) \sec (2 x)}{3} d x
\]

Hence
\[
u_{1}=-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{2 \cos (x)}{3}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (3 x) \sec (2 x)}{3} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\cos (3 x) \sec (2 x)}{3} d x
\]

Hence
\[
u_{2}=-\frac{\sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{2 \sin (x)}{3}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{2 \cos (x)}{3}\right) \cos (3 x) \\
& +\left(-\frac{\sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{2 \sin (x)}{3}\right) \sin (3 x)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)= & -\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\end{aligned}
\]

Therefore the general solution is
\[
y=y_{h}+y_{p}
\]
\[
\begin{array}{r}
=\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}\right. \\
\left.+\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}\right)
\end{array}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\end{aligned}
\]

Figure 414: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\end{aligned}
\]

Verified OK.

\subsection*{14.21.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-9 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 372: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-9\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (3 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (3 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (3 x) \\
& y_{2}=\frac{\sin (3 x)}{3}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
\frac{d}{d x}(\cos (3 x)) & \frac{d}{d x}\left(\frac{\sin (3 x)}{3}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (3 x) & \frac{\sin (3 x)}{3} \\
-3 \sin (3 x) & \cos (3 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (3 x))(\cos (3 x))-\left(\frac{\sin (3 x)}{3}\right)(-3 \sin (3 x))
\]

Which simplifies to
\[
W=\cos (3 x)^{2}+\sin (3 x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\sin (3 x) \sec (2 x)}{3}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\sin (3 x) \sec (2 x)}{3} d x
\]

Hence
\[
u_{1}=-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{2 \cos (x)}{3}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\cos (3 x) \sec (2 x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int \cos (3 x) \sec (2 x) d x
\]

Hence
\[
u_{2}=-\frac{\sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{2}+2 \sin (x)
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\frac{\sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{2 \cos (x)}{3}\right) \cos (3 x) \\
& +\frac{\left(-\frac{\sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{2}+2 \sin (x)\right) \sin (3 x)}{3}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)= & -\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\end{aligned}
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right) \\
& +\left(-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}\right. \\
& \left.+\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3} \tag{1}
\end{align*}
\]

Figure 415: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6} \\
& +\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\end{aligned}
\]

Verified OK.

\subsection*{14.21.3 Maple step by step solution}

\section*{Let's solve}
\[
y^{\prime \prime}+9 y=\sec (2 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+9=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-36})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-3 \mathrm{I}, 3 \mathrm{I})
\]
- 1st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (3 x)
\]
- 2 nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (3 x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\sec (2 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=3
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\cos (3 x)\left(\int \sin (3 x) \sec (2 x) d x\right)}{3}+\frac{\sin (3 x)\left(\int \cos (3 x) \sec (2 x) d x\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+\frac{4 \cos (x)^{2}}{3}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\sqrt{2} \cos (x))}{6}+\frac{\sin (x)\left(-4 \cos (x)^{2}+1\right) \sqrt{2} \arctan }{6}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 81
```

dsolve(diff(y(x),x\$2)+9*y(x)=sec(2*x),y(x), singsol=all)

```
\[
\begin{aligned}
y(x)= & -\frac{2}{3}+\frac{\left(-4 \cos (x)^{3}+3 \cos (x)\right) \sqrt{2} \operatorname{arctanh}(\cos (x) \sqrt{2})}{6} \\
& +\frac{\sin (x)\left(1-4 \cos (x)^{2}\right) \sqrt{2} \operatorname{arctanh}(\sin (x) \sqrt{2})}{6}+4 c_{1} \cos (x)^{3} \\
& +\frac{4\left(3 \sin (x) c_{2}+1\right) \cos (x)^{2}}{3}-3 \cos (x) c_{1}-\sin (x) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.25 (sec). Leaf size: 102
```

DSolve[y''[x] +9*y[x]==Sec[2*x],y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
y(x) \rightarrow & \frac{1}{6}\left(-\sqrt{2} \sin (3 x) \operatorname{arctanh}(\sqrt{2} \sin (x))-\sqrt{2} \cos (3 x) \operatorname{arctanh}\left(\sqrt{2}-\tan \left(\frac{x}{2}\right)\right)\right. \\
& \left.-\sqrt{2} \cos (3 x) \operatorname{arctanh}\left(\tan \left(\frac{x}{2}\right)+\sqrt{2}\right)+4 \cos (2 x)+6 c_{1} \cos (3 x)+6 c_{2} \sin (3 x)\right)
\end{aligned}
\]

\subsection*{14.22 problem 3(f)}
14.22.1 Solving as second order linear constant coeff ode . 2568
14.22.2 Solving as linear second order ode solved by an integrating factor
ode . 2573 .
14.22.3 Solving using Kovacic algorithm 2575
14.22.4 Maple step by step solution . 2581

Internal problem ID [6392]
Internal file name [OUTPUT/5640_Sunday_June_05_2022_03_45_38_PM_40351328/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff", "linear__second_order_ode_solved_by__an_integrating_factor"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+4 y^{\prime}+4 y=\ln (x) x
\]

\subsection*{14.22.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=4, C=4, f(x)=\ln (x) x\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y^{\prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=4, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \lambda \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4 \lambda+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form.Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=4, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{-4}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{(4)^{2}-(4)(1)(4)} \\
& =-2
\end{aligned}
\]

Hence this is the case of a double root \(\lambda_{1,2}=2\). Therefore the solution is
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x} \tag{1}
\end{equation*}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{-4 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-4 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2} \mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-4 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int x^{2} \ln (x) \mathrm{e}^{2 x} d x
\]

Hence
\[
u_{1}=-\left(\frac{1}{4}-\frac{1}{2} x+\frac{1}{2} x^{2}\right) \mathrm{e}^{2 x} \ln (x)+\frac{\mathrm{e}^{2 x} x}{4}-\frac{3 \mathrm{e}^{2 x}}{8}-\frac{\operatorname{expIntegral}_{1}(-2 x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \ln (x) x}{\mathrm{e}^{-4 x}} d x
\]

Which simplifies to
\[
u_{2}=\int x \ln (x) \mathrm{e}^{2 x} d x
\]

Hence
\[
u_{2}=\left(-\frac{1}{4}+\frac{x}{2}\right) \mathrm{e}^{2 x} \ln (x)-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{\mathrm{e}^{2 x}}{4}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}+\frac{\left(\left(-4 x^{2}+4 x-2\right) \ln (x)+2 x-3\right) \mathrm{e}^{2 x}}{8} \\
& u_{2}=-\frac{\operatorname{expIntegral}_{1}(-2 x)}{4}+\frac{(-1+(2 x-1) \ln (x)) \mathrm{e}^{2 x}}{4}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}+\frac{\left(\left(-4 x^{2}+4 x-2\right) \ln (x)+2 x-3\right) \mathrm{e}^{2 x}}{8}\right) \mathrm{e}^{-2 x} \\
& +\left(-\frac{\operatorname{expIntegral}_{1}(-2 x)}{4}+\frac{(-1+(2 x-1) \ln (x)) \mathrm{e}^{2 x}}{4}\right) x \mathrm{e}^{-2 x}
\end{aligned}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8} \tag{1}
\end{equation*}
\]

Figure 416: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Verified OK.

\subsection*{14.22.2 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=4\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int 4 d x} \\
& =\mathrm{e}^{2 x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =x \ln (x) \mathrm{e}^{2 x} \\
\left(\mathrm{e}^{2 x} y\right)^{\prime \prime} & =x \ln (x) \mathrm{e}^{2 x}
\end{aligned}
\]

Integrating once gives
\[
\left(\mathrm{e}^{2 x} y\right)^{\prime}=-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}+\frac{(-1+(2 x-1) \ln (x)) \mathrm{e}^{2 x}}{4}+c_{1}
\]

Integrating again gives
\[
\left(\mathrm{e}^{2 x} y\right)=\frac{(-2-2 x) \exp \text { Integral }_{1}(-2 x)}{8}+\frac{(-3+(2 x-2) \ln (x)) \mathrm{e}^{2 x}}{8}+c_{1} x+c_{2}
\]

Hence the solution is
\[
\left.y=\frac{\frac{(-2-2 x) \operatorname{expIntegral}}{1}(-2 x)}{8}+\frac{(-3+(2 x-2) \ln (x)) \mathrm{e}^{2 x}}{8}+c_{1} x+c_{2}\right)
\]

Or
\[
\begin{aligned}
y= & \frac{x \ln (x)}{4}-\frac{\ln (x)}{4}+c_{1} x \mathrm{e}^{-2 x}-\frac{x \mathrm{e}^{-2 x} \exp \operatorname{Integral}_{1}(-2 x)}{4} \\
& +c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x} \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y= \frac{x \ln (x)}{4}-\frac{\ln (x)}{4}+c_{1} x \mathrm{e}^{-2 x}-\frac{x \mathrm{e}^{-2 x} \operatorname{expIntegral}}{1}(-2 x) \tag{1}\\
& 4 \\
&+c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x} \operatorname{expIntegral}}{1}(-2 x) \\
& 4 \frac{3}{8}
\end{align*}
\]

Figure 417: Slope field plot

Verification of solutions
\[
\begin{aligned}
y= & \frac{x \ln (x)}{4}-\frac{\ln (x)}{4}+c_{1} x \mathrm{e}^{-2 x}-\frac{x \mathrm{e}^{-2 x} \exp \operatorname{Integral}_{1}(-2 x)}{4} \\
& +c_{2} \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x} \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}
\end{aligned}
\]

Verified OK.

\subsection*{14.22.3 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y^{\prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=4 \tag{3}\\
& C=4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 374: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{4}{1} d x}
\end{aligned}
\]
\[
\begin{aligned}
& =z_{1} e^{-2 x} \\
& =z_{1}\left(\mathrm{e}^{-2 x}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\mathrm{e}^{-2 x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{4}{1} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-4 x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\mathrm{e}^{-2 x}\right)+c_{2}\left(\mathrm{e}^{-2 x}(x)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y^{\prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{-2 x} \\
& y_{2}=x \mathrm{e}^{-2 x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
\frac{d}{d x}\left(\mathrm{e}^{-2 x}\right) & \frac{d}{d x}\left(x \mathrm{e}^{-2 x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{-2 x}\right)\left(\mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}\right)-\left(x \mathrm{e}^{-2 x}\right)\left(-2 \mathrm{e}^{-2 x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{-4 x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-4 x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2} \mathrm{e}^{-2 x} \ln (x)}{\mathrm{e}^{-4 x}} d x
\]

Which simplifies to
\[
u_{1}=-\int x^{2} \ln (x) \mathrm{e}^{2 x} d x
\]

Hence
\[
u_{1}=-\left(\frac{1}{4}-\frac{1}{2} x+\frac{1}{2} x^{2}\right) \mathrm{e}^{2 x} \ln (x)+\frac{\mathrm{e}^{2 x} x}{4}-\frac{3 \mathrm{e}^{2 x}}{8}-\frac{\operatorname{expIntegral} 1(-2 x)}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\mathrm{e}^{-2 x} \ln (x) x}{\mathrm{e}^{-4 x}} d x
\]

Which simplifies to
\[
u_{2}=\int x \ln (x) \mathrm{e}^{2 x} d x
\]

Hence
\[
u_{2}=\left(-\frac{1}{4}+\frac{x}{2}\right) \mathrm{e}^{2 x} \ln (x)-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{\mathrm{e}^{2 x}}{4}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}+\frac{\left(\left(-4 x^{2}+4 x-2\right) \ln (x)+2 x-3\right) \mathrm{e}^{2 x}}{8} \\
& u_{2}=-\frac{\operatorname{expIntegral}_{1}(-2 x)}{4}+\frac{(-1+(2 x-1) \ln (x)) \mathrm{e}^{2 x}}{4}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(-\frac{\exp \operatorname{Integral}_{1}(-2 x)}{4}+\frac{\left(\left(-4 x^{2}+4 x-2\right) \ln (x)+2 x-3\right) \mathrm{e}^{2 x}}{8}\right) \mathrm{e}^{-2 x} \\
& +\left(-\frac{\operatorname{expIntegral}_{1}(-2 x)}{4}+\frac{(-1+(2 x-1) \ln (x)) \mathrm{e}^{2 x}}{4}\right) x \mathrm{e}^{-2 x}
\end{aligned}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Therefore the general solution is
\[
\left.\begin{array}{l}
y=y_{h}+y_{p} \\
=\left(c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}\right)+\left(-\frac{\mathrm{e}^{-2 x}(1+x) \operatorname{expIntegral}}{1}(-2 x)\right. \\
4
\end{array}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}\right)
\]

Which simplifies to
\[
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8} \tag{1}
\end{equation*}
\]

Figure 418: Slope field plot

\section*{Verification of solutions}
\[
y=\mathrm{e}^{-2 x}\left(c_{2} x+c_{1}\right)-\frac{\mathrm{e}^{-2 x}(1+x) \exp \operatorname{Integral}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Verified OK.

\subsection*{14.22.4 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y^{\prime}+4 y=x \ln (x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+4 r+4=0\)
- Factor the characteristic polynomial
\((r+2)^{2}=0\)
- Root of the characteristic polynomial
\[
r=-2
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-2 x}
\]
- \(\quad\) Repeated root, multiply \(y_{1}(x)\) by \(x\) to ensure linear independence
\(y_{2}(x)=x \mathrm{e}^{-2 x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x \ln (x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-2 x} & x \mathrm{e}^{-2 x} \\
-2 \mathrm{e}^{-2 x} & \mathrm{e}^{-2 x}-2 x \mathrm{e}^{-2 x}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-4 x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=\mathrm{e}^{-2 x}\left(-\left(\int x^{2} \ln (x) \mathrm{e}^{2 x} d x\right)+\left(\int x \ln (x) \mathrm{e}^{2 x} d x\right) x\right)
\]
- Compute integrals
\[
y_{p}(x)=-\frac{\mathrm{e}^{-2 x}(1+x) \operatorname{Ei}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-2 x}+c_{2} x \mathrm{e}^{-2 x}-\frac{\mathrm{e}^{-2 x}(1+x) \operatorname{Ei}_{1}(-2 x)}{4}-\frac{3}{8}+\frac{(2 x-2) \ln (x)}{8}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 37
```

dsolve(diff (y (x),x\$2)+4*diff (y(x),x)+4*y(x)=x*ln(x),y(x), singsol=all)

```
\[
y(x)=-\frac{3}{8}-\frac{\mathrm{e}^{-2 x}(x+1) \exp \operatorname{Integral}_{1}(-2 x)}{4}+\left(c_{1} x+c_{2}\right) \mathrm{e}^{-2 x}+\frac{\ln (x)(x-1)}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.09 (sec). Leaf size: 52
DSolve[y''[x]+4*y'[x]+4*y[x]==x*Log[x],y[x],x,IncludeSingularSolutions \(->\) True]
\(y(x) \rightarrow \frac{1}{8} e^{-2 x}\left(2(x+1) \operatorname{ExpIntegralEi}(2 x)-3 e^{2 x}+2 e^{2 x}(x-1) \log (x)+8 c_{2} x+8 c_{1}\right)\)

\subsection*{14.23 problem 3(g)}
14.23.1 Solving as second order euler ode ode 2585
14.23.2 Solving as second order change of variable on \(x\) method 2 ode . 2588
14.23.3 Solving as second order change of variable on \(x\) method 1 ode . 2594
14.23.4 Solving as second order change of variable on y method 2 ode . 2599
14.23.5 Solving as second order integrable as is ode 2604
14.23.6 Solving as type second_order_integrable_as_is (not using ABC version)
14.23.7 Solving using Kovacic algorithm 2607
14.23.8 Solving as exact linear second order ode ode 2614

Internal problem ID [6393]
Internal file name [OUTPUT/5641_Sunday_June_05_2022_03_45_40_PM_37710944/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "exact linear second order ode", "second_order_integrable_as_is", "second_order_change_of_variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second_order_change_of_cvariable_on_y_method_2"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{2}{x}
\]

\subsection*{14.23.1 Solving as second order euler ode ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=3 x, C=1, f(x)=\frac{2}{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0
\]

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}+3 x r x^{r-1}+x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}+3 r x^{r}+x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)+3 r+1=0
\]

Or
\[
\begin{equation*}
r^{2}+2 r+1=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=-1 \\
& r_{2}=-1
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r}\) and \(y_{2}=x^{r} \ln (x)\). Hence
\[
y=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
\]

Next, we find the particular solution to the ODE
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{2}{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{2 \ln (x)}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{2 \ln (x)}{x} d x
\]

Hence
\[
u_{1}=-\ln (x)^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{2}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{2}{x} d x
\]

Hence
\[
u_{2}=2 \ln (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{\ln (x)^{2}}{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\frac{\ln (x)^{2}+c_{1}+c_{2} \ln (x)}{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln (x)^{2}+c_{1}+c_{2} \ln (x)}{x} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\ln (x)^{2}+c_{1}+c_{2} \ln (x)}{x}
\]

Verified OK.

\subsection*{14.23.2 Solving as second order change of variable on \(x\) method 2 ode}

This is second order non-homogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0\). Eq (4) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int \frac{3}{x} d x\right)} d x \\
& =\int e^{-3 \ln (x)} d x \\
& =\int \frac{1}{x^{3}} d x \\
& =-\frac{1}{2 x^{2}} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{1}{x^{2}}}{\frac{1}{x^{6}}} \\
& =x^{4} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+x^{4} y(\tau) & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
x^{4}=\frac{1}{4 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{y(\tau)}{4 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
4\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
4 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+\tau^{r}=0
\]

Simplifying gives
\[
4 r(r-1) \tau^{r}+0 \tau^{r}+\tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
4 r(r-1)+0+1=0
\]

Or
\[
\begin{equation*}
4 r^{2}-4 r+1=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since the roots are equal, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r}\) and \(y_{2}=\tau^{r} \ln (\tau)\). Hence
\[
y(\tau)=c_{1} \sqrt{\tau}+c_{2} \sqrt{\tau} \ln (\tau)
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
\]

Which simplifies to
\[
W=\frac{\sqrt{2}}{x^{3}}
\]

Which simplifies to
\[
W=\frac{\sqrt{2}}{x^{3}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{-\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)+\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{x}}{\frac{\sqrt{2}}{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) \sqrt{-\frac{1}{x^{2}}} d x
\]

Hence
\[
u_{1}=x \sqrt{-\frac{1}{x^{2}}} \ln (2) \ln (x)+\frac{x \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{2 \sqrt{-\frac{1}{x^{2}}}}{x}}{\frac{\sqrt{2}}{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \sqrt{2} \sqrt{-\frac{1}{x^{2}}} d x
\]

Hence
\[
u_{2}=\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\sqrt{-\frac{1}{x^{2}}} x\left(\ln (2) \ln (x)+\frac{\ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}\right) \\
& u_{2}=\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & -\frac{\ln (2) \ln (x)+\frac{\ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}}{x} \\
& +\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}\right)+\left(-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}\left(c_{1}-c_{2} \ln (2)+c_{2} \ln \left(-\frac{1}{x^{2}}\right)\right)}{2}-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}
\]

Verified OK.

\subsection*{14.23.3 Solving as second order change of variable on \(x\) method 1 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=3 x, C=1, f(x)=\frac{2}{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{1}{c \sqrt{\frac{1}{x^{2}}} x^{3}}+\frac{3}{x} \frac{\sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =2 c
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+2 c\left(\frac{d}{d \tau} y(\tau)\right)+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{-c \tau} c_{1}
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=\frac{c_{1}}{x}
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{2}{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sqrt{-\frac{1}{x^{2}}} \\
& y_{2}=-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{d}{d x}\left(\sqrt{-\frac{1}{x^{2}}}\right) & \frac{d}{d x}\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sqrt{-\frac{1}{x^{2}}} & -\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2} \\
\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}} & -\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & \left(\sqrt{-\frac{1}{x^{2}}}\right)\left(-\frac{\sqrt{2} \ln (2)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}+\frac{\sqrt{2} \ln \left(-\frac{1}{x^{2}}\right)}{2 \sqrt{-\frac{1}{x^{2}}} x^{3}}-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}}}{x}\right) \\
& -\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)\left(\frac{1}{\sqrt{-\frac{1}{x^{2}}} x^{3}}\right)
\end{aligned}
\]

Which simplifies to
\[
W=\frac{\sqrt{2}}{x^{3}}
\]

Which simplifies to
\[
W=\frac{\sqrt{2}}{x^{3}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{-\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)+\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{x}}{\frac{\sqrt{2}}{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int\left(-\ln (2)+\ln \left(-\frac{1}{x^{2}}\right)\right) \sqrt{-\frac{1}{x^{2}}} d x
\]

Hence
\[
u_{1}=x \sqrt{-\frac{1}{x^{2}}} \ln (2) \ln (x)+\frac{x \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{2 \sqrt{-\frac{1}{x^{2}}}}{x}}{\frac{\sqrt{2}}{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \sqrt{2} \sqrt{-\frac{1}{x^{2}}} d x
\]

Hence
\[
u_{2}=\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\sqrt{-\frac{1}{x^{2}}} x\left(\ln (2) \ln (x)+\frac{\ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}\right) \\
& u_{2}=\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & -\frac{\ln (2) \ln (x)+\frac{\ln \left(-\frac{1}{x^{2}}\right)^{2}}{4}}{x} \\
& +\sqrt{2} \sqrt{-\frac{1}{x^{2}}} x \ln (x)\left(-\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln (2)}{2}+\frac{\sqrt{2} \sqrt{-\frac{1}{x^{2}}} \ln \left(-\frac{1}{x^{2}}\right)}{2}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}\right)+\left(-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}\right) \\
& =-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4 x}+\frac{c_{1}}{x}
\end{aligned}
\]

Which simplifies to
\[
y=\frac{-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4}+c_{1}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4}+c_{1}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{-\frac{\ln \left(-\frac{1}{x^{2}}\right)\left(4 \ln (x)+\ln \left(-\frac{1}{x^{2}}\right)\right)}{4}+c_{1}}{x}
\]

Verified OK.

\subsection*{14.23.4 Solving as second order change of variable on y method 2 ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=x^{2}, B=3 x, C=1, f(x)=\frac{2}{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). Solving for \(y_{h}\) from
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0
\]

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{x} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{3 n}{x^{2}}+\frac{1}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=-1 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \\
v^{\prime \prime}(x)+\frac{v^{\prime}(x)}{x} & =0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{1}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{1}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{1}{x} d x \\
\ln (u) & =-\ln (x)+c_{1} \\
u & =\mathrm{e}^{-\ln (x)+c_{1}} \\
& =\frac{c_{1}}{x}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x} \\
& =\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
\]

Now the particular solution to this ODE is found
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{2}{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{2 \ln (x)}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{2 \ln (x)}{x} d x
\]

Hence
\[
u_{1}=-\ln (x)^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{2}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{2}{x} d x
\]

Hence
\[
u_{2}=2 \ln (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{\ln (x)^{2}}{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1} \ln (x)+c_{2}}{x}\right)+\left(\frac{\ln (x)^{2}}{x}\right) \\
& =\frac{\ln (x)^{2}}{x}+\frac{c_{1} \ln (x)+c_{2}}{x}
\end{aligned}
\]

Which simplifies to
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Verified OK.

\subsection*{14.23.5 Solving as second order integrable as is ode}

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+3 x y^{\prime}+y\right) d x=\int \frac{2}{x} d x \\
& x^{2} y^{\prime}+x y=2 \ln (x)+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2 \ln (x)+c_{1}}{x^{2}}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x}=\frac{2 \ln (x)+c_{1}}{x^{2}}
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
=x
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{2 \ln (x)+c_{1}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x y=\int \frac{2 \ln (x)+c_{1}}{x} \mathrm{~d} x \\
& x y=\ln (x)^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
\]
which simplifies to
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Verified OK.

\subsection*{14.23.6 Solving as type second_order_integrable_as_is (not using ABC version)}

Writing the ode as
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{2}{x}
\]

Integrating both sides of the ODE w.r.t \(x\) gives
\[
\begin{aligned}
& \int\left(x^{2} y^{\prime \prime}+3 x y^{\prime}+y\right) d x=\int \frac{2}{x} d x \\
& x^{2} y^{\prime}+x y=2 \ln (x)+c_{1}
\end{aligned}
\]

Which is now solved for \(y\).
Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{2 \ln (x)+c_{1}}{x^{2}}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x}=\frac{2 \ln (x)+c_{1}}{x^{2}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{2 \ln (x)+c_{1}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x y=\int \frac{2 \ln (x)+c_{1}}{x} \mathrm{~d} x \\
& x y=\ln (x)^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
\]
which simplifies to
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Verified OK.

\subsection*{14.23.7 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
x^{2} y^{\prime \prime}+3 x y^{\prime}+y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=x^{2} \\
& B=3 x \tag{3}\\
& C=1
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-1}{4 x^{2}} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-1 \\
& t=4 x^{2}
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=\left(-\frac{1}{4 x^{2}}\right) z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 376: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =2-0 \\
& =2
\end{aligned}
\]

The poles of \(r\) in eq. (7) and the order of each pole are determined by solving for the roots of \(t=4 x^{2}\). There is a pole at \(x=0\) of order 2 . Since there is no odd order pole larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case one are met. Since there is a pole of order 2 then necessary conditions for case two are met. Since pole order is not larger than 2 and the order at \(\infty\) is 2 then the necessary conditions for case three are met. Therefore
\[
L=[1,2,4,6,12]
\]

Attempting to find a solution using case \(n=1\).
Looking at poles of order 2. The partial fractions decomposition of \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]

For the pole at \(x=0\) let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the partial fractions decomposition of \(r\) given above. Therefore \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{c} } & =0 \\
\alpha_{c}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{c}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

Since the order of \(r\) at \(\infty\) is 2 then \([\sqrt{r}]_{\infty}=0\). Let \(b\) be the coefficient of \(\frac{1}{x^{2}}\) in the Laurent series expansion of \(r\) at \(\infty\). which can be found by dividing the leading coefficient of \(s\) by the leading coefficient of \(t\) from
\[
r=\frac{s}{t}=-\frac{1}{4 x^{2}}
\]

Since the \(\operatorname{gcd}(s, t)=1\). This gives \(b=-\frac{1}{4}\). Hence
\[
\begin{aligned}
{[\sqrt{r}]_{\infty} } & =0 \\
\alpha_{\infty}^{+} & =\frac{1}{2}+\sqrt{1+4 b}=\frac{1}{2} \\
\alpha_{\infty}^{-} & =\frac{1}{2}-\sqrt{1+4 b}=\frac{1}{2}
\end{aligned}
\]

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty\) where \(r\) is
\[
r=-\frac{1}{4 x^{2}}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline pole \(c\) location & pole order & {\([\sqrt{r}]_{c}\)} & \(\alpha_{c}^{+}\) & \(\alpha_{c}^{-}\) \\
\hline 0 & 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Order of \(r\) at \(\infty\) & {\([\sqrt{r}]_{\infty}\)} & \(\alpha_{\infty}^{+}\) & \(\alpha_{\infty}^{-}\) \\
\hline 2 & 0 & \(\frac{1}{2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

Now that the all \([\sqrt{r}]_{c}\) and its associated \(\alpha_{c}^{ \pm}\)have been determined for all the poles in the set \(\Gamma\) and \([\sqrt{r}]_{\infty}\) and its associated \(\alpha_{\infty}^{ \pm}\)have also been found, the next step is to determine possible non negative integer \(d\) from these using
\[
d=\alpha_{\infty}^{s(\infty)}-\sum_{c \in \Gamma} \alpha_{c}^{s(c)}
\]

Where \(s(c)\) is either + or - and \(s(\infty)\) is the sign of \(\alpha_{\infty}^{ \pm}\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup \infty}\) until such \(d\) is found to work in finding candidate \(\omega\).

Trying \(\alpha_{\infty}^{-}=\frac{1}{2}\) then
\[
\begin{aligned}
d & =\alpha_{\infty}^{-}-\left(\alpha_{c_{1}}^{-}\right) \\
& =\frac{1}{2}-\left(\frac{1}{2}\right) \\
& =0
\end{aligned}
\]

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega\) using
\[
\omega=\sum_{c \in \Gamma}\left(s(c)[\sqrt{r}]_{c}+\frac{\alpha_{c}^{s(c)}}{x-c}\right)+s(\infty)[\sqrt{r}]_{\infty}
\]

The above gives
\[
\begin{aligned}
\omega & =\left((-)[\sqrt{r}]_{c_{1}}+\frac{\alpha_{c_{1}}^{-}}{x-c_{1}}\right)+(-)[\sqrt{r}]_{\infty} \\
& =\frac{1}{2 x}+(-)(0) \\
& =\frac{1}{2 x} \\
& =\frac{1}{2 x}
\end{aligned}
\]

Now that \(\omega\) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation
\[
\begin{equation*}
p^{\prime \prime}+2 \omega p^{\prime}+\left(\omega^{\prime}+\omega^{2}-r\right) p=0 \tag{1~A}
\end{equation*}
\]

Let
\[
\begin{equation*}
p(x)=1 \tag{2~A}
\end{equation*}
\]

Substituting the above in eq. (1A) gives
\[
\begin{array}{r}
(0)+2\left(\frac{1}{2 x}\right)(0)+\left(\left(-\frac{1}{2 x^{2}}\right)+\left(\frac{1}{2 x}\right)^{2}-\left(-\frac{1}{4 x^{2}}\right)\right)=0 \\
0=0
\end{array}
\]

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z^{\prime \prime}=r z\) is
\[
\begin{aligned}
z_{1}(x) & =p e^{\int \omega d x} \\
& =\mathrm{e}^{\int \frac{1}{2 x} d x} \\
& =\sqrt{x}
\end{aligned}
\]

The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{3 x}{x^{2}} d x} \\
& =z_{1} e^{-\frac{3 \ln (x)}{2}} \\
& =z_{1}\left(\frac{1}{x^{\frac{3}{2}}}\right)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\frac{1}{x}
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{3 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{-3 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(\ln (x))
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}\left(\frac{1}{x}\right)+c_{2}\left(\frac{1}{x}(\ln (x))\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\frac{1}{x} \\
& y_{2}=\frac{\ln (x)}{x}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
\frac{d}{d x}\left(\frac{1}{x}\right) & \frac{d}{d x}\left(\frac{\ln (x)}{x}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\frac{1}{x} & \frac{\ln (x)}{x} \\
-\frac{1}{x^{2}} & -\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}
\end{array}\right|
\]

Therefore
\[
W=\left(\frac{1}{x}\right)\left(-\frac{\ln (x)}{x^{2}}+\frac{1}{x^{2}}\right)-\left(\frac{\ln (x)}{x}\right)\left(-\frac{1}{x^{2}}\right)
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Which simplifies to
\[
W=\frac{1}{x^{3}}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{2 \ln (x)}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{2 \ln (x)}{x} d x
\]

Hence
\[
u_{1}=-\ln (x)^{2}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\frac{2}{x^{2}}}{\frac{1}{x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{2}{x} d x
\]

Hence
\[
u_{2}=2 \ln (x)
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{\ln (x)^{2}}{x}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(\frac{c_{1}}{x}+\frac{c_{2} \ln (x)}{x}\right)+\left(\frac{\ln (x)^{2}}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
y=\frac{c_{1}+c_{2} \ln (x)}{x}+\frac{\ln (x)^{2}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{c_{1}+c_{2} \ln (x)}{x}+\frac{\ln (x)^{2}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{c_{1}+c_{2} \ln (x)}{x}+\frac{\ln (x)^{2}}{x}
\]

Verified OK.

\subsection*{14.23.8 Solving as exact linear second order ode ode}

An ode of the form
\[
p(x) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=s(x)
\]
is exact if
\[
\begin{equation*}
p^{\prime \prime}(x)-q^{\prime}(x)+r(x)=0 \tag{1}
\end{equation*}
\]

For the given ode we have
\[
\begin{aligned}
& p(x)=x^{2} \\
& q(x)=3 x \\
& r(x)=1 \\
& s(x)=\frac{2}{x}
\end{aligned}
\]

Hence
\[
\begin{aligned}
p^{\prime \prime}(x) & =2 \\
q^{\prime}(x) & =3
\end{aligned}
\]

Therefore (1) becomes
\[
2-(3)+(1)=0
\]

Hence the ode is exact. Since we now know the ode is exact, it can be written as
\[
\left(p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y\right)^{\prime}=s(x)
\]

Integrating gives
\[
p(x) y^{\prime}+\left(q(x)-p^{\prime}(x)\right) y=\int s(x) d x
\]

Substituting the above values for \(p, q, r, s\) gives
\[
x^{2} y^{\prime}+x y=\int \frac{2}{x} d x
\]

We now have a first order ode to solve which is
\[
x^{2} y^{\prime}+x y=2 \ln (x)+c_{1}
\]

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{2 \ln (x)+c_{1}}{x^{2}}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x}=\frac{2 \ln (x)+c_{1}}{x^{2}}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)\left(\frac{2 \ln (x)+c_{1}}{x^{2}}\right) \\
\mathrm{d}(x y) & =\left(\frac{2 \ln (x)+c_{1}}{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x y=\int \frac{2 \ln (x)+c_{1}}{x} \mathrm{~d} x \\
& x y=\ln (x)^{2}+c_{1} \ln (x)+c_{2}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)}{x}+\frac{c_{2}}{x}
\]
which simplifies to
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{\ln (x)^{2}+c_{1} \ln (x)+c_{2}}{x}
\]

Verified OK.
Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
<- high order exact linear fully integrable successful`

Solution by Maple
Time used: 0.015 (sec). Leaf size: 18
```

dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x\$2)+3*x*\operatorname{diff}(y(x),x)+y(x)=2/x,y(x), singsol=all

```
\[
y(x)=\frac{c_{2}+\ln (x)^{2}+c_{1} \ln (x)}{x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 21
DSolve[x^2*y''[x]+3*x*y'[x]+y[x]==2/x,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{\log ^{2}(x)+c_{2} \log (x)+c_{1}}{x}
\]

\subsection*{14.24 problem 3(h)}
14.24.1 Solving as second order linear constant coeff ode . 2618
14.24.2 Solving using Kovacic algorithm 2623
14.24.3 Maple step by step solution 2629

Internal problem ID [6394]
Internal file name [OUTPUT/5642_Sunday_June_05_2022_03_45_41_PM_39558801/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 3(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+4 y=\tan (x)^{2}
\]

\subsection*{14.24.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=4, f(x)=\tan (x)^{2}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=4\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+4 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+4=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=4\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(4)} \\
& = \pm 2 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=2 i \\
& \lambda_{2}=-2 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=2\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)
\]

Or
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (2 x)+c_{2} \sin (2 x)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\sin (2 x)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}(\sin (2 x))
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (2 x))(2 \cos (2 x))-(\sin (2 x))(-2 \sin (2 x))
\]

Which simplifies to
\[
W=2 \cos (2 x)^{2}+2 \sin (2 x)^{2}
\]

Which simplifies to
\[
W=2
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\sin (2 x) \tan (x)^{2}}{2} d x
\]

Which simplifies to
\[
u_{1}=-\int \sin (x)^{2} \tan (x) d x
\]

Hence
\[
u_{1}=\frac{\sin (x)^{2}}{2}+\ln (\cos (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x)^{2} \cos (2 x)}{2} d x
\]

Which simplifies to
\[
u_{2}=\int\left(\sin (x)^{2}-\frac{\tan (x)^{2}}{2}\right) d x
\]

Hence
\[
u_{2}=-\frac{\cos (x) \sin (x)}{2}+x-\frac{\tan (x)}{2}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\frac{\sin (x)^{2}}{2}+\ln (\cos (x))\right) \cos (2 x)+\left(-\frac{\cos (x) \sin (x)}{2}+x-\frac{\tan (x)}{2}\right) \sin (2 x)
\]

Which simplifies to
\[
y_{p}(x)=\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (2 x)+c_{2} \sin (2 x)\right)+\left(\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos (2 x)+c_{2} \sin (2 x)+\left(2 \cos (x)^{2}-1\right) \ln (\cos (x)) \\
& +2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2} \tag{1}
\end{align*}
\]

Figure 419: Slope field plot

\section*{Verification of solutions}
\(y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}\)
Verified OK.

\subsection*{14.24.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+4 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =4
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-4}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-4 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-4 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 377: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-4\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (2 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (2 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (2 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (2 x) \int \frac{1}{\cos (2 x)^{2}} d x \\
& =\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (2 x))+c_{2}\left(\cos (2 x)\left(\frac{\tan (2 x)}{2}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+4 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\cos (2 x) \\
& y_{2}=\frac{\sin (2 x)}{2}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
\frac{d}{d x}(\cos (2 x)) & \frac{d}{d x}\left(\frac{\sin (2 x)}{2}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\cos (2 x) & \frac{\sin (2 x)}{2} \\
-2 \sin (2 x) & \cos (2 x)
\end{array}\right|
\]

Therefore
\[
W=(\cos (2 x))(\cos (2 x))-\left(\frac{\sin (2 x)}{2}\right)(-2 \sin (2 x))
\]

Which simplifies to
\[
W=\cos (2 x)^{2}+\sin (2 x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{\sin (2 x) \tan (x)^{2}}{2}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \sin (x)^{2} \tan (x) d x
\]

Hence
\[
u_{1}=\frac{\sin (x)^{2}}{2}+\ln (\cos (x))
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\tan (x)^{2} \cos (2 x)}{1} d x
\]

Which simplifies to
\[
u_{2}=\int\left(2 \sin (x)^{2}-\tan (x)^{2}\right) d x
\]

Hence
\[
u_{2}=-\cos (x) \sin (x)-\tan (x)+2 x
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\left(\frac{\sin (x)^{2}}{2}+\ln (\cos (x))\right) \cos (2 x)+\frac{(-\cos (x) \sin (x)-\tan (x)+2 x) \sin (2 x)}{2}
\]

Which simplifies to
\[
y_{p}(x)=\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}
\]

Therefore the general solution is
\[
\begin{aligned}
y= & y_{h}+y_{p} \\
= & \left(c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}\right) \\
& +\left(\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\left(2 \cos (x)^{2}-1\right) \ln (\cos (x)) \tag{1}\\
& +2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}
\end{align*}
\]

Figure 420: Slope field plot

\section*{Verification of solutions}
\(y=c_{1} \cos (2 x)+\frac{c_{2} \sin (2 x)}{2}+\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}\)
Verified OK.

\subsection*{14.24.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+4 y=\tan (x)^{2}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+4=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-16})}{2}
\]
- Roots of the characteristic polynomial
\[
r=(-2 \mathrm{I}, 2 \mathrm{I})
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (2 x)
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\sin (2 x)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+y_{p}(x)
\]

\section*{Find a particular solution \(y_{p}(x)\) of the ODE}
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\tan (x)^{2}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (2 x) & \sin (2 x) \\
-2 \sin (2 x) & 2 \cos (2 x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=2
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\cos (2 x)\left(\int \sin (x)^{2} \tan (x) d x\right)+\frac{\sin (2 x)\left(\int\left(2 \sin (x)^{2}-\tan (x)^{2}\right) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 \cos (x) \sin (x) x-\frac{3 \sin (x)^{2}}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 42
```

dsolve(diff(y(x),x\$2)+4*y(x)=tan(x)^2,y(x), singsol=all)

```
\(y(x)=\left(2 \cos (x)^{2}-1\right) \ln (\cos (x))+2 c_{1} \cos (x)^{2}+2\left(x+c_{2}\right) \sin (x) \cos (x)-\frac{3 \sin (x)^{2}}{2}-c_{1}\)
Solution by Mathematica
Time used: 0.091 (sec). Leaf size: 32
DSolve[y' ' \([\mathrm{x}]+4 * \mathrm{y}[\mathrm{x}]==\operatorname{Tan}[\mathrm{x}] \sim 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow\left(x+c_{2}\right) \sin (2 x)+\cos (2 x)\left(\log (\cos (x))+\frac{1}{4}+c_{1}\right)-\frac{3}{4}
\]

\subsection*{14.25 problem 4(a)}
14.25.1 Maple step by step solution 2636

Internal problem ID [6395]
Internal file name [OUTPUT/5643_Sunday_June_05_2022_03_45_43_PM_45346907/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y=3 \mathrm{e}^{2 x}
\]

Given that one solution of the ode is
\[
y_{1}=\mathrm{e}^{2 x}
\]

This is second order nonhomogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=-1, f(x)=3 \mathrm{e}^{2 x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\).
\(y_{h}\) is the solution to
\[
y^{\prime \prime}-y=0
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=0
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-\left(\int 0 d x\right)} \mathrm{e}^{-4 x} d x\right) \\
& y_{2}(x)=\mathrm{e}^{2 x} \int \frac{1}{\mathrm{e}^{4 x}}, d x \\
& y_{2}(x)=\mathrm{e}^{2 x}\left(\int \mathrm{e}^{-4 x} d x\right) \\
& y_{2}(x)=-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}
\end{aligned}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\mathrm{e}^{2 x} \\
& y_{2}=-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & -\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4} \\
\frac{d}{d x}\left(\mathrm{e}^{2 x}\right) & \frac{d}{d x}\left(-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\mathrm{e}^{2 x} & -\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4} \\
2 \mathrm{e}^{2 x} & \frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{2}
\end{array}\right|
\]

Therefore
\[
W=\left(\mathrm{e}^{2 x}\right)\left(\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{2}\right)-\left(-\frac{\mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}\right)\left(2 \mathrm{e}^{2 x}\right)
\]

Which simplifies to
\[
W=\mathrm{e}^{4 x} \mathrm{e}^{-4 x}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{-\frac{3 \mathrm{e}^{4 x} e^{-4 x}}{4}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{3}{4} d x
\]

Hence
\[
u_{1}=\frac{3 x}{4}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{3 \mathrm{e}^{4 x}}{1} d x
\]

Which simplifies to
\[
u_{2}=\int 3 \mathrm{e}^{4 x} d x
\]

Hence
\[
u_{2}=\frac{3 \mathrm{e}^{4 x}}{4}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{3 \mathrm{e}^{2 x} x}{4}-\frac{3 \mathrm{e}^{4 x} \mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{16}
\]

Which simplifies to
\[
y_{p}(x)=\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{2 x} \mathrm{e}^{-4 x}}{4}\right)+\left(\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}\right)
\end{aligned}
\]

Which simplifies to
\[
y=c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{-2 x}}{4}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{-2 x}}{4}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16} \tag{1}
\end{equation*}
\]

Figure 421: Slope field plot

\section*{Verification of solutions}
\[
y=c_{1} \mathrm{e}^{2 x}-\frac{c_{2} \mathrm{e}^{-2 x}}{4}+\frac{3(4 x-1) \mathrm{e}^{2 x}}{16}
\]

Verified OK.

\subsection*{14.25.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-y=3 \mathrm{e}^{2 x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-1=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r+1)=0
\]
- Roots of the characteristic polynomial
\(r=(-1,1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-x}\)
- \(\quad\) 2nd solution of the homogeneous ODE
\(y_{2}(x)=\mathrm{e}^{x}\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function \(\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=3 \mathrm{e}^{2 x}\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}\mathrm{e}^{-x} & \mathrm{e}^{x} \\ -\mathrm{e}^{-x} & \mathrm{e}^{x}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(x), y_{2}(x)\right)=2\)
- Substitute functions into equation for \(y_{p}(x)\)
\(y_{p}(x)=-\frac{3 \mathrm{e}^{-x}\left(\int \mathrm{e}^{3 x} d x\right)}{2}+\frac{3 \mathrm{e}^{x}\left(\int \mathrm{e}^{x} d x\right)}{2}\)
- Compute integrals
\(y_{p}(x)=\mathrm{e}^{2 x}\)
- Substitute particular solution into general solution to ODE \(y=c_{1} \mathrm{e}^{-x}+c_{2} \mathrm{e}^{x}+\mathrm{e}^{2 x}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

dsolve([diff(y(x),x\$2)-y(x)=3*exp(2*x),exp(2*x)],singsol=all)

```
\[
y(x)=c_{2} \mathrm{e}^{-x}+\mathrm{e}^{x} c_{1}+\mathrm{e}^{2 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 25
DSolve[y''[x]-y[x]==3*Exp[2*x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{2 x}+c_{1} e^{x}+c_{2} e^{-x}
\]

\subsection*{14.26 problem 4(b)}
14.26.1 Maple step by step solution

Internal problem ID [6396]
Internal file name [OUTPUT/5644_Sunday_June_05_2022_03_45_45_PM_62158437/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y=-8 \sin (3 x)
\]

Given that one solution of the ode is
\[
y_{1}=\sin (3 x)
\]

This is second order nonhomogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=1, f(x)=-8 \sin (3 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\).
\(y_{h}\) is the solution to
\[
y^{\prime \prime}+y=0
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=0
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\sin (3 x)\left(\int \frac{\mathrm{e}^{-\left(\int 0 d x\right)}}{\sin (3 x)^{2}} d x\right) \\
& y_{2}(x)=\sin (3 x) \int \frac{1}{\sin (3 x)^{2}}, d x \\
& y_{2}(x)=\sin (3 x)\left(\int \csc (3 x)^{2} d x\right) \\
& y_{2}(x)=-\frac{\sin (3 x) \cot (3 x)}{3}
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sin (3 x)-\frac{c_{2} \sin (3 x) \cot (3 x)}{3}
\end{aligned}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \sin (3 x)-\frac{c_{2} \sin (3 x) \cot (3 x)}{3}
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\sin (3 x) \\
& y_{2}=-\frac{\sin (3 x) \cot (3 x)}{3}
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\sin (3 x) & -\frac{\sin (3 x) \cot (3 x)}{3} \\
\frac{d}{d x}(\sin (3 x)) & \frac{d}{d x}\left(-\frac{\sin (3 x) \cot (3 x)}{3}\right)
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\sin (3 x) & -\frac{\sin (3 x) \cot (3 x)}{3} \\
3 \cos (3 x) & -\cos (3 x) \cot (3 x)-\frac{\sin (3 x)\left(-3-3 \cot (3 x)^{2}\right)}{3}
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & (\sin (3 x))\left(-\cos (3 x) \cot (3 x)-\frac{\sin (3 x)\left(-3-3 \cot (3 x)^{2}\right)}{3}\right) \\
& -\left(-\frac{\sin (3 x) \cot (3 x)}{3}\right)(3 \cos (3 x))
\end{aligned}
\]

Which simplifies to
\[
W=\sin (3 x)^{2} \cot (3 x)^{2}+\sin (3 x)^{2}
\]

Which simplifies to
\[
W=1
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\frac{8 \sin (3 x)^{2} \cot (3 x)}{3}}{1} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{4 \sin (6 x)}{3} d x
\]

Hence
\[
u_{1}=\frac{2 \cos (6 x)}{9}
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{-8 \sin (3 x)^{2}}{1} d x
\]

Which simplifies to
\[
u_{2}=\int(-4+4 \cos (6 x)) d x
\]

Hence
\[
u_{2}=-4 x+\frac{2 \sin (6 x)}{3}
\]

Therefore the particular solution, from equation (1) is
\[
y_{p}(x)=\frac{2 \cos (6 x) \sin (3 x)}{9}-\frac{\left(-4 x+\frac{2 \sin (6 x)}{3}\right) \sin (3 x) \cot (3 x)}{3}
\]

Which simplifies to
\[
y_{p}(x)=-\frac{2 \sin (3 x)}{9}+\frac{4 x \cos (3 x)}{3}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \sin (3 x)-\frac{c_{2} \sin (3 x) \cot (3 x)}{3}\right)+\left(-\frac{2 \sin (3 x)}{9}+\frac{4 x \cos (3 x)}{3}\right)
\end{aligned}
\]

Which simplifies to
\[
y=c_{1} \sin (3 x)-\frac{c_{2} \cos (3 x)}{3}-\frac{2 \sin (3 x)}{9}+\frac{4 x \cos (3 x)}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sin (3 x)-\frac{c_{2} \cos (3 x)}{3}-\frac{2 \sin (3 x)}{9}+\frac{4 x \cos (3 x)}{3} \tag{1}
\end{equation*}
\]

Figure 422: Slope field plot

Verification of solutions
\[
y=c_{1} \sin (3 x)-\frac{c_{2} \cos (3 x)}{3}-\frac{2 \sin (3 x)}{9}+\frac{4 x \cos (3 x)}{3}
\]

Verified OK.

\subsection*{14.26.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y=-8 \sin (3 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+1=0
\]
- Use quadratic formula to solve for \(r\)
\[
r=\frac{0 \pm(\sqrt{-4})}{2}
\]
- Roots of the characteristic polynomial
\(r=(-\mathrm{I}, \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\cos (x)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\[
y=\cos (x) c_{1}+c_{2} \sin (x)+y_{p}(x)
\]

Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-8 \sin (3 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (x) & \sin (x) \\
-\sin (x) & \cos (x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=1
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-4 \cos (x)\left(\int(-\cos (2 x)+\cos (4 x)) d x\right)+4 \sin (x)\left(\int(-\sin (4 x)-\sin (2 x)) d x\right)
\]
- Compute integrals
\[
y_{p}(x)=\sin (3 x)
\]
- Substitute particular solution into general solution to ODE \(y=\cos (x) c_{1}+c_{2} \sin (x)+\sin (3 x)\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 17
```

dsolve([diff(y(x),x\$2)+y(x)=-8*\operatorname{sin}(3*x),\operatorname{sin}(3*x)],singsol=all)

```
\[
y(x)=\sin (x) c_{2}+\cos (x) c_{1}+\sin (3 x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 20
DSolve[y'' \([x]+y[x]==-8 * \operatorname{Sin}[3 * x], y[x], x\), IncludeSingularSolutions -> True]
\[
y(x) \rightarrow \sin (3 x)+c_{1} \cos (x)+c_{2} \sin (x)
\]

\subsection*{14.27 problem 4(c)}
14.27.1 Maple step by step solution

2651
Internal problem ID [6397]
Internal file name [OUTPUT/5645_Sunday_June_05_2022_03_45_47_PM_58516173/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y^{\prime}+y=x^{2}+2 x+2
\]

Given that one solution of the ode is
\[
y_{1}=x^{2}
\]

This is second order nonhomogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=1, f(x)=x^{2}+2 x+2\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}+y=0
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=1
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-\left(\int 1 d x\right)}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2} \int \frac{\mathrm{e}^{-x}}{x^{4}}, d x \\
& y_{2}(x)=x^{2}\left(\int \frac{\mathrm{e}^{-x}}{x^{4}} d x\right) \\
& y_{2}(x)=x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral}(x)}{6}\right)
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}+c_{2} x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral} l_{1}(x)}{6}\right)
\end{aligned}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} x^{2}+c_{2} x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\exp \operatorname{Integral}_{1}(x)}{6}\right)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=x^{2} \\
& y_{2}=x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral}_{1}(x)}{6}\right)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE.
The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
\left.W=\left\lvert\, \begin{array}{cc}
x^{2} & x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral}}{1}(x)\right. \\
6
\end{array}\right.\right) .
\]

Which gives
\[
\left.W=\left\lvert\, \begin{array}{cc}
x^{2} & x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral~}_{1}(x)}{6}\right) \\
2 x & 2 x\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral}}{1}(x)\right. \\
6
\end{array}\right.\right) \left.+\frac{\mathrm{e}^{-x}}{x^{2}} \right\rvert\,
\]

Therefore
\[
\begin{aligned}
W= & \left(x^{2}\right)\left(2 x\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\exp \operatorname{Integral}_{1}(x)}{6}\right)+\frac{\mathrm{e}^{-x}}{x^{2}}\right) \\
& -\left(x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\exp \operatorname{Integral}_{1}(x)}{6}\right)\right)(2 x)
\end{aligned}
\]

Which simplifies to
\[
W=\mathrm{e}^{-x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\operatorname{expIntegral}(x)}{6}\right)\left(x^{2}+2 x+2\right)}{\mathrm{e}^{-x}} d x
\]

Which simplifies to
\[
u_{1}=-\int \frac{\left(x^{2}+2 x+2\right)\left(\mathrm{e}^{x} \exp \operatorname{Integral}_{1}(x) x^{3}-x^{2}+x-2\right)}{6 x} d x
\]

Hence
\[
u_{1}=-\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \exp \operatorname{Integral}_{1}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{6 \alpha} d \alpha\right)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\left(x^{2}+2 x+2\right) x^{2}}{\mathrm{e}^{-x}} d x
\]

Which simplifies to
\[
u_{2}=\int x^{2}\left(x^{2}+2 x+2\right) \mathrm{e}^{x} d x
\]

Hence
\[
u_{2}=\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right) \mathrm{e}^{x}
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=-\frac{\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right)}{6} \\
& u_{2}=\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right) \mathrm{e}^{x}
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
& y_{p}(x)=\left.-\frac{\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}\right.}{1}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right) x^{2} \\
& 6 \\
&+\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right) \mathrm{e}^{x} x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\exp ^{2} \operatorname{Integral}_{1}(x)}{6}\right)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& y_{p}(x) \\
& =\frac{-\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}_{1}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right) x^{3}+\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right)\left(\mathrm{e}^{x} \exp \operatorname{Integral}_{1}(x) x^{3}-\right.}{6 x}
\end{aligned}
\]

Therefore the general solution is
\[
y=y_{h}+y_{p}
\]
\[
=\left(c_{1} x^{2}+c_{2} x^{2}\left(-\frac{\mathrm{e}^{-x}}{3 x^{3}}+\frac{\mathrm{e}^{-x}}{6 x^{2}}-\frac{\mathrm{e}^{-x}}{6 x}+\frac{\exp \operatorname{Integral}_{1}(x)}{6}\right)\right)+\left(-\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}_{1}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-\right.}{\alpha}\right)\right.
\]

Which simplifies to
\[
\left.y=\frac{-c_{2}\left(x^{2}-x+2\right) \mathrm{e}^{-x}+6\left(\frac{c_{2} \exp \operatorname{Integral}_{1}(x)}{6}+c_{1}\right) x^{3}}{6 x}+\frac{-\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}\right.}{1}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right) x^{3}+
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y & \left.=\frac{-c_{2}\left(x^{2}-x+2\right) \mathrm{e}^{-x}+6\left(\frac{c_{2} \operatorname{expIntegral}}{1}(x)\right.}{6}+c_{1}\right) x^{3} \\
6 x & -\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral} 1(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right) x^{3}+\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right)\left(\mathrm{e}^{x} \exp \operatorname{Integral}_{1}(x) x\right. \\
& 6 x
\end{aligned}
\]

Figure 423: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
& y\left.=\frac{-c_{2}\left(x^{2}-x+2\right) \mathrm{e}^{-x}+6\left(\frac{c_{2} \operatorname{expIntegral}}{1}(x)\right.}{6}+c_{1}\right) x^{3} \\
& 6 x \\
&+\frac{-\left(\int_{0}^{x} \frac{\left(\alpha^{2}+2 \alpha+2\right)\left(\mathrm{e}^{\alpha} \operatorname{expIntegral}(\alpha) \alpha^{3}-\alpha^{2}+\alpha-2\right)}{\alpha} d \alpha\right) x^{3}+\left(x^{4}-2 x^{3}+8 x^{2}-16 x+16\right)\left(\mathrm{e}^{x} \exp \operatorname{Integral}_{1}(x) x\right.}{6 x}
\end{aligned}
\]

Verified OK.

\subsection*{14.27.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}+y=x^{2}+2 x+2
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+r+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- \(\quad\) 1st solution of the homogeneous ODE
\(y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{2}+2 x+2\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2}} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}{2} & -\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}}\left(x^{2}+2 x+2\right) \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int \mathrm{e}^{\frac{x}{2}}\left(x^{2}+2 x+2\right) \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=x^{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+x^{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 34
```

dsolve([diff(y(x),x\$2)+diff(y(x),x)+y(x)=x^2+2*x+2, x^2],singsol=all)

```
\[
y(x)=c_{2} \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)+\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+x^{2}
\]
\(\sqrt{\checkmark}\) Solution by Mathematica
Time used: 0.024 (sec). Leaf size: 51
DSolve[y'' \([x]+y\) ' \([x]+y[x]==x^{\wedge} 2+2 * x+2, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow x^{2}+c_{2} e^{-x / 2} \cos \left(\frac{\sqrt{3} x}{2}\right)+c_{1} e^{-x / 2} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]

\subsection*{14.28 problem 4(d)}
14.28.1 Maple step by step solution 2660

Internal problem ID [6398]
Internal file name [OUTPUT/5646_Sunday_June_05_2022_03_45_51_PM_29806910/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Drill excercises. Page 105
Problem number: 4(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "reduction_of_order", "exact linear second order ode", "second_order_integrable_as_is", "second_order_ode_missing_y", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```
\[
y^{\prime \prime}+y^{\prime}=\frac{x-1}{x}
\]

Given that one solution of the ode is
\[
y_{1}=\ln (x)
\]

This is second order nonhomogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=1, C=0, f(x)=1-\frac{1}{x}\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+y^{\prime}=0
\]

Given one basis solution \(y_{1}(x)\), then the second basis solution is given by
\[
y_{2}(x)=y_{1}\left(\int \frac{\mathrm{e}^{-\left(\int p d x\right)}}{y_{1}^{2}} d x\right)
\]

Where \(p(x)\) is the coefficient of \(y^{\prime}\) when the ode is written in the normal form
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=f(x)
\]

Looking at the ode to solve shows that
\[
p(x)=1
\]

Therefore
\[
\begin{aligned}
& y_{2}(x)=\ln (x)\left(\int \frac{\mathrm{e}^{-\left(\int 1 d x\right)}}{\ln (x)^{2}} d x\right) \\
& y_{2}(x)=\ln (x) \int \frac{\mathrm{e}^{-x}}{\ln (x)^{2}}, d x \\
& y_{2}(x)=\ln (x)\left(\int \frac{\mathrm{e}^{-x}}{\ln (x)^{2}} d x\right) \\
& y_{2}(x)=\ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)
\end{aligned}
\]

Hence the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \ln (x)+c_{2} \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)
\end{aligned}
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \ln (x)+c_{2} \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)
\]

The particular solution \(y_{p}\) can be found using either the method of undetermined coefficients, or the method of variation of parameters. The method of variation of
parameters will be used as it is more general and can be used when the coefficients of the ODE depend on \(x\) as well. Let
\[
\begin{equation*}
y_{p}(x)=u_{1} y_{1}+u_{2} y_{2} \tag{1}
\end{equation*}
\]

Where \(u_{1}, u_{2}\) to be determined, and \(y_{1}, y_{2}\) are the two basis solutions (the two linearly independent solutions of the homogeneous ODE) found earlier when solving the homogeneous ODE as
\[
\begin{aligned}
& y_{1}=\ln (x) \\
& y_{2}=\ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)
\end{aligned}
\]

In the Variation of parameters \(u_{1}, u_{2}\) are found using
\[
\begin{align*}
& u_{1}=-\int \frac{y_{2} f(x)}{a W(x)} \tag{2}\\
& u_{2}=\int \frac{y_{1} f(x)}{a W(x)} \tag{3}
\end{align*}
\]

Where \(W(x)\) is the Wronskian and \(a\) is the coefficient in front of \(y^{\prime \prime}\) in the given ODE. The Wronskian is given by \(W=\left|\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right|\). Hence
\[
W=\left|\begin{array}{cc}
\ln (x) & \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \\
\frac{d}{d x}(\ln (x)) & \frac{d}{d x}\left(\ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)\right.
\end{array}\right|
\]

Which gives
\[
W=\left|\begin{array}{cc}
\ln (x) & \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \\
\frac{1}{x} & \frac{-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x}{x}+\ln (x)\left(-\frac{\mathrm{e}^{-x}}{\ln (x)}+\frac{x \mathrm{e}^{-x}}{\ln (x)}+\frac{\mathrm{e}^{-x}}{\ln (x)^{2}}-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)}\right)
\end{array}\right|
\]

Therefore
\[
\begin{aligned}
W= & (\ln (x))\left(\frac{-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x}{x}\right. \\
& \left.\quad+\ln (x)\left(-\frac{\mathrm{e}^{-x}}{\ln (x)}+\frac{x \mathrm{e}^{-x}}{\ln (x)}+\frac{\mathrm{e}^{-x}}{\ln (x)^{2}}-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)}\right)\right) \\
& -\left(\ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)\right)\left(\frac{1}{x}\right)
\end{aligned}
\]

Which simplifies to
\[
W=\mathrm{e}^{-x}
\]

Which simplifies to
\[
W=\mathrm{e}^{-x}
\]

Therefore Eq. (2) becomes
\[
u_{1}=-\int \frac{\ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)\left(1-\frac{1}{x}\right)}{\mathrm{e}^{-x}} d x
\]

Which simplifies to
\[
u_{1}=-\int-\frac{(x-1)\left(\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \mathrm{e}^{x} \ln (x)+x\right)}{x} d x
\]

Hence
\[
u_{1}=-\left(\int_{0}^{x}-\frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha\right)
\]

And Eq. (3) becomes
\[
u_{2}=\int \frac{\ln (x)\left(1-\frac{1}{x}\right)}{\mathrm{e}^{-x}} d x
\]

Which simplifies to
\[
u_{2}=\int \frac{\ln (x)(x-1) \mathrm{e}^{x}}{x} d x
\]

Hence
\[
u_{2}=\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha
\]

Which simplifies to
\[
\begin{aligned}
& u_{1}=\int_{0}^{x} \frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha \\
& u_{2}=\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha
\end{aligned}
\]

Therefore the particular solution, from equation (1) is
\[
\begin{aligned}
y_{p}(x)= & \left(\int_{0}^{x} \frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha\right) \ln (x) \\
& +\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
y_{p}(x)= & -\mathrm{e}^{-x}\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) x \\
& -\ln (x)\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \\
& +\left(\int_{0}^{x} \frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha\right) \ln (x)
\end{aligned}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \ln (x)+c_{2} \ln (x)\left(-\frac{x \mathrm{e}^{-x}}{\ln (x)}+\int-\frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right)\right)+\left(-\mathrm{e}^{-x}\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) x-\ln (x\right.
\end{aligned}
\]

Which simplifies to
\[
y=-x \mathrm{e}^{-x} c_{2}-\ln (x)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) c_{2}+c_{1} \ln (x)-\mathrm{e}^{-x}\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) x-\ln (x)\left(\int_{0}^{x} \underline{\ln (\alpha}\right.
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & -x \mathrm{e}^{-x} c_{2}-\ln (x)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) c_{2} \\
& +c_{1} \ln (x)-\mathrm{e}^{-x}\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) x \\
& -\ln (x)\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \tag{1}\\
& +\left(\int_{0}^{x} \frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha\right) \ln (x)
\end{align*}
\]

Figure 424: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & -x \mathrm{e}^{-x} c_{2}-\ln (x)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) c_{2}+c_{1} \ln (x)-\mathrm{e}^{-x}\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right) x \\
& -\ln (x)\left(\int_{0}^{x} \frac{\ln (\alpha)(\alpha-1) \mathrm{e}^{\alpha}}{\alpha} d \alpha\right)\left(\int \frac{\mathrm{e}^{-x}(x-1)}{\ln (x)} d x\right) \\
& +\left(\int_{0}^{x} \frac{(\alpha-1)\left(\left(\int \frac{\mathrm{e}^{-\alpha}(\alpha-1)}{\ln (\alpha)} d \alpha\right) \mathrm{e}^{\alpha} \ln (\alpha)+\alpha\right)}{\alpha} d \alpha\right) \ln (x)
\end{aligned}
\]

Verified OK.

\subsection*{14.28.1 Maple step by step solution}

Let's solve
\[
y^{\prime}+y^{\prime \prime}=\frac{x-1}{x}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+r=0\)
- Factor the characteristic polynomial
\(r(r+1)=0\)
- Roots of the characteristic polynomial
\(r=(-1,0)\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-x}
\]
- 2nd solution of the homogeneous ODE
\(y_{2}(x)=1\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-x}+c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=\frac{x-1}{x}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-x} & 1 \\
-\mathrm{e}^{-x} & 0
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\mathrm{e}^{-x}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\mathrm{e}^{-x}\left(\int \frac{\mathrm{e}^{x}(x-1)}{x} d x\right)+\int \frac{x-1}{x} d x
\]
- Compute integrals
\[
y_{p}(x)=-\mathrm{e}^{-x} \mathrm{Ei}_{1}(-x)-1-\ln (x)+x
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{-x}+c_{2}-\mathrm{e}^{-x} \operatorname{Ei}_{1}(-x)-1-\ln (x)+x
\]

Maple trace
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
-> Calling odsolve with the ODE`, diff(_b(_a), _a) = -(_b(_a)*_a-_a+1)/_a, _b(_a)`
Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful
<- high order exact linear fully integrable successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 26
```

dsolve([diff(y(x),x\$2)+diff(y(x),x)=(x-1)/x,ln(x)],singsol=all)

```
\[
y(x)=\int\left(1+\mathrm{e}^{-x} \exp \operatorname{Integral}_{1}(-x)+c_{1} \mathrm{e}^{-x}\right) d x+c_{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.12 (sec). Leaf size: 30
DSolve[y''[x]+y'[x]==(x-1)/x,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow e^{-x} \operatorname{ExpIntegralEi}(x)+x-\log (x)-c_{1} e^{-x}+c_{2}
\]

\section*{15 Chapter 2. Problems for Review and Discovery. Challenge excercises. Page 105}
15.1 problem 3 . 2664
15.2 problem 4 . 2689

\section*{15.1 problem 3}
15.1.1 Existence and uniqueness analysis 2665
15.1.2 Solving as second order euler ode ode 2665
15.1.3 Solving as linear second order ode solved by an integrating factor ode 2667
15.1.4 Solving as second order change of variable on x method 2 ode 2668
15.1.5 Solving as second order change of variable on x method 1 ode 2671
15.1.6 Solving as second order change of variable on y method 1 ode 2674
15.1.7 Solving as second order change of variable on y method 2 ode 2676
15.1.8 Solving as second order ode non constant coeff transformation on B ode 2679
15.1.9 Solving using Kovacic algorithm 2681
15.1.10 Maple step by step solution 2685

Internal problem ID [6399]

Internal file name [OUTPUT/5647_Sunday_June_05_2022_03_45_55_PM_3219856/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Challenge excercises. Page 105
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_euler_ode", "second_order_change_of_cvariable_on_x_method_1", "second_order_change__of_variable_on_u__method_2", "second_order_change_of_cvariable_on_y__method_1", "second_order_change_of_variable_on_y_method_2", "linear_second_order_ode_solved__by__an_integrating_factor", "second__order__ode_non_constant__coeff__transformation_on_B"

Maple gives the following as the ode type
[[_Emden, _Fowler], [_2nd_order, _linear, - _with_symmetry_ [0,F(x)] •]]
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=0\right]
\]

\subsection*{15.1.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =-\frac{2}{x} \\
q(x) & =\frac{2}{x^{2}} \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0
\]

The domain of \(p(x)=-\frac{2}{x}\) is
\[
\{x<0 \vee 0<x\}
\]

But the point \(x_{0}=0\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

\subsection*{15.1.2 Solving as second order euler ode ode}

This is Euler second order ODE. Let the solution be \(y=x^{r}\), then \(y^{\prime}=r x^{r-1}\) and \(y^{\prime \prime}=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives
\[
x^{2}(r(r-1)) x^{r-2}-2 x r x^{r-1}+2 x^{r}=0
\]

Simplifying gives
\[
r(r-1) x^{r}-2 r x^{r}+2 x^{r}=0
\]

Since \(x^{r} \neq 0\) then dividing throughout by \(x^{r}\) gives
\[
r(r-1)-2 r+2=0
\]

Or
\[
\begin{equation*}
r^{2}-3 r+2=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=2
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=x^{r_{1}}\) and \(y_{2}=x^{r_{2}}\). Hence
\[
y=c_{2} x^{2}+c_{1} x
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{2} x+c_{1}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=0
\]

Substituting these values back in above solution results in
\[
y=c_{2} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{2} x^{2}
\]

Verified OK.

\subsection*{15.1.3 Solving as linear second order ode solved by an integrating factor ode}

The ode satisfies this form
\[
y^{\prime \prime}+p(x) y^{\prime}+\frac{\left(p(x)^{2}+p^{\prime}(x)\right) y}{2}=f(x)
\]

Where \(p(x)=-\frac{2}{x}\). Therefore, there is an integrating factor given by
\[
\begin{aligned}
M(x) & =e^{\frac{1}{2} \int p d x} \\
& =e^{\int-\frac{2}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

Multiplying both sides of the ODE by the integrating factor \(M(x)\) makes the left side of the ODE a complete differential
\[
\begin{aligned}
(M(x) y)^{\prime \prime} & =0 \\
\left(\frac{y}{x}\right)^{\prime \prime} & =0
\end{aligned}
\]

Integrating once gives
\[
\left(\frac{y}{x}\right)^{\prime}=c_{1}
\]

Integrating again gives
\[
\left(\frac{y}{x}\right)=c_{1} x+c_{2}
\]

Hence the solution is
\[
y=\frac{c_{1} x+c_{2}}{\frac{1}{x}}
\]

Or
\[
y=c_{1} x^{2}+c_{2} x
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} x^{2}+c_{2} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{1} x+c_{2}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=0
\]

Substituting these values back in above solution results in
\[
y=c_{1} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}
\]

Verified OK.

\subsection*{15.1.4 Solving as second order change of variable on \(x\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) gives
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(p_{1}=0 . \mathrm{Eq}(4)\) simplifies to
\[
\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)=0
\]

This ode is solved resulting in
\[
\begin{align*}
\tau & =\int \mathrm{e}^{-\left(\int p(x) d x\right)} d x \\
& =\int \mathrm{e}^{-\left(\int-\frac{2}{x} d x\right)} d x \\
& =\int e^{2 \ln (x)} d x \\
& =\int x^{2} d x \\
& =\frac{x^{3}}{3} \tag{6}
\end{align*}
\]

Using (6) to evaluate \(q_{1}\) from (5) gives
\[
\begin{align*}
q_{1}(\tau) & =\frac{q(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{\frac{2}{x^{2}}}{x^{4}} \\
& =\frac{2}{x^{6}} \tag{7}
\end{align*}
\]

Substituting the above in (3) and noting that now \(p_{1}=0\) results in
\[
\begin{aligned}
\frac{d^{2}}{d \tau^{2}} y(\tau)+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{x^{6}} & =0
\end{aligned}
\]

But in terms of \(\tau\)
\[
\frac{2}{x^{6}}=\frac{2}{9 \tau^{2}}
\]

Hence the above ode becomes
\[
\frac{d^{2}}{d \tau^{2}} y(\tau)+\frac{2 y(\tau)}{9 \tau^{2}}=0
\]

The above ode is now solved for \(y(\tau)\). The ode can be written as
\[
9\left(\frac{d^{2}}{d \tau^{2}} y(\tau)\right) \tau^{2}+2 y(\tau)=0
\]

Which shows it is a Euler ODE. This is Euler second order ODE. Let the solution be \(y(\tau)=\tau^{r}\), then \(y^{\prime}=r \tau^{r-1}\) and \(y^{\prime \prime}=r(r-1) \tau^{r-2}\). Substituting these back into the given ODE gives
\[
9 \tau^{2}(r(r-1)) \tau^{r-2}+0 r \tau^{r-1}+2 \tau^{r}=0
\]

Simplifying gives
\[
9 r(r-1) \tau^{r}+0 \tau^{r}+2 \tau^{r}=0
\]

Since \(\tau^{r} \neq 0\) then dividing throughout by \(\tau^{r}\) gives
\[
9 r(r-1)+0+2=0
\]

Or
\[
\begin{equation*}
9 r^{2}-9 r+2=0 \tag{1}
\end{equation*}
\]

Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are
\[
\begin{aligned}
& r_{1}=\frac{1}{3} \\
& r_{2}=\frac{2}{3}
\end{aligned}
\]

Since the roots are real and distinct, then the general solution is
\[
y(\tau)=c_{1} y_{1}+c_{2} y_{2}
\]

Where \(y_{1}=\tau^{r_{1}}\) and \(y_{2}=\tau^{r_{2}}\). Hence
\[
y(\tau)=c_{1} \tau^{\frac{1}{3}}+c_{2} \tau^{\frac{2}{3}}
\]

The above solution is now transformed back to \(y\) using (6) which results in
\[
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\frac{c_{1} 3^{\frac{2}{3}}\left(x^{3}\right)^{\frac{1}{3}}}{3}+\frac{c_{2} 3^{\frac{1}{3}}\left(x^{3}\right)^{\frac{2}{3}}}{3} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{c_{1} 3^{\frac{2}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{2}{3}}}+\frac{2 c_{2} 3^{\frac{1}{3}} x^{2}}{3\left(x^{3}\right)^{\frac{1}{3}}}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\frac{3^{\frac{1}{3}}\left(\lim _{x \rightarrow 0} \frac{x^{2}\left(2 c_{2}\left(x^{3}\right)^{\frac{1}{3}}+c_{1} 3^{\frac{1}{3}}\right)}{\left(x^{3}\right)^{\frac{2}{3}}}\right)}{3} \tag{2A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Warning, unable to solve for constants of integrations.

Verification of solutions N/A

\subsection*{15.1.5 Solving as second order change of variable on \(x\) method 1 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables \(\tau=g(x)\) to (2) results
\[
\begin{equation*}
\frac{d^{2}}{d \tau^{2}} y(\tau)+p_{1}\left(\frac{d}{d \tau} y(\tau)\right)+q_{1} y(\tau)=0 \tag{3}
\end{equation*}
\]

Where \(\tau\) is the new independent variable, and
\[
\begin{align*}
& p_{1}(\tau)=\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \tag{4}\\
& q_{1}(\tau)=\frac{q(x)}{\tau^{\prime}(x)^{2}} \tag{5}
\end{align*}
\]

Let \(q_{1}=c^{2}\) where \(c\) is some constant. Therefore from (5)
\[
\begin{align*}
\tau^{\prime} & =\frac{1}{c} \sqrt{q} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c} \tag{6}\\
\tau^{\prime \prime} & =-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}
\end{align*}
\]

Substituting the above into (4) results in
\[
\begin{aligned}
p_{1}(\tau) & =\frac{\tau^{\prime \prime}(x)+p(x) \tau^{\prime}(x)}{\tau^{\prime}(x)^{2}} \\
& =\frac{-\frac{\sqrt{2}}{c \sqrt{\frac{1}{x^{2}}} x^{3}}-\frac{2}{x} \frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}}{\left(\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}}}{c}\right)^{2}} \\
& =-\frac{3 c \sqrt{2}}{2}
\end{aligned}
\]

Therefore ode (3) now becomes
\[
\begin{align*}
y(\tau)^{\prime \prime}+p_{1} y(\tau)^{\prime}+q_{1} y(\tau) & =0 \\
\frac{d^{2}}{d \tau^{2}} y(\tau)-\frac{3 c \sqrt{2}\left(\frac{d}{d \tau} y(\tau)\right)}{2}+c^{2} y(\tau) & =0 \tag{7}
\end{align*}
\]

The above ode is now solved for \(y(\tau)\). Since the ode is now constant coefficients, it can be easily solved to give
\[
y(\tau)=\mathrm{e}^{\frac{3 \sqrt{2} c \tau}{4}}\left(c_{1} \cosh \left(\frac{\sqrt{2} c \tau}{4}\right)+i c_{2} \sinh \left(\frac{\sqrt{2} c \tau}{4}\right)\right)
\]

Now from (6)
\[
\begin{aligned}
\tau & =\int \frac{1}{c} \sqrt{q} d x \\
& =\frac{\int \sqrt{2} \sqrt{\frac{1}{x^{2}}} d x}{c} \\
& =\frac{\sqrt{2} \sqrt{\frac{1}{x^{2}}} x \ln (x)}{c}
\end{aligned}
\]

Substituting the above into the solution obtained gives
\[
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=x^{\frac{3}{2}}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=\frac{3 \sqrt{x}\left(c_{1} \cosh \left(\frac{\ln (x)}{2}\right)+i c_{2} \sinh \left(\frac{\ln (x)}{2}\right)\right)}{2}+x^{\frac{3}{2}}\left(\frac{c_{1} \sinh \left(\frac{\ln (x)}{2}\right)}{2 x}+\frac{i c_{2} \cosh \left(\frac{\ln (x)}{2}\right)}{2 x}\right)
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=\frac{c_{1}}{2}-\frac{i c_{2}}{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=i c_{2}
\]

Substituting these values back in above solution results in
\[
y=i c_{2} x^{\frac{3}{2}} \cosh \left(\frac{\ln (x)}{2}\right)+i x^{\frac{3}{2}} \sinh \left(\frac{\ln (x)}{2}\right) c_{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=i\left(\cosh \left(\frac{\ln (x)}{2}\right)+\sinh \left(\frac{\ln (x)}{2}\right)\right) c_{2} x^{\frac{3}{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=i\left(\cosh \left(\frac{\ln (x)}{2}\right)+\sinh \left(\frac{\ln (x)}{2}\right)\right) c_{2} x^{\frac{3}{2}}
\]

Verified OK.

\subsection*{15.1.6 Solving as second order change of variable on y method 1 ode}

In normal form the given ode is written as
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Calculating the Liouville ode invariant \(Q\) given by
\[
\begin{aligned}
Q & =q-\frac{p^{\prime}}{2}-\frac{p^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(-\frac{2}{x}\right)^{\prime}}{2}-\frac{\left(-\frac{2}{x}\right)^{2}}{4} \\
& =\frac{2}{x^{2}}-\frac{\left(\frac{2}{x^{2}}\right)}{2}-\frac{\left(\frac{4}{x^{2}}\right)}{4} \\
& =\frac{2}{x^{2}}-\left(\frac{1}{x^{2}}\right)-\frac{1}{x^{2}} \\
& =0
\end{aligned}
\]

Since the Liouville ode invariant does not depend on the independent variable \(x\) then the transformation
\[
\begin{equation*}
y=v(x) z(x) \tag{3}
\end{equation*}
\]
is used to change the original ode to a constant coefficients ode in \(v\). In (3) the term \(z(x)\) is given by
\[
\begin{align*}
z(x) & =\mathrm{e}^{-\left(\int \frac{p(x)}{2} d x\right)} \\
& =e^{-\int \frac{-2}{x}} \\
& =x \tag{5}
\end{align*}
\]

Hence (3) becomes
\[
\begin{equation*}
y=v(x) x \tag{4}
\end{equation*}
\]

Applying this change of variable to the original ode results in
\[
x^{3} v^{\prime \prime}(x)=0
\]

Which is now solved for \(v(x)\) Integrating twice gives the solution
\[
v(x)=c_{1} x+c_{2}
\]

Now that \(v(x)\) is known, then
\[
\begin{align*}
y & =v(x) z(x) \\
& =\left(c_{1} x+c_{2}\right)(z(x)) \tag{7}
\end{align*}
\]

But from (5)
\[
z(x)=x
\]

Hence (7) becomes
\[
y=x\left(c_{1} x+c_{2}\right)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=x\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{1} x+c_{2}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=0
\]

Substituting these values back in above solution results in
\[
y=c_{1} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}
\]

Verified OK.

\subsection*{15.1.7 Solving as second order change of variable on \(y\) method 2 ode}

In normal form the ode
\[
\begin{equation*}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \tag{1}
\end{equation*}
\]

Becomes
\[
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{2}
\end{equation*}
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Applying change of variables on the depndent variable \(y=v(x) x^{n}\) to (2) gives the following ode where the dependent variables is \(v(x)\) and not \(y\).
\[
\begin{equation*}
v^{\prime \prime}(x)+\left(\frac{2 n}{x}+p\right) v^{\prime}(x)+\left(\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q\right) v(x)=0 \tag{3}
\end{equation*}
\]

Let the coefficient of \(v(x)\) above be zero. Hence
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}+\frac{n p}{x}+q=0 \tag{4}
\end{equation*}
\]

Substituting the earlier values found for \(p(x)\) and \(q(x)\) into (4) gives
\[
\begin{equation*}
\frac{n(n-1)}{x^{2}}-\frac{2 n}{x^{2}}+\frac{2}{x^{2}}=0 \tag{5}
\end{equation*}
\]

Solving (5) for \(n\) gives
\[
\begin{equation*}
n=2 \tag{6}
\end{equation*}
\]

Substituting this value in (3) gives
\[
\begin{align*}
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \\
& v^{\prime \prime}(x)+\frac{2 v^{\prime}(x)}{x}=0 \tag{7}
\end{align*}
\]

Using the substitution
\[
u(x)=v^{\prime}(x)
\]

Then (7) becomes
\[
\begin{equation*}
u^{\prime}(x)+\frac{2 u(x)}{x}=0 \tag{8}
\end{equation*}
\]

The above is now solved for \(u(x)\). In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{2 u}{x}
\end{aligned}
\]

Where \(f(x)=-\frac{2}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{2}{x} d x \\
\int \frac{1}{u} d u & =\int-\frac{2}{x} d x \\
\ln (u) & =-2 \ln (x)+c_{1} \\
u & =\mathrm{e}^{-2 \ln (x)+c_{1}} \\
& =\frac{c_{1}}{x^{2}}
\end{aligned}
\]

Now that \(u(x)\) is known, then
\[
\begin{aligned}
v^{\prime}(x) & =u(x) \\
v(x) & =\int u(x) d x+c_{2} \\
& =-\frac{c_{1}}{x}+c_{2}
\end{aligned}
\]

Hence
\[
\begin{aligned}
y & =v(x) x^{n} \\
& =\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \\
& =\left(c_{2} x-c_{1}\right) x
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=\left(-\frac{c_{1}}{x}+c_{2}\right) x^{2} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=c_{1}+2\left(-\frac{c_{1}}{x}+c_{2}\right) x
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-c_{1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=0
\]

Substituting these values back in above solution results in
\[
y=c_{2} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{2} x^{2}
\]

Verified OK.

\subsection*{15.1.8 Solving as second order ode non constant coeff transformation on B ode}

Given an ode of the form
\[
A y^{\prime \prime}+B y^{\prime}+C y=F(x)
\]

This method reduces the order ode the ODE by one by applying the transformation
\[
y=B v
\]

This results in
\[
\begin{aligned}
y^{\prime} & =B^{\prime} v+v^{\prime} B \\
y^{\prime \prime} & =B^{\prime \prime} v+B^{\prime} v^{\prime}+v^{\prime \prime} B+v^{\prime} B^{\prime} \\
& =v^{\prime \prime} B+2 v^{\prime}+B^{\prime}+B^{\prime \prime} v
\end{aligned}
\]

And now the original ode becomes
\[
\begin{array}{r}
A\left(v^{\prime \prime} B+2 v^{\prime} B^{\prime}+B^{\prime \prime} v\right)+B\left(B^{\prime} v+v^{\prime} B\right)+C B v=0 \\
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}+\left(A B^{\prime \prime}+B B^{\prime}+C B\right) v=0 \tag{1}
\end{array}
\]

If the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero, then this method works and can be used to solve
\[
A B v^{\prime \prime}+\left(2 A B^{\prime}+B^{2}\right) v^{\prime}=0
\]

By Using \(u=v^{\prime}\) which reduces the order of the above ode to one. The new ode is
\[
A B u^{\prime}+\left(2 A B^{\prime}+B^{2}\right) u=0
\]

The above ode is first order ode which is solved for \(u\). Now a new ode \(v^{\prime}=u\) is solved for \(v\) as first order ode. Then the final solution is obtain from \(y=B v\).

This method works only if the term \(A B^{\prime \prime}+B B^{\prime}+C B\) is zero. The given ODE shows that
\[
\begin{aligned}
A & =x^{2} \\
B & =-2 x \\
C & =2 \\
F & =0
\end{aligned}
\]

The above shows that for this ode
\[
\begin{aligned}
A B^{\prime \prime}+B B^{\prime}+C B & =\left(x^{2}\right)(0)+(-2 x)(-2)+(2)(-2 x) \\
& =0
\end{aligned}
\]

Hence the ode in \(v\) given in (1) now simplifies to
\[
-2 x^{3} v^{\prime \prime}+(0) v^{\prime}=0
\]

Now by applying \(v^{\prime}=u\) the above becomes
\[
-2 x^{3} u^{\prime}(x)=0
\]

Which is now solved for \(u\). Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{1}
\end{aligned}
\]

The ode for \(v\) now becomes
\[
\begin{aligned}
v^{\prime} & =u \\
& =c_{1}
\end{aligned}
\]

Which is now solved for \(v\). Integrating both sides gives
\[
\begin{aligned}
v(x) & =\int c_{1} \mathrm{~d} x \\
& =c_{1} x+c_{2}
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y(x) & =B v \\
& =(-2 x)\left(c_{1} x+c_{2}\right) \\
& =-2 x\left(c_{1} x+c_{2}\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=-2 x\left(c_{1} x+c_{2}\right) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=-4 c_{1} x-2 c_{2}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=-2 c_{2} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=0
\]

Substituting these values back in above solution results in
\[
y=-2 c_{1} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-2 c_{1} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-2 c_{1} x^{2}
\]

Verified OK.

\subsection*{15.1.9 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{array}{r}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0 \\
A y^{\prime \prime}+B y^{\prime}+C y=0 \tag{2}
\end{array}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =x^{2} \\
B & =-2 x \tag{3}\\
C & =2
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{0}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=0 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=0 \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi- \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\).
\end{tabular} \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 383: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0--\infty \\
& =\infty
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is infinity then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=0\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=1
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
\begin{aligned}
y_{1} & =z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x} \\
& =z_{1} e^{-\int \frac{1}{2} \frac{2 x}{x^{2}} d x} \\
& =z_{1} e^{\ln (x)} \\
& =z_{1}(x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=x
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Substituting gives
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{e^{\int-\frac{-2 x}{x^{2}} d x}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1} \int \frac{e^{2 \ln (x)}}{\left(y_{1}\right)^{2}} d x \\
& =y_{1}(x)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(x)+c_{2}(x(x))
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{2} x^{2}+c_{1} x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=0 \tag{1~A}
\end{equation*}
\]

Taking derivative of the solution gives
\[
y^{\prime}=2 c_{2} x+c_{1}
\]
substituting \(y^{\prime}=0\) and \(x=0\) in the above gives
\[
\begin{equation*}
0=c_{1} \tag{2~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}, 2 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=0
\]

Substituting these values back in above solution results in
\[
y=c_{2} x^{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} x^{2} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{2} x^{2}
\]

Verified OK.

\subsection*{15.1.10 Maple step by step solution}

Let's solve
\[
\left[x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{2 y^{\prime}}{x}-\frac{2 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{2 y^{\prime}}{x}+\frac{2 y}{x^{2}}=0
\]
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0
\]
- Make a change of variables
\[
t=\ln (x)
\]

Substitute the change of variables back into the ODE
- Calculate the 1 st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\(y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}\)
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t), 2 \frac{d}{x^{2}}\right)-2(t)+2 y(t)=0\)
- \(\quad\) Simplify
\[
\frac{d^{2}}{d t^{2}} y(t)-3 \frac{d}{d t} y(t)+2 y(t)=0
\]
- Characteristic polynomial of ODE
\(r^{2}-3 r+2=0\)
- Factor the characteristic polynomial
\((r-1)(r-2)=0\)
- Roots of the characteristic polynomial
\[
r=(1,2)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{t}\)
- \(\quad\) 2nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{2 t}\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{2 t}\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\(y=c_{2} x^{2}+c_{1} x\)
- Simplify
\(y=x\left(c_{2} x+c_{1}\right)\)
\[
\text { Check validity of solution } y=x\left(c_{2} x+c_{1}\right)
\]
- Use initial condition \(y(0)=0\)
\[
0=0
\]
- Compute derivative of the solution
\[
y^{\prime}=2 c_{2} x+c_{1}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{x=0\}}=0\)
\[
0=c_{1}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=0, c_{2}=c_{2}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=c_{2} x^{2}
\]
- \(\quad\) Solution to the IVP
\[
y=c_{2} x^{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 9
dsolve([\(\left.x^{\wedge} 2 * \operatorname{diff}(y(x), x \$ 2)-2 * x * \operatorname{diff}(y(x), x)+2 * y(x)=0, y(0)=0, D(y)(0)=0\right], y(x)\), singsol=al
\[
y(x)=c_{1} x^{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 11
DSolve \(\left[\left\{x^{\wedge} 2 * y\right.\right.\) ' ' \([x]-2 * x * y\) ' \(\left.[x]+2 * y[x]==0,\left\{y[0]==0, y^{\prime}[0]==0\right\}\right\}, y[x], x\), IncludeSingularSolutions
\[
y(x) \rightarrow c_{2} x^{2}
\]

\section*{15.2 problem 4}
15.2.1 Solving as second order linear constant coeff ode 2689
15.2.2 Solving using Kovacic algorithm 2692
15.2.3 Maple step by step solution . 2697

Internal problem ID [6400]
Internal file name [OUTPUT/5648_Sunday_June_05_2022_03_45_56_PM_80774343/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Challenge excercises. Page 105
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+9 y=-3 \cos (2 x)
\]

\subsection*{15.2.1 Solving as second order linear constant coeff ode}

This is second order non-homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)
\]

Where \(A=1, B=0, C=9, f(x)=-3 \cos (2 x)\). Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the non-homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=9\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+9 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\operatorname{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+9=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=9\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(9)} \\
& = \pm 3 i
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \lambda_{1}=+3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=3 i \\
& \lambda_{2}=-3 i
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=3\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)
\]

Or
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

Therefore the homogeneous solution \(y_{h}\) is
\[
y_{h}=c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
-3 \cos (2 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (2 x), \sin (2 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\{\cos (3 x), \sin (3 x)\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=-3 \cos (2 x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3}{5}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3 \cos (2 x)}{5}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+c_{2} \sin (3 x)\right)+\left(-\frac{3 \cos (2 x)}{5}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{3 \cos (2 x)}{5} \tag{1}
\end{equation*}
\]

Figure 425: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{3 \cos (2 x)}{5}
\]

Verified OK.

\subsection*{15.2.2 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+9 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
A & =1 \\
B & =0 \tag{3}\\
C & =9
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-9}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
s & =-9 \\
t & =1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-9 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 385: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-9\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (3 x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (3 x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (3 x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (3 x) \int \frac{1}{\cos (3 x)^{2}} d x \\
& =\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (3 x))+c_{2}\left(\cos (3 x)\left(\frac{\tan (3 x)}{3}\right)\right)
\end{aligned}
\]

This is second order nonhomogeneous ODE. Let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0\), and \(y_{p}\) is a particular solution to the nonhomogeneous ODE \(A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=f(x)\). \(y_{h}\) is the solution to
\[
y^{\prime \prime}+9 y=0
\]

The homogeneous solution is found using the Kovacic algorithm which results in
\[
y_{h}=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}
\]

The particular solution is now found using the method of undetermined coefficients. Looking at the RHS of the ode, which is
\[
-3 \cos (2 x)
\]

Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is
\[
[\{\cos (2 x), \sin (2 x)\}]
\]

While the set of the basis functions for the homogeneous solution found earlier is
\[
\left\{\frac{\sin (3 x)}{3}, \cos (3 x)\right\}
\]

Since there is no duplication between the basis function in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis in the UC_set.
\[
y_{p}=A_{1} \cos (2 x)+A_{2} \sin (2 x)
\]

The unknowns \(\left\{A_{1}, A_{2}\right\}\) are found by substituting the above trial solution \(y_{p}\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives
\[
5 A_{1} \cos (2 x)+5 A_{2} \sin (2 x)=-3 \cos (2 x)
\]

Solving for the unknowns by comparing coefficients results in
\[
\left[A_{1}=-\frac{3}{5}, A_{2}=0\right]
\]

Substituting the above back in the above trial solution \(y_{p}\), gives the particular solution
\[
y_{p}=-\frac{3 \cos (2 x)}{5}
\]

Therefore the general solution is
\[
\begin{aligned}
y & =y_{h}+y_{p} \\
& =\left(c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}\right)+\left(-\frac{3 \cos (2 x)}{5}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{3 \cos (2 x)}{5} \tag{1}
\end{equation*}
\]

Figure 426: Slope field plot

Verification of solutions
\[
y=c_{1} \cos (3 x)+\frac{c_{2} \sin (3 x)}{3}-\frac{3 \cos (2 x)}{5}
\]

Verified OK.

\subsection*{15.2.3 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+9 y=-3 \cos (2 x)
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+9=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-36})}{2}\)
- Roots of the characteristic polynomial
\(r=(-3 \mathrm{I}, 3 \mathrm{I})\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(x)=\cos (3 x)\)
- \(\quad 2\) nd solution of the homogeneous ODE
\[
y_{2}(x)=\sin (3 x)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos (3 x)+c_{2} \sin (3 x)+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=-3 \cos (2 x)\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\cos (3 x) & \sin (3 x) \\
-3 \sin (3 x) & 3 \cos (3 x)
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=3
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{\cos (3 x)\left(\int(-\sin (5 x)-\sin (x)) d x\right)}{2}+\frac{\sin (3 x)\left(\int(-\cos (x)-\cos (5 x)) d x\right)}{2}
\]
- Compute integrals
\[
y_{p}(x)=-\frac{3 \cos (2 x)}{5}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \cos (3 x)+c_{2} \sin (3 x)-\frac{3 \cos (2 x)}{5}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 23
```

dsolve(diff(y(x),x\$2)+9*y(x)=-3*\operatorname{cos}(2*x),y(x), singsol=all)

```
\[
y(x)=\sin (3 x) c_{2}+\cos (3 x) c_{1}-\frac{3 \cos (2 x)}{5}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 28
DSolve[y'' \([x]+9 * y[x]==-3 * \operatorname{Cos}[2 * x], y[x], x\), IncludeSingularSolutions \(->\) True]
\[
y(x) \rightarrow-\frac{3}{5} \cos (2 x)+c_{1} \cos (3 x)+c_{2} \sin (3 x)
\]
16 Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105
16.1 problem 1 2701
16.2 problem 2 2714
16.3 problem 4 2725

\section*{16.1 problem 1}
16.1.1 Solving as linear ode . 2701
16.1.2 Solving as first order ode lie symmetry lookup ode 2703
16.1.3 Solving as exact ode . 2707
16.1.4 Maple step by step solution . 2711

Internal problem ID [6401]
Internal file name [OUTPUT/5649_Sunday_June_05_2022_03_45_58_PM_11655965/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
y+y^{\prime}=\cos (x)
\]

\subsection*{16.1.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =\cos (x)
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=\cos (x)
\]

The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(\cos (x)) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)(\cos (x)) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(\cos (x) \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int \cos (x) \mathrm{e}^{x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=\frac{\cos (x) \mathrm{e}^{x}}{2}+\frac{\sin (x) \mathrm{e}^{x}}{2}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}\left(\frac{\cos (x) \mathrm{e}^{x}}{2}+\frac{\sin (x) \mathrm{e}^{x}}{2}\right)+c_{1} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

Figure 427: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}
\]

Verified OK.

\subsection*{16.1.2 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-y+\cos (x) \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 387: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
\]

Which results in
\[
S=y \mathrm{e}^{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-y+\cos (x)
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \mathrm{e}^{x} \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=\cos (x) \mathrm{e}^{x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=\cos (R) \mathrm{e}^{R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1}+\frac{\mathrm{e}^{R}(\cos (R)+\sin (R))}{2} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{x} y=\frac{\mathrm{e}^{x}(\sin (x)+\cos (x))}{2}+c_{1}
\]

Which simplifies to
\[
\mathrm{e}^{x} y=\frac{\mathrm{e}^{x}(\sin (x)+\cos (x))}{2}+c_{1}
\]

Which gives
\[
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical
coordinates
transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-y+\cos (x)\) & & \(\frac{d S}{d R}=\cos (R) \mathrm{e}^{R}\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{\rightarrow}\) \\
\hline & \(R=x\) & \\
\hline \(\xrightarrow{\rightarrow \rightarrow-4 \times 1)}\) & \(S=y \mathrm{e}^{x}\) & \\
\hline & \(S=y \mathrm{e}^{x}\) & \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
\]

Figure 428: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2}
\]

Verified OK.

\subsection*{16.1.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =(-y+\cos (x)) \mathrm{d} x \\
(y-\cos (x)) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=y-\cos (x) \\
& N(x, y)=1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(y-\cos (x)) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(y-\cos (x)) \\
& =(y-\cos (x)) \mathrm{e}^{x}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left((y-\cos (x)) \mathrm{e}^{x}\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int(y-\cos (x)) \mathrm{e}^{x} \mathrm{~d} x \\
\phi & =-\frac{\mathrm{e}^{x}(-2 y+\cos (x)+\sin (x))}{2}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{\mathrm{e}^{x}(-2 y+\cos (x)+\sin (x))}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{\mathrm{e}^{x}(-2 y+\cos (x)+\sin (x))}{2}
\]

The solution becomes
\[
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
\]

Figure 429: Slope field plot

Verification of solutions
\[
y=\frac{\mathrm{e}^{-x}\left(\cos (x) \mathrm{e}^{x}+\sin (x) \mathrm{e}^{x}+2 c_{1}\right)}{2}
\]

Verified OK.

\subsection*{16.1.4 Maple step by step solution}

Let's solve
\[
y+y^{\prime}=\cos (x)
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=-y+\cos (x)\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y+y^{\prime}=\cos (x)\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu(x) \cos (x)\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\mu(x)\)
- Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) \cos (x) d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) \cos (x) d x+c_{1}\)
- Solve for \(y\)
\(y=\frac{\int \mu(x) \cos (x) d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{x}\)
\(y=\frac{\int \cos (x) \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{\frac{\cos (x) e^{x}}{2}+\sin ^{\sin (x) e^{x}}{ }^{x}+c_{1}}{\mathrm{e}^{x}}\)
- Simplify
\(y=\frac{\sin (x)}{2}+\frac{\cos (x)}{2}+c_{1} \mathrm{e}^{-x}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

dsolve(diff(y(x),x)+y(x)=cos(x),y(x), singsol=all)

```
\[
y(x)=\frac{\cos (x)}{2}+\frac{\sin (x)}{2}+c_{1} \mathrm{e}^{-x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.036 (sec). Leaf size: 23
DSolve[y'[x]+y[x]==Cos[x],y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{1}{2}\left(\sin (x)+\cos (x)+2 c_{1} e^{-x}\right)
\]

\section*{16.2 problem 2}
16.2.1 Existence and uniqueness analysis 2714
16.2.2 Solving as second order linear constant coeff ode 2715
16.2.3 Solving as second order ode can be made integrable ode 2717
16.2.4 Solving using Kovacic algorithm 2719
16.2.5 Maple step by step solution . 2723

Internal problem ID [6402]
Internal file name [OUTPUT/5650_Sunday_June_05_2022_03_46_00_PM_10350138/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "kovacic", "second__order_linear_cconstant_coeff", "second__order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+3 y=0
\]

With initial conditions
\[
[y(0)=-1]
\]

\subsection*{16.2.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =3 \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+3 y=0
\]

The domain of \(p(x)=0\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=3\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{16.2.2 Solving as second order linear constant coeff ode}

This is second order with constant coefficients homogeneous ODE. In standard form the ODE is
\[
A y^{\prime \prime}(x)+B y^{\prime}(x)+C y(x)=0
\]

Where in the above \(A=1, B=0, C=3\). Let the solution be \(y=e^{\lambda x}\). Substituting this into the ODE gives
\[
\begin{equation*}
\lambda^{2} \mathrm{e}^{\lambda x}+3 \mathrm{e}^{\lambda x}=0 \tag{1}
\end{equation*}
\]

Since exponential function is never zero, then dividing \(\mathrm{Eq}(2)\) throughout by \(e^{\lambda x}\) gives
\[
\begin{equation*}
\lambda^{2}+3=0 \tag{2}
\end{equation*}
\]

Equation (2) is the characteristic equation of the ODE. Its roots determine the general solution form. Using the quadratic formula
\[
\lambda_{1,2}=\frac{-B}{2 A} \pm \frac{1}{2 A} \sqrt{B^{2}-4 A C}
\]

Substituting \(A=1, B=0, C=3\) into the above gives
\[
\begin{aligned}
\lambda_{1,2} & =\frac{0}{(2)(1)} \pm \frac{1}{(2)(1)} \sqrt{0^{2}-(4)(1)(3)} \\
& = \pm i \sqrt{3}
\end{aligned}
\]

Hence
\[
\begin{aligned}
\lambda_{1} & =+i \sqrt{3} \\
\lambda_{2} & =-i \sqrt{3}
\end{aligned}
\]

Which simplifies to
\[
\begin{aligned}
& \lambda_{1}=i \sqrt{3} \\
& \lambda_{2}=-i \sqrt{3}
\end{aligned}
\]

Since roots are complex conjugate of each others, then let the roots be
\[
\lambda_{1,2}=\alpha \pm i \beta
\]

Where \(\alpha=0\) and \(\beta=\sqrt{3}\). Therefore the final solution, when using Euler relation, can be written as
\[
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
\]

Which becomes
\[
y=e^{0}\left(c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)\right)
\]

Or
\[
y=c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x) \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1} \tag{1A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=-1
\]

Substituting these values back in above solution results in
\[
y=-\cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
\]

Verified OK.

\subsection*{16.2.3 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+3 y^{\prime} y=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+3 y^{\prime} y\right) d x=0 \\
\frac{y^{\prime 2}}{2}+\frac{3 y^{2}}{2}=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{-3 y^{2}+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{-3 y^{2}+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{-3 y^{2}+2 c_{1}}} d y & =\int d x \\
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{-3 y^{2}+2 c_{1}}} d y & =\int d x \\
-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3} & =x+c_{3}
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the First solution
\[
\begin{equation*}
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=c_{2}+x \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}=c_{2} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{2}=-\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}
\]

Substituting these values back in above solution results in
\[
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=-\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}+x
\]

Looking at the Second solution
\[
\begin{equation*}
-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=x+c_{3} \tag{2}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}=c_{3} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{3}\right\}\). Solving for the constants gives
\[
c_{3}=\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}
\]

Substituting these values back in above solution results in
\[
-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=x+\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3} & =-\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}+x \tag{1}\\
-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3} & =x+\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3} \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=-\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}+x
\]

Verified OK.
\[
-\frac{\sqrt{3} \arctan \left(\frac{\sqrt{3} y}{\sqrt{-3 y^{2}+2 c_{1}}}\right)}{3}=x+\frac{\arctan \left(\frac{\sqrt{3}}{\sqrt{-3+2 c_{1}}}\right) \sqrt{3}}{3}
\]

Verified OK.

\subsection*{16.2.4 Solving using Kovacic algorithm}

Writing the ode as
\[
\begin{align*}
y^{\prime \prime}+3 y & =0 \tag{1}\\
A y^{\prime \prime}+B y^{\prime}+C y & =0 \tag{2}
\end{align*}
\]

Comparing (1) and (2) shows that
\[
\begin{align*}
& A=1 \\
& B=0 \tag{3}\\
& C=3
\end{align*}
\]

Applying the Liouville transformation on the dependent variable gives
\[
z(x)=y e^{\int \frac{B}{2 A} d x}
\]

Then (2) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=r z(x) \tag{4}
\end{equation*}
\]

Where \(r\) is given by
\[
\begin{align*}
r & =\frac{s}{t} \tag{5}\\
& =\frac{2 A B^{\prime}-2 B A^{\prime}+B^{2}-4 A C}{4 A^{2}}
\end{align*}
\]

Substituting the values of \(A, B, C\) from (3) in the above and simplifying gives
\[
\begin{equation*}
r=\frac{-3}{1} \tag{6}
\end{equation*}
\]

Comparing the above to (5) shows that
\[
\begin{aligned}
& s=-3 \\
& t=1
\end{aligned}
\]

Therefore eq. (4) becomes
\[
\begin{equation*}
z^{\prime \prime}(x)=-3 z(x) \tag{7}
\end{equation*}
\]

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation
\[
y=z(x) e^{-\int \frac{B}{2 A} d x}
\]

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty\). The following table summarizes these cases.
\begin{tabular}{|l|l|l|}
\hline Case & Allowed pole order for \(r\) & Allowed value for \(\mathcal{O}(\infty)\) \\
\hline 1 & \(\{0,1,2,4,6,8, \cdots\}\) & \(\{\cdots,-6,-4,-2,0,2,3,4,5,6, \cdots\}\) \\
\hline 2 & \begin{tabular}{l}
Need to have at least one pole that \\
is either order 2 or odd order greater \\
than 2. Any other pole order is \\
allowed as long as the above condi-
\end{tabular} & no condition \\
tion is satisfied. Hence the following \\
set of pole orders are all allowed. \\
\(\{1,2\},\{1,3\},\{2\},\{3\},\{3,4\},\{1,2,5\}\). & \\
\hline 3 & \(\{1,2\}\) & \(\{2,3,4,5,6,7, \cdots\}\) \\
\hline
\end{tabular}

Table 390: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty\) is the degree of \(t\) minus the degree of \(s\). Therefore
\[
\begin{aligned}
O(\infty) & =\operatorname{deg}(t)-\operatorname{deg}(s) \\
& =0-0 \\
& =0
\end{aligned}
\]

There are no poles in \(r\). Therefore the set of poles \(\Gamma\) is empty. Since there is no odd order pole larger than 2 and the order at \(\infty\) is 0 then the necessary conditions for case one are met. Therefore
\[
L=[1]
\]

Since \(r=-3\) is not a function of \(x\), then there is no need run Kovacic algorithm to obtain a solution for transformed ode \(z^{\prime \prime}=r z\) as one solution is
\[
z_{1}(x)=\cos (\sqrt{3} x)
\]

Using the above, the solution for the original ode can now be found. The first solution to the original ode in \(y\) is found from
\[
y_{1}=z_{1} e^{\int-\frac{1}{2} \frac{B}{A} d x}
\]

Since \(B=0\) then the above reduces to
\[
\begin{aligned}
y_{1} & =z_{1} \\
& =\cos (\sqrt{3} x)
\end{aligned}
\]

Which simplifies to
\[
y_{1}=\cos (\sqrt{3} x)
\]

The second solution \(y_{2}\) to the original ode is found using reduction of order
\[
y_{2}=y_{1} \int \frac{e^{\int-\frac{B}{A} d x}}{y_{1}^{2}} d x
\]

Since \(B=0\) then the above becomes
\[
\begin{aligned}
y_{2} & =y_{1} \int \frac{1}{y_{1}^{2}} d x \\
& =\cos (\sqrt{3} x) \int \frac{1}{\cos (\sqrt{3} x)^{2}} d x \\
& =\cos (\sqrt{3} x)\left(\frac{\sqrt{3} \tan (\sqrt{3} x)}{3}\right)
\end{aligned}
\]

Therefore the solution is
\[
\begin{aligned}
y & =c_{1} y_{1}+c_{2} y_{2} \\
& =c_{1}(\cos (\sqrt{3} x))+c_{2}\left(\cos (\sqrt{3} x)\left(\frac{\sqrt{3} \tan (\sqrt{3} x)}{3}\right)\right)
\end{aligned}
\]

Initial conditions are used to solve for the constants of integration.
Looking at the above solution
\[
\begin{equation*}
y=c_{1} \cos (\sqrt{3} x)+\frac{c_{2} \sqrt{3} \sin (\sqrt{3} x)}{3} \tag{1}
\end{equation*}
\]

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y=-1\) and \(x=0\) in the above gives
\[
\begin{equation*}
-1=c_{1} \tag{1~A}
\end{equation*}
\]

Equations \(\{1 \mathrm{~A}\}\) are now solved for \(\left\{c_{1}, c_{2}\right\}\). Solving for the constants gives
\[
c_{1}=-1
\]

Substituting these values back in above solution results in
\[
y=-\cos (\sqrt{3} x)+\frac{c_{2} \sqrt{3} \sin (\sqrt{3} x)}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\cos (\sqrt{3} x)+\frac{c_{2} \sqrt{3} \sin (\sqrt{3} x)}{3} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=-\cos (\sqrt{3} x)+\frac{c_{2} \sqrt{3} \sin (\sqrt{3} x)}{3}
\]

Verified OK.

\subsection*{16.2.5 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}+3 y=0, y(0)=-1\right]\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of ODE
\(r^{2}+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{0 \pm(\sqrt{-12})}{2}\)
- Roots of the characteristic polynomial
\(r=(-\mathrm{I} \sqrt{3}, \mathrm{I} \sqrt{3})\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(x)=\cos (\sqrt{3} x)\)
- \(\quad 2\) nd solution of the ODE
\(y_{2}(x)=\sin (\sqrt{3} x)\)
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
- Substitute in solutions
\[
y=c_{1} \cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
\]

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
<- constant coefficients successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 21
```

dsolve([diff(y(x),x\$2)=-3*y(x),y(0) = -1],y(x), singsol=all)

```
\[
y(x)=c_{1} \sin (\sqrt{3} x)-\cos (\sqrt{3} x)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.018 (sec). Leaf size: 27
\[
\text { DSolve }[\{y \text { ' ' }[x]==-3 * y[x],\{y[0]==-1\}\}, y[x], x \text {, IncludeSingularSolutions } \rightarrow \text { True] }
\]
\[
y(x) \rightarrow-\cos (\sqrt{3} x)+c_{2} \sin (\sqrt{3} x)
\]

\section*{16.3 problem 4}
16.3.1 Solving as second order ode can be made integrable ode 2725
16.3.2 Solving as second order ode missing \(x\) ode 2727

Internal problem ID [6403]
Internal file name [OUTPUT/5651_Sunday_June_05_2022_03_46_01_PM_55027395/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 2. Problems for Review and Discovery. Problems for Discussion and Exploration. Page 105
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_x", "second_order_ode_can_be_made_integrable"

Maple gives the following as the ode type
[[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]
\[
y^{\prime \prime}+\sin (y)=0
\]

\subsection*{16.3.1 Solving as second order ode can be made integrable ode}

Multiplying the ode by \(y^{\prime}\) gives
\[
y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)=0
\]

Integrating the above w.r.t \(x\) gives
\[
\begin{gathered}
\int\left(y^{\prime} y^{\prime \prime}+y^{\prime} \sin (y)\right) d x=0 \\
\frac{y^{\prime 2}}{2}-\cos (y)=c_{2}
\end{gathered}
\]

Which is now solved for \(y\). Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
& y^{\prime}=\sqrt{2 \cos (y)+2 c_{1}} \tag{1}\\
& y^{\prime}=-\sqrt{2 \cos (y)+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =x+c_{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& \frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x \tag{1}\\
&-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3} \tag{2}
\end{align*}
\]

Verification of solutions
\[
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x
\]

Verified OK.
\[
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3}
\]

Verified OK.

\subsection*{16.3.2 Solving as second order ode missing \(x\) ode}

This is missing independent variable second order ode. Solved by reduction of order by using substitution which makes the dependent variable \(y\) an independent variable. Using
\[
y^{\prime}=p(y)
\]

Then
\[
\begin{aligned}
y^{\prime \prime} & =\frac{d p}{d x} \\
& =\frac{d y}{d x} \frac{d p}{d y} \\
& =p \frac{d p}{d y}
\end{aligned}
\]

Hence the ode becomes
\[
p(y)\left(\frac{d}{d y} p(y)\right)=-\sin (y)
\]

Which is now solved as first order ode for \(p(y)\). In canonical form the ODE is
\[
\begin{aligned}
p^{\prime} & =F(y, p) \\
& =f(y) g(p) \\
& =-\frac{\sin (y)}{p}
\end{aligned}
\]

Where \(f(y)=-\sin (y)\) and \(g(p)=\frac{1}{p}\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{\frac{1}{p}} d p & =-\sin (y) d y \\
\int \frac{1}{\frac{1}{p}} d p & =\int-\sin (y) d y \\
\frac{p^{2}}{2} & =\cos (y)+c_{1}
\end{aligned}
\]

The solution is
\[
\frac{p(y)^{2}}{2}-\cos (y)-c_{1}=0
\]

For solution (1) found earlier, since \(p=y^{\prime}\) then we now have a new first order ode to solve which is
\[
\frac{y^{\prime 2}}{2}-\cos (y)-c_{1}=0
\]

Solving the given ode for \(y^{\prime}\) results in 2 differential equations to solve. Each one of these will generate a solution. The equations generated are
\[
\begin{align*}
y^{\prime} & =\sqrt{2 \cos (y)+2 c_{1}} \tag{1}\\
y^{\prime} & =-\sqrt{2 \cos (y)+2 c_{1}} \tag{2}
\end{align*}
\]

Now each one of the above ODE is solved.
Solving equation (1)
Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =c_{2}+x
\end{aligned}
\]

Solving equation (2)
Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{\sqrt{2 \cos (y)+2 c_{1}}} d y & =\int d x \\
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}} & =x+c_{3}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x \tag{1}\\
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3} \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=c_{2}+x
\]

Verified OK.
\[
-\frac{2 \sqrt{\frac{\cos (y)+c_{1}}{c_{1}+1}} \text { InverseJacobiAM }\left(\frac{y}{2}, \frac{2}{\sqrt{2+2 c_{1}}}\right)}{\sqrt{2 \cos (y)+2 c_{1}}}=x+c_{3}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying 2nd order Liouville trying 2nd order WeierstrassP trying 2nd order JacobiSN differential order: 2; trying a linearization to 3rd order trying 2nd order ODE linearizable_by_differentiation trying 2nd order, 2 integrating factors of the form mu(x,y) trying differential order: 2; missing variables `, `-> Computing symmetries using: way = 3 `, `-> Computing symmetries using: way = exp_sym -> Calling odsolve with the ODE`, (diff(_b(_a), _a))*_b(_a)+sin(_a) = 0, _b(_a)` *** Suble     Methods for first order ODEs:     --- Trying classification methods ---     trying a quadrature     trying 1st order linear     trying Bernoulli     <- Bernoulli successful <- differential order: 2; canonical coordinates successful <- differential order 2; missing variables successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 47
dsolve(diff \((y(x), x \$ 2)+\sin (y(x))=0, y(x)\), singsol=all)
\[
\begin{array}{r}
\int^{y(x)} \frac{1}{\sqrt{2 \cos \left(_a\right)+c_{1}} d _a-x-c_{2}=0} \\
-\left(\int^{y(x)} \frac{1}{\sqrt{2 \cos \left(_a\right)+c_{1}}} d _a\right)-x-c_{2}=0
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 3.86 (sec). Leaf size: 69
DSolve[y''[x]+Sin[y[x]]==0,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow-2 \text { JacobiAmplitude }\left(\frac{1}{2} \sqrt{\left(c_{1}+2\right)\left(x+c_{2}\right)^{2}}, \frac{4}{c_{1}+2}\right) \\
& y(x) \rightarrow 2 \text { JacobiAmplitude }\left(\frac{1}{2} \sqrt{\left(c_{1}+2\right)\left(x+c_{2}\right)^{2}}, \frac{4}{c_{1}+2}\right)
\end{aligned}
\]
17 Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
17.1 problem 1 (a) solving using series 2732
17.2 problem 1(a) solving directly 2742
17.3 problem 1(b) solving using series 2757
17.4 problem 1(b) solving directly 2769
17.5 problem 1 (c) solving using series 2772
17.6 problem 1(c) solving directly 2784
17.7 problem 1(d) solving using series 2787
17.8 problem 1(d) solving directly 2797
17.9 problem 1(e) solving using series 2800
17.10problem 1 (e) solving directly 2810
17.11problem 1(f) solving using series 2813
17.12problem 1(f) solving directly 2825
17.13problem 2(a) solving using series 2838
17.14problem 2(a) solving directly 2844
17.15problem 2(b) solving using series 2858
17.16problem 2(b) solving directly 2861
17.17problem 2(c) solving using series 2876
17.18problem 2(c) solving directly 2883
17.19problem 2(d) solving using series 2897
17.20problem 3 2911
17.21 problem 4 2923
17.22problem 5 solved using series 2935
17.23problem 5 solved directly 2947

\section*{17.1 problem 1(a) solving using series}
17.1.1 Solving as series ode . 2732
17.1.2 Maple step by step solution . 2740

Internal problem ID [6404]
Internal file name [OUTPUT/5652_Sunday_June_05_2022_03_46_04_PM_97963013/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(a) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_separable]
\[
y^{\prime}-2 x y=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.1.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
F_{0} & =2 x y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\left(4 x^{2}+2\right) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =\left(8 x^{3}+12 x\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =4 y\left(4 x^{4}+12 x^{2}+3\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =32 y\left(x^{4}+5 x^{2}+\frac{15}{4}\right) x \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
& =\left(64 x^{6}+480 x^{4}+720 x^{2}+120\right) y \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
& =\left(128 x^{7}+1344 x^{5}+3360 x^{3}+1680 x\right) y
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=2 y(0) \\
& F_{2}=0 \\
& F_{3}=12 y(0) \\
& F_{4}=0 \\
& F_{5}=120 y(0) \\
& F_{6}=0
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+O\left(x^{8}\right)
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-2 x y & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-2 x \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-2 x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-2 x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty}\left(-2 x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(1+n) a_{1+n}-2 a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{1+n}\), gives
\[
\begin{equation*}
a_{1+n}=\frac{2 a_{n-1}}{1+n} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
2 a_{2}-2 a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=a_{0}
\]

For \(n=2\) the recurrence equation gives
\[
3 a_{3}-2 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=0
\]

For \(n=3\) the recurrence equation gives
\[
4 a_{4}-2 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{2}
\]

For \(n=4\) the recurrence equation gives
\[
5 a_{5}-2 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=0
\]

For \(n=5\) the recurrence equation gives
\[
6 a_{6}-2 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{6}
\]

For \(n=6\) the recurrence equation gives
\[
7 a_{7}-2 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=0
\]

For \(n=7\) the recurrence equation gives
\[
8 a_{8}-2 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{24}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{0} x^{2}+\frac{1}{2} a_{0} x^{4}+\frac{1}{6} a_{0} x^{6}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) a_{0}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) c_{1}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Figure 430: Slope field plot

Verification of solutions
\[
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) c_{1}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{17.1.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-2 x y=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=2 x
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int 2 x d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=x^{2}+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x^{2}+c_{1}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 24
```

Order:=8;
dsolve(diff(y(x),x)=2*x*y(x),y(x),type='series',x=0);

```
\[
y(x)=\left(1+x^{2}+\frac{1}{2} x^{4}+\frac{1}{6} x^{6}\right) y(0)+O\left(x^{8}\right)
\]

Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 25
AsymptoticDSolveValue[y'[x]==2*x*y[x],y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{1}\left(\frac{x^{6}}{6}+\frac{x^{4}}{2}+x^{2}+1\right)
\]

\section*{17.2 problem 1(a) solving directly}
17.2.1 Solving as separable ode . 2742
17.2.2 Solving as linear ode . 2744
17.2.3 Solving as homogeneousTypeD2 ode 2745
17.2.4 Solving as first order ode lie symmetry lookup ode 2747
17.2.5 Solving as exact ode . 2751
17.2.6 Maple step by step solution . 2755

Internal problem ID [6405]
Internal file name [OUTPUT/5653_Sunday_June_05_2022_03_46_06_PM_96428372/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(a) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
y^{\prime}-2 x y=0
\]
17.2.1 Solving as separable ode

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =2 x y
\end{aligned}
\]

Where \(f(x)=2 x\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =2 x d x \\
\int \frac{1}{y} d y & =\int 2 x d x \\
\ln (y) & =x^{2}+c_{1} \\
y & =\mathrm{e}^{x^{2}+c_{1}} \\
& =c_{1} \mathrm{e}^{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
\]

Figure 431: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{x^{2}}
\]

Verified OK.

\subsection*{17.2.2 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-2 x \\
q(x) & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-2 x y=0
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-2 x d x} \\
& =\mathrm{e}^{-x^{2}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x^{2}} y\right) & =0
\end{aligned}
\]

Integrating gives
\[
\mathrm{e}^{-x^{2}} y=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-x^{2}}\) results in
\[
y=c_{1} \mathrm{e}^{x^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
\]

Figure 432: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x^{2}}
\]

Verified OK.

\subsection*{17.2.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x+u(x)-2 x^{2} u(x)=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =\frac{u\left(2 x^{2}-1\right)}{x}
\end{aligned}
\]

Where \(f(x)=\frac{2 x^{2}-1}{x}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =\frac{2 x^{2}-1}{x} d x \\
\int \frac{1}{u} d u & =\int \frac{2 x^{2}-1}{x} d x \\
\ln (u) & =x^{2}-\ln (x)+c_{2} \\
u & =\mathrm{e}^{x^{2}-\ln (x)+c_{2}} \\
& =c_{2} \mathrm{e}^{x^{2}-\ln (x)}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{2} \mathrm{e}^{x^{2}}}{x}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =x u \\
& =c_{2} \mathrm{e}^{x^{2}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
\]

Figure 433: Slope field plot
Verification of solutions
\[
y=c_{2} \mathrm{e}^{x^{2}}
\]

Verified OK.

\subsection*{17.2.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =2 x y \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 393: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x^{2}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x^{2}}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{-x^{2}} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=2 x y
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-2 x \mathrm{e}^{-x^{2}} y \\
S_{y} & =\mathrm{e}^{-x^{2}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{-x^{2}} y=c_{1}
\]

Which simplifies to
\[
\mathrm{e}^{-x^{2}} y=c_{1}
\]

Which gives
\[
y=c_{1} \mathrm{e}^{x^{2}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical
coordinates
transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=2 x y\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \\
\hline 4 & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow}\) \\
\hline d \(2 \times x y\) & & \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 25]{ }\) \\
\hline -1 & \(R=x\) & \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow\) 边 \\
\hline & \(S=\mathrm{e}^{-x^{2}} y\) & \\
\hline & & \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow\) 他 \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow}\) \\
\hline 40, \({ }_{\text {a }}\) & & \(\xrightarrow[\rightarrow+\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow]{ }\) \\
\hline & & \(\xrightarrow{\rightarrow}\) \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x^{2}} \tag{1}
\end{equation*}
\]

Figure 434: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{x^{2}}
\]

Verified OK.

\subsection*{17.2.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{2 y}\right) \mathrm{d} y & =(x) \mathrm{d} x \\
(-x) \mathrm{d} x+\left(\frac{1}{2 y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-x \\
& N(x, y)=\frac{1}{2 y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{2 y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x \mathrm{~d} x \\
\phi & =-\frac{x^{2}}{2}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{2 y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{2 y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=\frac{1}{2 y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{2 y}\right) \mathrm{d} y \\
f(y) & =\frac{\ln (y)}{2}+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{x^{2}}{2}+\frac{\ln (y)}{2}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{x^{2}}{2}+\frac{\ln (y)}{2}
\]

The solution becomes
\[
y=\mathrm{e}^{x^{2}+2 c_{1}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{x^{2}+2 c_{1}} \tag{1}
\end{equation*}
\]

Figure 435: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{x^{2}+2 c_{1}}
\]

Verified OK.

\subsection*{17.2.6 Maple step by step solution}

Let's solve
\(y^{\prime}-2 x y=0\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Separate variables
\(\frac{y^{\prime}}{y}=2 x\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y} d x=\int 2 x d x+c_{1}\)
- Evaluate integral
\[
\ln (y)=x^{2}+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x^{2}+c_{1}}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
```

dsolve(diff(y(x),x)=2*x*y(x),y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x^{2}} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18
DSolve[y' \([x]==2 * x * y[x], y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x^{2}} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{17.3 problem 1(b) solving using series}
17.3.1 Solving as series ode . 2757
17.3.2 Maple step by step solution . 2767

Internal problem ID [6406]
Internal file name [OUTPUT/5654_Sunday_June_05_2022_03_46_07_PM_96437827/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(b) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y+y^{\prime}=1
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.3.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=1-y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=y-1 \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=1-y \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=y-1 \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=1-y \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=y-1 \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=1-y \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=1-y(0) \\
& F_{1}=y(0)-1 \\
& F_{2}=1-y(0) \\
& F_{3}=y(0)-1 \\
& F_{4}=1-y(0) \\
& F_{5}=y(0)-1 \\
& F_{6}=1-y(0)
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y+y^{\prime} & =1
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=1 \\
& p(x)=1
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=1 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=1 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=1 \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+1) a_{n+1}+a_{n}\right) x^{n}=1 \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(a_{1}+a_{0}\right) 1=1 \\
a_{1}+a_{0}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=1-a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}+a_{1}\right) x=0 \\
2 a_{2}+a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=-\frac{1}{2}+\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(3 a_{3}+a_{2}\right) x^{2}=0 \\
3 a_{3}+a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{6}-\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(4 a_{4}+a_{3}\right) x^{3}=0 \\
4 a_{4}+a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{1}{24}+\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(5 a_{5}+a_{4}\right) x^{4}=0 \\
5 a_{5}+a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{120}-\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{6}+a_{5}\right) x^{5}=0 \\
6 a_{6}+a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{1}{720}+\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(7 a_{7}+a_{6}\right) x^{6}=0 \\
7 a_{7}+a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{5040}-\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(8 a_{8}+a_{7}\right) x^{7}=0 \\
8 a_{8}+a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{1}{40320}+\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+\left(1-a_{0}\right) x+\left(-\frac{1}{2}+\frac{a_{0}}{2}\right) x^{2}+\left(\frac{1}{6}-\frac{a_{0}}{6}\right) x^{3}+\left(-\frac{1}{24}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(\frac{1}{120}-\frac{a_{0}}{120}\right) x^{5}+\left(-\frac{1}{720}+\frac{a_{0}}{720}\right) x^{6}+\left(\frac{1}{5040}-\frac{a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) a_{0} \tag{3}\\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \tag{1}\\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right) \\
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) c_{1} \tag{2}\\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

Figure 436: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) c_{1} \\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{17.3.2 Maple step by step solution}

Let's solve
\[
y+y^{\prime}=1
\]
- Highest derivative means the order of the ODE is 1
\[
y^{\prime}
\]
- Separate variables
\[
\frac{y^{\prime}}{1-y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{1-y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
-\ln (1-y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=-\mathrm{e}^{-c_{1}-x}+1
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 60
```

Order:=8;
dsolve(diff(y(x),x)+y(x)=1,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \\
& +x-\frac{x^{2}}{2}+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}-\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 97
AsymptoticDSolveValue \(\left[y^{\prime}[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{x^{7}}{5040}-\frac{x^{6}}{720}+\frac{x^{5}}{120}-\frac{x^{4}}{24}+\frac{x^{3}}{6}-\frac{x^{2}}{2} \\
& +c_{1}\left(-\frac{x^{7}}{5040}+\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)+x
\end{aligned}
\]

\section*{17.4 problem 1 (b) solving directly}
17.4.1 Solving as quadrature ode . 2769
17.4.2 Maple step by step solution . 2770

Internal problem ID [6407]
Internal file name [OUTPUT/5655_Sunday_June_05_2022_03_46_09_PM_61613456/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(b) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
y+y^{\prime}=1
\]

\subsection*{17.4.1 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{1-y} d y & =\int d x \\
-\ln (1-y) & =x+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{1-y}=\mathrm{e}^{x+c_{1}}
\]

Which simplifies to
\[
\frac{1}{1-y}=c_{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{\mathrm{e}^{-x}}{c_{2}}+1 \tag{1}
\end{equation*}
\]

Figure 437: Slope field plot

Verification of solutions
\[
y=-\frac{\mathrm{e}^{-x}}{c_{2}}+1
\]

Verified OK.

\subsection*{17.4.2 Maple step by step solution}

Let's solve
\[
y+y^{\prime}=1
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Separate variables
\[
\frac{y^{\prime}}{1-y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{1-y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\(-\ln (1-y)=x+c_{1}\)
- \(\quad\) Solve for \(y\)
\[
y=-\mathrm{e}^{-c_{1}-x}+1
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
dsolve(diff \((y(x), x)+y(x)=1, y(x)\), singsol=all)
\[
y(x)=1+c_{1} \mathrm{e}^{-x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 20
DSolve[y' \([x]+y[x]==1, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow 1+c_{1} e^{-x} \\
& y(x) \rightarrow 1
\end{aligned}
\]

\section*{17.5 problem 1 (c) solving using series}
17.5.1 Solving as series ode . 2772
17.5.2 Maple step by step solution . 2782

Internal problem ID [6408]
Internal file name [OUTPUT/5656_Sunday_June_05_2022_03_46_10_PM_64285777/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(c) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y=2
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.5.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=2+y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=2+y \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=2+y \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=2+y \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=2+y \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=2+y \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=2+y \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0)+2 \\
& F_{1}=y(0)+2 \\
& F_{2}=y(0)+2 \\
& F_{3}=y(0)+2 \\
& F_{4}=y(0)+2 \\
& F_{5}=y(0)+2 \\
& F_{6}=y(0)+2
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =2
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-1 \\
& p(x)=2
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=2 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=2 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=2 \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+1) a_{n+1}-a_{n}\right) x^{n}=2 \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(a_{1}-a_{0}\right) 1=2 \\
a_{1}-a_{0}=2
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=2+a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}-a_{1}\right) x=0 \\
2 a_{2}-a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=1+\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(3 a_{3}-a_{2}\right) x^{2}=0 \\
3 a_{3}-a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{3}+\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(4 a_{4}-a_{3}\right) x^{3}=0 \\
4 a_{4}-a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{12}+\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(5 a_{5}-a_{4}\right) x^{4}=0 \\
5 a_{5}-a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{60}+\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{6}-a_{5}\right) x^{5}=0 \\
6 a_{6}-a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{1}{360}+\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(7 a_{7}-a_{6}\right) x^{6}=0 \\
7 a_{7}-a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{2520}+\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(8 a_{8}-a_{7}\right) x^{7}=0 \\
8 a_{8}-a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{20160}+\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+\left(2+a_{0}\right) x+\left(1+\frac{a_{0}}{2}\right) x^{2}+\left(\frac{1}{3}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{1}{12}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(\frac{1}{60}+\frac{a_{0}}{120}\right) x^{5}+\left(\frac{1}{360}+\frac{a_{0}}{720}\right) x^{6}+\left(\frac{1}{2520}+\frac{a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) a_{0} \tag{3}\\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{align*}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \tag{1}\\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right) \\
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \tag{2}\\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{align*}
\]

Figure 438: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{17.5.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-y=2
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- Separate variables
\[
\frac{y^{\prime}}{2+y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{2+y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
\ln (2+y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x+c_{1}}-2
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
```

Order:=8;
dsolve(diff(y(x),x)-y(x)=2,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +2 x+x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 93
AsymptoticDSolveValue [y' \([x]-y[x]==2, y[x],\{x, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{x^{7}}{2520}+\frac{x^{6}}{360}+\frac{x^{5}}{60}+\frac{x^{4}}{12}+\frac{x^{3}}{3}+x^{2} \\
& +c_{1}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)+2 x
\end{aligned}
\]

\section*{17.6 problem 1(c) solving directly}
17.6.1 Solving as quadrature ode . 2784
17.6.2 Maple step by step solution . 2785

Internal problem ID [6409]
Internal file name [OUTPUT/5657_Sunday_June_05_2022_03_46_12_PM_90120699/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(c) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y=2
\]

\subsection*{17.6.1 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{y+2} d y & =\int d x \\
\ln (y+2) & =x+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
y+2=\mathrm{e}^{x+c_{1}}
\]

Which simplifies to
\[
y+2=c_{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} \mathrm{e}^{x}-2 \tag{1}
\end{equation*}
\]

Figure 439: Slope field plot
Verification of solutions
\[
y=c_{2} \mathrm{e}^{x}-2
\]

Verified OK.

\subsection*{17.6.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-y=2
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Separate variables
\[
\frac{y^{\prime}}{2+y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{2+y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
\ln (2+y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x+c_{1}}-2
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff \((y(x), x)-y(x)=2, y(x)\), singsol=all)
\[
y(x)=-2+\mathrm{e}^{x} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.035 (sec). Leaf size: 18
```

DSolve[y'[x]-y[x]==2,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& y(x) \rightarrow-2+c_{1} e^{x} \\
& y(x) \rightarrow-2
\end{aligned}
\]

\section*{17.7 problem 1(d) solving using series}
17.7.1 Solving as series ode . 2787
17.7.2 Maple step by step solution . 2795

Internal problem ID [6410]
Internal file name [OUTPUT/5658_Sunday_June_05_2022_03_46_13_PM_14284799/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(d) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y+y^{\prime}=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.7.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=-y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=y \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=-y \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=y \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=-y \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=y \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=-y \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=y(0) \\
& F_{2}=-y(0) \\
& F_{3}=y(0) \\
& F_{4}=-y(0) \\
& F_{5}=y(0) \\
& F_{6}=-y(0)
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y+y^{\prime} & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=1 \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+1) a_{n+1}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+1}\), gives
\[
\begin{equation*}
a_{n+1}=-\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
a_{1}+a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=-a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
2 a_{2}+a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
3 a_{3}+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
4 a_{4}+a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
5 a_{5}+a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
6 a_{6}+a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
7 a_{7}+a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
8 a_{8}+a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}-a_{0} x+\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}-\frac{1}{120} a_{0} x^{5}+\frac{1}{720} a_{0} x^{6}-\frac{1}{5040} a_{0} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) a_{0}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) c_{1}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Figure 440: Slope field plot

Verification of solutions
\[
y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) c_{1}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{17.7.2 Maple step by step solution}

Let's solve
\[
y+y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 1
```

y

```
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=-1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int(-1) d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=-x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{-x+c_{1}}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 46
```

Order:=8;
dsolve(diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
y(x)=\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 53
```

AsymptoticDSolveValue[y'[x]+y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{7}}{5040}+\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)
\]

\section*{17.8 problem \(1(\mathrm{~d})\) solving directly}
17.8.1 Solving as quadrature ode . 2797
17.8.2 Maple step by step solution . 2798

Internal problem ID [6411]
Internal file name [OUTPUT/5659_Sunday_June_05_2022_03_46_15_PM_41740201/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(d) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
y+y^{\prime}=0
\]

\subsection*{17.8.1 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int-\frac{1}{y} d y & =\int d x \\
-\ln (y) & =x+c_{1}
\end{aligned}
\]

Raising both side to exponential gives
\[
\frac{1}{y}=\mathrm{e}^{x+c_{1}}
\]

Which simplifies to
\[
\frac{1}{y}=c_{2} \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-x}}{c_{2}} \tag{1}
\end{equation*}
\]

Figure 441: Slope field plot

Verification of solutions
\[
y=\frac{\mathrm{e}^{-x}}{c_{2}}
\]

Verified OK.

\subsection*{17.8.2 Maple step by step solution}

Let's solve
\[
y+y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Separate variables
\[
\frac{y^{\prime}}{y}=-1
\]
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y} d x=\int(-1) d x+c_{1}\)
- Evaluate integral
\(\ln (y)=-x+c_{1}\)
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{-x+c_{1}}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 10
dsolve(diff \((y(x), x)+y(x)=0, y(x)\), singsol=all)
\[
y(x)=c_{1} \mathrm{e}^{-x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.021 (sec). Leaf size: 18
DSolve[y' \([x]+y[x]==0, y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-x} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\section*{17.9 problem 1(e) solving using series}
17.9.1 Solving as series ode . 2800
17.9.2 Maple step by step solution . 2808

Internal problem ID [6412]
Internal file name [OUTPUT/5660_Sunday_June_05_2022_03_46_16_PM_73875935/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(e) solving using series.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.9.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=y \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=y \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=y \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=y \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=y \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=y \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y(0) \\
& F_{2}=y(0) \\
& F_{3}=y(0) \\
& F_{4}=y(0) \\
& F_{5}=y(0) \\
& F_{6}=y(0)
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-1 \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+1) a_{n+1}-a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+1}\), gives
\[
\begin{equation*}
a_{n+1}=\frac{a_{n}}{n+1} \tag{5}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
a_{1}-a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
2 a_{2}-a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
3 a_{3}-a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
4 a_{4}-a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
5 a_{5}-a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
6 a_{6}-a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
7 a_{7}-a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
8 a_{8}-a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{0} x+\frac{1}{2} a_{0} x^{2}+\frac{1}{6} a_{0} x^{3}+\frac{1}{24} a_{0} x^{4}+\frac{1}{120} a_{0} x^{5}+\frac{1}{720} a_{0} x^{6}+\frac{1}{5040} a_{0} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) a_{0}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Figure 442: Slope field plot

\section*{Verification of solutions}
\[
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{17.9.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 1
```

y

```
- Separate variables
\[
\frac{y^{\prime}}{y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x+c_{1}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=8;
dsolve(diff(y(x),x)-y(x)=0,y(x),type='series',x=0);

```
\[
y(x)=\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0)+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 51
```

AsymptoticDSolveValue[y'[x]-y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{1}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)
\]

\subsection*{17.10 problem \(1(e)\) solving directly}
17.10.1 Solving as quadrature ode . 2810
17.10.2 Maple step by step solution . 2811

Internal problem ID [6413]
Internal file name [OUTPUT/5661_Sunday_June_05_2022_03_46_18_PM_50855044/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(e) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "quadrature"
Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y=0
\]

\subsection*{17.10.1 Solving as quadrature ode}

Integrating both sides gives
\[
\begin{aligned}
\int \frac{1}{y} d y & =x+c_{1} \\
\ln (y) & =x+c_{1} \\
y & =\mathrm{e}^{x+c_{1}} \\
y & =c_{1} \mathrm{e}^{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 443: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}
\]

Verified OK.

\subsection*{17.10.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- \(\quad\) Separate variables
\[
\frac{y^{\prime}}{y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x+c_{1}}
\]

Maple trace
```

Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 8
```

dsolve(diff(y(x),x)-y(x)=0,y(x), singsol=all)

```
\[
y(x)=\mathrm{e}^{x} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 16
```

DSolve[y'[x]-y[x]==0,y[x],x,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{x} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\subsection*{17.11 problem \(1(f)\) solving using series}
17.11.1 Solving as series ode . 2813
17.11.2 Maple step by step solution . 2823

Internal problem ID [6414]
Internal file name [OUTPUT/5662_Sunday_June_05_2022_03_46_19_PM_71072901/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(f) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
y^{\prime}-y=x^{2}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.11.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
F_{0} & =x^{2}+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =2 x+x^{2}+y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =2+2 x+x^{2}+y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =2+2 x+x^{2}+y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =2+2 x+x^{2}+y \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
& =2+2 x+x^{2}+y \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
& =2+2 x+x^{2}+y
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=y(0) \\
& F_{2}=y(0)+2 \\
& F_{3}=y(0)+2 \\
& F_{4}=y(0)+2 \\
& F_{5}=y(0)+2 \\
& F_{6}=y(0)+2
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =x^{2}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-1 \\
& p(x)=x^{2}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{2} \tag{1}
\end{equation*}
\]

Expanding \(x^{2}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x^{2} & =x^{2}+\ldots \\
& =x^{2}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{2} \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=x^{2} \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=x^{2} \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+1) a_{n+1}-a_{n}\right) x^{n}=x^{2} \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(a_{1}-a_{0}\right) 1=0 \\
a_{1}-a_{0}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}-a_{1}\right) x=0 \\
2 a_{2}-a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(3 a_{3}-a_{2}\right) x^{2}=x^{2} \\
3 a_{3}-a_{2}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{3}+\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(4 a_{4}-a_{3}\right) x^{3}=0 \\
4 a_{4}-a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{12}+\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(5 a_{5}-a_{4}\right) x^{4}=0 \\
5 a_{5}-a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{60}+\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{6}-a_{5}\right) x^{5}=0 \\
6 a_{6}-a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{1}{360}+\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(7 a_{7}-a_{6}\right) x^{6}=0 \\
7 a_{7}-a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{2520}+\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(8 a_{8}-a_{7}\right) x^{7}=0 \\
8 a_{8}-a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{20160}+\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{0} x+\frac{a_{0} x^{2}}{2}+\left(\frac{1}{3}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{1}{12}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(\frac{1}{60}+\frac{a_{0}}{120}\right) x^{5}+\left(\frac{1}{360}+\frac{a_{0}}{720}\right) x^{6}+\left(\frac{1}{2520}+\frac{a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) a_{0} \\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \tag{1}\\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right) \\
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \tag{2}\\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{align*}
\]

Figure 444: Slope field plot
Verification of solutions
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{17.11.2 Maple step by step solution}

Let's solve
\(y^{\prime}-y=x^{2}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=x^{2}+y\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-y=x^{2}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-y\right)=\mu(x) x^{2}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\mu(x)\)
- Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{-x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x^{2} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{-x}\)
\(y=\frac{\int x^{2} \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{-\left(x^{2}+2 x+2\right) \mathrm{e}^{-x}+c_{1}}{\mathrm{e}^{-x}}\)
- Simplify
\(y=c_{1} \mathrm{e}^{x}-x^{2}-2 x-2\)

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 54
```

Order:=8;
dsolve(diff(y(x),x)-y(x)=x^2,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{5}}{60}+\frac{x^{6}}{360}+\frac{x^{7}}{2520}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 87
AsymptoticDSolveValue [y' \([x]-y[x]==x \wedge 2, y[x],\{x, 0,7\}]\)
\(y(x) \rightarrow \frac{x^{7}}{2520}+\frac{x^{6}}{360}+\frac{x^{5}}{60}+\frac{x^{4}}{12}+\frac{x^{3}}{3}+c_{1}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)\)

\subsection*{17.12 problem 1(f) solving directly}
17.12.1 Solving as linear ode . 2825
17.12.2 Solving as first order ode lie symmetry lookup ode 2827
17.12.3 Solving as exact ode . 2831
17.12.4 Maple step by step solution . 2835

Internal problem ID [6415]
Internal file name [OUTPUT/5663_Sunday_June_05_2022_03_46_21_PM_30766124/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 1(f) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
y^{\prime}-y=x^{2}
\]

\subsection*{17.12.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =-1 \\
q(x) & =x^{2}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-y=x^{2}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int(-1) d x} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\mathrm{e}^{-x} y\right) & =\left(\mathrm{e}^{-x}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\mathrm{e}^{-x} y\right) & =\left(x^{2} \mathrm{e}^{-x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \mathrm{e}^{-x} y=\int x^{2} \mathrm{e}^{-x} \mathrm{~d} x \\
& \mathrm{e}^{-x} y=-\left(x^{2}+2 x+2\right) \mathrm{e}^{-x}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{-x}\) results in
\[
y=-\mathrm{e}^{x}\left(x^{2}+2 x+2\right) \mathrm{e}^{-x}+c_{1} \mathrm{e}^{x}
\]
which simplifies to
\[
y=c_{1} \mathrm{e}^{x}-x^{2}-2 x-2
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{x}-x^{2}-2 x-2 \tag{1}
\end{equation*}
\]

Figure 445: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{x}-x^{2}-2 x-2
\]

Verified OK.

\subsection*{17.12.2 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=x^{2}+y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 405: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{x}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{-x} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=x^{2}+y
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\mathrm{e}^{-x} y \\
S_{y} & =\mathrm{e}^{-x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=x^{2} \mathrm{e}^{-x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R^{2} \mathrm{e}^{-R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by
integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=-\left(R^{2}+2 R+2\right) \mathrm{e}^{-R}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
y \mathrm{e}^{-x}=-\left(x^{2}+2 x+2\right) \mathrm{e}^{-x}+c_{1}
\]

Which simplifies to
\[
\left(2+2 x+x^{2}+y\right) \mathrm{e}^{-x}-c_{1}=0
\]

Which gives
\[
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=x^{2}+y\) & & \(\frac{d S}{d R}=R^{2} \mathrm{e}^{-R}\) \\
\hline & & \(1 \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \rightarrow \rightarrow+\infty\) - \\
\hline & & \\
\hline & & \\
\hline & & \(\uparrow+1+1\) \\
\hline & & \\
\hline & \(R=x\) & \\
\hline & \(S=\mathrm{e}^{-x} y\) & \\
\hline & \(S=\mathrm{e}^{-x} y\) & 晾 \(\uparrow+\uparrow \xrightarrow{+}\) \\
\hline & & \\
\hline & & \(\uparrow+1+\uparrow \xrightarrow{+}\) \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 446: Slope field plot

\section*{Verification of solutions}
\[
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
\]

Verified OK.

\subsection*{17.12.3 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =\left(x^{2}+y\right) \mathrm{d} x \\
\left(-x^{2}-y\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-x^{2}-y \\
& N(x, y)=1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}-y\right) \\
& =-1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((-1)-(0)) \\
& =-1
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-1 \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-x} \\
& =\mathrm{e}^{-x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{-x}\left(-x^{2}-y\right) \\
& =-\mathrm{e}^{-x}\left(x^{2}+y\right)
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{-x}(1) \\
& =\mathrm{e}^{-x}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(-\mathrm{e}^{-x}\left(x^{2}+y\right)\right)+\left(\mathrm{e}^{-x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{-x}\left(x^{2}+y\right) \mathrm{d} x \\
\phi & =\left(x^{2}+2 x+y+2\right) \mathrm{e}^{-x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{-x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{-x}=\mathrm{e}^{-x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\left(x^{2}+2 x+y+2\right) \mathrm{e}^{-x}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\left(x^{2}+2 x+y+2\right) \mathrm{e}^{-x}
\]

The solution becomes
\[
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x} \tag{1}
\end{equation*}
\]

Figure 447: Slope field plot

\section*{Verification of solutions}
\[
y=-\left(x^{2} \mathrm{e}^{-x}+2 x \mathrm{e}^{-x}+2 \mathrm{e}^{-x}-c_{1}\right) \mathrm{e}^{x}
\]

Verified OK.

\subsection*{17.12.4 Maple step by step solution}

Let's solve
\(y^{\prime}-y=x^{2}\)
- Highest derivative means the order of the ODE is 1
```

y

```
- Isolate the derivative
\[
y^{\prime}=x^{2}+y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-y=x^{2}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-y\right)=\mu(x) x^{2}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-y\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\mu(x)\)
- Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{-x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x^{2} d x+c_{1}\)
- Solve for \(y\)
\(y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{-x}\)
\(y=\frac{\int x^{2} \mathrm{e}^{-x} d x+c_{1}}{\mathrm{e}^{-x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{-\left(x^{2}+2 x+2\right) e^{-x}+c_{1}}{e^{-x}}\)
- Simplify
\(y=c_{1} \mathrm{e}^{x}-x^{2}-2 x-2\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 18
dsolve(diff \((y(x), x)-y(x)=x^{\wedge} 2, y(x)\), singsol=all)
\[
y(x)=-x^{2}-2 x-2+\mathrm{e}^{x} c_{1}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.046 (sec). Leaf size: 21
DSolve[y'[x]-y[x]==x^2,y[x],x,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow-x^{2}-2 x+c_{1} e^{x}-2
\]

\subsection*{17.13 problem 2(a) solving using series}
17.13.1 Solving as series ode . 2838
17.13.2 Maple step by step solution . 2842

Internal problem ID [6416]
Internal file name [OUTPUT/5664_Sunday_June_05_2022_03_46_22_PM_92286864/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(a) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Regular singular point"

Maple gives the following as the ode type
[_separable]
\[
-y+x y^{\prime}=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.13.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{y}{x} & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-\frac{1}{x} \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. \(x q(x)=-1\) has a Taylor series around \(x=0\). Since \(x=0\) is regular singular point, then Frobenius power series is used. Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Expanding the second term in (1) gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+-1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\frac{1}{x} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}-x^{n+r-1} a_{n}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}-x^{-1+r} a_{0}=0
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(-1+r) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
-1+r=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=1
\]

We start by finding \(y_{h}\). Replacing \(r=1\) found above results in
\[
\left(\sum_{n=0}^{\infty}(n+1) a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{n} a_{n}\right)=0
\]

From the above we see that there is no recurrence relation since there is only one summation term. Therefore all \(a_{n}\) terms are zero except for \(a_{0}\). Hence
\[
y_{h}=a_{0} x^{r}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=a_{0}\left(x+O\left(x^{8}\right)\right)
\]

At \(x=0\) the solution above becomes
\[
y=c_{1}\left(x+O\left(x^{8}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(x+O\left(x^{8}\right)\right) \tag{1}
\end{equation*}
\]

Figure 448: Slope field plot

Verification of solutions
\[
y=c_{1}\left(x+O\left(x^{8}\right)\right)
\]

Verified OK.

\subsection*{17.13.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-\frac{y}{x}=0
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- Separate variables
\[
\frac{y^{\prime}}{y}=\frac{1}{x}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=\ln (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=x \mathrm{e}^{c_{1}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 13
```

Order:=8;
dsolve(x*diff(y(x),x)=y(x),y(x),type='series',x=0);

```
\[
y(x)=c_{1} x+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 7
AsymptoticDSolveValue[x*y'[x]==y[x],y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{1} x
\]

\subsection*{17.14 problem 2(a) solving directly}
17.14.1 Solving as separable ode . 2844
17.14.2 Solving as linear ode . 2846
17.14.3 Solving as homogeneousTypeD2 ode 2847
17.14.4 Solving as first order ode lie symmetry lookup ode 2848
17.14.5 Solving as exact ode . 2852
17.14.6 Maple step by step solution . 2856

Internal problem ID [6417]
Internal file name [OUTPUT/5665_Sunday_June_05_2022_03_46_25_PM_59981860/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(a) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
```

[_separable]

```
\[
-y+x y^{\prime}=0
\]

\subsection*{17.14.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x} d x \\
\ln (y) & =\ln (x)+c_{1} \\
y & =\mathrm{e}^{\ln (x)+c_{1}} \\
& =c_{1} x
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
\]

Figure 449: Slope field plot

Verification of solutions
\[
y=c_{1} x
\]

Verified OK.

\subsection*{17.14.2 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x}=0
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =0
\end{aligned}
\]

Integrating gives
\[
\frac{y}{x}=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x}\) results in
\[
y=c_{1} x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
\]

Figure 450: Slope field plot

Verification of solutions
\[
y=c_{1} x
\]

Verified OK.

\subsection*{17.14.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
-u(x) x+x\left(u^{\prime}(x) x+u(x)\right)=0
\]

Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int 0 \mathrm{~d} x \\
& =c_{2}
\end{aligned}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =u x \\
& =c_{2} x
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} x \tag{1}
\end{equation*}
\]

Figure 451: Slope field plot
Verification of solutions
\[
y=c_{2} x
\]

Verified OK.

\subsection*{17.14.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 409: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & \(y^{2}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode．This is the whole point of Lie symmetry method． It converts an ode，no matter how complicated it is，to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\) ．Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution，we just need to transform（4）back to \(x, y\) coordinates．This results in
\[
\frac{y}{x}=c_{1}
\]

Which simplifies to
\[
\frac{y}{x}=c_{1}
\]

Which gives
\[
y=c_{1} x
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown．
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{y}{x}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow}\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow]{ }\) \\
\hline & & \\
\hline \(\cdots\) & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \longrightarrow]{ }\) \\
\hline & \(R=x\)
S & \\
\hline & \(=\frac{y}{x}\) & \(\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow-R_{0 \rightarrow \rightarrow}}\) \\
\hline 多多多夝早新： & & \(\xrightarrow{-2 \rightarrow \longrightarrow \rightarrow \longrightarrow \rightarrow \longrightarrow \longrightarrow}\) \\
\hline & & \(\xrightarrow{\sim \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow}\) \\
\hline & & \(\xrightarrow{+}\) \\
\hline
\end{tabular}

Summary
The solution（s）found are the following
\[
\begin{equation*}
y=c_{1} x \tag{1}
\end{equation*}
\]

Figure 452: Slope field plot

Verification of solutions
\[
y=c_{1} x
\]

Verified OK.

\subsection*{17.14.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x}\right) \mathrm{d} x \\
\left(-\frac{1}{x}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x} \mathrm{~d} x \\
\phi & =-\ln (x)+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=\frac{1}{y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\ln (x)+\ln (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\ln (x)+\ln (y)
\]

The solution becomes
\[
y=x \mathrm{e}^{c_{1}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x \mathrm{e}^{c_{1}} \tag{1}
\end{equation*}
\]

Figure 453: Slope field plot

Verification of solutions
\[
y=x \mathrm{e}^{c_{1}}
\]

Verified OK.

\subsection*{17.14.6 Maple step by step solution}

Let's solve
\[
-y+x y^{\prime}=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- Separate variables
\[
\frac{y^{\prime}}{y}=\frac{1}{x}
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x} d x+c_{1}
\]
- Evaluate integral
\[
\ln (y)=\ln (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=x \mathrm{e}^{c_{1}}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\sqrt{ }\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 7
```

dsolve(x*diff(y(x),x)=y(x),y(x), singsol=all)

```
\[
y(x)=c_{1} x
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 14
DSolve[x*y' \([x]==y[x], y[x], x\), IncludeSingularSolutions \(->\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{1} x \\
& y(x) \rightarrow 0
\end{aligned}
\]

\subsection*{17.15 problem 2(b) solving using series}
17.15.1 Solving as series ode . 2858
17.15.2 Maple step by step solution . 2859

Internal problem ID [6418]
Internal file name [OUTPUT/5666_Sunday_June_05_2022_03_46_26_PM_70853944/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(b) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Irregular singular point"

Maple gives the following as the ode type
[_separable]
Unable to solve or complete the solution.
\[
x^{2} y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.15.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{y}{x^{2}} & =0
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-\frac{1}{x^{2}} \\
& p(x)=0
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point.
\[
x q(x)=-\frac{1}{x}
\]
does not have a Taylor series around \(x=0\).
Unable to solve since \(x=0\) is not regular singular point. Terminating.
Verification of solutions N/A

\subsection*{17.15.2 Maple step by step solution}

Let's solve
\(x^{2} y^{\prime}-y=0\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- \(\quad\) Separate variables
\(\frac{y^{\prime}}{y}=\frac{1}{x^{2}}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x^{2}} d x+c_{1}\)
- Evaluate integral
\(\ln (y)=c_{1}-\frac{1}{x}\)
- \(\quad\) Solve for \(y\)
\(y=\mathrm{e}^{\frac{c_{1} x-1}{x}}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

X Solution by Maple
```

Order:=8;
dsolve(x^2*diff(y(x),x)=y(x),y(x),type='series',x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 13
AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}[\mathrm{x}]==\mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
y(x) \rightarrow c_{1} e^{-1 / x}
\]

\subsection*{17.16 problem 2(b) solving directly}
17.16.1 Solving as separable ode . 2861
17.16.2 Solving as linear ode . 2863
17.16.3 Solving as homogeneousTypeD2 ode 2864
17.16.4 Solving as first order ode lie symmetry lookup ode 2866
17.16.5 Solving as exact ode . 2870
17.16.6 Maple step by step solution . 2874

Internal problem ID [6419]
Internal file name [OUTPUT/5667_Sunday_June_05_2022_03_46_27_PM_99396460/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(b) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "separable", "homogeneousTypeD2", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_separable]
\[
x^{2} y^{\prime}-y=0
\]

\subsection*{17.16.1 Solving as separable ode}

In canonical form the ODE is
\[
\begin{aligned}
y^{\prime} & =F(x, y) \\
& =f(x) g(y) \\
& =\frac{y}{x^{2}}
\end{aligned}
\]

Where \(f(x)=\frac{1}{x^{2}}\) and \(g(y)=y\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{y} d y & =\frac{1}{x^{2}} d x \\
\int \frac{1}{y} d y & =\int \frac{1}{x^{2}} d x \\
\ln (y) & =c_{1}-\frac{1}{x} \\
y & =\mathrm{e}^{c_{1}-\frac{1}{x}} \\
& =c_{1} \mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 454: Slope field plot

Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{17.16.2 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x^{2}} \\
& q(x)=0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x^{2}}=0
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x^{2}} d x} \\
& =\mathrm{e}^{\frac{1}{x}}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \mu y & =0 \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(\mathrm{e}^{\frac{1}{x}} y\right) & =0
\end{aligned}
\]

Integrating gives
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{\frac{1}{x}}\) results in
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 455: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{17.16.3 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
x^{2}\left(u^{\prime}(x) x+u(x)\right)-u(x) x=0
\]

In canonical form the ODE is
\[
\begin{aligned}
u^{\prime} & =F(x, u) \\
& =f(x) g(u) \\
& =-\frac{u(x-1)}{x^{2}}
\end{aligned}
\]

Where \(f(x)=-\frac{x-1}{x^{2}}\) and \(g(u)=u\). Integrating both sides gives
\[
\begin{aligned}
\frac{1}{u} d u & =-\frac{x-1}{x^{2}} d x \\
\int \frac{1}{u} d u & =\int-\frac{x-1}{x^{2}} d x \\
\ln (u) & =-\ln (x)-\frac{1}{x}+c_{2} \\
u & =\mathrm{e}^{-\ln (x)-\frac{1}{x}+c_{2}} \\
& =c_{2} \mathrm{e}^{-\ln (x)-\frac{1}{x}}
\end{aligned}
\]

Which simplifies to
\[
u(x)=\frac{c_{2} \mathrm{e}^{-\frac{1}{x}}}{x}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =u x \\
& =c_{2} \mathrm{e}^{-\frac{1}{x}}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{2} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 456: Slope field plot
Verification of solutions
\[
y=c_{2} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{17.16.4 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{y}{x^{2}} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 413: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \[
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
\] & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-\frac{1}{x}} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the
canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-\frac{1}{x}}} d y
\end{aligned}
\]

Which results in
\[
S=\mathrm{e}^{\frac{1}{x}} y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{y}{x^{2}}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
& R_{x}=1 \\
& R_{y}=0 \\
& S_{x}=-\frac{\mathrm{e}^{\frac{1}{x}} y}{x^{2}} \\
& S_{y}=\mathrm{e}^{\frac{1}{x}}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=0 \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=0
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Which simplifies to
\[
\mathrm{e}^{\frac{1}{x}} y=c_{1}
\]

Which gives
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{y}{x^{2}}\) & & \(\frac{d S}{d R}=0\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow]{ }\) \\
\hline \(\rightarrow \rightarrow \rightarrow \pm \infty\) - & & \\
\hline & & \\
\hline \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }\) & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow 25}\) + \\
\hline \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty}\) & \(R=x\) & \\
\hline & \[
S=\mathrm{e}^{\frac{1}{x}} y
\] & \\
\hline & & \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow}\) \\
\hline & & \(\xrightarrow{\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow+\rightarrow \rightarrow \rightarrow}\) \\
\hline & & \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \mathrm{e}^{-\frac{1}{x}} \tag{1}
\end{equation*}
\]

Figure 457: Slope field plot
Verification of solutions
\[
y=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]

Verified OK.

\subsection*{17.16.5 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1~A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\left(\frac{1}{y}\right) \mathrm{d} y & =\left(\frac{1}{x^{2}}\right) \mathrm{d} x \\
\left(-\frac{1}{x^{2}}\right) \mathrm{d} x+\left(\frac{1}{y}\right) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-\frac{1}{x^{2}} \\
& N(x, y)=\frac{1}{y}
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{1}{x^{2}}\right) \\
& =0
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}\left(\frac{1}{y}\right) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\frac{1}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{1}{x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=0+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{y}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{y}=0+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=\frac{1}{y}
\]

Integrating the above w.r.t \(y\) gives
\[
\begin{aligned}
\int f^{\prime}(y) \mathrm{d} y & =\int\left(\frac{1}{y}\right) \mathrm{d} y \\
f(y) & =\ln (y)+c_{1}
\end{aligned}
\]

Where \(c_{1}\) is constant of integration. Substituting result found above for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{1}{x}+\ln (y)+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{1}{x}+\ln (y)
\]

The solution becomes
\[
y=\mathrm{e}^{\frac{c_{1} x-1}{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\mathrm{e}^{\frac{c_{1} x-1}{x}} \tag{1}
\end{equation*}
\]

Figure 458: Slope field plot

Verification of solutions
\[
y=\mathrm{e}^{\frac{c_{1} x-1}{x}}
\]

Verified OK.
17.16.6 Maple step by step solution

Let's solve
\[
x^{2} y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- \(\quad\) Separate variables
\(\frac{y^{\prime}}{y}=\frac{1}{x^{2}}\)
- Integrate both sides with respect to \(x\)
\(\int \frac{y^{\prime}}{y} d x=\int \frac{1}{x^{2}} d x+c_{1}\)
- Evaluate integral
\(\ln (y)=c_{1}-\frac{1}{x}\)
- \(\quad\) Solve for \(y\)
\(y=\mathrm{e}^{\frac{c_{1} x-1}{x}}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 12
```

dsolve(x^2*diff(y(x),x)=y(x),y(x), singsol=all)

```
\[
y(x)=c_{1} \mathrm{e}^{-\frac{1}{x}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 20
DSolve \(\left[x^{\wedge} 2 * y '[x]==y[x], y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-1 / x} \\
& y(x) \rightarrow 0
\end{aligned}
\]

\subsection*{17.17 problem 2(c) solving using series}
17.17.1 Solving as series ode . 2876
17.17.2 Maple step by step solution . 2881

Internal problem ID [6420]
Internal file name [OUTPUT/5668_Sunday_June_05_2022_03_46_29_PM_78088919/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(c) solving using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "first order ode series method. Regular singular point"

Maple gives the following as the ode type
[_linear]
\[
y^{\prime}-\frac{y}{x}=x^{2}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.17.1 Solving as series ode}

Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-\frac{y}{x} & =x^{2}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-\frac{1}{x} \\
& p(x)=x^{2}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular
singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not.

Since \(x=0\) is not an ordinary point, we now check to see if it is a regular singular point. \(x q(x)=-1\) has a Taylor series around \(x=0\). Since \(x=0\) is regular singular point, then Frobenius power series is used. Since this is an inhomogeneous, then let the solution be
\[
y=y_{h}+y_{p}
\]

Where \(y_{h}\) is the solution to the homogeneous ode \(y^{\prime}-\frac{y}{x}=0\), and \(y_{p}\) is a particular solution to the inhomogeneous ode. First, we solve for \(y_{h}\) Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
y^{\prime}=\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\frac{\sum_{n=0}^{\infty} a_{n} x^{n+r}}{x}=0 \tag{1}
\end{equation*}
\]

Expanding the second term in (1) gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+-1 \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\frac{1}{x} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2) this gives
\[
(n+r) a_{n} x^{n+r-1}-x^{n+r-1} a_{n}=0
\]

When \(n=0\) the above becomes
\[
r a_{0} x^{-1+r}-x^{-1+r} a_{0}=0
\]

The corresponding balance equation is found by replacing \(r\) by \(m\) and \(a\) by \(c\) to avoid confusing terms between particular solution and the homogeneous solution. Hence the balance equation is
\[
\left(x^{-1+m} m-x^{-1+m}\right) c_{0}=x^{2}
\]

This equation will used later to find the particular solution.
Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(-1+r) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation simplifies to
\[
-1+r=0
\]

Solving for \(r\) gives the root of the indicial equation as
\[
r=1
\]

We start by finding \(y_{h}\). From the above we see that there is no recurrence relation since there is only one summation term. Therefore all \(a_{n}\) terms are zero except for \(a_{0}\). Hence
\[
y_{h}=a_{0} x^{r}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=a_{0}\left(x+O\left(x^{8}\right)\right)
\]

Now we determine the particular solution \(y_{p}\) by solving the balance equation
\[
\left(x^{-1+m} m-x^{-1+m}\right) c_{0}=x^{2}
\]

For \(c_{0}\) and \(x\). This results in
\[
\begin{aligned}
c_{0} & =\frac{1}{2} \\
m & =3
\end{aligned}
\]

The particular solution is therefore
\[
\begin{aligned}
y_{p} & =\sum_{n=0}^{\infty} c_{n} x^{n+m} \\
& =\sum_{n=0}^{\infty} c_{n} x^{n+3}
\end{aligned}
\]

Where in the above \(c_{0}=\frac{1}{2}\). The remaining \(c_{n}\) values are found using the same recurrence relation used to find the homogeneous solution but using \(c_{0}\) in place of \(a_{0}\) and using \(m=3\) in place of the root of the indicial equation used to find the homogeneous solution. The following are the values of \(a_{n}\) found in terms of the indicial root \(r\). These will be now used to find find \(c_{n}\) by replacing \(a_{0}=\frac{1}{2}\) and \(r=3\). The following table gives the \(a_{n}\) values found and the corresponding \(c_{n}\) values which will be used to find the particular solution
\[
\begin{array}{|l|l|l|}
\hline n & a_{n} & c_{n} \\
\hline 0 & a_{0}=1 & c_{0}=\frac{1}{2} \\
\hline
\end{array}
\]

The particular solution is now found using
\[
\begin{aligned}
y_{p} & =x^{m} \sum_{n=0}^{\infty} c_{n} x^{n} \\
& =x^{3} \sum_{n=0}^{\infty} c_{n} x^{n}
\end{aligned}
\]

Using the values found above for \(c_{n}\) into the above sum gives
\[
y_{p}=x^{3}\left(\frac{1}{2}\right)
\]

At \(x=0\) the solution above becomes
\[
y=\frac{x^{3}}{2}+O\left(x^{8}\right)+c_{1}\left(x+O\left(x^{8}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{3}}{2}+O\left(x^{8}\right)+c_{1}\left(x+O\left(x^{8}\right)\right) \tag{1}
\end{equation*}
\]

Figure 459: Slope field plot

Verification of solutions
\[
y=\frac{x^{3}}{2}+O\left(x^{8}\right)+c_{1}\left(x+O\left(x^{8}\right)\right)
\]

Verified OK.

\subsection*{17.17.2 Maple step by step solution}

Let's solve
\(y^{\prime}-\frac{y}{x}=x^{2}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=\frac{y}{x}+x^{2}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-\frac{y}{x}=x^{2}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) x^{2}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{\mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=\frac{1}{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x^{2} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{x}\)
\(y=x\left(\int x d x+c_{1}\right)\)
- Evaluate the integrals on the rhs
\(y=x\left(\frac{x^{2}}{2}+c_{1}\right)\)
- Simplify
\[
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 24
```

Order:=8;
dsolve(diff (y (x),x)-(1/x)*y(x)=x^2,y(x),type='series', x=0);

```
\[
y(x)=c_{1} x\left(1+\mathrm{O}\left(x^{8}\right)\right)+x^{3}\left(\frac{1}{2}+\mathrm{O}\left(x^{5}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 15
AsymptoticDSolveValue[y'[x]-1/x*y[x]==x^2,y[x],\{x,0,7\}]
\[
y(x) \rightarrow \frac{x^{3}}{2}+c_{1} x
\]

\subsection*{17.18 problem 2(c) solving directly}
17.18.1 Solving as linear ode . 2883
17.18.2 Solving as homogeneousTypeD2 ode 2885
17.18.3 Solving as first order ode lie symmetry lookup ode 2886
17.18.4 Solving as exact ode . 2890
17.18.5 Maple step by step solution . 2895

Internal problem ID [6421]
Internal file name [OUTPUT/5669_Sunday_June_05_2022_03_46_30_PM_49881333/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(c) solving directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "homogeneousTypeD2", "exactWithIntegrationFactor", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
y^{\prime}-\frac{y}{x}=x^{2}
\]

\subsection*{17.18.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=x^{2}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}-\frac{y}{x}=x^{2}
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =\mathrm{e}^{\int-\frac{1}{x} d x} \\
& =\frac{1}{x}
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)\left(x^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{y}{x}\right) & =\left(\frac{1}{x}\right)\left(x^{2}\right) \\
\mathrm{d}\left(\frac{y}{x}\right) & =x \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& \frac{y}{x}=\int x \mathrm{~d} x \\
& \frac{y}{x}=\frac{x^{2}}{2}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\frac{1}{x}\) results in
\[
y=\frac{1}{2} x^{3}+c_{1} x
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{1}{2} x^{3}+c_{1} x \tag{1}
\end{equation*}
\]

Figure 460: Slope field plot
Verification of solutions
\[
y=\frac{1}{2} x^{3}+c_{1} x
\]

Verified OK.

\subsection*{17.18.2 Solving as homogeneousTypeD2 ode}

Using the change of variables \(y=u(x) x\) on the above ode results in new ode in \(u(x)\)
\[
u^{\prime}(x) x=x^{2}
\]

Integrating both sides gives
\[
\begin{aligned}
u(x) & =\int x \mathrm{~d} x \\
& =\frac{x^{2}}{2}+c_{2}
\end{aligned}
\]

Therefore the solution \(y\) is
\[
\begin{aligned}
y & =x u \\
& =x\left(\frac{x^{2}}{2}+c_{2}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=x\left(\frac{x^{2}}{2}+c_{2}\right) \tag{1}
\end{equation*}
\]

Figure 461: Slope field plot
Verification of solutions
\[
y=x\left(\frac{x^{2}}{2}+c_{2}\right)
\]

\section*{Verified OK.}
17.18.3 Solving as first order ode lie symmetry lookup ode

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=\frac{x^{3}+y}{x} \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 417: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \[
y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}
\] & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=x \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{x} d y
\end{aligned}
\]

Which results in
\[
S=\frac{y}{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=\frac{x^{3}+y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =-\frac{y}{x^{2}} \\
S_{y} & =\frac{1}{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=x \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{R^{2}}{2}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\frac{y}{x}=\frac{x^{2}}{2}+c_{1}
\]

Which simplifies to
\[
\frac{y}{x}=\frac{x^{2}}{2}+c_{1}
\]

Which gives
\[
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=\frac{x^{3}+y}{x}\) & & \(\frac{d S}{d R}=R\) \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & \(R=x\) & \\
\hline & \(R=x\)
\(y\) & \\
\hline & \(S=\frac{y}{x}\) & \\
\hline & \(x\) & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
\]

Figure 462: Slope field plot
Verification of solutions
\[
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]

Verified OK.

\subsection*{17.18.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =\left(\frac{y}{x}+x^{2}\right) \mathrm{d} x \\
\left(-\frac{y}{x}-x^{2}\right) \mathrm{d} x+\mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-\frac{y}{x}-x^{2} \\
N(x, y) & =1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-\frac{y}{x}-x^{2}\right) \\
& =-\frac{1}{x}
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1\left(\left(-\frac{1}{x}\right)-(0)\right) \\
& =-\frac{1}{x}
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int-\frac{1}{x} \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{-\ln (x)} \\
& =\frac{1}{x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\frac{1}{x}\left(-\frac{y}{x}-x^{2}\right) \\
& =\frac{-x^{3}-y}{x^{2}}
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\frac{1}{x}(1) \\
& =\frac{1}{x}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{aligned}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x} & =0 \\
\left(\frac{-x^{3}-y}{x^{2}}\right)+\left(\frac{1}{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x} & =0
\end{aligned}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \frac{-x^{3}-y}{x^{2}} \mathrm{~d} x \\
\phi & =\frac{-x^{3}+2 y}{2 x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\frac{1}{x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\frac{1}{x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\frac{1}{x}=\frac{1}{x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=\frac{-x^{3}+2 y}{2 x}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=\frac{-x^{3}+2 y}{2 x}
\]

The solution becomes
\[
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2} \tag{1}
\end{equation*}
\]

Figure 463: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]

Verified OK.

\subsection*{17.18.5 Maple step by step solution}

Let's solve
\(y^{\prime}-\frac{y}{x}=x^{2}\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=\frac{y}{x}+x^{2}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}-\frac{y}{x}=x^{2}\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu(x) x^{2}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}-\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=-\frac{\mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=\frac{1}{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x^{2} d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x^{2} d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x^{2} d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\frac{1}{x}\)
\[
y=x\left(\int x d x+c_{1}\right)
\]
- Evaluate the integrals on the rhs
\[
y=x\left(\frac{x^{2}}{2}+c_{1}\right)
\]
- Simplify
\(y=\frac{x\left(x^{2}+2 c_{1}\right)}{2}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 14
```

dsolve(diff(y(x),x)-(1/x)*y(x)=x^2,y(x), singsol=all)

```
\[
y(x)=\frac{x\left(x^{2}+2 c_{1}\right)}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.025 (sec). Leaf size: 17
```

DSolve[y'[x]-1/x*y[x]==x^2,y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow \frac{x^{3}}{2}+c_{1} x
\]

\subsection*{17.19 problem 2(d) solving using series}
17.19.1 Solving as linear ode . 2897
17.19.2 Solving as differentialType ode 2899
17.19.3 Solving as first order ode lie symmetry lookup ode 2901
17.19.4 Solving as exact ode . 2905
17.19.5 Maple step by step solution . 2909

Internal problem ID [6422]
Internal file name [OUTPUT/5670_Sunday_June_05_2022_03_46_32_PM_70367049/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 2(d) solving using series.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "exact", "linear", "differentialType", "first_order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[_linear]
\[
y^{\prime}+\frac{y}{x}=x
\]

\subsection*{17.19.1 Solving as linear ode}

Entering Linear first order ODE solver. In canonical form a linear first order is
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =x
\end{aligned}
\]

Hence the ode is
\[
y^{\prime}+\frac{y}{x}=x
\]

The integrating factor \(\mu\) is
\[
\begin{aligned}
& \mu=\mathrm{e}^{\int \frac{1}{x} d x} \\
& =x
\end{aligned}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}(x y) & =(x)(x) \\
\mathrm{d}(x y) & =x^{2} \mathrm{~d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& x y=\int x^{2} \mathrm{~d} x \\
& x y=\frac{x^{3}}{3}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=x\) results in
\[
y=\frac{x^{2}}{3}+\frac{c_{1}}{x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{2}}{3}+\frac{c_{1}}{x} \tag{1}
\end{equation*}
\]

Figure 464: Slope field plot
Verification of solutions
\[
y=\frac{x^{2}}{3}+\frac{c_{1}}{x}
\]

Verified OK.

\subsection*{17.19.2 Solving as differentialType ode}

Writing the ode as
\[
\begin{equation*}
y^{\prime}=-\frac{y}{x}+x \tag{1}
\end{equation*}
\]

Which becomes
\[
\begin{equation*}
0=(-x) d y+\left(x^{2}-y\right) d x \tag{2}
\end{equation*}
\]

But the RHS is complete differential because
\[
(-x) d y+\left(x^{2}-y\right) d x=d\left(\frac{1}{3} x^{3}-x y\right)
\]

Hence (2) becomes
\[
0=d\left(\frac{1}{3} x^{3}-x y\right)
\]

Integrating both sides gives gives these solutions
\[
y=\frac{x^{3}+3 c_{1}}{3 x}+c_{1}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{3}+3 c_{1}}{3 x}+c_{1} \tag{1}
\end{equation*}
\]

Figure 465: Slope field plot

Verification of solutions
\[
y=\frac{x^{3}+3 c_{1}}{3 x}+c_{1}
\]

Verified OK.

\subsection*{17.19.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
y^{\prime} & =-\frac{-x^{2}+y}{x} \\
y^{\prime} & =\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 420: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|c|c|c|c|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline homogeneous ODEs of Class A & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline homogeneous ODEs of Class C & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \[
-\frac{b}{c}
\] \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline First order special form ID 1 & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \[
\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}
\] & \[
\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}
\] \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \[
\frac{a_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] & \[
\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}
\] \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int f_{1} d x}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\frac{1}{x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates \(\operatorname{map}(x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\frac{1}{x}} d y
\end{aligned}
\]

Which results in
\[
S=x y
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=-\frac{-x^{2}+y}{x}
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \\
S_{y} & =x
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=x^{2} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R^{2}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=\frac{R^{3}}{3}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
x y=\frac{x^{3}}{3}+c_{1}
\]

Which simplifies to
\[
x y=\frac{x^{3}}{3}+c_{1}
\]

Which gives
\[
y=\frac{x^{3}+3 c_{1}}{3 x}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical coordinates transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=-\frac{-x^{2}+y}{x}\) & & \(\frac{d S}{d R}=R^{2}\) \\
\hline & & \\
\hline & \[
R=x
\] & \\
\hline & \[
S=x y
\] & \\
\hline & & \\
\hline & & - \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{3}+3 c_{1}}{3 x} \tag{1}
\end{equation*}
\]

Figure 466: Slope field plot

Verification of solutions
\[
y=\frac{x^{3}+3 c_{1}}{3 x}
\]

Verified OK.

\subsection*{17.19.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
(x) \mathrm{d} y & =\left(x^{2}-y\right) \mathrm{d} x \\
\left(-x^{2}+y\right) \mathrm{d} x+(x) \mathrm{d} y & =0 \tag{2~A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
M(x, y) & =-x^{2}+y \\
N(x, y) & =x
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}\left(-x^{2}+y\right) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(x) \\
& =1
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}\), then the ODE is exact The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=M \tag{1}\\
& \frac{\partial \phi}{\partial y}=N \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int M \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-x^{2}+y \mathrm{~d} x \\
\phi & =-\frac{1}{3} x^{3}+x y+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=x+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=x\). Therefore equation (4) becomes
\[
\begin{equation*}
x=x+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-\frac{1}{3} x^{3}+x y+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-\frac{1}{3} x^{3}+x y
\]

The solution becomes
\[
y=\frac{x^{3}+3 c_{1}}{3 x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{x^{3}+3 c_{1}}{3 x} \tag{1}
\end{equation*}
\]

Figure 467: Slope field plot

Verification of solutions
\[
y=\frac{x^{3}+3 c_{1}}{3 x}
\]

Verified OK.

\subsection*{17.19.5 Maple step by step solution}

Let's solve
\(y^{\prime}+\frac{y}{x}=x\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=-\frac{y}{x}+x\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y^{\prime}+\frac{y}{x}=x\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu(x) x\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y^{\prime}+\frac{y}{x}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\frac{\mu(x)}{x}\)
- Solve to find the integrating factor
\(\mu(x)=x\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=x\)
\(y=\frac{\int x^{2} d x+c_{1}}{x}\)
- Evaluate the integrals on the rhs
\(y=\frac{\frac{x^{3}}{3}+c_{1}}{x}\)
- Simplify
\[
y=\frac{x^{3}+3 c_{1}}{3 x}
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
dsolve(diff \((y(x), x)+(1 / x) * y(x)=x, y(x)\), singsol=all)
\[
y(x)=\frac{x^{3}+3 c_{1}}{3 x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 19
DSolve \(\left[y^{\prime}[x]+1 / x * y[x]==x, y[x], x\right.\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(x) \rightarrow \frac{x^{2}}{3}+\frac{c_{1}}{x}
\]

\subsection*{17.20 problem 3}
17.20.1 Solving as series ode . 2911
17.20.2 Maple step by step solution . 2921

Internal problem ID [6423]
Internal file name [OUTPUT/5671_Sunday_June_05_2022_03_46_33_PM_79704206/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 3.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}=\frac{1}{\sqrt{-x^{2}+1}}
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.20.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
F_{0} & =\frac{1}{\sqrt{-x^{2}+1}} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
& =\frac{x}{\left(-x^{2}+1\right)^{\frac{3}{2}}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
& =\frac{2 x^{2}+1}{\left(-x^{2}+1\right)^{\frac{5}{2}}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
& =\frac{6 x^{3}+9 x}{\left(-x^{2}+1\right)^{\frac{7}{2}}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
& =\frac{24 x^{4}+72 x^{2}+9}{\left(-x^{2}+1\right)^{\frac{9}{2}}} \\
& =\frac{72 x^{6}+5400 x^{4}+4050 x^{2}+225}{\partial F_{5}} \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
& =\frac{120 x\left(F^{4}+5 x^{2}+\frac{15}{8}\right)}{\left(-x^{2}+1\right)^{\frac{11}{2}}} \\
& \left(-x^{2}+1\right)^{\frac{13}{2}} \\
& \frac{\partial F_{5}}{\partial y} F_{5} \\
& =1
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=1 \\
& F_{1}=0 \\
& F_{2}=1 \\
& F_{3}=0 \\
& F_{4}=9 \\
& F_{5}=0 \\
& F_{6}=225
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
y=y(0)+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right)
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime} & =\frac{1}{\sqrt{-x^{2}+1}}
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=0 \\
& p(x)=\frac{1}{\sqrt{-x^{2}+1}}
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Now the ode is normalized by writing it as
\[
y^{\prime} \sqrt{-x^{2}+1}=1
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \sqrt{-x^{2}+1}=1 \tag{1}
\end{equation*}
\]

Expanding \(\sqrt{-x^{2}+1}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sqrt{-x^{2}+1} & =1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{16} x^{6}-\frac{5}{128} x^{8}+\ldots \\
& =1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{16} x^{6}-\frac{5}{128} x^{8}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(1-\frac{1}{2} x^{2}-\frac{1}{8} x^{4}-\frac{1}{16} x^{6}-\frac{5}{128} x^{8}\right)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=1 \tag{1}
\end{equation*}
\]

Expanding the first term in (1) gives
\[
\begin{equation*}
1 \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{2}}{2} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{4}}{8} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{x^{6}}{16} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\frac{5 x^{8}}{128} \cdot\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{1+n} a_{n}}{2}\right)+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+3} a_{n}}{8}\right) \tag{2}\\
& \quad+\sum_{n=1}^{\infty}\left(-\frac{n x^{n+5} a_{n}}{16}\right)+\sum_{n=1}^{\infty}\left(-\frac{5 n x^{n+7} a_{n}}{128}\right)=1
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{1+n} a_{n}}{2}\right) & =\sum_{n=2}^{\infty}\left(-\frac{(n-1) a_{n-1} x^{n}}{2}\right) \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+3} a_{n}}{8}\right) & =\sum_{n=4}^{\infty}\left(-\frac{(n-3) a_{n-3} x^{n}}{8}\right) \\
\sum_{n=1}^{\infty}\left(-\frac{n x^{n+5} a_{n}}{16}\right) & =\sum_{n=6}^{\infty}\left(-\frac{(n-5) a_{n-5} x^{n}}{16}\right) \\
\sum_{n=1}^{\infty}\left(-\frac{5 n x^{n+7} a_{n}}{128}\right) & =\sum_{n=8}^{\infty}\left(-\frac{5(n-7) a_{n-7} x^{n}}{128}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\sum_{n=2}^{\infty}\left(-\frac{(n-1) a_{n-1} x^{n}}{2}\right)+\sum_{n=4}^{\infty}\left(-\frac{(n-3) a_{n-3} x^{n}}{8}\right) \tag{3}\\
& \quad+\sum_{n=6}^{\infty}\left(-\frac{(n-5) a_{n-5} x^{n}}{16}\right)+\sum_{n=8}^{\infty}\left(-\frac{5(n-7) a_{n-7} x^{n}}{128}\right)=1
\end{align*}
\]
\(n=0\) gives
\[
\begin{aligned}
\left(a_{1}\right) 1 & =1 \\
a_{1} & =1
\end{aligned}
\]

Or
\[
a_{1}=1
\]
\(n=2\) gives
\[
3 a_{3}-\frac{a_{1}}{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
3 a_{3}-\frac{1}{2}=0
\]

Or
\[
a_{3}=\frac{1}{6}
\]
\(n=3\) gives
\[
4 a_{4}-a_{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
4 a_{4}=0
\]

Or
\[
a_{4}=0
\]
\(n=4\) gives
\[
5 a_{5}-\frac{3 a_{3}}{2}-\frac{a_{1}}{8}=0
\]

Which after substituting earlier equations, simplifies to
\[
5 a_{5}-\frac{3}{8}=0
\]

Or
\[
a_{5}=\frac{3}{40}
\]
\(n=5\) gives
\[
6 a_{6}-2 a_{4}-\frac{a_{2}}{4}=0
\]

Which after substituting earlier equations, simplifies to
\[
6 a_{6}=0
\]

Or
\[
a_{6}=0
\]
\(n=6\) gives
\[
7 a_{7}-\frac{5 a_{5}}{2}-\frac{3 a_{3}}{8}-\frac{a_{1}}{16}=0
\]

Which after substituting earlier equations, simplifies to
\[
7 a_{7}-\frac{5}{16}=0
\]

Or
\[
a_{7}=\frac{5}{112}
\]
\(n=7\) gives
\[
8 a_{8}-3 a_{6}-\frac{a_{4}}{2}-\frac{a_{2}}{8}=0
\]

Which after substituting earlier equations, simplifies to
\[
8 a_{8}=0
\]

Or
\[
a_{8}=0
\]

For \(8 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((1+n) a_{1+n}-\frac{(n-1) a_{n-1}}{2}-\frac{(n-3) a_{n-3}}{8}-\frac{(n-5) a_{n-5}}{16}-\frac{5(n-7) a_{n-7}}{128}\right) x^{n}=1 \tag{4}
\end{equation*}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+x+\frac{1}{6} x^{3}+\frac{3}{40} x^{5}+\frac{5}{112} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=a_{0}+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=y(0)+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right) \tag{1}\\
& y=c_{1}+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Figure 468: Slope field plot

Verification of solutions
\[
y=y(0)+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=c_{1}+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{17.20.2 Maple step by step solution}

Let's solve
\[
y^{\prime} \sqrt{-x^{2}+1}=1
\]
- Highest derivative means the order of the ODE is 1 \(y^{\prime}\)
- \(\quad\) Separate variables
\[
y^{\prime}=\frac{1}{\sqrt{-x^{2}+1}}
\]
- Integrate both sides with respect to \(x\)
\[
\int y^{\prime} d x=\int \frac{1}{\sqrt{-x^{2}+1}} d x+c_{1}
\]
- Evaluate integral
\[
y=\arcsin (x)+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\arcsin (x)+c_{1}
\]

Maple trace
```

MMethods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
<- quadrature successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 19
```

Order:=8;
dsolve(diff(y(x),x)=(1-x^2)^(-1/2),y(x),type='series', x=0);

```
\[
y(x)=y(0)+x+\frac{x^{3}}{6}+\frac{3 x^{5}}{40}+\frac{5 x^{7}}{112}+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 28
AsymptoticDSolveValue[y' \(\left.[x]==\left(1-x^{\wedge} 2\right)^{\wedge}(-1 / 2), y[x],\{x, 0,7\}\right]\)
\[
y(x) \rightarrow \frac{5 x^{7}}{112}+\frac{3 x^{5}}{40}+\frac{x^{3}}{6}+x+c_{1}
\]

\subsection*{17.21 problem 4}
17.21.1 Solving as series ode . 2923
17.21.2 Maple step by step solution . 2933

Internal problem ID [6424]
Internal file name [OUTPUT/5672_Sunday_June_05_2022_03_46_35_PM_19500384/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 4.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program: "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[_quadrature]
\[
y^{\prime}-y=1
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.21.1 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor
series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=1+y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=1+y \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=1+y \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=1+y \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=1+y \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=1+y \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=1+y \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=y(0)\) gives
\[
\begin{aligned}
& F_{0}=1+y(0) \\
& F_{1}=1+y(0) \\
& F_{2}=1+y(0) \\
& F_{3}=1+y(0) \\
& F_{4}=1+y(0) \\
& F_{5}=1+y(0) \\
& F_{6}=1+y(0)
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y^{\prime}-y & =1
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=-1 \\
& p(x)=1
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This
is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=1 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=1 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=1 \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+1) a_{n+1}-a_{n}\right) x^{n}=1 \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(a_{1}-a_{0}\right) 1=1 \\
a_{1}-a_{0}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=1+a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}-a_{1}\right) x=0 \\
2 a_{2}-a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{1}{2}+\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(3 a_{3}-a_{2}\right) x^{2}=0 \\
3 a_{3}-a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{6}+\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(4 a_{4}-a_{3}\right) x^{3}=0 \\
4 a_{4}-a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24}+\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(5 a_{5}-a_{4}\right) x^{4}=0 \\
5 a_{5}-a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{120}+\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{6}-a_{5}\right) x^{5}=0 \\
6 a_{6}-a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{1}{720}+\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(7 a_{7}-a_{6}\right) x^{6}=0 \\
7 a_{7}-a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{5040}+\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(8 a_{8}-a_{7}\right) x^{7}=0 \\
8 a_{8}-a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{40320}+\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+\left(1+a_{0}\right) x+\left(\frac{1}{2}+\frac{a_{0}}{2}\right) x^{2}+\left(\frac{1}{6}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{1}{24}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(\frac{1}{120}+\frac{a_{0}}{120}\right) x^{5}+\left(\frac{1}{720}+\frac{a_{0}}{720}\right) x^{6}+\left(\frac{1}{5040}+\frac{a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) a_{0} \tag{3}\\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \tag{1}\\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right) \\
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \tag{2}\\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

Figure 469: Slope field plot

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) c_{1} \\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{17.21.2 Maple step by step solution}

Let's solve
\[
y^{\prime}-y=1
\]
- Highest derivative means the order of the ODE is 1
```

y'

```
- Separate variables
\[
\frac{y^{\prime}}{1+y}=1
\]
- Integrate both sides with respect to \(x\)
\[
\int \frac{y^{\prime}}{1+y} d x=\int 1 d x+c_{1}
\]
- Evaluate integral
\[
\ln (1+y)=x+c_{1}
\]
- \(\quad\) Solve for \(y\)
\[
y=\mathrm{e}^{x+c_{1}}-1
\]

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
```

Order:=8;
dsolve(diff(y(x),x)=1+y(x),y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right) y(0) \\
& +x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 95
AsymptoticDSolveValue \(\left[y^{\prime}[\mathrm{x}]==1+\mathrm{y}[\mathrm{x}], \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2} \\
& +c_{1}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right)+x
\end{aligned}
\]

\subsection*{17.22 problem 5 solved using series}
17.22.1 Existence and uniqueness analysis 2935
17.22.2 Solving as series ode . 2936
17.22.3 Maple step by step solution . 2945

Internal problem ID [6425]
Internal file name [OUTPUT/5673_Sunday_June_05_2022_03_46_37_PM_28499956/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 5 solved using series.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup", "first order ode series method. Ordinary point", "first order ode series method. Taylor series method"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
y+y^{\prime}=x
\]

With initial conditions
\[
[y(0)=0]
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{17.22.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =x
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=x
\]

The domain of \(p(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=x\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{17.22.2 Solving as series ode}

Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving first order ode. Let
\[
y^{\prime}=f(x, y)
\]

Where \(f(x, y)\) is analytic at expansion point \(x_{0}\). We can always shift to \(x_{0}=0\) if \(x_{0}\) is not zero. So from now we assume \(x_{0}=0\). Assume also that \(y\left(x_{0}\right)=y_{0}\). Using Taylor series
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x f+\left.\frac{x^{2}}{2} \frac{d f}{d x}\right|_{x_{0}, y_{0}}+\left.\frac{x^{3}}{3!} \frac{d^{2} f}{d x^{2}}\right|_{x_{0}, y_{0}}+\cdots \\
& =y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f \tag{1}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f(x, y)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f(x, y) \tag{4}\\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) F_{0} \tag{5}
\end{align*}
\]

For example, for \(n=1\) we see that
\[
\begin{aligned}
F_{1} & =\frac{d}{d x}\left(F_{0}\right) \\
& =\frac{\partial}{\partial x} F_{0}+\left(\frac{\partial F_{0}}{\partial y}\right) F_{0} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f
\end{aligned}
\]

Which is (1). And when \(n=2\)
\[
\begin{aligned}
F_{2} & =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) F_{0} \\
& =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right)+\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} f\right) f \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) f
\end{aligned}
\]

Which is \((2)\) and so on. Therefore \((4,5)\) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+\left.\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)!} F_{n}\right|_{x_{0}, y_{0}} \tag{6}
\end{equation*}
\]

Hence
\[
\begin{aligned}
& F_{0}=x-y \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} F_{0} \\
&=-x+y+1 \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} F_{1} \\
&=x-y-1 \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} F_{2} \\
&=-x+y+1 \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} F_{3} \\
&=x-y-1 \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} F_{4} \\
&=-x+y+1 \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} F_{5} \\
&=x-y-1 \\
&
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x(0)=0\) and \(y(0)=0\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=-1 \\
& F_{3}=1 \\
& F_{4}=-1 \\
& F_{5}=1 \\
& F_{6}=-1
\end{aligned}
\]

Substituting all the above in (6) and simplifying gives the solution as
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]

Now we substitute the given initial conditions in the above to solve for \(y(0)\). Solving for \(y(0)\) from initial conditions gives
\[
y(0)=y(0)
\]

Therefore the solution becomes
\[
y=\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}
\]

Hence the solution can be written as
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]
which simplifies to
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]

Since \(x=0\) is also an ordinary point, then standard power series can also be used. Writing the ODE as
\[
\begin{aligned}
y^{\prime}+q(x) y & =p(x) \\
y+y^{\prime} & =x
\end{aligned}
\]

Where
\[
\begin{aligned}
& q(x)=1 \\
& p(x)=x
\end{aligned}
\]

Next, the type of the expansion point \(x=0\) is determined. This point can be an ordinary point, a regular singular point (also called removable singularity), or irregular singular point (also called non-removable singularity or essential singularity). When \(x=0\) is an ordinary point, then the standard power series is used. If the point is a regular singular point, Frobenius series is used instead. Irregular singular point requires more advanced methods (asymptotic methods) and is not supported now. Hopefully this will be added in the future. \(x=0\) is called an ordinary point \(q(x)\) has a Taylor series expansion around the point \(x=0 . x=0\) is called a regular singular point if \(q(x)\) is not not analytic at \(x=0\) but \(x q(x)\) has Taylor series expansion. And finally, \(x=0\) is an irregular singular point if the point is not ordinary and not regular singular. This is the most complicated case. Now the expansion point \(x=0\) is checked to see if it is an ordinary point or not. Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=x \tag{1}
\end{equation*}
\]

Expanding \(x\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x & =x+\ldots \\
& =x
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=x \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)=x \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+1) a_{n+1}+a_{n}\right) x^{n}=x \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(a_{1}+a_{0}\right) 1=0 \\
a_{1}+a_{0}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{1}=-a_{0}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}+a_{1}\right) x=x \\
2 a_{2}+a_{1}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=\frac{1}{2}+\frac{a_{0}}{2}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(3 a_{3}+a_{2}\right) x^{2}=0 \\
3 a_{3}+a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{1}{6}-\frac{a_{0}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(4 a_{4}+a_{3}\right) x^{3}=0 \\
4 a_{4}+a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24}+\frac{a_{0}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(5 a_{5}+a_{4}\right) x^{4}=0 \\
5 a_{5}+a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{1}{120}-\frac{a_{0}}{120}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{6}+a_{5}\right) x^{5}=0 \\
6 a_{6}+a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{1}{720}+\frac{a_{0}}{720}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(7 a_{7}+a_{6}\right) x^{6}=0 \\
7 a_{7}+a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{1}{5040}-\frac{a_{0}}{5040}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(8 a_{8}+a_{7}\right) x^{7}=0 \\
8 a_{8}+a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{40320}+\frac{a_{0}}{40320}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}-a_{0} x+\left(\frac{1}{2}+\frac{a_{0}}{2}\right) x^{2}+\left(-\frac{1}{6}-\frac{a_{0}}{6}\right) x^{3}+\left(\frac{1}{24}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(-\frac{1}{120}-\frac{a_{0}}{120}\right) x^{5}+\left(\frac{1}{720}+\frac{a_{0}}{720}\right) x^{6}+\left(-\frac{1}{5040}-\frac{a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) a_{0} \tag{3}\\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
y(0)=a_{0}
\]

Therefore the solution in \(\mathrm{Eq}(3)\) now can be written as
\[
\begin{aligned}
y= & \left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Now we substitute the given initial conditions in the above to solve for \(y(0)\). Solving for \(y(0)\) from initial conditions gives
\[
y(0)=0
\]

Therefore the solution becomes
\[
y=\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}
\]

Hence the solution can be written as
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]
which simplifies to
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right) \tag{1}\\
& y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{17.22.3 Maple step by step solution}

Let's solve
\(\left[y+y^{\prime}=x, y(0)=0\right]\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=x-y\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y+y^{\prime}=x\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu(x) x\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\mu(x)\)
- \(\quad\) Solve to find the integrating factor
\(\mu(x)=\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{x}\)
\(y=\frac{\int x \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{(x-1) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}\)
- Simplify
\(y=x-1+c_{1} \mathrm{e}^{-x}\)
- Use initial condition \(y(0)=0\)
\(0=-1+c_{1}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=1\)
- \(\quad\) Substitute \(c_{1}=1\) into general solution and simplify
\(y=x-1+\mathrm{e}^{-x}\)
- Solution to the IVP
\(y=x-1+\mathrm{e}^{-x}\)

\section*{Maple trace}
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
```

Order:=8;
dsolve([diff(y(x),x)=x-y(x),y(0) = 0],y(x),type='series', x=0);

```
\[
y(x)=\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}+\mathrm{O}\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.042 (sec). Leaf size: 46
AsymptoticDSolveValue [\{y' \([x]==x-y[x],\{y[0]==0\}\}, y[x],\{x, 0,7\}]\)
\[
y(x) \rightarrow-\frac{x^{7}}{5040}+\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}
\]

\subsection*{17.23 problem 5 solved directly}
17.23.1 Existence and uniqueness analysis 2947
17.23.2 Solving as linear ode . 2948
17.23.3 Solving as first order ode lie symmetry lookup ode 2950
17.23.4 Solving as exact ode . 2954
17.23.5 Maple step by step solution . 2958

Internal problem ID [6426]
Internal file name [OUTPUT/5674_Sunday_June_05_2022_03_46_39_PM_47121641/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.2. Series Solutions of First-Order Differential Equations Page 162
Problem number: 5 solved directly.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "linear", "exactWithIntegrationFactor", "first__order_ode_lie_symmetry_lookup"

Maple gives the following as the ode type
[[_linear, ‘class A`]]
\[
y+y^{\prime}=x
\]

With initial conditions
\[
[y(0)=0]
\]

\subsection*{17.23.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime}+p(x) y=q(x)
\]

Where here
\[
\begin{aligned}
& p(x)=1 \\
& q(x)=x
\end{aligned}
\]

Hence the ode is
\[
y+y^{\prime}=x
\]

The domain of \(p(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=x\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{17.23.2 Solving as linear ode}

Entering Linear first order ODE solver. The integrating factor \(\mu\) is
\[
\begin{gathered}
\mu=\mathrm{e}^{\int 1 d x} \\
=\mathrm{e}^{x}
\end{gathered}
\]

The ode becomes
\[
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\mu y) & =(\mu)(x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(y \mathrm{e}^{x}\right) & =\left(\mathrm{e}^{x}\right)(x) \\
\mathrm{d}\left(y \mathrm{e}^{x}\right) & =\left(x \mathrm{e}^{x}\right) \mathrm{d} x
\end{aligned}
\]

Integrating gives
\[
\begin{aligned}
& y \mathrm{e}^{x}=\int x \mathrm{e}^{x} \mathrm{~d} x \\
& y \mathrm{e}^{x}=(x-1) \mathrm{e}^{x}+c_{1}
\end{aligned}
\]

Dividing both sides by the integrating factor \(\mu=\mathrm{e}^{x}\) results in
\[
y=\mathrm{e}^{-x}(x-1) \mathrm{e}^{x}+c_{1} \mathrm{e}^{-x}
\]
which simplifies to
\[
y=x-1+c_{1} \mathrm{e}^{-x}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=x-1+\mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x-1+\mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=x-1+\mathrm{e}^{-x}
\]

Verified OK.

\subsection*{17.23.3 Solving as first order ode lie symmetry lookup ode}

Writing the ode as
\[
\begin{aligned}
& y^{\prime}=x-y \\
& y^{\prime}=\omega(x, y)
\end{aligned}
\]

The condition of Lie symmetry is the linearized PDE given by
\[
\begin{equation*}
\eta_{x}+\omega\left(\eta_{y}-\xi_{x}\right)-\omega^{2} \xi_{y}-\omega_{x} \xi-\omega_{y} \eta=0 \tag{A}
\end{equation*}
\]

The type of this ode is known. It is of type linear. Therefore we do not need to solve the PDE (A), and can just use the lookup table shown below to find \(\xi, \eta\)

Table 426: Lie symmetry infinitesimal lookup table for known first order ODE's
\begin{tabular}{|l|l|l|l|}
\hline ODE class & Form & \(\xi\) & \(\eta\) \\
\hline \hline linear ode & \(y^{\prime}=f(x) y(x)+g(x)\) & 0 & \(e^{\int f d x}\) \\
\hline separable ode & \(y^{\prime}=f(x) g(y)\) & \(\frac{1}{f}\) & 0 \\
\hline quadrature ode & \(y^{\prime}=f(x)\) & 0 & 1 \\
\hline quadrature ode & \(y^{\prime}=g(y)\) & 1 & 0 \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class A
\end{tabular} & \(y^{\prime}=f\left(\frac{y}{x}\right)\) & \(x\) & \(y\) \\
\hline \begin{tabular}{l}
homogeneous ODEs of \\
Class C
\end{tabular} & \(y^{\prime}=(a+b x+c y)^{\frac{n}{m}}\) & 1 & \(-\frac{b}{c}\) \\
\hline homogeneous class D & \(y^{\prime}=\frac{y}{x}+g(x) F\left(\frac{y}{x}\right)\) & \(x^{2}\) & \(x y\) \\
\hline \begin{tabular}{l}
First order \\
form ID 1
\end{tabular} & special & \(y^{\prime}=g(x) e^{h(x)+b y}+f(x)\) & \(\frac{e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline polynomial type ode & \(y^{\prime}=\frac{a_{1} x+b_{1} y+c_{1}}{a_{2} x+b_{2} y+c_{2}}\) & \(\frac{f(x) e^{-\int b f(x) d x-h(x)}}{g(x)}\) \\
\hline Bernoulli ode & \(y^{\prime}=f(x) y+g(x) y^{n}\) & 0 & \(\underline{a}_{1} b_{2} x-a_{2} b_{1} x-b_{1} c_{2}+b_{2} c_{1}\) \\
\(a_{1} b_{2}-a_{2} b_{1}\) & \(\frac{a_{1} b_{2} y-a_{2} b_{1} y-a_{1} c_{2}-a_{2} c_{1}}{a_{1} b_{2}-a_{2} b_{1}}\) \\
\hline Reduced Riccati & \(y^{\prime}=f_{1}(x) y+f_{2}(x) y^{2}\) & 0 & \(e^{-\int(n-1) f(x) d x} y^{n}\) \\
\hline
\end{tabular}

The above table shows that
\[
\begin{align*}
& \xi(x, y)=0 \\
& \eta(x, y)=\mathrm{e}^{-x} \tag{A1}
\end{align*}
\]

The next step is to determine the canonical coordinates \(R, S\). The canonical coordinates map \((x, y) \rightarrow(R, S)\) where \((R, S)\) are the canonical coordinates which make the original ode become a quadrature and hence solved by integration.

The characteristic pde which is used to find the canonical coordinates is
\[
\begin{equation*}
\frac{d x}{\xi}=\frac{d y}{\eta}=d S \tag{1}
\end{equation*}
\]

The above comes from the requirements that \(\left(\xi \frac{\partial}{\partial x}+\eta \frac{\partial}{\partial y}\right) S(x, y)=1\). Starting with the first pair of ode's in (1) gives an ode to solve for the independent variable \(R\) in the canonical coordinates, where \(S(R)\). Since \(\xi=0\) then in this special case
\[
R=x
\]
\(S\) is found from
\[
\begin{aligned}
S & =\int \frac{1}{\eta} d y \\
& =\int \frac{1}{\mathrm{e}^{-x}} d y
\end{aligned}
\]

Which results in
\[
S=y \mathrm{e}^{x}
\]

Now that \(R, S\) are found, we need to setup the ode in these coordinates. This is done by evaluating
\[
\begin{equation*}
\frac{d S}{d R}=\frac{S_{x}+\omega(x, y) S_{y}}{R_{x}+\omega(x, y) R_{y}} \tag{2}
\end{equation*}
\]

Where in the above \(R_{x}, R_{y}, S_{x}, S_{y}\) are all partial derivatives and \(\omega(x, y)\) is the right hand side of the original ode given by
\[
\omega(x, y)=x-y
\]

Evaluating all the partial derivatives gives
\[
\begin{aligned}
R_{x} & =1 \\
R_{y} & =0 \\
S_{x} & =y \mathrm{e}^{x} \\
S_{y} & =\mathrm{e}^{x}
\end{aligned}
\]

Substituting all the above in (2) and simplifying gives the ode in canonical coordinates.
\[
\begin{equation*}
\frac{d S}{d R}=x \mathrm{e}^{x} \tag{2~A}
\end{equation*}
\]

We now need to express the RHS as function of \(R\) only. This is done by solving for \(x, y\) in terms of \(R, S\) from the result obtained earlier and simplifying. This gives
\[
\frac{d S}{d R}=R \mathrm{e}^{R}
\]

The above is a quadrature ode. This is the whole point of Lie symmetry method. It converts an ode, no matter how complicated it is, to one that can be solved by integration when the ode is in the canonical coordiates \(R, S\). Integrating the above gives
\[
\begin{equation*}
S(R)=(R-1) \mathrm{e}^{R}+c_{1} \tag{4}
\end{equation*}
\]

To complete the solution, we just need to transform (4) back to \(x, y\) coordinates. This results in
\[
\mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{1}
\]

Which simplifies to
\[
\mathrm{e}^{x} y=(x-1) \mathrm{e}^{x}+c_{1}
\]

Which gives
\[
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
\]

The following diagram shows solution curves of the original ode and how they transform in the canonical coordinates space using the mapping shown.
\begin{tabular}{|c|c|c|}
\hline Original ode in \(x, y\) coordinates & Canonical
coordinates
transformation & ODE in canonical coordinates
\[
(R, S)
\] \\
\hline \(\frac{d y}{d x}=x-y\) & & \(\frac{d S}{d R}=R \mathrm{e}^{R}\) \\
\hline & & \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow+]{\rightarrow+}\) \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow-S(R)]{ }\) \\
\hline & & - \\
\hline & \(R=x\) & \\
\hline & \(S=e^{x}\) & \\
\hline & & \(\xrightarrow[\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow-\infty]{ }\) \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) \\
\hline & & \\
\hline
\end{tabular}

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=x-1+\mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x-1+\mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=x-1+\mathrm{e}^{-x}
\]

Verified OK.

\subsection*{17.23.4 Solving as exact ode}

Entering Exact first order ODE solver. (Form one type)
To solve an ode of the form
\[
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
\]

We assume there exists a function \(\phi(x, y)=c\) where \(c\) is constant, that satisfies the ode. Taking derivative of \(\phi\) w.r.t. \(x\) gives
\[
\frac{d}{d x} \phi(x, y)=0
\]

Hence
\[
\begin{equation*}
\frac{\partial \phi}{\partial x}+\frac{\partial \phi}{\partial y} \frac{d y}{d x}=0 \tag{B}
\end{equation*}
\]

Comparing (\(\mathrm{A}, \mathrm{B}\)) shows that
\[
\begin{aligned}
& \frac{\partial \phi}{\partial x}=M \\
& \frac{\partial \phi}{\partial y}=N
\end{aligned}
\]

But since \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) then for the above to be valid, we require that
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

If the above condition is satisfied, then the original ode is called exact. We still need to determine \(\phi(x, y)\) but at least we know now that we can do that since the condition \(\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}\) is satisfied. If this condition is not satisfied then this method will not work and we have to now look for an integrating factor to force this condition, which might or might not exist. The first step is to write the ODE in standard form to check for exactness, which is
\[
\begin{equation*}
M(x, y) \mathrm{d} x+N(x, y) \mathrm{d} y=0 \tag{1A}
\end{equation*}
\]

Therefore
\[
\begin{align*}
\mathrm{d} y & =(x-y) \mathrm{d} x \\
(-x+y) \mathrm{d} x+\mathrm{d} y & =0 \tag{2A}
\end{align*}
\]

Comparing (1A) and (2A) shows that
\[
\begin{aligned}
& M(x, y)=-x+y \\
& N(x, y)=1
\end{aligned}
\]

The next step is to determine if the ODE is is exact or not. The ODE is exact when the following condition is satisfied
\[
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
\]

Using result found above gives
\[
\begin{aligned}
\frac{\partial M}{\partial y} & =\frac{\partial}{\partial y}(-x+y) \\
& =1
\end{aligned}
\]

And
\[
\begin{aligned}
\frac{\partial N}{\partial x} & =\frac{\partial}{\partial x}(1) \\
& =0
\end{aligned}
\]

Since \(\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}\), then the ODE is not exact. Since the ODE is not exact, we will try to find an integrating factor to make it exact. Let
\[
\begin{aligned}
A & =\frac{1}{N}\left(\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}\right) \\
& =1((1)-(0)) \\
& =1
\end{aligned}
\]

Since \(A\) does not depend on \(y\), then it can be used to find an integrating factor. The integrating factor \(\mu\) is
\[
\begin{aligned}
\mu & =e^{\int A \mathrm{~d} x} \\
& =e^{\int 1 \mathrm{~d} x}
\end{aligned}
\]

The result of integrating gives
\[
\begin{aligned}
\mu & =e^{x} \\
& =\mathrm{e}^{x}
\end{aligned}
\]
\(M\) and \(N\) are multiplied by this integrating factor, giving new \(M\) and new \(N\) which are called \(\bar{M}\) and \(\bar{N}\) for now so not to confuse them with the original \(M\) and \(N\).
\[
\begin{aligned}
\bar{M} & =\mu M \\
& =\mathrm{e}^{x}(-x+y) \\
& =-\mathrm{e}^{x}(x-y)
\end{aligned}
\]

And
\[
\begin{aligned}
\bar{N} & =\mu N \\
& =\mathrm{e}^{x}(1) \\
& =\mathrm{e}^{x}
\end{aligned}
\]

Now a modified ODE is ontained from the original ODE, which is exact and can be solved. The modified ODE is
\[
\begin{array}{r}
\bar{M}+\bar{N} \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \\
\left(-\mathrm{e}^{x}(x-y)\right)+\left(\mathrm{e}^{x}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
\end{array}
\]

The following equations are now set up to solve for the function \(\phi(x, y)\)
\[
\begin{align*}
& \frac{\partial \phi}{\partial x}=\bar{M} \tag{1}\\
& \frac{\partial \phi}{\partial y}=\bar{N} \tag{2}
\end{align*}
\]

Integrating (1) w.r.t. \(x\) gives
\[
\begin{align*}
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int \bar{M} \mathrm{~d} x \\
\int \frac{\partial \phi}{\partial x} \mathrm{~d} x & =\int-\mathrm{e}^{x}(x-y) \mathrm{d} x \\
\phi & =-(x-y-1) \mathrm{e}^{x}+f(y) \tag{3}
\end{align*}
\]

Where \(f(y)\) is used for the constant of integration since \(\phi\) is a function of both \(x\) and \(y\). Taking derivative of equation (3) w.r.t \(y\) gives
\[
\begin{equation*}
\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}+f^{\prime}(y) \tag{4}
\end{equation*}
\]

But equation (2) says that \(\frac{\partial \phi}{\partial y}=\mathrm{e}^{x}\). Therefore equation (4) becomes
\[
\begin{equation*}
\mathrm{e}^{x}=\mathrm{e}^{x}+f^{\prime}(y) \tag{5}
\end{equation*}
\]

Solving equation (5) for \(f^{\prime}(y)\) gives
\[
f^{\prime}(y)=0
\]

Therefore
\[
f(y)=c_{1}
\]

Where \(c_{1}\) is constant of integration. Substituting this result for \(f(y)\) into equation (3) gives \(\phi\)
\[
\phi=-(x-y-1) \mathrm{e}^{x}+c_{1}
\]

But since \(\phi\) itself is a constant function, then let \(\phi=c_{2}\) where \(c_{2}\) is new constant and combining \(c_{1}\) and \(c_{2}\) constants into new constant \(c_{1}\) gives the solution as
\[
c_{1}=-(x-y-1) \mathrm{e}^{x}
\]

The solution becomes
\[
y=\left(x \mathrm{e}^{x}-\mathrm{e}^{x}+c_{1}\right) \mathrm{e}^{-x}
\]

Initial conditions are used to solve for \(c_{1}\). Substituting \(x=0\) and \(y=0\) in the above solution gives an equation to solve for the constant of integration.
\[
\begin{gathered}
0=-1+c_{1} \\
c_{1}=1
\end{gathered}
\]

Substituting \(c_{1}\) found above in the general solution gives
\[
y=x-1+\mathrm{e}^{-x}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=x-1+\mathrm{e}^{-x} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=x-1+\mathrm{e}^{-x}
\]

Verified OK.

\subsection*{17.23.5 Maple step by step solution}

Let's solve
\(\left[y+y^{\prime}=x, y(0)=0\right]\)
- Highest derivative means the order of the ODE is 1
\(y^{\prime}\)
- Isolate the derivative
\(y^{\prime}=x-y\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE \(y+y^{\prime}=x\)
- The ODE is linear; multiply by an integrating factor \(\mu(x)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu(x) x\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d x}(\mu(x) y)\)
\(\mu(x)\left(y+y^{\prime}\right)=\mu^{\prime}(x) y+\mu(x) y^{\prime}\)
- Isolate \(\mu^{\prime}(x)\)
\(\mu^{\prime}(x)=\mu(x)\)
- \(\quad\) Solve to find the integrating factor \(\mu(x)=\mathrm{e}^{x}\)
- Integrate both sides with respect to \(x\)
\(\int\left(\frac{d}{d x}(\mu(x) y)\right) d x=\int \mu(x) x d x+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(x) y=\int \mu(x) x d x+c_{1}\)
- \(\quad\) Solve for \(y\)
\(y=\frac{\int \mu(x) x d x+c_{1}}{\mu(x)}\)
- \(\quad\) Substitute \(\mu(x)=\mathrm{e}^{x}\)
\(y=\frac{\int x \mathrm{e}^{x} d x+c_{1}}{\mathrm{e}^{x}}\)
- Evaluate the integrals on the rhs
\(y=\frac{(x-1) \mathrm{e}^{x}+c_{1}}{\mathrm{e}^{x}}\)
- Simplify
\(y=x-1+c_{1} \mathrm{e}^{-x}\)
- Use initial condition \(y(0)=0\)
\(0=-1+c_{1}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=1\)
- \(\quad\) Substitute \(c_{1}=1\) into general solution and simplify
\(y=x-1+\mathrm{e}^{-x}\)
- Solution to the IVP
\(y=x-1+\mathrm{e}^{-x}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 11
```

dsolve([diff(y(x),x)=x-y(x),y(0) = 0],y(x), singsol=all)

```
\[
y(x)=x-1+\mathrm{e}^{-x}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.039 (sec). Leaf size: 13
```

DSolve[{y'[x]==x-y[x],{y[0]==0}},y[x],x,IncludeSingularSolutions -> True]

```
\[
y(x) \rightarrow x+e^{-x}-1
\]
18 Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order LinearEquations: Ordinary Points. Page 169
18.1 problem 1(a) 2962
18.2 problem 1(b) 2972
18.3 problem 1(c) 2983
18.4 problem 1(d) 2994
18.5 problem 1(e) 3006
18.6 problem 1(f) 3015
18.7 problem 2 3026
18.8 problem 3 3035
18.9 problem 4(a) 3045
18.10problem 4(b) 3057
18.11problem 5 3069
18.12problem 6 3083
18.13problem 7 3093
18.14problem 8 3106

\section*{18.1 problem 1(a)}
18.1.1 Maple step by step solution 2970

Internal problem ID [6427]
Internal file name [OUTPUT/5675_Sunday_June_05_2022_03_46_40_PM_83521006/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
y^{\prime \prime}+x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{647}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{648}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-y-x y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}+x y-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-y^{\prime} x^{3}-y x^{2}+5 x y^{\prime}+3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{2}+8\right) y^{\prime}+y x\left(x^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+14 x^{3}-33 x\right) y^{\prime}-y\left(x^{4}-12 x^{2}+15\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{6}-20 x^{4}+87 x^{2}-48\right) y^{\prime}+y x\left(x^{4}-18 x^{2}+57\right) \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-x^{7}+27 x^{5}-185 x^{3}+279 x\right) y^{\prime}-y\left(x^{2}-7\right)\left(x^{4}-18 x^{2}+15\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=3 y(0) \\
& F_{3}=8 y^{\prime}(0) \\
& F_{4}=-15 y(0) \\
& F_{5}=-48 y^{\prime}(0) \\
& F_{6}=105 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+2 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{1}}{3}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+3 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{8}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+4 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{15}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+5 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{48}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+6 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{105}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+7 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{384}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+8 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{a_{1}}{945}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}-\frac{1}{48} a_{0} x^{6}-\frac{1}{105} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\(y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{18.1.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-y-x y^{\prime}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+x y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite DE with series expansions
\(\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0\)
- Each term in the series must be 0, giving the recursion relation
\((k+1)\left(a_{k+2}(k+2)+a_{k}\right)=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+2}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=8;
dsolve(diff (y (x),x\$2)+x*diff (y (x),x)+y(x)=0,y(x),type='series', x=0);
$y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) D(y)(0)+O\left(x^{8}\right)$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
```

AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{2}\left(-\frac{x^{7}}{105}+\frac{x^{5}}{15}-\frac{x^{3}}{3}+x\right)+c_{1}\left(-\frac{x^{6}}{48}+\frac{x^{4}}{8}-\frac{x^{2}}{2}+1\right)
\]

\section*{18.2 problem 1(b)}
18.2.1 Maple step by step solution

2980
Internal problem ID [6428]
Internal file name [OUTPUT/5676_Sunday_June_05_2022_03_46_42_PM_36469378/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y^{\prime}+x y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{650}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{651}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =y^{\prime}-x y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(1-x) y^{\prime}-(1+x) y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =(-1-2 x) y^{\prime}+y\left(x^{2}-x-1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{2}-3 x-4\right) y^{\prime}+y\left(2 x^{2}+3 x-1\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(3 x^{2}+2 x-8\right) y^{\prime}-y\left(x^{3}-3 x^{2}-8 x-3\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(-x^{3}+6 x^{2}+16 x-3\right) y^{\prime}-3\left(x^{3}+\frac{5}{3} x^{2}-\frac{14}{3} x-\frac{8}{3}\right) y \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-4 x^{3}-2 x^{2}+42 x+21\right) y^{\prime}+y\left(x^{4}-6 x^{3}-25 x^{2}-7 x+14\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y^{\prime}(0) \\
& F_{1}=-y(0)+y^{\prime}(0) \\
& F_{2}=-y^{\prime}(0)-y(0) \\
& F_{3}=-4 y^{\prime}(0)-y(0) \\
& F_{4}=-8 y^{\prime}(0)+3 y(0) \\
& F_{5}=-3 y^{\prime}(0)+8 y(0) \\
& F_{6}=21 y^{\prime}(0)+14 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}+\frac{1}{2880} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}+\frac{1}{1920} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right) \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}-a_{1}=0 \\
a_{2}=\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)-(1+n) a_{1+n}+a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =\frac{n a_{1+n}+a_{1+n}-a_{n-1}}{(n+2)(1+n)} \\
& =\frac{a_{1+n}}{n+2}-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}-2 a_{2}+a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{1}}{6}-\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}-3 a_{3}+a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{1}}{24}-\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}-4 a_{4}+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{1}}{30}-\frac{a_{0}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}-5 a_{5}+a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{1}}{90}+\frac{a_{0}}{240}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}-6 a_{6}+a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{1680}+\frac{a_{0}}{630}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}-7 a_{7}+a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{1}}{1920}+\frac{a_{0}}{2880}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}-8 a_{8}+a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{11 a_{1}}{51840}-\frac{a_{0}}{51840}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\frac{a_{1} x^{2}}{2}+\left(\frac{a_{1}}{6}-\frac{a_{0}}{6}\right) x^{3}+\left(-\frac{a_{1}}{24}-\frac{a_{0}}{24}\right) x^{4} \\
& +\left(-\frac{a_{1}}{30}-\frac{a_{0}}{120}\right) x^{5}+\left(-\frac{a_{1}}{90}+\frac{a_{0}}{240}\right) x^{6}+\left(-\frac{a_{1}}{1680}+\frac{a_{0}}{630}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}\right) a_{0} \tag{3}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}+\frac{1}{2880} x^{8}\right) y(0) \tag{1}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}+\frac{1}{1920} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}\right) c_{1} \tag{2}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}+\frac{1}{2880} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}+\frac{1}{1920} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{18.2.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=y^{\prime}-x y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-y^{\prime}+x y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}\)
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
\]
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}-a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k+1}(k+1)+a_{k-1}\right) x^{k}\right)=0
\]
- \(\quad\) Each term must be 0
\[
2 a_{2}-a_{1}=0
\]
- Each term in the series must be 0 , giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}-a_{k+1} k+a_{k-1}-a_{k+1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left((k+1)^{2}+3 k+5\right) a_{k+3}-a_{k+2}(k+1)+a_{k}-a_{k+2}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{k a_{k+2}-a_{k}+2 a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}-a_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 69
```

Order:=8;
dsolve(diff (y (x),x\$2)-diff(y(x),x)+x*y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{240} x^{6}+\frac{1}{630} x^{7}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{30} x^{5}-\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Solution by Mathematica}

Time used: 0.001 (sec). Leaf size: 91
AsymptoticDSolveValue[y''[x]-y'[x]+x*y[x]==0,y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{1}\left(\frac{x^{7}}{630}+\frac{x^{6}}{240}-\frac{x^{5}}{120}-\frac{x^{4}}{24}-\frac{x^{3}}{6}+1\right)+c_{2}\left(-\frac{x^{7}}{1680}-\frac{x^{6}}{90}-\frac{x^{5}}{30}-\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x\right)
\]

\section*{18.3 problem 1(c)}

Internal problem ID [6429]
Internal file name [OUTPUT/5677_Sunday_June_05_2022_03_46_43_PM_57202053/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+2 x y^{\prime}-y=x
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{653}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{654}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-2 x y^{\prime}+y+x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =4 x^{2} y^{\prime}-2 x y-2 x^{2}-y^{\prime}+1 \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-8 x^{3}+8 x\right) y^{\prime}+4 x^{3}+4 y x^{2}-5 x-3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(16 x^{4}-36 x^{2}+5\right) y^{\prime}+\left(-8 x^{3}+16 x\right) y-8 x^{4}+20 x^{2}-5 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-32 x^{5}+128 x^{3}-66 x\right) y^{\prime}+\left(16 x^{4}-60 x^{2}+21\right) y+16 x^{5}-68 x^{3}+45 x \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(64 x^{6}-400 x^{4}+456 x^{2}-45\right) y^{\prime}+\left(-32 x^{5}+192 x^{3}-186 x\right) y-32 x^{6}+208 x^{4}-270 x^{2}+45 \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-128 x^{7}+1152 x^{5}-2320 x^{3}+816 x\right) y^{\prime}+\left(64 x^{6}-560 x^{4}+1032 x^{2}-231\right) y+64 x^{7}-592 x^{5}+1288
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0) \\
& F_{1}=-y^{\prime}(0)+1 \\
& F_{2}=-3 y(0) \\
& F_{3}=5 y^{\prime}(0)-5 \\
& F_{4}=21 y(0) \\
& F_{5}=-45 y^{\prime}(0)+45 \\
& F_{6}=-231 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}-\frac{11}{1920} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x \tag{1}
\end{equation*}
\]

Expanding \(x\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x & =x+\ldots \\
& =x
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=x \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 n x^{n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=x \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+2) a_{n+2}(n+1)+2 n a_{n}-a_{n}\right) x^{n}=x \tag{4}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{3}+a_{1}\right) x=x \\
6 a_{3}+a_{1}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{6}-\frac{a_{1}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(12 a_{4}+3 a_{2}\right) x^{2}=0 \\
12 a_{4}+3 a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{0}}{8}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(20 a_{5}+5 a_{3}\right) x^{3}=0 \\
20 a_{5}+5 a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{1}{24}+\frac{a_{1}}{24}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(30 a_{6}+7 a_{4}\right) x^{4}=0 \\
30 a_{6}+7 a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{7 a_{0}}{240}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}+9 a_{5}\right) x^{5}=0 \\
42 a_{7}+9 a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{112}-\frac{a_{1}}{112}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(56 a_{8}+11 a_{6}\right) x^{6}=0 \\
56 a_{8}+11 a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{11 a_{0}}{1920}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(72 a_{9}+13 a_{7}\right) x^{7}=0 \\
72 a_{9}+13 a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=-\frac{13}{8064}+\frac{13 a_{1}}{8064}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\frac{a_{0} x^{2}}{2}+\left(\frac{1}{6}-\frac{a_{1}}{6}\right) x^{3}-\frac{a_{0} x^{4}}{8} \\
& +\left(-\frac{1}{24}+\frac{a_{1}}{24}\right) x^{5}+\frac{7 a_{0} x^{6}}{240}+\left(\frac{1}{112}-\frac{a_{1}}{112}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}\right) a_{0} \tag{3}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) a_{1}+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}-\frac{11}{1920} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right) \\
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}\right) c_{1} \tag{2}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}-\frac{11}{1920} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) y^{\prime}(0)+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\(y=\left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) c_{2}+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)\)
Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         <- Kummer successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 50
```

Order:=8;
dsolve(diff(y(x),x\$2)+2*x*diff(y(x),x)-y(x)=x,y(x),type='series', x=0);

$$
\begin{aligned}
y(x)= & \left(1+\frac{1}{2} x^{2}-\frac{1}{8} x^{4}+\frac{7}{240} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{24} x^{5}-\frac{1}{112} x^{7}\right) D(y)(0)+\frac{x^{3}}{6}-\frac{x^{5}}{24}+\frac{x^{7}}{112}+O\left(x^{8}\right)
\end{aligned}
$$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.022 (sec). Leaf size: 77
AsymptoticDSolveValue[y' ' \([\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==\mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\(y(x) \rightarrow \frac{x^{7}}{112}-\frac{x^{5}}{24}+\frac{x^{3}}{6}+c_{2}\left(-\frac{x^{7}}{112}+\frac{x^{5}}{24}-\frac{x^{3}}{6}+x\right)+c_{1}\left(\frac{7 x^{6}}{240}-\frac{x^{4}}{8}+\frac{x^{2}}{2}+1\right)\)

\section*{18.4 problem 1(d)}

Internal problem ID [6430]
Internal file name [OUTPUT/5678_Sunday_June_05_2022_03_46_45_PM_58879577/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order
Linear Equations: Ordinary Points. Page 169
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _linear, _nonhomogeneous]]

```
\[
y^{\prime \prime}+y^{\prime}-y x^{2}=1
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{656}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{657}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-y^{\prime}+y x^{2}+1 \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y^{\prime}-y x^{2}-1+x^{2} y^{\prime}+2 x y \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(-2 x^{2}+4 x-1\right) y^{\prime}+\left(x^{4}+x^{2}-2 x+2\right) y+x^{2}+1 \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+3 x^{2}-10 x+7\right) y^{\prime}+\left(-2 x^{4}+8 x^{3}-x^{2}+2 x-2\right) y-2 x^{2}+6 x-1 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-3 x^{4}+12 x^{3}-4 x^{2}+18 x-19\right) y^{\prime}+\left(x^{6}+3 x^{4}-18 x^{3}+31 x^{2}-2 x+2\right) y+x^{4}+3 x^{2}-14 x+13 \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{6}+6 x^{4}-42 x^{3}+71 x^{2}-28 x+39\right) y^{\prime}+\left(-3 x^{6}+18 x^{5}-4 x^{4}+30 x^{3}-73 x^{2}+62 x-2\right) y-3 x^{4}+ \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-4 x^{6}+24 x^{5}-10 x^{4}+96 x^{3}-270 x^{2}+232 x-69\right) y^{\prime}+\left(x^{8}+6 x^{6}-60 x^{5}+161 x^{4}-44 x^{3}+129 x^{2}\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y^{\prime}(0)+1 \\
& F_{1}=y^{\prime}(0)-1 \\
& F_{2}=-y^{\prime}(0)+2 y(0)+1 \\
& F_{3}=7 y^{\prime}(0)-2 y(0)-1 \\
& F_{4}=-19 y^{\prime}(0)+2 y(0)+13 \\
& F_{5}=39 y^{\prime}(0)-2 y(0)-33 \\
& F_{6}=-69 y^{\prime}(0)+62 y(0)+63
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}+\frac{31}{20160} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}-\frac{23}{13440} x^{8}\right) y^{\prime}(0) \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+\frac{x^{8}}{640}+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) x^{2}+1 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right)=1 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{n+2} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\sum_{n=2}^{\infty}\left(-a_{n-2} x^{n}\right)=1 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{array}{r}
\left(2 a_{2}+a_{1}\right) x^{0}=1 \\
2 a_{2}+a_{1}=1 \\
a_{2}=-\frac{a_{1}}{2}+\frac{1}{2}
\end{array}
\]
\(n=1\) gives
\[
6 a_{3}+2 a_{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
6 a_{3}-a_{1}+1=0
\]

Or
\[
a_{3}=\frac{a_{1}}{6}-\frac{1}{6}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+2) a_{n+2}(n+1)+(n+1) a_{n+1}-a_{n-2}\right) x^{n}=1 \tag{4}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(12 a_{4}+3 a_{3}-a_{0}\right) x^{2}=0 \\
12 a_{4}+3 a_{3}-a_{0}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24}-\frac{a_{1}}{24}+\frac{a_{0}}{12}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(20 a_{5}+4 a_{4}-a_{1}\right) x^{3}=0 \\
20 a_{5}+4 a_{4}-a_{1}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{1}{120}+\frac{7 a_{1}}{120}-\frac{a_{0}}{60}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(30 a_{6}+5 a_{5}-a_{2}\right) x^{4}=0 \\
30 a_{6}+5 a_{5}-a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{13}{720}-\frac{19 a_{1}}{720}+\frac{a_{0}}{360}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}+6 a_{6}-a_{3}\right) x^{5}=0 \\
42 a_{7}+6 a_{6}-a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{11}{1680}+\frac{13 a_{1}}{1680}-\frac{a_{0}}{2520}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(56 a_{8}+7 a_{7}-a_{4}\right) x^{6}=0 \\
56 a_{8}+7 a_{7}-a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{640}-\frac{23 a_{1}}{13440}+\frac{31 a_{0}}{20160}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{aligned}
\left(72 a_{9}+8 a_{8}-a_{5}\right) x^{7} & =0 \\
72 a_{9}+8 a_{8}-a_{5} & =0
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=-\frac{1}{3456}+\frac{121 a_{1}}{120960}-\frac{73 a_{0}}{181440}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{a_{1}}{2}+\frac{1}{2}\right) x^{2}+\left(\frac{a_{1}}{6}-\frac{1}{6}\right) x^{3} \\
& +\left(\frac{1}{24}-\frac{a_{1}}{24}+\frac{a_{0}}{12}\right) x^{4}+\left(-\frac{1}{120}+\frac{7 a_{1}}{120}-\frac{a_{0}}{60}\right) x^{5} \\
& +\left(\frac{13}{720}-\frac{19 a_{1}}{720}+\frac{a_{0}}{360}\right) x^{6}+\left(-\frac{11}{1680}+\frac{13 a_{1}}{1680}-\frac{a_{0}}{2520}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}\right) a_{0} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}\right) a_{1} \tag{3}\\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}\right) c_{2} \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+O\left(x^{8}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}+\frac{31}{20160} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}-\frac{23}{13440} x^{8}\right) y^{\prime}(0) \tag{1}\\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+\frac{x^{8}}{640}+O\left(x^{8}\right) \\
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}\right) c_{2} \tag{2}\\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+O\left(x^{8}\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}+\frac{31}{20160} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}-\frac{23}{13440} x^{8}\right) y^{\prime}(0) \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+\frac{x^{8}}{640}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}\right) c_{2} \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         -> elliptic         -> Legendre         -> Kummer             -> hyper3: Equivalence to 1F1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 1F1 ODE         <- Kummer successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```

\section*{Solution by Maple}

Time used: 0.0 (sec). Leaf size: 72
```

Order:=8;
dsolve(diff(y(x),x\$2)+diff(y(x),x)-x^2*y(x)=1,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+\frac{1}{12} x^{4}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{7}{120} x^{5}-\frac{19}{720} x^{6}+\frac{13}{1680} x^{7}\right) D(y)(0) \\
& +\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{13 x^{6}}{720}-\frac{11 x^{7}}{1680}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 126
AsymptoticDSolveValue[y' \([\mathrm{x}]+\mathrm{y}\) ' \(\left.[\mathrm{x}]+\mathrm{x}^{\wedge} 2 * \mathrm{y}[\mathrm{x}]==1, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{31 x^{7}}{5040}-\frac{11 x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}+c_{1}\left(\frac{x^{7}}{2520}-\frac{x^{6}}{360}+\frac{x^{5}}{60}-\frac{x^{4}}{12}+1\right) \\
& +c_{2}\left(-\frac{37 x^{7}}{5040}+\frac{17 x^{6}}{720}-\frac{x^{5}}{24}-\frac{x^{4}}{24}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+x\right)
\end{aligned}
\]

\section*{18.5 problem 1(e)}

Internal problem ID [6431]
Internal file name [OUTPUT/5679_Sunday_June_05_2022_03_46_46_PM_76326535/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order
Linear Equations: Ordinary Points. Page 169
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change_of__variable_on_x_method_1", "second__order_change_of_cvariable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, '
_with_symmetry_[0,F(x)]`]]

```
\[
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{659}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{660}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=-\frac{x y^{\prime}+y}{x^{2}+1} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{x^{2} y^{\prime}+3 x y-2 y^{\prime}}{\left(x^{2}+1\right)^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{-10 y x^{2}+15 x y^{\prime}+5 y}{\left(x^{2}+1\right)^{3}} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{\left(-10 x^{4}-95 x^{2}+20\right) y^{\prime}+\left(40 x^{3}-65 x\right) y}{\left(x^{2}+1\right)^{4}} \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=\frac{\left(90 x^{5}+600 x^{3}-435 x\right) y^{\prime}+\left(-190 x^{4}+670 x^{2}-85\right) y}{\left(x^{2}+1\right)^{5}} \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& F_{5}=\frac{\left(6160 x^{7}+24780 x^{5}-93660 x^{3}+22855 x\right) y^{\prime}+\left(-6620 x^{6}+69600 x^{4}-55770 x^{2}+3145\right) y}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
&=\frac{\left(-730 x^{6}-3870 x^{4}+6735 x^{2}-520\right) y^{\prime}+1050\left(x^{4}-\frac{32}{5} x^{2}+\frac{5}{2}\right) y x}{\left(x^{2}+1\right)^{7}} \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=5 y(0) \\
& F_{3}=20 y^{\prime}(0) \\
& F_{4}=-85 y(0) \\
& F_{5}=-520 y^{\prime}(0) \\
& F_{6}=3145 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\(y=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}+\frac{629}{8064} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}+y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]
\(n=1\) gives
\[
6 a_{3}+2 a_{1}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{a_{1}}{3}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}+1\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
5 a_{2}+12 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{5 a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
10 a_{3}+20 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{6}
\]

For \(n=4\) the recurrence equation gives
\[
17 a_{4}+30 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{17 a_{0}}{144}
\]

For \(n=5\) the recurrence equation gives
\[
26 a_{5}+42 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{13 a_{1}}{126}
\]

For \(n=6\) the recurrence equation gives
\[
37 a_{6}+56 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{629 a_{0}}{8064}
\]

For \(n=7\) the recurrence equation gives
\[
50 a_{7}+72 a_{9}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{325 a_{1}}{4536}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{5}{24} a_{0} x^{4}+\frac{1}{6} a_{1} x^{5}-\frac{17}{144} a_{0} x^{6}-\frac{13}{126} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}+\frac{629}{8064} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) c_{2}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\(y=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}+\frac{629}{8064} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.
Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=8;
dsolve((1+x^2)*diff (y (x),x\$2)+x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\(y(x)=\left(1-\frac{1}{2} x^{2}+\frac{5}{24} x^{4}-\frac{17}{144} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{6} x^{5}-\frac{13}{126} x^{7}\right) D(y)(0)+O\left(x^{8}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue \(\left[\left(1+x^{\wedge} 2\right) * y\right.\) ' ' \([x]+x * y\) ' \(\left.[x]+y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
y(x) \rightarrow c_{2}\left(-\frac{13 x^{7}}{126}+\frac{x^{5}}{6}-\frac{x^{3}}{3}+x\right)+c_{1}\left(-\frac{17 x^{6}}{144}+\frac{5 x^{4}}{24}-\frac{x^{2}}{2}+1\right)
\]

\section*{18.6 problem 1(f)}
18.6.1 Maple step by step solution . 3023

Internal problem ID [6432]
Internal file name [OUTPUT/5680_Sunday_June_05_2022_03_46_48_PM_58550294/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method", "second_order_ode_non_constant__coeff_transformation_oon_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+(1+x) y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{662}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{663}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-x y^{\prime}-y^{\prime}+y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =(1+x)\left((1+x) y^{\prime}-y\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-(x+2)\left((1+x) y^{\prime}-y\right) x \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =(1+x)\left((1+x) y^{\prime}-y\right)\left(x^{2}+2 x-2\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\left((1+x) y^{\prime}-y\right)\left(x^{4}+4 x^{3}-8 x-2\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =(1+x)\left((1+x) y^{\prime}-y\right)\left(x^{4}+4 x^{3}-4 x^{2}-16 x+6\right) \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =-\left(x^{6}+6 x^{5}-40 x^{3}-30 x^{2}+36 x+16\right)\left((1+x) y^{\prime}-y\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0)-y^{\prime}(0) \\
& F_{1}=-y(0)+y^{\prime}(0) \\
& F_{2}=0 \\
& F_{3}=2 y(0)-2 y^{\prime}(0) \\
& F_{4}=2 y^{\prime}(0)-2 y(0) \\
& F_{5}=6 y^{\prime}(0)-6 y(0) \\
& F_{6}=-16 y^{\prime}(0)+16 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}+\frac{1}{2520} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}-\frac{1}{2520} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{1}-a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}-\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+n a_{n}-a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =-\frac{n a_{n}+n a_{n+1}-a_{n}+a_{n+1}}{(n+2)(n+1)} \\
& =-\frac{(n-1) a_{n}}{(n+2)(n+1)}-\frac{a_{n+1}}{n+2} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+2 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{6}+\frac{a_{1}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+3 a_{3}+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=0
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+4 a_{4}+2 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{0}}{60}-\frac{a_{1}}{60}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+5 a_{5}+3 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{360}+\frac{a_{1}}{360}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+6 a_{6}+4 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{0}}{840}+\frac{a_{1}}{840}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+7 a_{7}+5 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{2520}-\frac{a_{1}}{2520}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+8 a_{8}+6 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{a_{0}}{18144}-\frac{a_{1}}{18144}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(\frac{a_{0}}{2}-\frac{a_{1}}{2}\right) x^{2}+\left(-\frac{a_{0}}{6}+\frac{a_{1}}{6}\right) x^{3}+\left(\frac{a_{0}}{60}-\frac{a_{1}}{60}\right) x^{5} \\
& +\left(-\frac{a_{0}}{360}+\frac{a_{1}}{360}\right) x^{6}+\left(-\frac{a_{0}}{840}+\frac{a_{1}}{840}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}\right) a_{0} \tag{3}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}+\frac{1}{2520} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}-\frac{1}{2520} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}\right) c_{1} \tag{2}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}+\frac{1}{2520} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}-\frac{1}{2520} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{18.6.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-x y^{\prime}-y^{\prime}+y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+(1+x) y^{\prime}-y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite DE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- \(\quad\) Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1)+a_{k}(k-1)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\[
k^{2} a_{k+2}+\left(a_{k}+a_{k+1}+3 a_{k+2}\right) k-a_{k}+a_{k+1}+2 a_{k+2}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k} k+a_{k+1} k-a_{k}+a_{k+1}}{k^{2}+3 k+2}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 64
```

Order:=8;
dsolve(diff(y(x),x\$2)+(1+x)*diff(y(x),x)-y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{840} x^{7}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{60} x^{5}+\frac{1}{360} x^{6}+\frac{1}{840} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 84
AsymptoticDSolveValue[y' \([\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}\) ' \([\mathrm{x}]-\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\(y(x) \rightarrow c_{1}\left(-\frac{x^{7}}{840}-\frac{x^{6}}{360}+\frac{x^{5}}{60}-\frac{x^{3}}{6}+\frac{x^{2}}{2}+1\right)+c_{2}\left(\frac{x^{7}}{840}+\frac{x^{6}}{360}-\frac{x^{5}}{60}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+x\right)\)

\section*{18.7 problem 2}

Internal problem ID [6433]
Internal file name [OUTPUT/5681_Sunday_June_05_2022_03_46_50_PM_55193875/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order
Linear Equations: Ordinary Points. Page 169
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(x^{2}+1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{665}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{666}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-\frac{2\left(-y+x y^{\prime}\right)}{x^{2}+1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{8\left(-y+x y^{\prime}\right) x}{\left(x^{2}+1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-\frac{8\left(-y+x y^{\prime}\right)\left(5 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{240\left(-y+x y^{\prime}\right)\left(x^{2}-\frac{3}{5}\right) x}{\left(x^{2}+1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-\frac{48\left(-y+x y^{\prime}\right)\left(35 x^{4}-42 x^{2}+3\right)}{\left(x^{2}+1\right)^{5}} \\
& =-\frac{5760\left(-y+x y^{\prime}\right)\left(21 x^{6}-63 x^{4}+27 x^{2}-1\right)}{\left(x^{2}+1\right)^{7}} \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\frac{13440\left(-y+x y^{\prime}\right)\left(x^{4}-2 x^{2}+\frac{3}{7}\right) x}{\left(x^{2}+1\right)^{6}} \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =1
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=2 y(0) \\
& F_{1}=0 \\
& F_{2}=-8 y(0) \\
& F_{3}=0 \\
& F_{4}=144 y(0) \\
& F_{5}=0 \\
& F_{6}=-5760 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(x^{2}+1\right) y^{\prime \prime}+2 x y^{\prime}-2 y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\left(\sum_{n=1}^{\infty} 2 n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}-2 a_{0}=0 \\
a_{2}=a_{0}
\end{gathered}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)+2 n a_{n}-2 a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{(n-1) a_{n}}{n+1} \tag{5}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
4 a_{2}+12 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{0}}{3}
\]

For \(n=3\) the recurrence equation gives
\[
10 a_{3}+20 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=0
\]

For \(n=4\) the recurrence equation gives
\[
18 a_{4}+30 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{5}
\]

For \(n=5\) the recurrence equation gives
\[
28 a_{5}+42 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=0
\]

For \(n=6\) the recurrence equation gives
\[
40 a_{6}+56 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{a_{0}}{7}
\]

For \(n=7\) the recurrence equation gives
\[
54 a_{7}+72 a_{9}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=0
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x+a_{0} x^{2}-\frac{1}{3} a_{0} x^{4}+\frac{1}{5} a_{0} x^{6}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}\right) a_{0}+a_{1} x+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}-\frac{1}{7} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
\]

Verified OK.

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

Order:=8;
dsolve((1+x^2)*diff (y (x),x\$2)+2*x*diff (y (x), x) - 2*y (x)=0,y(x),type='series',x=0);

$$
y(x)=\left(1+x^{2}-\frac{1}{3} x^{4}+\frac{1}{5} x^{6}\right) y(0)+D(y)(0) x+O\left(x^{8}\right)
$$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 30
```

AsymptoticDSolveValue[(1+x^2)*y''[x]+2*x*y'[x]-2*y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{1}\left(\frac{x^{6}}{5}-\frac{x^{4}}{3}+x^{2}+1\right)+c_{2} x
\]

\section*{18.8 problem 3}
18.8.1 Maple step by step solution

Internal problem ID [6434]
Internal file name [OUTPUT/5682_Sunday_June_05_2022_03_46_51_PM_7541715/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 3 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
y^{\prime \prime}+x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{668}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{669}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-y-x y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}+x y-2 y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-y^{\prime} x^{3}-y x^{2}+5 x y^{\prime}+3 y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}-9 x^{2}+8\right) y^{\prime}+y x\left(x^{2}-7\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-x^{5}+14 x^{3}-33 x\right) y^{\prime}-y\left(x^{4}-12 x^{2}+15\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{6}-20 x^{4}+87 x^{2}-48\right) y^{\prime}+y x\left(x^{4}-18 x^{2}+57\right) \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-x^{7}+27 x^{5}-185 x^{3}+279 x\right) y^{\prime}-y\left(x^{2}-7\right)\left(x^{4}-18 x^{2}+15\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-2 y^{\prime}(0) \\
& F_{2}=3 y(0) \\
& F_{3}=8 y^{\prime}(0) \\
& F_{4}=-15 y(0) \\
& F_{5}=-48 y^{\prime}(0) \\
& F_{6}=105 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{n+2} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+2 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{1}}{3}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+3 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{8}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+4 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{15}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+5 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{48}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+6 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{105}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+7 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{384}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+8 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{a_{1}}{945}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{3} a_{1} x^{3}+\frac{1}{8} a_{0} x^{4}+\frac{1}{15} a_{1} x^{5}-\frac{1}{48} a_{0} x^{6}-\frac{1}{105} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) a_{0}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\(y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}+\frac{1}{384} x^{8}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) c_{1}+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{18.8.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-y-x y^{\prime}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+x y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation
\((k+1)\left(a_{k+2}(k+2)+a_{k}\right)=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{k+2}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 44
```

Order:=8;
dsolve(diff (y (x),x\$2)+x*diff (y (x),x)+y(x)=0,y(x),type='series', x=0);
$y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{8} x^{4}-\frac{1}{48} x^{6}\right) y(0)+\left(x-\frac{1}{3} x^{3}+\frac{1}{15} x^{5}-\frac{1}{105} x^{7}\right) D(y)(0)+O\left(x^{8}\right)$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
```

AsymptoticDSolveValue[y''[x]+x*y'[x]+y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{2}\left(-\frac{x^{7}}{105}+\frac{x^{5}}{15}-\frac{x^{3}}{3}+x\right)+c_{1}\left(-\frac{x^{6}}{48}+\frac{x^{4}}{8}-\frac{x^{2}}{2}+1\right)
\]

\section*{18.9 problem 4(a)}
18.9.1 Existence and uniqueness analysis 3045
18.9.2 Maple step by step solution . 3054

Internal problem ID [6435]
Internal file name [OUTPUT/5683_Sunday_June_05_2022_03_46_53_PM_90746626/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y^{\prime}-x y=0
\]

With initial conditions
\[
\left[y(0)=1, y^{\prime}(0)=0\right]
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{18.9.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =-x \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y^{\prime}-x y=0
\]

The domain of \(p(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=-x\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{671}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{672}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =x y-y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x y^{\prime}+y-x y+y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =(1-2 x) y^{\prime}+y\left(x^{2}+x-1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{2}+3 x-4\right) y^{\prime}+\left(-2 x^{2}+3 x+1\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-3 x^{2}+2 x+8\right) y^{\prime}+y\left(x^{3}+3 x^{2}-8 x+3\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{3}+6 x^{2}-16 x-3\right) y^{\prime}-3\left(x^{3}-\frac{5}{3} x^{2}-\frac{14}{3} x+\frac{8}{3}\right) y \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-4 x^{3}+2 x^{2}+42 x-21\right) y^{\prime}+y\left(x^{4}+6 x^{3}-25 x^{2}+7 x+14\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=1\) and
\(y^{\prime}(0)=0\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{2}=-1 \\
& F_{3}=1 \\
& F_{4}=3 \\
& F_{5}=-8 \\
& F_{6}=14
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
& y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+\frac{x^{8}}{2880}+O\left(x^{8}\right) \\
& y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+\frac{x^{8}}{2880}+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{1}=0 \\
a_{2}=-\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+(1+n) a_{1+n}-a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =-\frac{n a_{1+n}+a_{1+n}-a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{1+n}}{n+2}+\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+2 a_{2}-a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{1}}{6}+\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+3 a_{3}-a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{1}}{24}-\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+4 a_{4}-a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{1}}{30}+\frac{a_{0}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+5 a_{5}-a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{1}}{90}+\frac{a_{0}}{240}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+6 a_{6}-a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{1680}-\frac{a_{0}}{630}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+7 a_{7}-a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{a_{1}}{1920}+\frac{a_{0}}{2880}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+8 a_{8}-a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{11 a_{1}}{51840}+\frac{a_{0}}{51840}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x-\frac{a_{1} x^{2}}{2}+\left(\frac{a_{1}}{6}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{a_{1}}{24}-\frac{a_{0}}{24}\right) x^{4} \\
& +\left(-\frac{a_{1}}{30}+\frac{a_{0}}{120}\right) x^{5}+\left(\frac{a_{1}}{90}+\frac{a_{0}}{240}\right) x^{6}+\left(-\frac{a_{1}}{1680}-\frac{a_{0}}{630}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{240} x^{6}-\frac{1}{630} x^{7}\right) a_{0} \tag{3}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{240} x^{6}-\frac{1}{630} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]
\[
y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+\frac{x^{8}}{2880}+O\left(x^{8}\right) \tag{1}\\
& y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+\frac{x^{8}}{2880}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=1+\frac{x^{3}}{6}-\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{240}-\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{18.9.2 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}=x y-y^{\prime}, y(0)=1,\left.y^{\prime}\right|_{\{x=0\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+y^{\prime}-x y=0\)
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}\)
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}\)
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(2 a_{2}+a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1)-a_{k-1}\right) x^{k}\right)=0\)
- \(\quad\) Each term must be 0
\(2 a_{2}+a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}+a_{k+1} k-a_{k-1}+a_{k+1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+2}(k+1)-a_{k}+a_{k+2}=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{k a_{k+2}-a_{k}+2 a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}+a_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
```

Order:=8;
dsolve([diff (y (x),x\$2)+diff(y(x),x)-x*y(x)=0,y(0) = 1, D(y)(0) = 0],y(x),type='series',x=0);

```
\[
y(x)=1+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{240} x^{6}-\frac{1}{630} x^{7}+\mathrm{O}\left(x^{8}\right)
\]

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 40
AsymptoticDSolveValue[\{y''[x]+y'[x]-x*y[x]==0,\{y[0]==1,y'[0]==0\}\},y[x],\{x,0,7\}].].
\[
y(x) \rightarrow-\frac{x^{7}}{630}+\frac{x^{6}}{240}+\frac{x^{5}}{120}-\frac{x^{4}}{24}+\frac{x^{3}}{6}+1
\]

\subsection*{18.10 problem 4(b)}
18.10.1 Existence and uniqueness analysis 3057
18.10.2 Maple step by step solution . 3066

Internal problem ID [6436]
Internal file name [OUTPUT/5684_Sunday_June_05_2022_03_46_55_PM_55015192/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_airy", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y^{\prime}-x y=0
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=1\right]
\]

With the expansion point for the power series method at \(x=0\).

\subsection*{18.10.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=F
\]

Where here
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =-x \\
F & =0
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y^{\prime}-x y=0
\]

The domain of \(p(x)=1\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is inside this domain. The domain of \(q(x)=-x\) is
\[
\{-\infty<x<\infty\}
\]

And the point \(x_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{674}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{675}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =x y-y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x y^{\prime}+y-x y+y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =(1-2 x) y^{\prime}+y\left(x^{2}+x-1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{2}+3 x-4\right) y^{\prime}+\left(-2 x^{2}+3 x+1\right) y \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(-3 x^{2}+2 x+8\right) y^{\prime}+y\left(x^{3}+3 x^{2}-8 x+3\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{3}+6 x^{2}-16 x-3\right) y^{\prime}-3\left(x^{3}-\frac{5}{3} x^{2}-\frac{14}{3} x+\frac{8}{3}\right) y \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(-4 x^{3}+2 x^{2}+42 x-21\right) y^{\prime}+y\left(x^{4}+6 x^{3}-25 x^{2}+7 x+14\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=0\) and
\(y^{\prime}(0)=1\) gives
\[
\begin{aligned}
& F_{0}=-1 \\
& F_{1}=1 \\
& F_{2}=1 \\
& F_{3}=-4 \\
& F_{4}=8 \\
& F_{5}=-3 \\
& F_{6}=-21
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
& y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}-\frac{x^{8}}{1920}+O\left(x^{8}\right) \\
& y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}-\frac{x^{8}}{1920}+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n} \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=0}^{\infty}(1+n) a_{1+n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{1}=0 \\
a_{2}=-\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+(1+n) a_{1+n}-a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =-\frac{n a_{1+n}+a_{1+n}-a_{n-1}}{(n+2)(1+n)} \\
& =-\frac{a_{1+n}}{n+2}+\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+2 a_{2}-a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{1}}{6}+\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+3 a_{3}-a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{1}}{24}-\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+4 a_{4}-a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=-\frac{a_{1}}{30}+\frac{a_{0}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+5 a_{5}-a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{1}}{90}+\frac{a_{0}}{240}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+6 a_{6}-a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{1680}-\frac{a_{0}}{630}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+7 a_{7}-a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{a_{1}}{1920}+\frac{a_{0}}{2880}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+8 a_{8}-a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{11 a_{1}}{51840}+\frac{a_{0}}{51840}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x-\frac{a_{1} x^{2}}{2}+\left(\frac{a_{1}}{6}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{a_{1}}{24}-\frac{a_{0}}{24}\right) x^{4} \\
& +\left(-\frac{a_{1}}{30}+\frac{a_{0}}{120}\right) x^{5}+\left(\frac{a_{1}}{90}+\frac{a_{0}}{240}\right) x^{6}+\left(-\frac{a_{1}}{1680}-\frac{a_{0}}{630}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{240} x^{6}-\frac{1}{630} x^{7}\right) a_{0} \tag{3}\\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{240} x^{6}-\frac{1}{630} x^{7}\right) c_{1} \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]
\[
y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}+O\left(x^{8}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}-\frac{x^{8}}{1920}+O\left(x^{8}\right) \tag{1}\\
& y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\[
y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}-\frac{x^{8}}{1920}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=x-\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{30}+\frac{x^{6}}{90}-\frac{x^{7}}{1680}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{18.10.2 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}=x y-y^{\prime}, y(0)=0,\left.y^{\prime}\right|_{\{x=0\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+y^{\prime}-x y=0\)
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
\]
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}\)
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=1}^{\infty} a_{k} k x^{k-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k+1}(k+1) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\(2 a_{2}+a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k+1}(k+1)-a_{k-1}\right) x^{k}\right)=0\)
- \(\quad\) Each term must be 0
\(2 a_{2}+a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}+a_{k+1} k-a_{k-1}+a_{k+1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k+2}(k+1)-a_{k}+a_{k+2}=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{k a_{k+2}-a_{k}+2 a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}+a_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 22
```

Order:=8;
dsolve([diff (y (x),x\$2)+diff(y(x),x)-x*y(x)=0,y(0) = 0, D(y)(0) = 1],y(x),type='series',x=0);

```
\[
y(x)=x-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{30} x^{5}+\frac{1}{90} x^{6}-\frac{1}{1680} x^{7}+\mathrm{O}\left(x^{8}\right)
\]

Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 47
AsymptoticDSolveValue[\{y' ' \([\mathrm{x}]+\mathrm{y}\) ' \(\left.\left.[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0,\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==1\right\}\right\}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
y(x) \rightarrow-\frac{x^{7}}{1680}+\frac{x^{6}}{90}-\frac{x^{5}}{30}+\frac{x^{4}}{24}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+x
\]

\subsection*{18.11 problem 5}
18.11.1 Maple step by step solution . 3079

Internal problem ID [6437]
Internal file name [OUTPUT/5685_Sunday_June_05_2022_03_46_58_PM_37379447/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\left(p+\frac{1}{2}-\frac{x^{2}}{4}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{677}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{678}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\left.\begin{array}{rl}
F_{0} & =-\frac{\left(-x^{2}+4 p+2\right) y}{4} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(x^{2}-4 p-2\right) y^{\prime}}{4}+\frac{x y}{2} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =x y^{\prime}+\left(\frac{x^{4}}{16}+\left(-\frac{p}{2}-\frac{1}{4}\right) x^{2}+p^{2}+p+\frac{3}{4}\right) y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(x^{4}+(-8 p-4) x^{2}+16 p^{2}+16 p+28\right) y^{\prime}}{16}-2 y\left(p+\frac{1}{2}-\frac{x^{2}}{4}\right) x \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{3\left(x^{3}+2(-2 p-1) x\right) y^{\prime}}{4}-\left(-\frac{x^{6}}{64}+\frac{3\left(p+\frac{1}{2}\right) x^{4}}{16}+\frac{3\left(-\frac{11}{4}-p^{2}-p\right) x^{2}}{4}+\left(p+\frac{1}{2}\right)\left(p^{2}+p+\frac{15}{4}\right)\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\frac{\left(x^{6}+(-12 p-6) x^{4}+\left(48 p^{2}+48 p+276\right) x^{2}-64 p^{3}-96 p^{2}-464 p-216\right) y^{\prime}}{64}+\frac{9 y x\left(\frac{x^{4}}{16}+\left(-\frac{p}{2}-\frac{1}{4}\right)\right.}{2}+\frac{d F_{5}}{d x} \\
F_{6} & =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
16
\end{array} \frac{\left(-p-\frac{1}{2}\right) x^{2}}{2}+p^{2}+p\right) x y^{\prime}+y\left(\frac{105}{16}+\frac{x^{8}}{256}+\frac{\left(-p-\frac{1}{2}\right) x^{6}}{16}+\frac{3\left(p^{2}+p\right.}{2}+\frac{27}{4}\right) x^{4}+\left(-\frac{8}{4}+1\right.
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-\frac{y(0)(2 p+1)}{2} \\
& F_{1}=-y^{\prime}(0) p-\frac{y^{\prime}(0)}{2} \\
& F_{2}=y(0) p^{2}+y(0) p+\frac{3 y(0)}{4} \\
& F_{3}=y^{\prime}(0) p^{2}+y^{\prime}(0) p+\frac{7 y^{\prime}(0)}{4} \\
& F_{4}=-y(0) p^{3}-\frac{3 y(0) p^{2}}{2}-\frac{17 y(0) p}{4}-\frac{15 y(0)}{8} \\
& F_{5}=-y^{\prime}(0) p^{3}-\frac{3 y^{\prime}(0) p^{2}}{2}-\frac{29 y^{\prime}(0) p}{4}-\frac{27 y^{\prime}(0)}{8} \\
& F_{6}=y(0) p^{4}+2 y(0) p^{3}+\frac{25 y(0) p^{2}}{2}+\frac{23 y(0) p}{2}+\frac{105 y(0)}{16}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} p+\frac{1}{24} x^{4} p^{2}+\frac{1}{24} x^{4} p-\frac{1}{720} x^{6} p^{3}-\frac{1}{480} x^{6} p^{2}-\frac{17}{2880} x^{6} p+\frac{1}{40320} x^{8} p^{4}\right. \\
& \left.+\frac{1}{20160} x^{8} p^{3}+\frac{5}{16128} x^{8} p^{2}+\frac{23}{80640} x^{8} p-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0) \\
& +\left(-\frac{1}{6} x^{3} p+\frac{1}{120} x^{5} p^{2}+\frac{1}{120} x^{5} p-\frac{1}{5040} x^{7} p^{3}-\frac{1}{3360} x^{7} p^{2}-\frac{29}{20160} x^{7} p-\frac{1}{12} x^{3}\right. \\
& \left.+\frac{7}{480} x^{5}-\frac{3}{4480} x^{7}+x\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{\left(-x^{2}+4 p+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)}{4} \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{4}\right)+\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}(2 p+1)}{2}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+2} a_{n}}{4}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{4}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{n}}{4}\right)+\left(\sum_{n=0}^{\infty} \frac{a_{n} x^{n}(2 p+1)}{2}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+\frac{a_{0}(2 p+1)}{2}=0 \\
a_{2}=-\frac{1}{2} a_{0} p-\frac{1}{4} a_{0}
\end{gathered}
\]
\(n=1\) gives
\[
6 a_{3}+\frac{a_{1}(2 p+1)}{2}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{1}{6} a_{1} p-\frac{1}{12} a_{1}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(n+1)-\frac{a_{n-2}}{4}+\frac{a_{n}(2 p+1)}{2}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =-\frac{4 p a_{n}+2 a_{n}-a_{n-2}}{4(n+2)(n+1)} \\
& =-\frac{(4 p+2) a_{n}}{4(n+2)(n+1)}+\frac{a_{n-2}}{4(n+2)(n+1)} \tag{5}
\end{align*}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}-\frac{a_{0}}{4}+\frac{a_{2}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{32} a_{0}+\frac{1}{24} a_{0} p^{2}+\frac{1}{24} a_{0} p
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}-\frac{a_{1}}{4}+\frac{a_{3}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{7}{480} a_{1}+\frac{1}{120} a_{1} p^{2}+\frac{1}{120} a_{1} p
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}-\frac{a_{2}}{4}+\frac{a_{4}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{17}{2880} a_{0} p-\frac{1}{384} a_{0}-\frac{1}{720} a_{0} p^{3}-\frac{1}{480} a_{0} p^{2}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}-\frac{a_{3}}{4}+\frac{a_{5}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{29}{20160} a_{1} p-\frac{3}{4480} a_{1}-\frac{1}{5040} a_{1} p^{3}-\frac{1}{3360} a_{1} p^{2}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}-\frac{a_{4}}{4}+\frac{a_{6}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{6144} a_{0}+\frac{5}{16128} a_{0} p^{2}+\frac{23}{80640} a_{0} p+\frac{1}{40320} a_{0} p^{4}+\frac{1}{20160} a_{0} p^{3}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}-\frac{a_{5}}{4}+\frac{a_{7}(2 p+1)}{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{107}{1935360} a_{1}+\frac{37}{725760} a_{1} p^{2}+\frac{1}{20736} a_{1} p+\frac{1}{362880} a_{1} p^{4}+\frac{1}{181440} a_{1} p^{3}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{1}{2} a_{0} p-\frac{1}{4} a_{0}\right) x^{2}+\left(-\frac{1}{6} a_{1} p-\frac{1}{12} a_{1}\right) x^{3}+\left(\frac{1}{32} a_{0}+\frac{1}{24} a_{0} p^{2}+\frac{1}{24} a_{0} p\right) x^{4} \\
& +\left(\frac{7}{480} a_{1}+\frac{1}{120} a_{1} p^{2}+\frac{1}{120} a_{1} p\right) x^{5}+\left(-\frac{17}{2880} a_{0} p-\frac{1}{384} a_{0}-\frac{1}{720} a_{0} p^{3}-\frac{1}{480} a_{0} p^{2}\right) x^{6} \\
& +\left(-\frac{29}{20160} a_{1} p-\frac{3}{4480} a_{1}-\frac{1}{5040} a_{1} p^{3}-\frac{1}{3360} a_{1} p^{2}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\left.\begin{array}{rl}
y=\left(1+\left(-\frac{p}{2}-\frac{1}{4}\right) x^{2}+\right. & \left(\frac{1}{32}+\frac{1}{24} p^{2}\right.
\end{array}+\frac{1}{24} p\right) x^{4} .
\]

At \(x=0\) the solution above becomes
\[
\left.\left.\begin{array}{rl}
y=\left(1+\left(-\frac{p}{2}-\frac{1}{4}\right) x^{2}+\right. & \left(\frac{1}{32}+\frac{1}{24} p^{2}\right.
\end{array}\right) \frac{1}{24} p\right) x^{4} .
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} p+\frac{1}{24} x^{4} p^{2}+\frac{1}{24} x^{4} p-\frac{1}{720} x^{6} p^{3}-\frac{1}{480} x^{6} p^{2}-\frac{17}{2880} x^{6} p+\frac{1}{40320} x^{8} p^{4}\right. \\
& \left.+\frac{1}{20160} x^{8} p^{3}+\frac{5}{16128} x^{8} p^{2}+\frac{23}{80640} x^{8} p-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0) \\
& +\left(-\frac{1}{6} x^{3} p+\frac{1}{120} x^{5} p^{2}+\frac{1}{120} x^{5} p-\frac{1}{5040} x^{7} p^{3}-\frac{1}{3360} x^{7} p^{2}-\frac{29}{20160} x^{7} p-\frac{1}{12} x^{3}\right. \\
& \left.+\frac{7}{480} x^{5}-\frac{3}{4480} x^{7}+x\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1+\left(-\frac{p}{2}-\frac{1}{4}\right) x^{2}+\left(\frac{1}{32}+\frac{1}{24} p^{2}+\frac{1}{24} p\right) x^{4}\right. \\
& \left.+\left(-\frac{17}{2880} p-\frac{1}{384}-\frac{1}{720} p^{3}-\frac{1}{480} p^{2}\right) x^{6}\right) c_{1} \\
& +\left(x+\left(-\frac{p}{6}-\frac{1}{12}\right) x^{3}+\left(\frac{7}{480}+\frac{1}{120} p^{2}+\frac{1}{120} p\right) x^{5}\right. \\
& \left.+\left(-\frac{29}{20160} p-\frac{3}{4480}-\frac{1}{5040} p^{3}-\frac{1}{3360} p^{2}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2} p+\frac{1}{24} x^{4} p^{2}+\frac{1}{24} x^{4} p-\frac{1}{720} x^{6} p^{3}-\frac{1}{480} x^{6} p^{2}-\frac{17}{2880} x^{6} p+\frac{1}{40320} x^{8} p^{4}\right. \\
& \left.+\frac{1}{20160} x^{8} p^{3}+\frac{5}{16128} x^{8} p^{2}+\frac{23}{80640} x^{8} p-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0) \\
& +\left(-\frac{1}{6} x^{3} p+\frac{1}{120} x^{5} p^{2}+\frac{1}{120} x^{5} p-\frac{1}{5040} x^{7} p^{3}-\frac{1}{3360} x^{7} p^{2}-\frac{29}{20160} x^{7} p-\frac{1}{12} x^{3}\right. \\
& \left.+\frac{7}{480} x^{5}-\frac{3}{4480} x^{7}+x\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
& y=\left(1+\left(-\frac{p}{2}-\frac{1}{4}\right) x^{2}+\left(\frac{1}{32}+\frac{1}{24} p^{2}+\frac{1}{24} p\right) x^{4}\right. \\
&\left.+\left(-\frac{17}{2880} p-\frac{1}{384}-\frac{1}{720} p^{3}-\frac{1}{480} p^{2}\right) x^{6}\right) c_{1} \\
&+\left(x+\left(-\frac{p}{6}-\frac{1}{12}\right) x^{3}\right.+\left(\frac{7}{480}+\frac{1}{120} p^{2}+\frac{1}{120} p\right) x^{5} \\
&\left.+\left(-\frac{29}{20160} p-\frac{3}{4480}-\frac{1}{5040} p^{3}-\frac{1}{3360} p^{2}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{18.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-\frac{\left(-x^{2}+4 p+2\right) y}{4}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\left(-p-\frac{1}{2}+\frac{x^{2}}{4}\right) y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\left(p+\frac{1}{2}-\frac{x^{2}}{4}\right) y=0
\]
- Multiply by denominators
\[
4 y^{\prime \prime}+\left(-x^{2}+4 p+2\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]

Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)}^{\infty} a_{k} x^{k+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=\max (0,-m)+m}^{\infty} a_{k-m} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\[
8 a_{2}+2 a_{0}(2 p+1)+\left(24 a_{3}+2 a_{1}(2 p+1)\right) x+\left(\sum_{k=2}^{\infty}\left(4 a_{k+2}(k+2)(k+1)+2 a_{k}(2 p+1)-a_{k-2}\right)\right.
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[8 a_{2}+2 a_{0}(2 p+1)=0,24 a_{3}+2 a_{1}(2 p+1)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{2}=-\frac{1}{2} a_{0} p-\frac{1}{4} a_{0}, a_{3}=-\frac{1}{6} a_{1} p-\frac{1}{12} a_{1}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(4\left(k^{2}+3 k+2\right) a_{k+2}+2 a_{k}(2 p+1)-a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(4\left((k+2)^{2}+3 k+8\right) a_{k+4}+2 a_{k+2}(2 p+1)-a_{k}=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 p a_{k+2}-a_{k}+2 a_{k+2}}{4\left(k^{2}+7 k+12\right)}, a_{2}=-\frac{1}{2} a_{0} p-\frac{1}{4} a_{0}, a_{3}=-\frac{1}{6} a_{1} p-\frac{1}{12} a_{1}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Whittaker         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Whittaker successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 120
```

Order:=8;
dsolve(diff (y (x),x\$2)+(p+1/2-x^2/4)*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{(1+2 p) x^{2}}{4}+\frac{\left(4 p^{2}+4 p+3\right) x^{4}}{96}-\frac{\left(8 p^{3}+12 p^{2}+34 p+15\right) x^{6}}{5760}\right) y(0) \\
& +\left(x-\frac{(1+2 p) x^{3}}{12}+\frac{\left(4 p^{2}+4 p+7\right) x^{5}}{480}-\frac{\left(8 p^{3}+12 p^{2}+58 p+27\right) x^{7}}{40320}\right) D(y)(0) \\
& +O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 142
AsymptoticDSolveValue[y' \(\left.\quad[\mathrm{x}]+\left(\mathrm{p}+1 / 2-\mathrm{x}^{\wedge} 2 / 4\right) * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{array}{r}
y(x) \rightarrow c_{2}\left(\frac{(-4 p-2)(4 p+2)^{2} x^{7}}{322560}+\frac{13(-4 p-2) x^{7}}{40320}+\frac{(4 p+2)^{2} x^{5}}{1920}+\frac{1}{24}(-4 p-2) x^{3}\right. \\
\left.+\frac{x^{5}}{80}+x\right)+c_{1}\left(\frac{(-4 p-2)(4 p+2)^{2} x^{6}}{46080}+\frac{7(-4 p-2) x^{6}}{5760}+\frac{1}{384}(4 p+2)^{2} x^{4}\right. \\
\left.+\frac{1}{8}(-4 p-2) x^{2}+\frac{x^{4}}{48}+1\right)
\end{array}
\]

\subsection*{18.12 problem 6}
18.12.1 Maple step by step solution . 3091

Internal problem ID [6438]
Internal file name [OUTPUT/5686_Sunday_June_05_2022_03_46_59_PM_23497955/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
y^{\prime \prime}+x y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{680}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{681}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-x y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-y-x y^{\prime} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 y^{\prime}+y x^{2} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =x\left(x y^{\prime}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-y x^{3}+6 x y^{\prime}+4 y \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =-9 y x^{2}-y^{\prime} x^{3}+10 y^{\prime} \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =-12 x^{2} y^{\prime}+x y\left(x^{3}-28\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=0 \\
& F_{4}=4 y(0) \\
& F_{5}=10 y^{\prime}(0) \\
& F_{6}=0
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the
power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)=0 \tag{3}
\end{equation*}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}+a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}+a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{1}}{12}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}+a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=0
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}+a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{180}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}+a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{a_{1}}{504}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}+a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=0
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}+a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=-\frac{a_{0}}{12960}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{6} a_{0} x^{3}-\frac{1}{12} a_{1} x^{4}+\frac{1}{180} a_{0} x^{6}+\frac{1}{504} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) a_{0}+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) c_{1}+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{18.12.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-x y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+x y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\[
x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}
\]
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\(y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}\)
Rewrite ODE with series expansions
\(2 a_{2}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)+a_{k-1}\right) x^{k}\right)=0\)
- Each term must be 0
\(2 a_{2}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(k^{2}+3 k+2\right) a_{k+2}+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\[
\left((k+1)^{2}+3 k+5\right) a_{k+3}+a_{k}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=-\frac{a_{k}}{k^{2}+5 k+6}, 2 a_{2}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 34
```

Order:=8;
dsolve(diff(y(x),x\$2)+x*y(x)=0,y(x),type='series',x=0);

$$
y(x)=\left(1-\frac{1}{6} x^{3}+\frac{1}{180} x^{6}\right) y(0)+\left(x-\frac{1}{12} x^{4}+\frac{1}{504} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
$$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 42
```

AsymptoticDSolveValue[y''[x]+x*y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{2}\left(\frac{x^{7}}{504}-\frac{x^{4}}{12}+x\right)+c_{1}\left(\frac{x^{6}}{180}-\frac{x^{3}}{6}+1\right)
\]

\subsection*{18.13 problem 7}
18.13.1 Maple step by step solution

3102
Internal problem ID [6439]
Internal file name [OUTPUT/5687_Sunday_June_05_2022_03_47_01_PM_53322889/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 7 .
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second__order_change_of_cvariable_on_x_method_1", "second__order__change__of_variable_on_x_method_2", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

```
\[
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{683}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{684}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =\frac{p^{2} y-x y^{\prime}}{x^{2}-1} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(\left(p^{2}+2\right) x^{2}-p^{2}+1\right) y^{\prime}-3 y p^{2} x}{\left(x^{2}-1\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-6 p^{2} x^{3}+6 x p^{2}-6 x^{3}-9 x\right) y^{\prime}+y\left(\left(p^{2}+11\right) x^{2}-p^{2}+4\right) p^{2}}{\left(x^{2}-1\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\left(p^{4}+35 p^{2}+24\right) x^{4}+\left(-2 p^{4}-25 p^{2}+72\right) x^{2}+p^{4}-10 p^{2}+9\right) y^{\prime}-10 y x\left(\left(p^{2}+5\right) x^{2}-p^{2}+\frac{11}{2}\right) p^{2}}{\left(x^{2}-1\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{(1+x)\left(-15\left(\left(p^{4}+15 p^{2}+8\right) x^{4}+\left(-2 p^{4}-2 p^{2}+40\right) x^{2}+p^{4}-13 p^{2}+15\right) x y^{\prime}+y\left(\left(p^{4}+85 p^{2}+274\right.\right.\right.}{\left(x^{2}-1\right)^{6}} \\
& =\frac{\left(-28\left(\frac{1575}{4}+\left(p^{6}+70 p^{4}+469 p^{2}+180\right) x^{6}+3\left(630-p^{6}-\frac{65}{2} p^{4}+\frac{607}{2} p^{2}\right) x^{4}+3\left(p^{6}-5 p^{4}-\frac{667}{2} p^{2}+\right.\right.\right.}{\partial x}+\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\frac{(1+x)\left(\left(\left(p^{6}+175 p^{4}+1624 p^{2}+720\right) x^{6}+\left(-3 p^{6}-315 p^{4}+1218 p^{2}+5400\right) x^{4}+\left(3 p^{6}+105 p^{4}-25\right.\right.\right.}{\partial y^{\prime}} \\
F_{6} & =\frac{d F_{5}}{d x} \\
& \frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{F_{5}} \\
& =1
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) p^{2} \\
& F_{1}=-y^{\prime}(0) p^{2}+y^{\prime}(0) \\
& F_{2}=y(0) p^{4}-4 y(0) p^{2} \\
& F_{3}=y^{\prime}(0) p^{4}-10 y^{\prime}(0) p^{2}+9 y^{\prime}(0) \\
& F_{4}=-y(0) p^{6}+20 y(0) p^{4}-64 y(0) p^{2} \\
& F_{5}=-y^{\prime}(0) p^{6}+35 y^{\prime}(0) p^{4}-259 y^{\prime}(0) p^{2}+225 y^{\prime}(0) \\
& F_{6}=y(0) p^{8}-56 y(0) p^{6}+784 y(0) p^{4}-2304 y(0) p^{2}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y=\left(1-\frac{1}{2} x^{2} p^{2}+\right. & \frac{1}{24} p^{4} x^{4}-\frac{1}{6} x^{4} p^{2}-\frac{1}{720} p^{6} x^{6}+\frac{1}{36} p^{4} x^{6}-\frac{4}{45} x^{6} p^{2}+\frac{1}{40320} x^{8} p^{8} \\
-\frac{1}{720} x^{8} p^{6}+ & \left.\frac{7}{360} x^{8} p^{4}-\frac{2}{35} x^{8} p^{2}\right) y(0)+\left(x-\frac{1}{6} p^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} p^{4} x^{5}-\frac{1}{12} x^{5} p^{2}\right. \\
& \left.+\frac{3}{40} x^{5}-\frac{1}{5040} x^{7} p^{6}+\frac{1}{144} x^{7} p^{4}-\frac{37}{720} x^{7} p^{2}+\frac{5}{112} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(-x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+p^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\sum_{n=2}^{\infty}\left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} p^{2} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
\sum_{n=2}^{\infty} & \left(-x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} p^{2} a_{n} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
a_{0} p^{2}+2 a_{2}=0 \\
a_{2}=-\frac{a_{0} p^{2}}{2}
\end{gathered}
\]
\(n=1\) gives
\[
a_{1} p^{2}-a_{1}+6 a_{3}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{1}{6} a_{1} p^{2}+\frac{1}{6} a_{1}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
-n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-n a_{n}+a_{n} p^{2}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=\frac{a_{n}\left(n^{2}-p^{2}\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
a_{2} p^{2}-4 a_{2}+12 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24} p^{4} a_{0}-\frac{1}{6} a_{0} p^{2}
\]

For \(n=3\) the recurrence equation gives
\[
a_{3} p^{2}-9 a_{3}+20 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{120} p^{4} a_{1}-\frac{1}{12} a_{1} p^{2}+\frac{3}{40} a_{1}
\]

For \(n=4\) the recurrence equation gives
\[
a_{4} p^{2}-16 a_{4}+30 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{1}{720} p^{6} a_{0}+\frac{1}{36} p^{4} a_{0}-\frac{4}{45} a_{0} p^{2}
\]

For \(n=5\) the recurrence equation gives
\[
a_{5} p^{2}-25 a_{5}+42 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{1}{5040} p^{6} a_{1}+\frac{1}{144} p^{4} a_{1}-\frac{37}{720} a_{1} p^{2}+\frac{5}{112} a_{1}
\]

For \(n=6\) the recurrence equation gives
\[
a_{6} p^{2}-36 a_{6}+56 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{40320} p^{8} a_{0}-\frac{1}{720} p^{6} a_{0}+\frac{7}{360} p^{4} a_{0}-\frac{2}{35} a_{0} p^{2}
\]

For \(n=7\) the recurrence equation gives
\[
a_{7} p^{2}-49 a_{7}+72 a_{9}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{1}{362880} p^{8} a_{1}-\frac{1}{4320} p^{6} a_{1}+\frac{47}{8640} p^{4} a_{1}-\frac{3229}{90720} a_{1} p^{2}+\frac{35}{1152} a_{1}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x-\frac{a_{0} p^{2} x^{2}}{2}+\left(-\frac{1}{6} a_{1} p^{2}+\frac{1}{6} a_{1}\right) x^{3}+\left(\frac{1}{24} p^{4} a_{0}-\frac{1}{6} a_{0} p^{2}\right) x^{4} \\
& +\left(\frac{1}{120} p^{4} a_{1}-\frac{1}{12} a_{1} p^{2}+\frac{3}{40} a_{1}\right) x^{5}+\left(-\frac{1}{720} p^{6} a_{0}+\frac{1}{36} p^{4} a_{0}-\frac{4}{45} a_{0} p^{2}\right) x^{6} \\
& +\left(-\frac{1}{5040} p^{6} a_{1}+\frac{1}{144} p^{4} a_{1}-\frac{37}{720} a_{1} p^{2}+\frac{5}{112} a_{1}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{x^{2} p^{2}}{2}+\left(\frac{1}{24} p^{4}-\frac{1}{6} p^{2}\right) x^{4}+\left(-\frac{1}{720} p^{6}+\frac{1}{36} p^{4}-\frac{4}{45} p^{2}\right) x^{6}\right) a_{0} \\
& +\left(x+\left(-\frac{p^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} p^{4}-\frac{1}{12} p^{2}+\frac{3}{40}\right) x^{5}\right. \tag{3}\\
& \left.+\left(-\frac{1}{5040} p^{6}+\frac{1}{144} p^{4}-\frac{37}{720} p^{2}+\frac{5}{112}\right) x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1-\frac{x^{2} p^{2}}{2}+\left(\frac{1}{24} p^{4}-\frac{1}{6} p^{2}\right) x^{4}+\left(-\frac{1}{720} p^{6}+\frac{1}{36} p^{4}-\frac{4}{45} p^{2}\right) x^{6}\right) c_{1} \\
& +\left(x+\left(-\frac{p^{2}}{6}+\frac{1}{6}\right)\right.
\end{aligned} x^{3}+\left(\frac{1}{120} p^{4}-\frac{1}{12} p^{2}+\frac{3}{40}\right) x^{5} .
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2} p^{2}+\frac{1}{24} p^{4} x^{4}-\frac{1}{6} x^{4} p^{2}-\frac{1}{720} p^{6} x^{6}+\frac{1}{36} p^{4} x^{6}-\frac{4}{45} x^{6} p^{2}+\frac{1}{40320} x^{8} p^{8}\right. \\
&\left.\quad-\frac{1}{720} x^{8} p^{6}+\frac{7}{360} x^{8} p^{4}-\frac{2}{35} x^{8} p^{2}\right) y(0)+\left(x-\frac{1}{6} p^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} p^{4} x^{5}\right. \\
&\left.-\frac{1}{12} x^{5} p^{2}+\frac{3}{40} x^{5}-\frac{1}{5040} x^{7} p^{6}+\frac{1}{144} x^{7} p^{4}-\frac{37}{720} x^{7} p^{2}+\frac{5}{112} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
& y=\left(1-\frac{x^{2} p^{2}}{2}+\left(\frac{1}{24} p^{4}-\frac{1}{6} p^{2}\right) x^{4}+\left(-\frac{1}{720} p^{6}+\frac{1}{36} p^{4}-\frac{4}{45} p^{2}\right) x^{6}\right) c_{1} \\
&+\left(x+\left(-\frac{p^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} p^{4}-\frac{1}{12} p^{2}+\frac{3}{40}\right) x^{5}\right. \tag{2}\\
&\left.+\left(-\frac{1}{5040} p^{6}+\frac{1}{144} p^{4}-\frac{37}{720} p^{2}+\frac{5}{112}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y=\left(1-\frac{1}{2} x^{2} p^{2}+\right. & \frac{1}{24} p^{4} x^{4}-\frac{1}{6} x^{4} p^{2}-\frac{1}{720} p^{6} x^{6}+\frac{1}{36} p^{4} x^{6}-\frac{4}{45} x^{6} p^{2}+\frac{1}{40320} x^{8} p^{8} \\
-\frac{1}{720} x^{8} p^{6}+ & \left.\frac{7}{360} x^{8} p^{4}-\frac{2}{35} x^{8} p^{2}\right) y(0)+\left(x-\frac{1}{6} p^{2} x^{3}+\frac{1}{6} x^{3}+\frac{1}{120} p^{4} x^{5}-\frac{1}{12} x^{5} p^{2}\right. \\
& \left.+\frac{3}{40} x^{5}-\frac{1}{5040} x^{7} p^{6}+\frac{1}{144} x^{7} p^{4}-\frac{37}{720} x^{7} p^{2}+\frac{5}{112} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-\frac{x^{2} p^{2}}{2}+\left(\frac{1}{24} p^{4}-\frac{1}{6} p^{2}\right) x^{4}+\left(-\frac{1}{720} p^{6}+\frac{1}{36} p^{4}-\frac{4}{45} p^{2}\right) x^{6}\right) c_{1} \\
& +\left(x+\left(-\frac{p^{2}}{6}+\frac{1}{6}\right) x^{3}+\left(\frac{1}{120} p^{4}-\frac{1}{12} p^{2}+\frac{3}{40}\right) x^{5}\right. \\
& \left.+\left(-\frac{1}{5040} p^{6}+\frac{1}{144} p^{4}-\frac{37}{720} p^{2}+\frac{5}{112}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{18.13.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{p^{2} y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{p^{2} y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{p^{2}}{x^{2}-1}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}
\]
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-p^{2} y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)-p^{2} y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1\).. 2
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+p+r)(k-p+r)\right) u^{k+r}\right)
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{0, \frac{1}{2}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
-2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+p+r)(k-p+r)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+p+r)(k-p+r)}{(2 k+1+2 r)(k+1+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\right]\)
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]\)
- \(\quad\) Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}}\right), a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 121
\[
\begin{aligned}
& \text { Order:=8; } \\
& \text { dsolve }\left(\left(1-\mathrm{x}^{\wedge} 2\right) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)-\mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+\mathrm{p}^{\wedge} 2 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { type }=\text { 'series' }, \mathrm{x}=0\right) \\
& y(x)=\left(1-\frac{p^{2} x^{2}}{2}+\frac{p^{2}\left(p^{2}-4\right) x^{4}}{24}-\frac{p^{2}\left(p^{4}-20 p^{2}+64\right) x^{6}}{720}\right) y(0)+\left(x-\frac{\left(p^{2}-1\right) x^{3}}{6}\right. \\
& \left.\quad+\frac{\left(p^{4}-10 p^{2}+9\right) x^{5}}{120}-\frac{\left(p^{6}-35 p^{4}+259 p^{2}-225\right) x^{7}}{5040}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 155
AsymptoticDSolveValue[(1-x^2)*y' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{p} \wedge 2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{p^{6} x^{7}}{5040}+\frac{p^{4} x^{7}}{144}+\frac{p^{4} x^{5}}{120}-\frac{37 p^{2} x^{7}}{720}-\frac{p^{2} x^{5}}{12}-\frac{p^{2} x^{3}}{6}+\frac{5 x^{7}}{112}+\frac{3 x^{5}}{40}+\frac{x^{3}}{6}+x\right) \\
& +c_{1}\left(-\frac{1}{720} p^{6} x^{6}+\frac{p^{4} x^{6}}{36}+\frac{p^{4} x^{4}}{24}-\frac{4 p^{2} x^{6}}{45}-\frac{p^{2} x^{4}}{6}-\frac{p^{2} x^{2}}{2}+1\right)
\end{aligned}
\]

\subsection*{18.14 problem 8}
18.14.1 Maple step by step solution

3114
Internal problem ID [6440]
Internal file name [OUTPUT/5688_Sunday_June_05_2022_03_47_03_PM_40872846/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.3. Second-Order Linear Equations: Ordinary Points. Page 169
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-2 x y^{\prime}+2 p y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{686}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{687}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=2 x y^{\prime}-2 p y \\
& F_{1}=\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(4 x^{2}-2 p+2\right) y^{\prime}-4 p x y \\
& F_{2}=\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(8 x^{3}-8 p x+12 x\right) y^{\prime}+4 p y\left(-2 x^{2}+p-2\right) \\
& F_{3}=\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =4\left(3+p^{2}+2\left(-3 x^{2}-2\right) p+4 x^{4}+12 x^{2}\right) y^{\prime}+16 y x p\left(-x^{2}+p-\frac{5}{2}\right) \\
& F_{4}=\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =24 x\left(p^{2}+\left(-\frac{8 x^{2}}{3}-5\right) p+\frac{4 x^{4}}{3}+\frac{20 x^{2}}{3}+5\right) y^{\prime}-8 p y\left(4 x^{4}-6 x^{2} p+p^{2}+18 x^{2}-6 p+8\right) \\
& F_{5}=\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(-8 p^{3}+\left(96 x^{2}+72\right) p^{2}+\left(-160 x^{4}-576 x^{2}-184\right) p+64 x^{6}+480 x^{4}+720 x^{2}+120\right) y^{\prime}-48 y\left(p^{2}\right. \\
& F_{6}=\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =-64 x\left(p^{3}+\left(-5 x^{2}-\frac{21}{2}\right) p^{2}+\left(6 x^{4}+35 x^{2}+32\right) p-2 x^{6}-21 x^{4}-\frac{105 x^{2}}{2}-\frac{105}{4}\right) y^{\prime}+16 y\left(p^{3}+(\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-2 y(0) p \\
& F_{1}=-2 y^{\prime}(0) p+2 y^{\prime}(0) \\
& F_{2}=4 y(0) p^{2}-8 y(0) p \\
& F_{3}=4 y^{\prime}(0) p^{2}-16 y^{\prime}(0) p+12 y^{\prime}(0) \\
& F_{4}=-8 y(0) p^{3}+48 y(0) p^{2}-64 y(0) p \\
& F_{5}=-8 y^{\prime}(0) p^{3}+72 y^{\prime}(0) p^{2}-184 y^{\prime}(0) p+120 y^{\prime}(0) \\
& F_{6}=16 y(0) p^{4}-192 y(0) p^{3}+704 y(0) p^{2}-768 y(0) p
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{array}{r}
y=\left(1-x^{2} p+\frac{1}{6} x^{4} p^{2}-\frac{1}{3} x^{4} p-\frac{1}{90} x^{6} p^{3}+\frac{1}{15} x^{6} p^{2}-\frac{4}{45} x^{6} p+\frac{1}{2520} x^{8} p^{4}-\frac{1}{210} x^{8} p^{3}\right. \\
\left.+\frac{11}{630} x^{8} p^{2}-\frac{2}{105} x^{8} p\right) y(0)+\left(x-\frac{1}{3} x^{3} p+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} p^{2}-\frac{2}{15} x^{5} p+\frac{1}{10} x^{5}\right. \\
\left.-\frac{1}{630} x^{7} p^{3}+\frac{1}{70} x^{7} p^{2}-\frac{23}{630} x^{7} p+\frac{1}{42} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{array}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=2 x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-2 p\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 p a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-2 n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 p a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 p a_{0}+2 a_{2}=0 \\
a_{2}=-p a_{0}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(n+1)-2 n a_{n}+2 p a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=\frac{2 a_{n}(n-p)}{(n+2)(n+1)} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
2 p a_{1}-2 a_{1}+6 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{1}{3} p a_{1}+\frac{1}{3} a_{1}
\]

For \(n=2\) the recurrence equation gives
\[
2 p a_{2}-4 a_{2}+12 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{6} p^{2} a_{0}-\frac{1}{3} p a_{0}
\]

For \(n=3\) the recurrence equation gives
\[
2 p a_{3}-6 a_{3}+20 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{30} p^{2} a_{1}-\frac{2}{15} p a_{1}+\frac{1}{10} a_{1}
\]

For \(n=4\) the recurrence equation gives
\[
2 p a_{4}-8 a_{4}+30 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{1}{90} p^{3} a_{0}+\frac{1}{15} p^{2} a_{0}-\frac{4}{45} p a_{0}
\]

For \(n=5\) the recurrence equation gives
\[
2 p a_{5}-10 a_{5}+42 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{1}{630} p^{3} a_{1}+\frac{1}{70} p^{2} a_{1}-\frac{23}{630} p a_{1}+\frac{1}{42} a_{1}
\]

For \(n=6\) the recurrence equation gives
\[
2 p a_{6}-12 a_{6}+56 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{2520} p^{4} a_{0}-\frac{1}{210} p^{3} a_{0}+\frac{11}{630} p^{2} a_{0}-\frac{2}{105} p a_{0}
\]

For \(n=7\) the recurrence equation gives
\[
2 p a_{7}-14 a_{7}+72 a_{9}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{1}{22680} p^{4} a_{1}-\frac{2}{2835} p^{3} a_{1}+\frac{43}{11340} p^{2} a_{1}-\frac{22}{2835} p a_{1}+\frac{1}{216} a_{1}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x-p a_{0} x^{2}+\left(-\frac{1}{3} p a_{1}+\frac{1}{3} a_{1}\right) x^{3}+\left(\frac{1}{6} p^{2} a_{0}-\frac{1}{3} p a_{0}\right) x^{4} \\
& +\left(\frac{1}{30} p^{2} a_{1}-\frac{2}{15} p a_{1}+\frac{1}{10} a_{1}\right) x^{5}+\left(-\frac{1}{90} p^{3} a_{0}+\frac{1}{15} p^{2} a_{0}-\frac{4}{45} p a_{0}\right) x^{6} \\
& +\left(-\frac{1}{630} p^{3} a_{1}+\frac{1}{70} p^{2} a_{1}-\frac{23}{630} p a_{1}+\frac{1}{42} a_{1}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y=(1- & \left.x^{2} p+\left(\frac{1}{6} p^{2}-\frac{1}{3} p\right) x^{4}+\left(-\frac{1}{90} p^{3}+\frac{1}{15} p^{2}-\frac{4}{45} p\right) x^{6}\right) a_{0}+\left(x+\left(-\frac{p}{3}+\frac{1}{3}\right) x^{3}\right. \\
& \left.+\left(\frac{1}{30} p^{2}-\frac{2}{15} p+\frac{1}{10}\right) x^{5}+\left(-\frac{1}{630} p^{3}+\frac{1}{70} p^{2}-\frac{23}{630} p+\frac{1}{42}\right) x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y=(1- & \left.x^{2} p+\left(\frac{1}{6} p^{2}-\frac{1}{3} p\right) x^{4}+\left(-\frac{1}{90} p^{3}+\frac{1}{15} p^{2}-\frac{4}{45} p\right) x^{6}\right) c_{1}+\left(x+\left(-\frac{p}{3}+\frac{1}{3}\right) x^{3}\right. \\
& \left.+\left(\frac{1}{30} p^{2}-\frac{2}{15} p+\frac{1}{10}\right) x^{5}+\left(-\frac{1}{630} p^{3}+\frac{1}{70} p^{2}-\frac{23}{630} p+\frac{1}{42}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{array}{r}
\begin{array}{r}
y=\left(1-x^{2} p+\frac{1}{6} x^{4} p^{2}-\frac{1}{3} x^{4} p-\frac{1}{90} x^{6} p^{3}+\frac{1}{15} x^{6} p^{2}-\frac{4}{45} x^{6} p+\frac{1}{2520} x^{8} p^{4}-\frac{1}{210} x^{8} p^{3}\right. \\
\left.+\frac{11}{630} x^{8} p^{2}-\frac{2}{105} x^{8} p\right) y(0)+\left(x-\frac{1}{3} x^{3} p+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} p^{2}-\frac{2}{15} x^{5} p+\frac{1}{10}\left(1 x^{\prime}\right)\right. \\
\\
\left.\quad-\frac{1}{630} x^{7} p^{3}+\frac{1}{70} x^{7} p^{2}-\frac{23}{630} x^{7} p+\frac{1}{42} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y=\left(1-x^{2} p+\left(\frac{1}{6} p^{2}-\frac{1}{3} p\right) x^{4}+\left(-\frac{1}{90} p^{3}+\frac{1}{15} p^{2}-\frac{4}{45} p\right) x^{6}\right) c_{1}+\left(x+\left(-\frac{p}{3}+\frac{1}{3}\right) x^{3}\right. \\
\\
\left.+\left(\frac{1}{30} p^{2}-\frac{2}{15} p+\frac{1}{10}\right) x^{5}+\left(-\frac{1}{630} p^{3}+\frac{1}{70} p^{2}-\frac{23}{630} p+\frac{1}{42}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{array}
\end{array}
\]

Verification of solutions
\[
\begin{array}{r}
y=\left(1-x^{2} p+\frac{1}{6} x^{4} p^{2}-\frac{1}{3} x^{4} p-\frac{1}{90} x^{6} p^{3}+\frac{1}{15} x^{6} p^{2}-\frac{4}{45} x^{6} p+\frac{1}{2520} x^{8} p^{4}-\frac{1}{210} x^{8} p^{3}\right. \\
\left.+\frac{11}{630} x^{8} p^{2}-\frac{2}{105} x^{8} p\right) y(0)+\left(x-\frac{1}{3} x^{3} p+\frac{1}{3} x^{3}+\frac{1}{30} x^{5} p^{2}-\frac{2}{15} x^{5} p+\frac{1}{10} x^{5}\right. \\
\left.-\frac{1}{630} x^{7} p^{3}+\frac{1}{70} x^{7} p^{2}-\frac{23}{630} x^{7} p+\frac{1}{42} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{array}
\]

Verified OK.
\[
\begin{aligned}
y=(1- & \left.x^{2} p+\left(\frac{1}{6} p^{2}-\frac{1}{3} p\right) x^{4}+\left(-\frac{1}{90} p^{3}+\frac{1}{15} p^{2}-\frac{4}{45} p\right) x^{6}\right) c_{1}+\left(x+\left(-\frac{p}{3}+\frac{1}{3}\right) x^{3}\right. \\
& \left.+\left(\frac{1}{30} p^{2}-\frac{2}{15} p+\frac{1}{10}\right) x^{5}+\left(-\frac{1}{630} p^{3}+\frac{1}{70} p^{2}-\frac{23}{630} p+\frac{1}{42}\right) x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{18.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=2 x y^{\prime}-2 p y
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-2 x y^{\prime}+2 p y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty}\left(a_{k+2}(k+2)(k+1)-2 a_{k}(k-p)\right) x^{k}=0
\]
- Each term in the series must be 0, giving the recursion relation \(\left(k^{2}+3 k+2\right) a_{k+2}-2 a_{k}(k-p)=0\)
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=\frac{2 a_{k}(k-p)}{k^{2}+3 k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 109
```

Order:=8;
dsolve(diff(y(x),x\$2)-2*x*diff (y(x),x)+2*p*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-p x^{2}+\frac{p(p-2) x^{4}}{6}-\frac{p(p-2)(p-4) x^{6}}{90}\right) y(0) \\
& +\left(x-\frac{(p-1) x^{3}}{3}+\frac{\left(p^{2}-4 p+3\right) x^{5}}{30}-\frac{\left(p^{3}-9 p^{2}+23 p-15\right) x^{7}}{630}\right) D(y)(0) \\
& +O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 141
AsymptoticDSolveValue[y' \([\mathrm{x}]-2 * x * y\) ' \([\mathrm{x}]+2 * \mathrm{p} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{1}{630} p^{3} x^{7}+\frac{p^{2} x^{7}}{70}+\frac{p^{2} x^{5}}{30}-\frac{23 p x^{7}}{630}-\frac{2 p x^{5}}{15}-\frac{p x^{3}}{3}+\frac{x^{7}}{42}+\frac{x^{5}}{10}+\frac{x^{3}}{3}+x\right) \\
& +c_{1}\left(-\frac{1}{90} p^{3} x^{6}+\frac{p^{2} x^{6}}{15}+\frac{p^{2} x^{4}}{6}-\frac{4 p x^{6}}{45}-\frac{p x^{4}}{3}-p x^{2}+1\right)
\end{aligned}
\]
19 Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
19.1 problem 1(a) 3119
19.2 problem 1(b) 3123
19.3 problem 1(c) 3139
19.4 problem 1(d) 3142
19.5 problem 2(a) 3161
19.6 problem 2(b) 3173
19.7 problem 2(c) 3184
19.8 problem 2(d) 3199
19.9 problem 2(e) 3211
19.10problem 3(a) 3215
19.11problem 3(b) 3228
19.12problem 3(c) 3244
19.13problem 3(d) 3261
19.14problem 4(a) 3274
19.15problem 4(b) 3290
19.16problem 4(c) 3306
19.17problem 4(d) 3323
19.18problem 5 3339
19.19problem 6 3351
19.20problem 8 3354

\section*{19.1 problem 1(a)}

Internal problem ID [6441]
Internal file name [OUTPUT/5689_Sunday_June_05_2022_03_47_04_PM_30345490/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x^{3}(x-1) y^{\prime \prime}-2(x-1) y^{\prime}+3 x y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{4}-x^{3}\right) y^{\prime \prime}+(-2 x+2) y^{\prime}+3 x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{2}{x^{3}} \\
& q(x)=\frac{3}{x^{2}(x-1)}
\end{aligned}
\]

Table 439: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{2}{x^{3}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{3}{x^{2}(x-1)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([1, \infty]\)
Irregular singular points : [0]
Since \(x=0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x=0\) is not regular singular point. Terminating.

Verification of solutions N/A
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu

```
 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}\) ([a
 trying a symmetry of the form [xi=0, eta=F(x)]
 trying differential order: 2; exact nonlinear
 trying symmetries linear in x and \(\mathrm{y}(\mathrm{x})\)
 trying to convert to a linear ODE with constant coefficients
 trying 2nd order, integrating factor of the form mu(x,y)
 -> Trying a solution in terms of special functions:
 -> Bessel
 -> elliptic
 -> Legendre
 -> Whittaker
 -> hyper3: Equivalence to 1F1 under a power @ Moebius
 -> hypergeometric
 -> heuristic approach
 -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
 -> Mathieu
 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying 2nd order exact linear
 trying symmetries linear in \(x\) and \(y(x)\)
 trying to convert to a linear \(Q_{2} \mathrm{D}_{2} 1^{\text {with }}\) constant coefficients
 trying to convert to an ODE of Bessel type
 trying to convert to an ODE of Bessel type
\(X\) Solution by Maple
```

Order:=8;
dsolve(x^3*(x-1)*diff (y(x),x\$2)-2*(x-1)*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+3*x*y(x)=0,y(x),type='series',x=0)

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.053 (sec). Leaf size: 108
AsymptoticDSolveValue \(\left[\mathrm{x} \wedge 3 *(\mathrm{x}-1) * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]-2 *(\mathrm{x}-1) * \mathrm{y}\right.\) ' \(\left.[\mathrm{x}]+3 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2} e^{-\frac{1}{x^{2}}}\left(\frac{1731 x^{7}}{320}-\frac{795 x^{6}}{128}-\frac{51 x^{5}}{40}+\frac{63 x^{4}}{32}+\frac{x^{3}}{2}-\frac{3 x^{2}}{4}+1\right) x^{3} \\
& +c_{1}\left(-\frac{51 x^{7}}{320}-\frac{19 x^{6}}{128}-\frac{9 x^{5}}{40}-\frac{9 x^{4}}{32}-\frac{x^{3}}{2}-\frac{3 x^{2}}{4}+1\right)
\end{aligned}
\]

\section*{19.2 problem 1(b)}

Internal problem ID [6442]
Internal file name [OUTPUT/5690_Sunday_June_05_2022_03_47_07_PM_58129404/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2}\left(x^{2}-1\right) y^{\prime \prime}-x(1-x) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{4}-x^{2}\right) y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{x(1+x)} \\
q(x) & =\frac{2}{x^{2}\left(x^{2}-1\right)}
\end{aligned}
\]

Table 440: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x(1+x)}\)} \\
\hline singularity & type \\
\hline\(x=-1\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{x^{2}\left(x^{2}-1\right)}\)} \\
\hline singularity & type \\
\hline\(x=-1\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-1,0,1, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2}\left(x^{2}-1\right) y^{\prime \prime}+\left(x^{2}-x\right) y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(x^{2}-x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{array}{r}
\left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)(n+r\right. \tag{2~B}\\
-1))+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n\right. \\
+r))+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{array}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
-x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+2 a_{0} x^{r}=0
\]

Or
\[
\left(-x^{r} r(-1+r)-x^{r} r+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
-\left(r^{2}-2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
-r^{2}+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=-\sqrt{2} \\
& r_{2}=\sqrt{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
-\left(r^{2}-2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=-2 \sqrt{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n-\sqrt{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\sqrt{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{r}{r^{2}+2 r-1}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-2}(n+r-2)(n-3+r)-a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+a_{n-1}(n+r-1)-a_{n}(n+r)+2 a_{n}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{n^{2} a_{n-2}+2 n r a_{n-2}+r^{2} a_{n-2}-5 n a_{n-2}+n a_{n-1}-5 r a_{n-2}+r a_{n-1}+6 a_{n-2}-a_{n-1}}{n^{2}+2 n r+r^{2}-2} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{\left(-2 n a_{n-2}+5 a_{n-2}-a_{n-1}\right) \sqrt{2}+n^{2} a_{n-2}+\left(-5 a_{n-2}+a_{n-1}\right) n+8 a_{n-2}-a_{n-1}}{n(-2 \sqrt{2}+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=-\sqrt{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-1+2 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
a_{2}=\frac{\sqrt{2}}{-5+3 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-1+2 \sqrt{2}}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{-5+3 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
a_{3}=-\frac{2 \sqrt{2}}{15-9 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-1+2 \sqrt{2}}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{-5+3 \sqrt{2}}\) \\
\hline\(a_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(-\frac{2 \sqrt{2}}{15-9 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
a_{4}=\frac{-69+49 \sqrt{2}}{-1104+780 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-1+2 \sqrt{2}}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{-5+3 \sqrt{2}}\) \\
\hline\(a_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(-\frac{2 \sqrt{2}}{15-9 \sqrt{2}}\) \\
\hline\(a_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{-69+49 \sqrt{2}}{-1104+780 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
a_{5}=\frac{-414+293 \sqrt{2}}{6108 \sqrt{2}-8640}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-1+2 \sqrt{2}}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{-5+3 \sqrt{2}}\) \\
\hline\(a_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(-\frac{2 \sqrt{2}}{15-9 \sqrt{2}}\) \\
\hline\(a_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{-69+49 \sqrt{2}}{-1104+780 \sqrt{2}}\) \\
\hline\(a_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{-414+293 \sqrt{2}}{6108 \sqrt{2}-8640}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26\right.}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right.}
\]

Which for the root \(r=-\sqrt{2}\) becomes
\[
a_{6}=\frac{3898-2757 \sqrt{2}}{114408-80892 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{-1+2 \sqrt{2}}\) \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{-5+3 \sqrt{2}}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(-\frac{2 \sqrt{2}}{15-9 \sqrt{2}}\) \\
\hline\(a_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{-69+49 \sqrt{2}}{-1104+780 \sqrt{2}}\) \\
\hline\(a_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{-414+293 \sqrt{2}}{6108 \sqrt{2}-8640}\) \\
\hline\(a_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{3898-2757 \sqrt{2}}{114408-80892 \sqrt{2}}\) \\
\hline\(a_{6}\) & \(\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26728 r+13520\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)}\) & \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=\frac{4 r\left(r^{12}+36 r^{11}+569 r^{10}+5196 r^{9}+30327 r^{8}+118064 r^{7}+310235 r^{6}+544884 r^{5}+625540 r^{4}+4761\right.}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r-\right.}\)
Which for the root \(r=-\sqrt{2}\) becomes
\(a_{7}=-\frac{\sqrt{2}(-77567+54843 \sqrt{2})}{126(-1+2 \sqrt{2})(\sqrt{2}-1)(-3+2 \sqrt{2})(-2+\sqrt{2})(-5+2 \sqrt{2})(-3+\sqrt{2})(-7+2 \sqrt{2})}\)
And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\checkmark}{-1+}\) \\
\hline\(a_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{V}{-5+}\) \\
\hline\(a_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(-\frac{1}{15}\) \\
\hline\(a_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{-6}{-11(}\) \\
\hline\(a_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{-41}{6108}\) \\
\hline\(a_{6}\) & \(\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26728 r+13520\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)}\) & \(\frac{38 ؟}{1144}\) \\
\hline\(a_{7}\) & \(\frac{4 r\left(r^{12}+36 r^{11}+569 r^{10}+5196 r^{9}+30327 r^{8}+118064 r^{7}+310235 r^{6}+544884 r^{5}+625540 r^{4}+476164 r^{3}+306608 r^{2}+226776 r+104600\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)\left(r^{2}+14 r+47\right)}\) & \(-\frac{12}{12}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{-\sqrt{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{-\sqrt{2}}\left(1+\frac{\sqrt{2} x}{-1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{-5+3 \sqrt{2}}-\frac{2 \sqrt{2} x^{3}}{15-9 \sqrt{2}}+\frac{(-69+49 \sqrt{2}) x^{4}}{-1104+780 \sqrt{2}}+\frac{(-414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}-8640}+\frac{(}{1}\right.
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{r}{r^{2}+2 r-1}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n-2}(n+r-2)(n-3+r)-b_{n}(n+r)(n+r-1) \tag{3}\\
& +b_{n-1}(n+r-1)-b_{n}(n+r)+2 b_{n}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{n^{2} b_{n-2}+2 n r b_{n-2}+r^{2} b_{n-2}-5 n b_{n-2}+n b_{n-1}-5 r b_{n-2}+r b_{n-1}+6 b_{n-2}-b_{n-1}}{n^{2}+2 n r+r^{2}-2} \tag{4}
\end{equation*}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{\left(2 n b_{n-2}-5 b_{n-2}+b_{n-1}\right) \sqrt{2}+n^{2} b_{n-2}+\left(-5 b_{n-2}+b_{n-1}\right) n+8 b_{n-2}-b_{n-1}}{n(2 \sqrt{2}+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\sqrt{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
b_{2}=\frac{\sqrt{2}}{5+3 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
b_{3}=\frac{2 \sqrt{2}}{15+9 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3 \sqrt{2}}\) \\
\hline\(b_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{2 \sqrt{2}}{15+9 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
b_{4}=\frac{69+49 \sqrt{2}}{1104+780 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3 \sqrt{2}}\) \\
\hline\(b_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{2 \sqrt{2}}{15+9 \sqrt{2}}\) \\
\hline\(b_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{69+49 \sqrt{2}}{1104+780 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
b_{5}=\frac{414+293 \sqrt{2}}{6108 \sqrt{2}+8640}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3 \sqrt{2}}\) \\
\hline\(b_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{2 \sqrt{2}}{15+9 \sqrt{2}}\) \\
\hline\(b_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{69+49 \sqrt{2}}{1104+780 \sqrt{2}}\) \\
\hline\(b_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{414+293 \sqrt{2}}{6108 \sqrt{2}+8640}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26\right.}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right.}\)
Which for the root \(r=\sqrt{2}\) becomes
\[
b_{6}=\frac{3898+2757 \sqrt{2}}{114408+80892 \sqrt{2}}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & \(\frac{1}{2}\) \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2 \sqrt{2}}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3 \sqrt{2}}\) \\
\hline\(b_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{2 \sqrt{2}}{15+9 \sqrt{2}}\) \\
\hline\(b_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{69+49 \sqrt{2}}{1104+780 \sqrt{2}}\) \\
\hline\(b_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{414+293 \sqrt{2}}{6108 \sqrt{2}+8640}\) \\
\hline\(b_{6}\) & \(\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26728 r+13520\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)}\) & \(\frac{3898+2757 \sqrt{2}}{114408+80892 \sqrt{2}}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=\frac{4 r\left(r^{12}+36 r^{11}+569 r^{10}+5196 r^{9}+30327 r^{8}+118064 r^{7}+310235 r^{6}+544884 r^{5}+625540 r^{4}+4761\right.}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+\right.}
\]

Which for the root \(r=\sqrt{2}\) becomes
\[
b_{7}=\frac{\sqrt{2}(77567+54843 \sqrt{2})}{126(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})(3+\sqrt{2})(7+2 \sqrt{2})}
\]

And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+2 r-1}\) & \(\frac{\sqrt{2}}{1+2}\) \\
\hline\(b_{2}\) & \(\frac{r\left(r^{3}+r^{2}-2 r+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)}\) & \(\frac{\sqrt{2}}{5+3}\) \\
\hline\(b_{3}\) & \(\frac{2 r\left(r^{4}+4 r^{3}+3 r^{2}+2\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)}\) & \(\frac{2 \sqrt{ }}{15+9}\) \\
\hline\(b_{4}\) & \(\frac{r\left(r^{7}+10 r^{6}+36 r^{5}+58 r^{4}+41 r^{3}+20 r^{2}+42 r+40\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)}\) & \(\frac{69-}{1104}\) \\
\hline\(b_{5}\) & \(\frac{r\left(3 r^{8}+48 r^{7}+306 r^{6}+996 r^{5}+1749 r^{4}+1616 r^{3}+866 r^{2}+680 r+496\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)}\) & \(\frac{414}{6108}\) \\
\hline\(b_{6}\) & \(\frac{r\left(r^{11}+27 r^{10}+314 r^{9}+2064 r^{8}+8439 r^{7}+22209 r^{6}+37650 r^{5}+40744 r^{4}+30972 r^{3}+26532 r^{2}+26728 r+13520\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)}\) & \(\frac{389}{1144}\) \\
\hline\(b_{7}\) & \(\frac{4 r\left(r^{12}+36 r^{11}+569 r^{10}+5196 r^{9}+30327 r^{8}+118064 r^{7}+310235 r^{6}+544884 r^{5}+625540 r^{4}+476164 r^{3}+306608 r^{2}+226776 r+104600\right)}{\left(r^{2}+2 r-1\right)\left(r^{2}+4 r+2\right)\left(r^{2}+6 r+7\right)\left(r^{2}+8 r+14\right)\left(r^{2}+10 r+23\right)\left(r^{2}+12 r+34\right)\left(r^{2}+14 r+47\right)}\) & \(\frac{126(}{126}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{-\sqrt{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x^{\sqrt{2}}\left(1+\frac{\sqrt{2} x}{1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{5+3 \sqrt{2}}+\frac{2 \sqrt{2} x^{3}}{15+9 \sqrt{2}}+\frac{(69+49 \sqrt{2}) x^{4}}{1104+780 \sqrt{2}}+\frac{(414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}+8640}+\frac{\left(3898+2^{\prime}\right.}{114408+}\right.
\end{aligned}
\]

Therefore the homogeneous solution is
\(y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)\)
\[
\begin{aligned}
& =c_{1} x^{-\sqrt{2}}\left(1+\frac{\sqrt{2} x}{-1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{-5+3 \sqrt{2}}-\frac{2 \sqrt{2} x^{3}}{15-9 \sqrt{2}}+\frac{(-69+49 \sqrt{2}) x^{4}}{-1104+780 \sqrt{2}}\right. \\
& +\frac{(-414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}-8640}+\frac{(3898-2757 \sqrt{2}) x^{6}}{114408-80892 \sqrt{2}} \\
& \sqrt{2}(-77567+54843 \sqrt{2}) x^{7} \\
& -\overline{126(-1+2 \sqrt{2})(\sqrt{2}-1)(-3+2 \sqrt{2})(-2+\sqrt{2})(-5+2 \sqrt{2})(-3+\sqrt{2})(-7+2 \sqrt{2})} \\
& \left.+O\left(x^{8}\right)\right)+c_{2} x^{\sqrt{2}}\left(1+\frac{\sqrt{2} x}{1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{5+3 \sqrt{2}}+\frac{2 \sqrt{2} x^{3}}{15+9 \sqrt{2}}+\frac{(69+49 \sqrt{2}) x^{4}}{1104+780 \sqrt{2}}\right. \\
& +\frac{(414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}+8640}+\frac{(3898+2757 \sqrt{2}) x^{6}}{114408+80892 \sqrt{2}} \\
& +\frac{\sqrt{2}(77567+54843 \sqrt{2}) x^{7}}{126(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})(3+\sqrt{2})(7+2 \sqrt{2})} \\
& \left.+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{array}{r}
=c_{1} x^{-\sqrt{2}}\left(1+\frac{\sqrt{2} x}{-1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{-5+3 \sqrt{2}}\right.
\end{array} \begin{array}{r}
-\frac{2 \sqrt{2} x^{3}}{15-9 \sqrt{2}}+\frac{(-69+49 \sqrt{2}) x^{4}}{-1104+780 \sqrt{2}} \\
\\
\quad+\frac{(-414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}-8640}+\frac{(3898-2757 \sqrt{2}) x^{6}}{114408-80892 \sqrt{2}} \\
\sqrt{2}(-77567+54843 \sqrt{2}) x^{7}
\end{array} \\
& \begin{array}{r}
\left.+O\left(x^{8}\right)\right)+c_{2} x^{\sqrt{2}\left(1+\frac{\sqrt{2} x}{1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{5+3 \sqrt{2}}+\frac{2 \sqrt{2} x^{3}}{15+9 \sqrt{2}}+\frac{(69+49 \sqrt{2}) x^{4}}{1104+780 \sqrt{2}}\right.} \\
\\
\quad+\frac{(414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}+8640}+\frac{(3898+2757 \sqrt{2}) x^{6}}{114408+80892 \sqrt{2}}
\end{array} \\
& +\frac{\sqrt{2}(77567+54843 \sqrt{2}) x^{7}}{126(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})(3+\sqrt{2})(7+2 \sqrt{2})} \\
&
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{array}{r}
y=c_{1} x^{-\sqrt{2}\left(1+\frac{\sqrt{2} x}{-1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{-5+3 \sqrt{2}}-\frac{2 \sqrt{2} x^{3}}{15-9 \sqrt{2}}+\frac{(-69+49 \sqrt{2}) x^{4}}{-1104+780 \sqrt{2}}\right.} \begin{array}{r}
+\frac{(-414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}-8640}+\frac{(3898-2757 \sqrt{2}) x^{6}}{114408-80892 \sqrt{2}} \\
-\frac{\sqrt{2}(-77567+54843 \sqrt{2}) x^{7}}{126(-1+2 \sqrt{2})(\sqrt{2}-1)(-3+2 \sqrt{2})(-2+\sqrt{2})(-5+2 \sqrt{2})(-3+\sqrt{2})(-7+2 \sqrt{2})} \\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{\sqrt{2}\left(1+\frac{\sqrt{2} x}{1+2 \sqrt{2}}+\frac{\sqrt{2} x^{2}}{5+3 \sqrt{2}}+\frac{2 \sqrt{2} x^{3}}{15+9 \sqrt{2}}+\frac{(69+49 \sqrt{2}) x^{4}}{1104+780 \sqrt{2}}\right.} \\
\quad+\frac{(414+293 \sqrt{2}) x^{5}}{6108 \sqrt{2}+8640}+\frac{(3898+2757 \sqrt{2}) x^{6}}{114408+80892 \sqrt{2}}
\end{array} \tag{1}\\
+\frac{\sqrt{2}(77567+54843 \sqrt{2}) x^{7}}{126(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})(3+\sqrt{2})(7+2 \sqrt{2})} \\
\left.+O\left(x^{8}\right)\right)
\end{array}
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e <> 0, g

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 654
```

Order:=8;
dsolve(x^2*(x^2-1)*diff(y(x),x\$2)-x*(1-x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

```
\[
\left.\begin{array}{rl}
y(x)= & c_{1} x^{-\sqrt{2}}\left(1+\frac{\sqrt{2}}{-1+2 \sqrt{2}} x+\frac{\sqrt{2}}{(1-2 \sqrt{2})(\sqrt{2}-1)} x^{2}+\frac{6 \sqrt{2}-8}{57 \sqrt{2}-81} x^{3}\right. \\
& +\frac{-49 \sqrt{2}+69}{1104-780 \sqrt{2}} x^{4}+\frac{293 \sqrt{2}-414}{6108 \sqrt{2}-8640} x^{5}+\frac{-2757 \sqrt{2}+3898}{114408-80892 \sqrt{2}} x^{6} \\
+\frac{1}{126} \frac{77567 \sqrt{2}-109686}{(-1+2 \sqrt{2})(\sqrt{2}-1)(2 \sqrt{2}-3)(-2+\sqrt{2})(-5+2 \sqrt{2})(-3+\sqrt{2})(-7+2 \sqrt{2})} x^{7} \\
& \left.+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{\sqrt{2}}\left(1+\frac{\sqrt{2}}{1+2 \sqrt{2}} x+\frac{\sqrt{2}}{5+3 \sqrt{2}} x^{2}+\frac{6 \sqrt{2}+8}{57 \sqrt{2}+81} x^{3}\right.
\end{array}\right\} \begin{aligned}
& +\frac{49 \sqrt{2}+69}{1104+780 \sqrt{2}} x^{4}+\frac{293 \sqrt{2}+414}{6108 \sqrt{2}+8640} x^{5}+\frac{2757 \sqrt{2}+3898}{114408+80892 \sqrt{2}} x^{6} \\
& +\frac{77567 \sqrt{2}+109686}{126} \frac{1}{(1+2 \sqrt{2})(1+\sqrt{2})(3+2 \sqrt{2})(2+\sqrt{2})(5+2 \sqrt{2})(3+\sqrt{2})(7+2 \sqrt{2})} x^{7} \\
&
\end{aligned}
\]

Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 10352
```

AsymptoticDSolveValue[x^2*(x^2-1)*y''[x]-x*(1-x)*y'[x]+2*y[x]==0,y[x],{x,0,7}]

```

Too large to display

\section*{19.3 problem 1(c)}

Internal problem ID [6443]
Internal file name [OUTPUT/5691_Sunday_June_05_2022_03_47_13_PM_63020299/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_ode_missing_y", "second order series method. Irregular singular point"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_y]]

```

Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+(2-x) y^{\prime}=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+(2-x) y^{\prime}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{-2+x}{x^{2}} \\
& q(x)=0
\end{aligned}
\]

Table 441: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{-2+x}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [\(\infty\)]
Irregular singular points : [0]
Since \(x=0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x=0\) is not regular singular point. Terminating.

Verification of solutions N/A
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y <- LODE missing y successful`

```

X Solution by Maple
```

Order:=8;
dsolve(x^2*diff (y(x), x\$2)+(2-x)*diff(y(x),x)=0,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 64
AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime \prime} \mathrm{Cx}\right]+(2-\mathrm{x}) * \mathrm{y}\) ' \(\left.[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\(y(x) \rightarrow c_{2} e^{2 / x}\left(\frac{2835 x^{7}}{2}+315 x^{6}+\frac{315 x^{5}}{4}+\frac{45 x^{4}}{2}+\frac{15 x^{3}}{2}+3 x^{2}+\frac{3 x}{2}+1\right) x^{3}+c_{1}\)

\section*{19.4 problem 1(d)}
19.4.1 Maple step by step solution 3157

Internal problem ID [6444]
Internal file name [OUTPUT/5692_Sunday_June_05_2022_03_47_14_PM_30898659/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
(3 x+1) x y^{\prime \prime}-(1+x) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(3 x^{2}+x\right) y^{\prime \prime}+(-1-x) y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1+x}{(3 x+1) x} \\
q(x) & =\frac{2}{(3 x+1) x}
\end{aligned}
\]

Table 442: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1+x}{(3 x+1) x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=-\frac{1}{3}\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{(3 x+1) x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=-\frac{1}{3}\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \(\left[0,-\frac{1}{3}, \infty\right]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
(3 x+1) x y^{\prime \prime}+(-1-x) y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& (3 x+1) x\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +(-1-x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)-(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)-r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)-r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-2+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(-2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& 3 a_{n-1}(n+r-1)(n+r-2)+a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad-a_{n-1}(n+r-1)-a_{n}(n+r)+2 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(3 n^{2}+6 n r+3 r^{2}-10 n-10 r+9\right)}{n^{2}+2 n r+r^{2}-2 n-2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(3 n^{2}+2 n+1\right)}{n(n+2)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-3 r^{2}+4 r-2}{r^{2}-1}
\]

Which for the root \(r=2\) becomes
\[
a_{1}=-2
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}
\]

Which for the root \(r=2\) becomes
\[
a_{2}=\frac{17}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}
\]

Which for the root \(r=2\) becomes
\[
a_{3}=-\frac{289}{30}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline\(a_{3}\) & \(\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}\) & \(-\frac{289}{30}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{81 r^{8}+540 r^{7}+1242 r^{6}+960 r^{5}-203 r^{4}-260 r^{3}+464 r^{2}+440 r+204}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)(r+4)}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=\frac{5491}{240}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline\(a_{3}\) & \(\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}\) & \(-\frac{289}{30}\) \\
\hline\(a_{4}\) & \(\frac{81 r^{8}+540 r^{7}+1242 r^{6}+960 r^{5}-203 r^{4}-260 r^{3}+464 r^{2}+440 r+204}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)(r+4)}\) & \(\frac{5491}{240}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-243 r^{10}-3240 r^{9}-17280 r^{8}-46080 r^{7}-60819 r^{6}-27800 r^{5}+10710 r^{4}-1760 r^{3}-25188 r^{2}-190}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)(r+5)}
\]

Which for the root \(r=2\) becomes
\[
a_{5}=-\frac{236113}{4200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline\(a_{3}\) & \(\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}\) & \(-\frac{289}{30}\) \\
\hline\(a_{4}\) & \(\frac{81 r^{8}+540 r^{7}+1242 r^{6}+960 r^{5}-203 r^{4}-260 r^{3}+464 r^{2}+440 r+204}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)(r+4)}\) & \(\frac{5491}{240}\) \\
\hline\(a_{5}\) & \(\frac{-243 r^{10}-3240 r^{9}-17280 r^{8}-46080 r^{7}-60819 r^{6}-27800 r^{5}+10710 r^{4}-1760 r^{3}-25188 r^{2}-19040 r-6936}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)(r+5)}\) & \(-\frac{236113}{4200}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(a_{6}=\frac{\left(3 r^{2}+26 r+57\right)\left(3 r^{2}-4 r+2\right)\left(3 r^{2}+8 r+6\right)\left(3 r^{2}+2 r+1\right)\left(3 r^{2}+14 r+17\right)\left(3 r^{2}+20 r+34\right)}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)^{2}(r+5)(r+6)}\)
Which for the root \(r=2\) becomes
\[
a_{6}=\frac{28569673}{201600}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline\(a_{3}\) & \(\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}\) & \(-\frac{289}{30}\) \\
\hline\(a_{4}\) & \(\frac{81 r^{8}+540 r^{7}+1242 r^{6}+960 r^{5}-203 r^{4}-260 r^{3}+464 r^{2}+440 r+204}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)(r+4)}\) & \(\frac{5491}{240}\) \\
\hline\(a_{5}\) & \(\frac{-243 r^{10}-3240 r^{9}-17280 r^{8}-46080 r^{7}-60819 r^{6}-27800 r^{5}+10710 r^{4}-1760 r^{3}-25188 r^{2}-19040 r-6936}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)(r+5)}\) & \(-\frac{236113}{4200}\) \\
\hline\(a_{6}\) & \(\frac{\left(3 r^{2}+26 r+57\right)\left(3 r^{2}-4 r+2\right)\left(3 r^{2}+8 r+6\right)\left(3 r^{2}+2 r+1\right)\left(3 r^{2}+14 r+17\right)\left(3 r^{2}+20 r+34\right)}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)^{2}(r+5)(r+6)}\) & \(\frac{28569673}{201600}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{\left(3 r^{2}+26 r+57\right)\left(3 r^{2}-4 r+2\right)\left(3 r^{2}+8 r+6\right)\left(3 r^{2}+2 r+1\right)\left(3 r^{2}+14 r+17\right)\left(3 r^{2}+20 r+34\right)(3 r}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)(r+7)}
\]

Which for the root \(r=2\) becomes
\[
a_{7}=-\frac{28569673}{78400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3 r^{2}+4 r-2}{r^{2}-1}\) & -2 \\
\hline\(a_{2}\) & \(\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}\) & \(\frac{17}{4}\) \\
\hline\(a_{3}\) & \(\frac{-27 r^{6}-54 r^{5}-9 r^{4}+28 r^{3}-12 r^{2}-16 r-12}{r(-1+r)(r+2)(r+1)^{2}(r+3)}\) & \(-\frac{289}{30}\) \\
\hline\(a_{4}\) & \(\frac{81 r^{8}+540 r^{7}+1242 r^{6}+960 r^{5}-203 r^{4}-260 r^{3}+464 r^{2}+440 r+204}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)(r+4)}\) & \(\frac{5491}{240}\) \\
\hline\(a_{5}\) & \(\frac{-243 r^{10}-3240 r^{9}-17280 r^{8}-46080 r^{7}-60819 r^{6}-27800 r^{5}+10710 r^{4}-1760 r^{3}-25188 r^{2}-19040 r-6936}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)(r+5)}\) & \(-\frac{236113}{4200}\) \\
\hline\(a_{6}\) & \(\frac{\left(3 r^{2}+26 r+57\right)\left(3 r^{2}-4 r+2\right)\left(3 r^{2}+8 r+6\right)\left(3 r^{2}+2 r+1\right)\left(3 r^{2}+14 r+17\right)\left(3 r^{2}+20 r+34\right)}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)^{2}(r+5)(r+6)}\) & \(\frac{28569673}{201600}\) \\
\hline\(a_{7}\) & \(-\frac{\left(3 r^{2}+26 r+57\right)\left(3 r^{2}-4 r+2\right)\left(3 r^{2}+8 r+6\right)\left(3 r^{2}+2 r+1\right)\left(3 r^{2}+14 r+17\right)\left(3 r^{2}+20 r+34\right)\left(3 r^{2}+32 r+86\right)}{r(-1+r)(r+2)^{2}(r+1)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)(r+7)}\) & \(-\frac{28569673}{78400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=2\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{2}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)} & =\lim _{r \rightarrow 0} \frac{9 r^{4}-6 r^{3}+r^{2}+2}{\left(r^{2}-1\right) r(r+2)} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \((3 x+1) x y^{\prime \prime}+(-1-x) y^{\prime}+2 y=0\) gives
\[
\begin{aligned}
& (3 x+1) x\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +(-1-x)\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +2 C y_{1}(x) \ln (x)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left((3 x+1) x y_{1}^{\prime \prime}(x)+(-1-x) y_{1}^{\prime}(x)+2 y_{1}(x)\right) \ln (x)\right. \\
& \left.+(3 x+1) x\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{(-1-x) y_{1}(x)}{x}\right) C \tag{7}\\
& +(3 x+1) x\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +(-1-x)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
(3 x+1) x y_{1}^{\prime \prime}(x)+(-1-x) y_{1}^{\prime}(x)+2 y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left((3 x+1) x\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+\frac{(-1-x) y_{1}(x)}{x}\right) C \\
& +(3 x+1) x\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +(-1-x)\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{aligned}
& \frac{\left(6 x\left(x+\frac{1}{3}\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right)+2(-1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C}{x} \\
& +\frac{\left(3 x^{3}+x^{2}\right)\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)+\left(-x^{2}-x\right)\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right)+2\left(\sum_{n=0}^{\infty} b_{n} x\right.}{x}
\end{aligned}
\]

Since \(r_{1}=2\) and \(r_{2}=0\) then the above becomes
\[
\begin{align*}
& \frac{\left(6 x\left(x+\frac{1}{3}\right)\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}(n+2)\right)+2(-1-2 x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+2}\right)\right) C}{x} \\
& +\frac{\left(3 x^{3}+x^{2}\right)\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right)+\left(-x^{2}-x\right)\left(\sum_{n=0}^{\infty} x^{n-1} b_{n} n\right)+2\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right) x}{x}=0 \tag{10}
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 6 C x^{n+2} a_{n}(n+2)\right)+\left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(n+2)\right)+\sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-4 C x^{n+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 3 x^{n} b_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right)+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n} n\right)+\left(\sum_{n=0}^{\infty} 2 b_{n} x^{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
& \sum_{n=0}^{\infty} 6 C x^{n+2} a_{n}(n+2)=\sum_{n=3}^{\infty} 6 C a_{n-3}(n-1) x^{n-1} \\
& \sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(n+2)=\sum_{n=2}^{\infty} 2 C a_{-2+n} n x^{n-1}
\end{aligned}
\]
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-2 C x^{1+n} a_{n}\right) & =\sum_{n=2}^{\infty}\left(-2 C a_{-2+n} x^{n-1}\right) \\
\sum_{n=0}^{\infty}\left(-4 C x^{n+2} a_{n}\right) & =\sum_{n=3}^{\infty}\left(-4 C a_{n-3} x^{n-1}\right) \\
\sum_{n=0}^{\infty} 3 x^{n} b_{n} n(n-1) & =\sum_{n=1}^{\infty} 3(n-1) b_{n-1}(-2+n) x^{n-1} \\
\sum_{n=0}^{\infty}\left(-x^{n} b_{n} n\right) & =\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right) \\
\sum_{n=0}^{\infty} 2 b_{n} x^{n} & =\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n-1\).
\[
\begin{align*}
& \left(\sum_{n=3}^{\infty} 6 C a_{n-3}(n-1) x^{n-1}\right)+\left(\sum_{n=2}^{\infty} 2 C a_{-2+n} n x^{n-1}\right) \\
& +\sum_{n=2}^{\infty}\left(-2 C a_{-2+n} x^{n-1}\right)+\sum_{n=3}^{\infty}\left(-4 C a_{n-3} x^{n-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty} 3(n-1) b_{n-1}(-2+n) x^{n-1}\right)+\left(\sum_{n=0}^{\infty} n x^{n-1} b_{n}(n-1)\right) \\
& \quad+\sum_{n=1}^{\infty}\left(-(n-1) b_{n-1} x^{n-1}\right)+\sum_{n=0}^{\infty}\left(-x^{n-1} b_{n} n\right)+\left(\sum_{n=1}^{\infty} 2 b_{n-1} x^{n-1}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=1\), Eq (2B) gives
\[
-b_{1}+2 b_{0}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-b_{1}+2=0
\]

Solving the above for \(b_{1}\) gives
\[
b_{1}=2
\]

For \(n=N\), where \(N=2\) which is the difference between the two roots, we are free to choose \(b_{2}=0\). Hence for \(n=2\), Eq (2B) gives
\[
2 C+2=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=-1
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(8 a_{0}+4 a_{1}\right) C+6 b_{2}+3 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
3 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=0
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(14 a_{1}+6 a_{2}\right) C+17 b_{3}+8 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
\frac{5}{2}+8 b_{4}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=-\frac{5}{16}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(20 a_{2}+8 a_{3}\right) C+34 b_{4}+15 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-\frac{2227}{120}+15 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=\frac{2227}{1800}
\]

For \(n=6, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(26 a_{3}+10 a_{4}\right) C+57 b_{5}+24 b_{6}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
\frac{27659}{300}+24 b_{6}=0
\]

Solving the above for \(b_{6}\) gives
\[
b_{6}=-\frac{27659}{7200}
\]

For \(n=7, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
\left(32 a_{4}+12 a_{5}\right) C+86 b_{6}+35 b_{7}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-\frac{9774983}{25200}+35 b_{7}=0
\]

Solving the above for \(b_{7}\) gives
\[
b_{7}=\frac{9774983}{882000}
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=-1\) and all \(b_{n}\), then the second solution becomes
\[
\begin{aligned}
y_{2}(x)= & (-1)\left(x ^ { 2 } \left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}\right.\right. \\
& \left.\left.-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right)\right) \ln (x) \\
& +1+2 x-\frac{5 x^{4}}{16}+\frac{2227 x^{5}}{1800}-\frac{27659 x^{6}}{7200}+\frac{9774983 x^{7}}{882000}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}\right. \\
& \left.\quad-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right) \\
& +c_{2}\left((- 1) \left(x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right)\right.\right. \\
& \left.+1+2 x-\frac{5 x^{4}}{16}+\frac{2227 x^{5}}{1800}-\frac{27659 x^{6}}{7200}+\frac{9774983 x^{7}}{882000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}\right. \\
& \left.+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}\right.\right. \\
& \left.\left.+O\left(x^{8}\right)\right) \ln (x)+1+2 x-\frac{5 x^{4}}{16}+\frac{2227 x^{5}}{1800}-\frac{27659 x^{6}}{7200}+\frac{9774983 x^{7}}{882000}+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} x^{2}(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600} \\
&\left.-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right) \\
&+c_{2}\left(-x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{24 \varphi_{1}}\right)\right. \\
&-\left.\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}+O\left(x^{8}\right)\right) \ln (x)+1+2 x-\frac{5 x^{4}}{16} \\
&\left.+\frac{2227 x^{5}}{1800}-\frac{27659 x^{6}}{7200}+\frac{9774983 x^{7}}{882000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}\right. \\
& +c_{2}\left(-x^{2}\left(1-2 x+\frac{17 x^{2}}{4}-\frac{289 x^{3}}{30}+\frac{5491 x^{4}}{240}-\frac{236113 x^{5}}{4200}+\frac{28569673 x^{6}}{201600}-\frac{28569673 x^{7}}{78400}\right.\right. \\
& \left.\left.+O\left(x^{8}\right)\right) \ln (x)+1+2 x-\frac{5 x^{4}}{16}+\frac{2227 x^{5}}{1800}-\frac{27659 x^{6}}{7200}+\frac{9774983 x^{7}}{882000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{19.4.1 Maple step by step solution}

Let's solve
\((3 x+1) x y^{\prime \prime}+(-1-x) y^{\prime}+2 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{2 y}{(3 x+1) x}+\frac{(1+x) y^{\prime}}{(3 x+1) x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(1+x) y^{\prime}}{(3 x+1) x}+\frac{2 y}{(3 x+1) x}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{1+x}{(3 x+1) x}, P_{3}(x)=\frac{2}{(3 x+1) x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\((3 x+1) x y^{\prime \prime}+(-1-x) y^{\prime}+2 y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-2+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+r-1)+a_{k}\left(3 k^{2}+6 k r+3 r^{2}-4 k-4 r+2\right)\right) x^{k}\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,2\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(3 k^{2}+(6 r-4) k+3 r^{2}-4 r+2\right) a_{k}+a_{k+1}(k+1+r)(k+r-1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{\left(3 k^{2}+6 k r+3 r^{2}-4 k-4 r+2\right) a_{k}}{(k+1+r)(k+r-1)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{\left(3 k^{2}-4 k+2\right) a_{k}}{(k+1)(k-1)}\)
- Series not valid for \(r=0\), division by 0 in the recursion relation at \(k=1\)
\(a_{k+1}=-\frac{\left(3 k^{2}-4 k+2\right) a_{k}}{(k+1)(k-1)}\)
- Recursion relation for \(r=2\)
\[
a_{k+1}=-\frac{\left(3 k^{2}+8 k+6\right) a_{k}}{(k+3)(k+1)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{\left(3 k^{2}+8 k+6\right) a_{k}}{(k+3)(k+1)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful         -> solution has integrals; searching for one without integrals...             -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius             <- hyper3 successful: received ODE is equivalent to the 2F1 ODE             <- hypergeometric solution without integrals succesful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 72
```

Order:=8;
dsolve((3*x+1)*x*diff(y(x),x\$2)-(x+1)*diff(y(x),x)+2*y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
& y(x)= c_{1} x^{2}\left(1-2 x+\frac{17}{4} x^{2}-\frac{289}{30} x^{3}+\frac{5491}{240} x^{4}-\frac{236113}{4200} x^{5}+\right. \\
&+\frac{28569673}{201600} x^{6} \\
&\left.-\frac{28569673}{78400} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
&+c_{2}\left(\ln (x)\left(2 x^{2}-4 x^{3}+\frac{17}{2} x^{4}-\frac{289}{15} x^{5}+\frac{5491}{120} x^{6}-\frac{236113}{2100} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+(-2\right. \\
&\left.\left.-4 x+6 x^{2}-12 x^{3}+\frac{209}{8} x^{4}-\frac{54247}{900} x^{5}+\frac{521849}{3600} x^{6}-\frac{158526173}{441000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.421 (sec). Leaf size: 118
AsymptoticDSolveValue \([(3 * x+1) * x * y\) ' ' \([\mathrm{x}]-(\mathrm{x}+1) * \mathrm{y}\) ' \([\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{27353 x^{6}-12886 x^{5}+6525 x^{4}-3600 x^{3}+1800 x^{2}+7200 x+3600}{3600}\right. \\
& \left.-\frac{1}{240} x^{2}\left(5491 x^{4}-2312 x^{3}+1020 x^{2}-480 x+240\right) \log (x)\right) \\
& +c_{2}\left(\frac{28569673 x^{8}}{201600}-\frac{236113 x^{7}}{4200}+\frac{5491 x^{6}}{240}-\frac{289 x^{5}}{30}+\frac{17 x^{4}}{4}-2 x^{3}+x^{2}\right)
\end{aligned}
\]

\section*{19.5 problem 2(a)}

Internal problem ID [6445]
Internal file name [OUTPUT/5693_Sunday_June_05_2022_03_47_19_PM_4563542/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+\sin (x) y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{691}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{692}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-\sin (x) y \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-\sin (x) y^{\prime}-y \cos (x) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =-2 \cos (x) y^{\prime}+\sin (x) y(1+\sin (x)) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(\sin (x)^{2}+3 \sin (x)\right) y^{\prime}+4 \cos (x) y\left(\sin (x)+\frac{1}{4}\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =(6 \sin (x)+4) \cos (x) y^{\prime}+y\left((\sin (x)+11) \cos (x)^{2}-2 \sin (x)-7\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left((\sin (x)+23) \cos (x)^{2}-6 \sin (x)-13\right) y^{\prime}+9 \cos (x) y\left(\cos (x)^{2}-\frac{26 \sin (x)}{9}-\frac{10}{9}\right) \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(12 \cos (x)^{3}+(-72 \sin (x)-18) \cos (x)\right) y^{\prime}+y\left(\cos (x)^{4}+(-50 \sin (x)-59) \cos (x)^{2}+23 \sin (x)+\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-y(0) \\
& F_{2}=-2 y^{\prime}(0) \\
& F_{3}=y(0) \\
& F_{4}=4 y(0)+4 y^{\prime}(0) \\
& F_{5}=-y(0)+10 y^{\prime}(0) \\
& F_{6}=-26 y(0)-6 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}-\frac{13}{20160} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}-\frac{1}{6720} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\sin (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \tag{1}
\end{equation*}
\]

Expanding \(\sin (x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\]

Expanding the second term in (1) gives
\[
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{3}}{6} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{5}}{120} \\
& \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{7}}{5040} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{9}}{362880} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) \tag{2}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+9} a_{n}}{362880}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+9} a_{n}}{362880} & =\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n}}{362880}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{gather*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right) \tag{3}\\
\quad+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right)+\left(\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n}}{362880}\right)=0
\end{gather*}
\]
\(n=1\) gives
\[
6 a_{3}+a_{0}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{a_{0}}{6}
\]
\(n=2\) gives
\[
12 a_{4}+a_{1}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{4}=-\frac{a_{1}}{12}
\]
\(n=3\) gives
\[
20 a_{5}+a_{2}-\frac{a_{0}}{6}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{5}=\frac{a_{0}}{120}
\]
\(n=4\) gives
\[
30 a_{6}+a_{3}-\frac{a_{1}}{6}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{6}=\frac{a_{0}}{180}+\frac{a_{1}}{180}
\]
\(n=5\) gives
\[
42 a_{7}+a_{4}-\frac{a_{2}}{6}+\frac{a_{0}}{120}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{7}=-\frac{a_{0}}{5040}+\frac{a_{1}}{504}
\]
\(n=6\) gives
\[
56 a_{8}+a_{5}-\frac{a_{3}}{6}+\frac{a_{1}}{120}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{8}=-\frac{13 a_{0}}{20160}-\frac{a_{1}}{6720}
\]
\(n=7\) gives
\[
72 a_{9}+a_{6}-\frac{a_{4}}{6}+\frac{a_{2}}{120}-\frac{a_{0}}{5040}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{9}=-\frac{a_{0}}{13440}-\frac{7 a_{1}}{25920}
\]

For \(9 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)+a_{n-1}-\frac{a_{n-3}}{6}+\frac{a_{n-5}}{120}-\frac{a_{n-7}}{5040}+\frac{a_{n-9}}{362880}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2}= & -\frac{362880 a_{n-1}-60480 a_{n-3}+3024 a_{n-5}-72 a_{n-7}+a_{n-9}}{362880(n+2)(1+n)} \\
= & -\frac{a_{n-9}}{362880(n+2)(1+n)}+\frac{a_{n-7}}{5040(n+2)(1+n)} \tag{5}\\
& -\frac{a_{n-5}}{120(n+2)(1+n)}+\frac{a_{n-3}}{6(n+2)(1+n)}-\frac{a_{n-1}}{(n+2)(1+n)}
\end{align*}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{a_{0} x^{3}}{6}-\frac{a_{1} x^{4}}{12}+\frac{a_{0} x^{5}}{120}+\left(\frac{a_{0}}{180}+\frac{a_{1}}{180}\right) x^{6}+\left(-\frac{a_{0}}{5040}+\frac{a_{1}}{504}\right) x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}\right) a_{0} \tag{3}\\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\(y=\left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}\right) c_{1}+\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right)\)
Summary
The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}-\frac{13}{20160} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}-\frac{1}{6720} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}\right) c_{1} \tag{2}\\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}-\frac{13}{20160} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}-\frac{1}{6720} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\(y=\left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}\right) c_{1}+\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}\right) c_{2}+O\left(x^{8}\right)\)
Verified OK.

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying an equivalence, under non-integer power transformations,
to LODEs admitting Liouvillian solutions.
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
Equivalence transformation and function parameters: {t = 1/2*t+1/2}, {kappa = -20,
<- Equivalence to the rational form of Mathieu ODE successful
<- Mathieu successful
<- special function solution successful
Change of variables used:
[x = arccos(t)]
Linear ODE actually solved:
(-t^2+1)^(1/2)*u(t)-t*diff(u(t),t)+(-t^2+1)*diff(diff(u(t),t),t) = 0
<- change of variables successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.0 (sec). Leaf size: 49
```

Order:=8;
dsolve(diff(y(x),x\$2)+sin(x)*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}+\frac{1}{180} x^{6}-\frac{1}{5040} x^{7}\right) y(0) \\
& +\left(x-\frac{1}{12} x^{4}+\frac{1}{180} x^{6}+\frac{1}{504} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 63
AsymptoticDSolveValue[y'' \([\mathrm{x}]+\operatorname{Sin}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
y(x) \rightarrow c_{2}\left(\frac{x^{7}}{504}+\frac{x^{6}}{180}-\frac{x^{4}}{12}+x\right)+c_{1}\left(-\frac{x^{7}}{5040}+\frac{x^{6}}{180}+\frac{x^{5}}{120}-\frac{x^{3}}{6}+1\right)
\]

\section*{19.6 problem 2(b)}

Internal problem ID [6446]
Internal file name [OUTPUT/5694_Sunday_June_05_2022_03_47_23_PM_56734453/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x y^{\prime \prime}+\sin (x) y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{694}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{695}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{\partial x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-\frac{\sin (x) y}{x} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{-y^{\prime} \sin (x) x-y(\cos (x) x-\sin (x))}{x^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(-2 \cos (x) x^{2}+2 \sin (x) x\right) y^{\prime}+y\left(\sin (x)^{2} x+\left(x^{2}-2\right) \sin (x)+2 \cos (x) x\right)}{x^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(\sin (x)^{2} x^{2}+\left(3 x^{3}-6 x\right) \sin (x)+6 \cos (x) x^{2}\right) y^{\prime}+y\left(-4 \sin (x)^{2} x+\left(4 \cos (x) x^{2}-3 x^{2}+6\right) \sin (x)\right.}{x^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{2\left(-3 \sin (x)^{2} x^{2}+3\left(\cos (x) x^{3}-2 x^{3}+4 x\right) \sin (x)+2 x^{2} \cos (x)\left(x^{2}-6\right)\right) y^{\prime}-y\left(x^{2} \sin (x)^{3}+3\left(x^{3}-\right.\right.}{x^{5}} \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& \left.=\frac{-6\left(-2 x^{3} \cos (x)^{3}+\left(36 x^{3}+2 x^{2} \sin (x)\right) \cos (x)^{2}+\left(\left(12 x^{3}-56 x\right) \sin (x)+x^{4}-18 x^{2}+120\right) x \cos (x\right.}{23}\right) \\
& =\frac{-5\left(-\frac{23 x^{2}\left(x+\frac{\sin (x)}{23}\right) \cos (x)^{2}}{5}+\left(4 x^{3}+\frac{46 x^{2} \sin (x)}{5}-24 x\right) \cos (x)-\frac{36 \sin (x)^{2} x}{5}+\left(x^{4}-\frac{59}{5} x^{2}+24\right) \sin (x)+\right.}{F_{6}}
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=-y^{\prime}(0) \\
& F_{2}=\frac{4 y(0)}{3} \\
& F_{3}=2 y^{\prime}(0) \\
& F_{4}=-\frac{53 y(0)}{15} \\
& F_{5}=-\frac{19 y^{\prime}(0)}{3} \\
& F_{6}=\frac{467 y(0)}{35}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}+\frac{467}{1411200} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
x y^{\prime \prime}+\sin (x) y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x+\sin (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Expanding \(\sin (x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x+\left(x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\]

Expanding the second term in (1) gives
\[
\begin{aligned}
& \left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right) x+x \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{3}}{6} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{5}}{120} \\
& \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)-\frac{x^{7}}{5040} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\frac{x^{9}}{362880} \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) \tag{2}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+9} a_{n}}{362880}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n} \\
\sum_{n=0}^{\infty} x^{1+n} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right)
\end{aligned}
\]
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n+5} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+9} a_{n}}{362880} & =\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n}}{362880}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty}(1+n) a_{1+n} n x^{n}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n}\right)+\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n}}{6}\right) \tag{3}\\
& \quad+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n}}{5040}\right)+\left(\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n}}{362880}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]
\(n=1\) gives
\[
6 a_{3}+a_{1}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{a_{1}}{6}
\]
\(n=2\) gives
\[
12 a_{4}+a_{2}-\frac{a_{0}}{6}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{4}=\frac{a_{0}}{18}
\]
\(n=3\) gives
\[
20 a_{5}+a_{3}-\frac{a_{1}}{6}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{5}=\frac{a_{1}}{60}
\]
\(n=4\) gives
\[
30 a_{6}+a_{4}-\frac{a_{2}}{6}+\frac{a_{0}}{120}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{6}=-\frac{53 a_{0}}{10800}
\]
\(n=5\) gives
\[
42 a_{7}+a_{5}-\frac{a_{3}}{6}+\frac{a_{1}}{120}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{7}=-\frac{19 a_{1}}{15120}
\]
\(n=6\) gives
\[
56 a_{8}+a_{6}-\frac{a_{4}}{6}+\frac{a_{2}}{120}-\frac{a_{0}}{5040}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{8}=\frac{467 a_{0}}{1411200}
\]

For \(9 \leq n\), the recurrence equation is
\[
\begin{equation*}
(1+n) a_{1+n} n+a_{n-1}-\frac{a_{n-3}}{6}+\frac{a_{n-5}}{120}-\frac{a_{n-7}}{5040}+\frac{a_{n-9}}{362880}=0 \tag{4}
\end{equation*}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}+\frac{1}{18} a_{0} x^{4}+\frac{1}{60} a_{1} x^{5}-\frac{53}{10800} a_{0} x^{6}-\frac{19}{15120} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}+\frac{467}{1411200} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left.\left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) c_{2}+O\left(x^{8}\right)^{2}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}+\frac{467}{1411200} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.

Maple trace
- Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx\()\)) \(* 2 \mathrm{~F} 1([\mathrm{a}\)
\(\rightarrow\) Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
-, -> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
\(\rightarrow\) trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
-> trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying a symmetry pattern of the form \([F(x), G(x) * y+H(x)]\)
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5 `[0, y]\)
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=8;
dsolve(x*diff(y(x),x\$2)+\operatorname{sin}(\textrm{x})*\textrm{y}(\textrm{x})=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{2} x^{2}+\frac{1}{18} x^{4}-\frac{53}{10800} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{19}{15120} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue \([x * y\) '' \([x]+\operatorname{Sin}[x] * y[x]==0, y[x],\{x, 0,7\}]\)
\[
y(x) \rightarrow c_{2}\left(-\frac{19 x^{7}}{15120}+\frac{x^{5}}{60}-\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{53 x^{6}}{10800}+\frac{x^{4}}{18}-\frac{x^{2}}{2}+1\right)
\]

\section*{19.7 problem 2(c)}

Internal problem ID [6447]
Internal file name [OUTPUT/5695_Sunday_June_05_2022_03_47_26_PM_50063468/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{2} y^{\prime \prime}+\sin (x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+\sin (x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{\sin (x)}{x^{2}}
\end{aligned}
\]

Table 444: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{\sin (x)}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+\sin (x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+\sin (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Expanding \(\sin (x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{6}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+9} a_{n}}{362880}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n+r}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120} & =\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n+r}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+9} a_{n}}{362880} & =\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n+r}}{362880}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\sum_{n=3}^{\infty}\left(-\frac{a_{n-3} x^{n+r}}{6}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r}}{120}\right)+\sum_{n=7}^{\infty}\left(-\frac{a_{n-7} x^{n+r}}{5040}\right)+\left(\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n+r}}{362880}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)=0
\]

Or
\[
x^{r} a_{0} r(-1+r)=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r(-1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r(-1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=-\frac{1}{r(1+r)}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{1}{r(1+r)^{2}(2+r)}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=\frac{r^{4}+4 r^{3}+5 r^{2}+2 r-6}{6 r(1+r)^{2}(2+r)^{2}(3+r)}
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
a_{4}=\frac{-r^{4}-6 r^{3}-14 r^{2}-15 r-3}{3 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
a_{5}=\frac{-r^{8}-16 r^{7}-106 r^{6}-376 r^{5}-709 r^{4}-424 r^{3}+1056 r^{2}+2496 r+1560}{120 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
\]

Substituting \(n=6\) in Eq. (2B) gives
\[
a_{6}=\frac{2 r^{8}+40 r^{7}+337 r^{6}+1555 r^{5}+4258 r^{4}+6955 r^{3}+6113 r^{2}+1440 r-1305}{45 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}
\]

Substituting \(n=7\) in Eq. (2B) gives
\[
a_{7}=\frac{r^{12}+36 r^{11}+575 r^{10}+5370 r^{9}+31977 r^{8}+120744 r^{7}+245517 r^{6}-40230 r^{5}-1838278 r^{4}-5602080}{5040 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r}
\]

Substituting \(n=8\) in Eq. (2B) gives
\[
a_{8}=\frac{-r^{12}-42 r^{11}-785 r^{10}-8610 r^{9}-61461 r^{8}-298830 r^{7}-1003386 r^{6}-2292885 r^{5}-3351683 r^{4}-24}{315 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)^{2}}
\]

For \(9 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}-\frac{a_{n-3}}{6}+\frac{a_{n-5}}{120}-\frac{a_{n-7}}{5040}+\frac{a_{n-9}}{362880}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{362880 a_{n-1}-60480 a_{n-3}+3024 a_{n-5}-72 a_{n-7}+a_{n-9}}{362880(n+r)(n+r-1)} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{-362880 a_{n-1}+60480 a_{n-3}-3024 a_{n-5}+72 a_{n-7}-a_{n-9}}{362880(1+n) n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|c|c|}
\hline \(n\) & \(a_{n, r}\) \\
\hline \(a_{0}\) & 1 \\
\hline \(a_{1}\) & \[
-\frac{1}{r(1+r)}
\] \\
\hline \(a_{2}\) & \[
\frac{1}{r(1+r)^{2}(2+r)}
\] \\
\hline \(a_{3}\) & \[
\frac{r^{4}+4 r^{3}+5 r^{2}+2 r-6}{6 r(1+r)^{2}(2+r)^{2}(3+r)}
\] \\
\hline \(a_{4}\) & \[
\frac{-r^{4}-6 r^{3}-14 r^{2}-15 r-3}{3 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)}
\] \\
\hline \(a_{5}\) & \[
\frac{-r^{8}-16 r^{7}-106 r^{6}-376 r^{5}-709 r^{4}-424 r^{3}+1056 r^{2}+2496 r+1560}{120 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)}
\] \\
\hline \(a_{6}\) & \[
\frac{2 r^{8}+40 r^{7}+337 r^{6}+1555 r^{5}+4258 r^{4}+6955 r^{3}+6113 r^{2}+1440 r-1305}{45 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)}
\] \\
\hline \(a_{7}\) & \[
\frac{r^{12}+36 r^{11}+575 r^{10}+5370 r^{9}+31977 r^{8}+120744 r^{7}+245517 r^{6}-40230 r^{5}-1838278 r^{4}-5602080 r^{3}-8696192 r^{2}-7058640 r-2172240}{5040 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)}
\] \\
\hline \(a_{8}\) & \[
\frac{-r^{12}-42 r^{11}-785 r^{10}-8610 r^{9}-61461 r^{8}-298830 r^{7}-1003386 r^{6}-2292885 r^{5}-3351683 r^{4}-2497173 r^{3}+466901 r^{2}+2574075 r+1562715}{315 r(1+r)^{2}(2+r)^{2}(3+r)^{2}(4+r)^{2}(5+r)^{2}(6+r)^{2}(7+r)^{2}(8+r)}
\] \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if
\(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =-\frac{1}{r(1+r)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r(1+r)} & =\lim _{r \rightarrow 0}-\frac{1}{r(1+r)} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x^{2} y^{\prime \prime}+\sin (x) y=0\) gives
\[
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\sin (x)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{aligned}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}+\sin (x) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +\sin (x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{aligned}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
y_{1}^{\prime \prime}(x) x^{2}+\sin (x) y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right) C+x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +\sin (x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2}+\sin (x)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Since \(r_{1}=1\) and \(r_{2}=0\) then the above becomes
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n} a_{n}(1+n)\right) x-\left(\sum_{n=0}^{\infty} a_{n} x^{1+n}\right)\right) C \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{-2+n} b_{n} n(n-1)\right) x^{2}+\sin (x)\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)=0
\end{align*}
\]

Expanding \(\sin (x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n)\right)+\sum_{n=0}^{\infty}\left(-C a_{n} x^{1+n}\right)+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{1+n} b_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} b_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+5} b_{n}}{120}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} b_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+9} b_{n}}{362880}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{1+n} a_{n}(1+n) & =\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n} \\
\sum_{n=0}^{\infty}\left(-C a_{n} x^{1+n}\right) & =\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right) \\
\sum_{n=0}^{\infty} x^{1+n} b_{n} & =\sum_{n=1}^{\infty} b_{n-1} x^{n} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+3} b_{n}}{6}\right) & =\sum_{n=3}^{\infty}\left(-\frac{b_{n-3} x^{n}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+5} b_{n}}{120} & =\sum_{n=5}^{\infty} \frac{b_{n-5} x^{n}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+7} b_{n}}{5040}\right) & =\sum_{n=7}^{\infty}\left(-\frac{b_{n-7} x^{n}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+9} b_{n}}{362880} & =\sum_{n=9}^{\infty} \frac{b_{n-9} x^{n}}{362880}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 C a_{n-1} n x^{n}\right)+\sum_{n=1}^{\infty}\left(-C a_{n-1} x^{n}\right)+\left(\sum_{n=0}^{\infty} n x^{n} b_{n}(n-1)\right) \\
& +\left(\sum_{n=1}^{\infty} b_{n-1} x^{n}\right)+\sum_{n=3}^{\infty}\left(-\frac{b_{n-3} x^{n}}{6}\right)+\left(\sum_{n=5}^{\infty} \frac{b_{n-5} x^{n}}{120}\right) \tag{2B}\\
& +\sum_{n=7}^{\infty}\left(-\frac{b_{n-7} x^{n}}{5040}\right)+\left(\sum_{n=9}^{\infty} \frac{b_{n-9} x^{n}}{362880}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=N\), where \(N=1\) which is the difference between the two roots, we are free to choose \(b_{1}=0\). Hence for \(n=1\), Eq (2B) gives
\[
C+1=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=-1
\]

For \(n=2, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
3 C a_{1}+b_{1}+2 b_{2}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
2 b_{2}+\frac{3}{2}=0
\]

Solving the above for \(b_{2}\) gives
\[
b_{2}=-\frac{3}{4}
\]

For \(n=3\), Eq (2B) gives
\[
5 C a_{2}+b_{2}+6 b_{3}-\frac{b_{0}}{6}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-\frac{4}{3}+6 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=\frac{2}{9}
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
7 C a_{3}+b_{3}+12 b_{4}-\frac{b_{1}}{6}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
\frac{25}{144}+12 b_{4}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=-\frac{25}{1728}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
9 C a_{4}+b_{4}+20 b_{5}-\frac{b_{2}}{6}+\frac{b_{0}}{120}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
\frac{689}{4320}+20 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=-\frac{689}{86400}
\]

For \(n=6, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
11 C a_{5}+b_{5}+30 b_{6}-\frac{b_{3}}{6}+\frac{b_{1}}{120}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-\frac{263}{5400}+30 b_{6}=0
\]

Solving the above for \(b_{6}\) gives
\[
b_{6}=\frac{263}{162000}
\]

For \(n=7, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
13 C a_{6}+b_{6}+42 b_{7}-\frac{b_{4}}{6}+\frac{b_{2}}{120}-\frac{b_{0}}{5040}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-\frac{71809}{18144000}+42 b_{7}=0
\]

Solving the above for \(b_{7}\) gives
\[
b_{7}=\frac{71809}{762048000}
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=-1\) and all \(b_{n}\), then the second solution becomes
\[
\begin{aligned}
y_{2}(x)= & (-1)\left(x \left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right.\right. \\
& \left.\left.+O\left(x^{8}\right)\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}+\frac{2 x^{3}}{9}-\frac{25 x^{4}}{1728}-\frac{689 x^{5}}{86400}+\frac{263 x^{6}}{162000}+\frac{71809 x^{7}}{762048000} \\
& +O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)= c_{1} y_{1}(x)+ \\
&= c_{2} y_{2}(x) \\
&= c_{1} x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right. \\
&\left.+O\left(x^{8}\right)\right) \\
&+c_{2}\left((-1)\left(x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}+O\left(x^{8}\right)\right)\right)\right. \\
&\left.+1-\frac{3 x^{2}}{4}+\frac{2 x^{3}}{9}-\frac{25 x^{4}}{1728}-\frac{689 x^{5}}{86400}+\frac{263 x^{6}}{162000}+\frac{71809 x^{7}}{762048000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right.\right. \\
& \left.\left.+O\left(x^{8}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}+\frac{2 x^{3}}{9}-\frac{25 x^{4}}{1728}-\frac{689 x^{5}}{86400}+\frac{263 x^{6}}{162000}+\frac{71809 x^{7}}{762048000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{array}{r}
y=c_{1} x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2}\left(-x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628890}\right.\right. \\
\left.-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}+O\left(x^{8}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}+\frac{2 x^{3}}{9}-\frac{25 x^{4}}{1728} \\
\left.-\frac{689 x^{5}}{86400}+\frac{263 x^{6}}{162000}+\frac{71809 x^{7}}{762048000}+O\left(x^{8}\right)\right)
\end{array}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y= c_{1} x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right. \\
&\left.+O\left(x^{8}\right)\right) \\
&+c_{2}\left(-x\left(1-\frac{x}{2}+\frac{x^{2}}{12}+\frac{x^{3}}{144}-\frac{13 x^{4}}{2880}+\frac{29 x^{5}}{86400}+\frac{431 x^{6}}{3628800}-\frac{4961 x^{7}}{203212800}-\frac{5197 x^{8}}{4877107200}\right.\right. \\
&\left.\left.+O\left(x^{8}\right)\right) \ln (x)+1-\frac{3 x^{2}}{4}+\frac{2 x^{3}}{9}-\frac{25 x^{4}}{1728}-\frac{689 x^{5}}{86400}+\frac{263 x^{6}}{162000}+\frac{71809 x^{7}}{762048000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx\()\)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying a symmetry pattern of the form \([F(x), G(x) * y+H(x)]\)
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
--- Trying Lie symmetry methods, 2nd order ---
`-> Computing symmetries using: way \(19 \overline{\overline{7}} 3^{3}[0, y]\)
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 70
```

Order:=8;
dsolve(x^2*diff (y (x),x\$2)+\operatorname{sin}(\textrm{x})*y(x)=0,y(x),type='series',x=0);

```
\[
y(x)=c_{1} x\left(1-\frac{1}{2} x+\frac{1}{12} x^{2}+\frac{1}{144} x^{3}-\frac{13}{2880} x^{4}+\frac{29}{86400} x^{5}+\frac{431}{3628800} x^{6}-\frac{4961}{203212800} x^{7}\right.
\]
\[
\left.+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(\operatorname { l n } (x) \left(-x+\frac{1}{2} x^{2}-\frac{1}{12} x^{3}-\frac{1}{144} x^{4}+\frac{13}{2880} x^{5}-\frac{29}{86400} x^{6}\right.\right.
\]
\[
\left.-\frac{431}{3628800} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\]
\[
\left.+\left(1-\frac{3}{4} x^{2}+\frac{2}{9} x^{3}-\frac{25}{1728} x^{4}-\frac{689}{86400} x^{5}+\frac{263}{162000} x^{6}+\frac{71809}{762048000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 121
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' ' \(\left.[x]+\operatorname{Sin}[x] * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
& y(x) \\
& \rightarrow c_{1}\left(\frac{2539 x^{6}-16185 x^{5}-9750 x^{4}+396000 x^{3}-1620000 x^{2}+1296000 x+1296000}{1296000}\right. \\
& \left.-\frac{x\left(29 x^{5}-390 x^{4}+600 x^{3}+7200 x^{2}-43200 x+86400\right) \log (x)}{86400}\right) \\
& +c_{2}\left(\frac{431 x^{7}}{3628800}+\frac{29 x^{6}}{86400}-\frac{13 x^{5}}{2880}+\frac{x^{4}}{144}+\frac{x^{3}}{12}-\frac{x^{2}}{2}+x\right)
\end{aligned}
\]

\section*{19.8 problem 2(d)}
19.8.1 Maple step by step solution 3206

Internal problem ID [6448]
Internal file name [OUTPUT/5696_Sunday_June_05_2022_03_47_30_PM_15278874/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{3} y^{\prime \prime}+\sin (x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{3} y^{\prime \prime}+\sin (x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{\sin (x)}{x^{3}}
\end{aligned}
\]

Table 445: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=0\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{\sin (x)}{x^{3}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{3} y^{\prime \prime}+\sin (x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{3}+\sin (x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Expanding \(\sin (x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\sin (x) & =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}+\ldots \\
& =x-\frac{1}{6} x^{3}+\frac{1}{120} x^{5}-\frac{1}{5040} x^{7}+\frac{1}{362880} x^{9}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{6}\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}\right)+\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+9} a_{n}}{362880}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(1+n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{1+n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}}{6}\right) & =\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{1+n+r}}{6}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120} & =\sum_{n=4}^{\infty} \frac{a_{n-4} x^{1+n+r}}{120} \\
\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+7} a_{n}}{5040}\right) & =\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{1+n+r}}{5040}\right) \\
\sum_{n=0}^{\infty} \frac{x^{n+r+9} a_{n}}{362880} & =\sum_{n=8}^{\infty} \frac{a_{n-8} x^{1+n+r}}{362880}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(1+n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\sum_{n=2}^{\infty}\left(-\frac{a_{n-2} x^{1+n+r}}{6}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{1+n+r}}{120}\right)+\sum_{n=6}^{\infty}\left(-\frac{a_{n-6} x^{1+n+r}}{5040}\right)+\left(\sum_{n=8}^{\infty} \frac{a_{n-8} x^{1+n+r}}{362880}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{1+n+r} a_{n}(n+r)(n+r-1)+x^{1+n+r} a_{n}=0
\]

When \(n=0\) the above becomes
\[
x^{1+r} a_{0} r(-1+r)+x^{1+r} a_{0}=0
\]

Or
\[
\left(x^{1+r} r(-1+r)+x^{1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-r+1\right) x^{1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-r+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2}+\frac{i \sqrt{3}}{2} \\
& r_{2}=\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-r+1\right) x^{1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}-\frac{i \sqrt{3}}{2}}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{1}{6 r^{2}+18 r+18}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=0
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
a_{4}=\frac{-3 r^{2}-9 r+1}{360\left(r^{2}+3 r+3\right)\left(r^{2}+7 r+13\right)}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
a_{5}=0
\]

Substituting \(n=6\) in Eq. (2B) gives
\[
a_{6}=\frac{3 r^{4}+30 r^{3}+69 r^{2}-30 r-149}{15120\left(r^{2}+3 r+3\right)\left(r^{2}+7 r+13\right)\left(r^{2}+11 r+31\right)}
\]

Substituting \(n=7\) in Eq. (2B) gives
\[
a_{7}=0
\]

For \(8 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}-\frac{a_{n-2}}{6}+\frac{a_{n-4}}{120}-\frac{a_{n-6}}{5040}+\frac{a_{n-8}}{362880}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{-60480 a_{n-2}+3024 a_{n-4}-72 a_{n-6}+a_{n-8}}{362880\left(n^{2}+2 n r+r^{2}-n-r+1\right)} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{60480 a_{n-2}-3024 a_{n-4}+72 a_{n-6}-a_{n-8}}{362880 n(i \sqrt{3}+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}+\frac{i \sqrt{3}}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(\frac{1}{6 r^{2}+18 r+18}\) & \(\frac{1}{12 i \sqrt{3}+24}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{-3 r^{2}-9 r+1}{360\left(r^{2}+3 r+3\right)\left(r^{2}+7 r+13\right)}\) & \(\frac{-3 i \sqrt{3}-1}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(\frac{3 r^{4}+30 r^{3}+69 r^{2}-30 r-149}{15120\left(r^{2}+3 r+3\right)\left(r^{2}+7 r+13\right)\left(r^{2}+11 r+31\right)}\) & \(\frac{9 i \sqrt{3}-115}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
& y_{1}(x)=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
&=x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{x^{2}}{12 i \sqrt{3}+24}\right.+\frac{(-3 i \sqrt{3}-1) x^{4}}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)} \\
&\left.+\frac{(9 i \sqrt{3}-115) x^{6}}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{aligned}
y_{2}(x)=x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}(1+ & \frac{x^{2}}{-12 i \sqrt{3}+24}+\frac{(3 i \sqrt{3}-1) x^{4}}{1440(2-i \sqrt{3})(-i \sqrt{3}+4)} \\
& \left.+\frac{(-9 i \sqrt{3}-115) x^{6}}{362880(2-i \sqrt{3})(-i \sqrt{3}+4)(-i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]
\[
\begin{aligned}
=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}(1+ & \frac{x^{2}}{12 i \sqrt{3}+24}+\frac{(-3 i \sqrt{3}-1) x^{4}}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)} \\
& \left.+\frac{(9 i \sqrt{3}-115) x^{6}}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}+O\left(x^{8}\right)\right) \\
+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}(1+ & \frac{x^{2}}{-12 i \sqrt{3}+24}+\frac{(3 i \sqrt{3}-1) x^{4}}{1440(2-i \sqrt{3})(-i \sqrt{3}+4)} \\
& \left.+\frac{(-9 i \sqrt{3}-115) x^{6}}{362880(2-i \sqrt{3})(-i \sqrt{3}+4)(-i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{x^{2}}{12 i \sqrt{3}+24}+\frac{(-3 i \sqrt{3}-1) x^{4}}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)}\right. \\
& \left.+\frac{(9 i \sqrt{3}-115) x^{6}}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}\left(1+\frac{x^{2}}{-12 i \sqrt{3}+24}+\frac{(3 i \sqrt{3}-1) x^{4}}{1440(2-i \sqrt{3})(-i \sqrt{3}+4)}\right. \\
& \left.+\frac{(-9 i \sqrt{3}-115) x^{6}}{362880(2-i \sqrt{3})(-i \sqrt{3}+4)(-i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{x^{2}}{12 i \sqrt{3}+24}+\frac{(-3 i \sqrt{3}-1) x^{4}}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)}\right. \\
& \left.+\frac{(9 i \sqrt{3}-115) x^{6}}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}+O\left(x^{8}\right)\right) \\
+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}(1+ & \frac{x^{2}}{-12 i \sqrt{3}+24}+\frac{(3 i \sqrt{3}-1) x^{4}}{1440(2-i \sqrt{3})(-i \sqrt{3}+4)} \\
& \left.+\frac{(-9 i \sqrt{3}-115) x^{6}}{362880(2-i \sqrt{3})(-i \sqrt{3}+4)(-i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=c_{1} x^{\frac{1}{2}+\frac{i \sqrt{3}}{2}}\left(1+\frac{x^{2}}{12 i \sqrt{3}+24}+\frac{(-3 i \sqrt{3}-1) x^{4}}{1440(i \sqrt{3}+2)(i \sqrt{3}+4)}\right. \\
&\left.+\frac{(9 i \sqrt{3}-115) x^{6}}{362880(i \sqrt{3}+2)(i \sqrt{3}+4)(i \sqrt{3}+6)}+O\left(x^{8}\right)\right) \\
&+c_{2} x^{\frac{1}{2}-\frac{i \sqrt{3}}{2}}(1+ \frac{x^{2}}{-12 i \sqrt{3}+24}+\frac{(3 i \sqrt{3}-1) x^{4}}{1440(2-i \sqrt{3})(-i \sqrt{3}+4)} \\
&\left.+\frac{(-9 i \sqrt{3}-115) x^{6}}{362880(2-i \sqrt{3})(-i \sqrt{3}+4)(-i \sqrt{3}+6)}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{19.8.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{3}+\sin (x) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\sin (x) y}{x^{3}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\sin (x) y}{x^{3}}=0\)
- Multiply by denominators of the ODE
\[
y^{\prime \prime} x^{3}+\sin (x) y=0
\]
- Make a change of variables
\(t=\ln (x)\)
\(\square \quad\) Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule
\[
y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)
\]
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\right) x^{3}+\sin (x) y(t)=0\)
- \(\quad\) Simplify
\(x\left(\frac{d^{2}}{d t^{2}} y(t)-\frac{d}{d t} y(t)\right)+\sin (x) y(t)=0\)
- Isolate 2nd derivative
\[
\frac{d^{2}}{d t^{2}} y(t)=-\frac{\sin (x) y(t)}{x}+\frac{d}{d t} y(t)
\]
- Group terms with \(y(t)\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is lin \(\frac{d^{2}}{d t^{2}} y(t)+\frac{\sin (x) y(t)}{x}-\frac{d}{d t} y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}+\frac{\sin (x)}{x}-r=0\)
- Factor the characteristic polynomial
\[
\frac{r^{2} x-r x+\sin (x)}{x}=0
\]
- Roots of the characteristic polynomial
\(r=\left(\frac{x+\sqrt{x^{2}-4 \sin (x) x}}{2 x},-\frac{-x+\sqrt{x^{2}-4 \sin (x) x}}{2 x}\right)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{\frac{\left(x+\sqrt{x^{2}-4 \sin (x) x}\right) t}{2 x}}\)
- \(\quad 2\) nd solution of the ODE
\[
y_{2}(t)=\mathrm{e}^{-\frac{\left(-x+\sqrt{x^{2}-4 \sin (x) x}\right) t}{2 x}}
\]
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\[
y(t)=c_{1} \mathrm{e}^{\frac{\left(x+\sqrt{x^{2}-4 \sin (x) x}\right) t}{2 x}}+c_{2} \mathrm{e}^{-\frac{\left(-x+\sqrt{x^{2}-4 \sin (x) x}\right) t}{2 x}}
\]
- Change variables back using \(t=\ln (x)\)
\[
y=c_{1} \mathrm{e}^{\frac{\left(x+\sqrt{x^{2}-4 \sin (x) x}\right) \ln (x)}{2 x}}+c_{2} \mathrm{e}^{-\frac{\left(-x+\sqrt{x^{2}-4 \sin (x) x}\right) \ln (x)}{2 x}}
\]
- \(\quad\) Simplify
\[
y=x^{\frac{x+\sqrt{x(-4 \sin (x)+x)}}{2 x}} c_{1}+c_{2} x^{-\frac{-x+\sqrt{x(-4 \sin (x)+x)}}{2 x}}
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx\()\)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying a symmetry pattern of the form \([F(x), G(x) * y+H(x)]\)
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
--- Trying Lie symmetry methods, 2nd order ---
`-> Computing symmetries using: way \(30 \overline{\overline{9}}{ }^{3 `}[0, y]\)
\(\checkmark\) Solution by Maple
Time used: 0.172 (sec). Leaf size: 427
```

Order:=8;
dsolve(x^3*diff(y(x),x\$2)+sin(x)*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \sqrt{x}\left(c _ { 2 } x ^ { \frac { i \sqrt { 3 } } { 2 } } \left(1+\frac{1}{12 i \sqrt{3}+24} x^{2}+\frac{1}{1440} \frac{-3 i \sqrt{3}-1}{(i \sqrt{3}+4)(i \sqrt{3}+2)} x^{4}\right.\right. \\
& \left.+\frac{1}{362880} \frac{9 i \sqrt{3}-115}{(i \sqrt{3}+6)(i \sqrt{3}+4)(i \sqrt{3}+2)} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+c_{1} x^{-\frac{i \sqrt{3}}{2}}(1 \\
& \left.\left.-\frac{1}{12 i \sqrt{3}-24} x^{2}+\frac{-3 \sqrt{3}-i}{7200 i+8640 \sqrt{3}} x^{4}+\frac{9 \sqrt{3}-115 i}{4354560 i+14878080 \sqrt{3}} x^{6}+\mathrm{O}\left(x^{8}\right)\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 410

AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 3 * \mathrm{y}^{\prime \prime}\right.\) ' \(\left.[\mathrm{x}]+\operatorname{Sin}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
& \left.\begin{array}{rl}
y(x) \rightarrow c_{1}\left(\begin{array}{l}
\frac{\left(\frac{1}{5040}-\frac{1}{720\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)}\right.}{}+\frac{\frac{1}{36\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)}-\frac{1}{120}}{6\left(1+\left(3-(-1)^{2 / 3}\right)\left(4-(-1)^{2 / 3}\right)\right)}
\end{array}\right) x^{6} \\
1+\left(5-(-1)^{2 / 3}\right)\left(6-(-1)^{2 / 3}\right)
\end{array}\right]+\frac{\left(\frac{1}{36\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)}-\frac{1}{120}\right) x^{4}}{1+\left(3-(-1)^{2 / 3}\right)\left(4-(-1)^{2 / 3}\right)}+\frac{x^{2}}{6\left(1+\left(1-(-1)^{2 / 3}\right)\left(2-(-1)^{2 / 3}\right)\right)}
\end{aligned}
\]

\section*{19.9 problem 2(e)}

Internal problem ID [6449]
Internal file name [OUTPUT/5697_Sunday_June_05_2022_03_47_33_PM_29724232/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 2(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Irregular singular point"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
\[
x^{4} y^{\prime \prime}+\sin (x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{4} y^{\prime \prime}+\sin (x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =0 \\
q(x) & =\frac{\sin (x)}{x^{4}}
\end{aligned}
\]

Table 447: Table \(p(x), q(x)\) singularites.
\[

\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{\sin (x)}{x^{4}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: []
Irregular singular points : \([0, \infty]\)
Since \(x=0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x=0\) is not regular singular point. Terminating. Verification of solutions N/A

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx\()\)) * 2F1([a
-> Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying to convert to an ODE of Bessel type
-> trying reduction of order to Riccati
trying Riccati sub-methods:
trying Riccati_symmetries
-> trying a symmetry pattern of the form \([\mathrm{F}(\mathrm{x}) * \mathrm{G}(\mathrm{y}), 0]\)
\(\rightarrow\) trying a symmetry pattern of the form \([0, F(x) * G(y)]\)
-> trying a symmetry pattern of the form \([F(x), G(x) * y+H(x)]\)
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
--- Trying Lie symmetry methods, 2nd order ---
`-> Computing symmetries using: way \(21 \overline{\overline{3}} 3\) [0, y]

X Solution by Maple
```

Order:=8;
dsolve(x^4*diff (y (x), x\$2)+\operatorname{sin}(\textrm{x})*y(x)=0,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.11 (sec). Leaf size: 294
AsymptoticDSolveValue \(\left[x^{\wedge} 4 * y\right.\) ' ' \(\left.[x]+\operatorname{Sin}[x] * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{1} e^{-\frac{2 i}{\sqrt{x}}} x^{3 / 4}\left(\frac{16487484152477478659746223 i x^{13 / 2}}{2773583263632691770163200}\right. \\
& -
\end{aligned}
\]

\subsection*{19.10 problem 3(a)}

Internal problem ID [6450]
Internal file name [OUTPUT/5698_Sunday_June_05_2022_03_47_35_PM_13412227/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
x^{3} y^{\prime \prime}+(-1+\cos (2 x)) y^{\prime}+2 x y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{3} y^{\prime \prime}+(-1+\cos (2 x)) y^{\prime}+2 x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{-1+\cos (2 x)}{x^{3}} \\
& q(x)=\frac{2}{x^{2}}
\end{aligned}
\]

Table 448: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{-1+\cos (2 x)}{x^{3}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{3} y^{\prime \prime}+(-1+\cos (2 x)) y^{\prime}+2 x y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{3} \tag{1}\\
& +(-1+\cos (2 x))\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2 x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Expanding \(-1+\cos (2 x)\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
-1+\cos (2 x) & =-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\frac{2}{315} x^{8}+\ldots \\
& =-2 x^{2}+\frac{2}{3} x^{4}-\frac{4}{45} x^{6}+\frac{2}{315} x^{8}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{2 x^{n+r+7} a_{n}(n+r)}{315}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{4 x^{n+r+5} a_{n}(n+r)}{45}\right)+\left(\sum_{n=0}^{\infty} \frac{2 x^{n+r+3} a_{n}(n+r)}{3}\right) \tag{2~A}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(1+n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{1+n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} \frac{2 x^{n+r+7} a_{n}(n+r)}{315} & =\sum_{n=6}^{\infty} \frac{2 a_{n-6}(-6+n+r) x^{1+n+r}}{315} \\
\sum_{n=0}^{\infty}\left(-\frac{4 x^{n+r+5} a_{n}(n+r)}{45}\right) & =\sum_{n=4}^{\infty}\left(-\frac{4 a_{n-4}(-4+n+r) x^{1+n+r}}{45}\right) \\
\sum_{n=0}^{\infty} \frac{2 x^{n+r+3} a_{n}(n+r)}{3} & =\sum_{n=2}^{\infty} \frac{2 a_{n-2}(n+r-2) x^{1+n+r}}{3}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(1+n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=6}^{\infty} \frac{2 a_{n-6}(-6+n+r) x^{1+n+r}}{315}\right) \\
& +\sum_{n=4}^{\infty}\left(-\frac{4 a_{n-4}(-4+n+r) x^{1+n+r}}{45}\right)+\left(\sum_{n=2}^{\infty} \frac{2 a_{n-2}(n+r-2) x^{1+n+r}}{3}\right) \tag{2~B}\\
& \quad+\sum_{n=0}^{\infty}\left(-2 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{1+n+r} a_{n}(n+r)(n+r-1)-2 x^{1+n+r} a_{n}(n+r)+2 x^{1+n+r} a_{n}=0
\]

When \(n=0\) the above becomes
\[
x^{1+r} a_{0} r(-1+r)-2 x^{1+r} a_{0} r+2 x^{1+r} a_{0}=0
\]

Or
\[
\left(x^{1+r} r(-1+r)-2 x^{1+r} r+2 x^{1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-3 r+2\right) x^{1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-3 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-3 r+2\right) x^{1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{1+n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1 \mathrm{in}\) Eq. (2B) gives
\[
a_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=-\frac{2}{3 r+3}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=0
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
a_{4}=\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)(3+r)(2+r)}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
a_{5}=0
\]

For \(6 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n}(n+r)(n+r-1)+\frac{2 a_{n-6}(-6+n+r)}{315}-\frac{4 a_{n-4}(-4+n+r)}{45} \tag{3}\\
& +\frac{2 a_{n-2}(n+r-2)}{3}-2 a_{n}(n+r)+2 a_{n}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\(a_{n}=-\frac{2\left(n a_{n-6}-14 n a_{n-4}+105 n a_{n-2}+r a_{n-6}-14 r a_{n-4}+105 r a_{n-2}-6 a_{n-6}+56 a_{n-4}-210 a_{n-2}\right)}{315\left(n^{2}+2 n r+r^{2}-3 n-3 r+2\right)}\)

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=\frac{\left(-2 a_{n-6}+28 a_{n-4}-210 a_{n-2}\right) n+8 a_{n-6}-56 a_{n-4}}{315 n(1+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{2}{9}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)(3+r)(2+r)}\) & \(\frac{26}{675}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{-\frac{2}{315} r^{4}-\frac{148}{945} r^{3}-\frac{1018}{945} r^{2}-\frac{2836}{945} r-\frac{416}{135}}{(1+r)(3+r)(2+r)(5+r)(4+r)}
\]

Which for the root \(r=2\) becomes
\[
a_{6}=-\frac{1742}{297675}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{2}{9}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}\) \\
\((1+r)(3+r)(2+r)\) & \(\frac{26}{675}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(\frac{-\frac{2}{315} r^{4}-\frac{148}{945} r^{3}-\frac{1018}{945} r^{2}-\frac{2836}{945} r-\frac{416}{135}}{(1+r)(3+r)(2+r)(5+r)(4+r)}\) & \(-\frac{1742}{297675}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{2}{9}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{4}{45} r^{2}+\frac{8}{15 r} r+\frac{8}{9}\) \\
\((1+r)(3+r)(2+r)\) & \(\frac{26}{675}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(\frac{-\frac{2}{315} r^{4}-\frac{148}{945} r^{3}-\frac{1018}{945} r^{2}-\frac{2836}{945} r-\frac{416}{135}}{(1+r)(3+r)(2+r)(5+r)(4+r)}\) & \(-\frac{1742}{297675}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-\frac{2 x^{2}}{9}+\frac{26 x^{4}}{675}-\frac{1742 x^{6}}{297675}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow 1} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{1+n}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\operatorname{Eq}(3)\) gives
\[
b_{1}=0
\]

Substituting \(n=2\) in \(\mathrm{Eq}(3)\) gives
\[
b_{2}=-\frac{2}{3(1+r)}
\]

Substituting \(n=3\) in \(\mathrm{Eq}(3)\) gives
\[
b_{3}=0
\]

Substituting \(n=4\) in \(\operatorname{Eq}(3)\) gives
\[
b_{4}=\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)\left(r^{2}+5 r+6\right)}
\]

Substituting \(n=5\) in \(\mathrm{Eq}(3)\) gives
\[
b_{5}=0
\]

For \(6 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n}(n+r)(n+r-1)+\frac{2 b_{n-6}(-6+n+r)}{315}-\frac{4 b_{n-4}(-4+n+r)}{45} \tag{4}\\
& +\frac{2 b_{n-2}(n+r-2)}{3}-2 b_{n}(n+r)+2 b_{n}=0
\end{align*}
\]

Which for for the root \(r=1\) becomes
\[
\begin{equation*}
b_{n}(1+n) n+\frac{2 b_{n-6}(-5+n)}{315}-\frac{4 b_{n-4}(-3+n)}{45}+\frac{2 b_{n-2}(n-1)}{3}-2 b_{n}(1+n)+2 b_{n}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\(b_{n}=-\frac{2\left(n b_{n-6}-14 n b_{n-4}+105 n b_{n-2}+r b_{n-6}-14 r b_{n-4}+105 r b_{n-2}-6 b_{n-6}+56 b_{n-4}-210 b_{n-2}\right)}{315\left(n^{2}+2 n r+r^{2}-3 n-3 r+2\right)}\)

Which for the root \(r=1\) becomes
\[
\begin{equation*}
b_{n}=-\frac{2\left(n b_{n-6}-14 n b_{n-4}+105 n b_{n-2}-5 b_{n-6}+42 b_{n-4}-105 b_{n-2}\right)}{315\left(n^{2}-n\right)} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)(3+r)(2+r)}\) & \(\frac{17}{270}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=-\frac{2\left(3 r^{4}+74 r^{3}+509 r^{2}+1418 r+1456\right)}{945(1+r)\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
\]

Which for the root \(r=1\) becomes
\[
b_{6}=-\frac{173}{17010}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)(3+r)(2+r)}\) & \(\frac{17}{270}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(\frac{-\frac{2}{315} r^{4}-\frac{148}{49} r^{3}-\frac{1018}{945} r^{2}-\frac{2836}{945} r-\frac{416}{135}}{(1+r)\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}\) & \(-\frac{173}{17010}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{2}{3 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{\frac{4}{45} r^{2}+\frac{8}{15} r+\frac{8}{9}}{(1+r)(3+r)(2+r)}\) & \(\frac{17}{270}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(\frac{-\frac{2}{315} r^{4}-\frac{148}{94} r^{3}-\frac{1018}{945} r^{2}-\frac{2836}{(1+r)\left(r^{2}+5 r+6\right)\left(\frac{416}{135}\right.}}{}{ }^{\left(b_{7}+9 r+20\right)}\) & \(-\frac{173}{17010}\) \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x^{2}}{3}+\frac{17 x^{4}}{270}-\frac{173 x^{6}}{17010}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-\frac{2 x^{2}}{9}+\frac{26 x^{4}}{675}-\frac{1742 x^{6}}{297675}+O\left(x^{8}\right)\right)+c_{2} x\left(1-\frac{x^{2}}{3}+\frac{17 x^{4}}{270}-\frac{173 x^{6}}{17010}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\(y=y_{h}\)
\[
=c_{1} x^{2}\left(1-\frac{2 x^{2}}{9}+\frac{26 x^{4}}{675}-\frac{1742 x^{6}}{297675}+O\left(x^{8}\right)\right)+c_{2} x\left(1-\frac{x^{2}}{3}+\frac{17 x^{4}}{270}-\frac{173 x^{6}}{17010}+O\left(x^{8}\right)\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{2 x^{2}}{9}+\frac{26 x^{4}}{675}-\frac{1742 x^{6}}{297675}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2} x\left(1-\frac{x^{2}}{3}+\frac{17 x^{4}}{270}-\frac{173 x^{6}}{17010}+O\left(x^{8}\right)\right)
\end{align*}
\]

Verification of solutions
\(y=c_{1} x^{2}\left(1-\frac{2 x^{2}}{9}+\frac{26 x^{4}}{675}-\frac{1742 x^{6}}{297675}+O\left(x^{8}\right)\right)+c_{2} x\left(1-\frac{x^{2}}{3}+\frac{17 x^{4}}{270}-\frac{173 x^{6}}{17010}+O\left(x^{8}\right)\right)\)
Verified OK.
-Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
\(\rightarrow\) Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x})\), dx)) * 2F1([a
\(\rightarrow\) Trying changes of variables to rationalize or make the ODE simpler
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
-> trying with_periodic_functions in the coefficients
--- Trying Lie symmetry methods, 2nd order ---
`, `-> Computing symmetries using: way \(=5\)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power © Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})\)) \(* 2 \mathrm{~F} 1\)
trying a symmetry of the form [xi=0, eta=F(x)]
trying 2nd order exact linear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
<- unable to find a useful change of variables
trying a symmetry of the form [xi=0, eta=F(x)]
trying differential order: 2; exact nonlinear
trying symmetries linear in \(x\) and \(y(x)\)
trying to convert to a linear ODE with constant coefficients
trying 2nd order, integrating factor of the form mu(x,y)
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
-> trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F} 1\)
-> Trying changes of variables to rationalize or make the ODE simpler trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebiu \(\rightarrow\) trying a solution of the form \(r 0(x) * Y+r 1(x) * Y\) where \(Y=\exp (\operatorname{int}(r(x), d x)) *\) trying a symmetry of the form \(325^{x i=0}\), eta \(\left.=F(x)\right]\)
trying 2nd order exact linear
trying symmetries linear in x and \(\mathrm{y}(\mathrm{x})\)
\(\checkmark\) Solution by Maple
Time used: 0.235 (sec). Leaf size: 37
```

Order:=8;
dsolve(x^3*diff(y(x),x\$2)+(cos(2*x)-1)*diff (y(x),x)+2*x*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1-\frac{2}{9} x^{2}+\frac{26}{675} x^{4}-\frac{1742}{297675} x^{6}+\mathrm{O}\left(x^{8}\right)\right) \\
& +c_{2} x\left(1-\frac{1}{3} x^{2}+\frac{17}{270} x^{4}-\frac{173}{17010} x^{6}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.037 (sec). Leaf size: 74
AsymptoticDSolveValue \(\left[\mathrm{x}^{\wedge} 3 * \mathrm{y}\right.\) ' \('[\mathrm{x}]+(\operatorname{Cos}[2 * x]-1) * y\) ' \(\left.[\mathrm{x}]+2 * x * y[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(\frac{32351 x^{8}}{40186125}-\frac{1742 x^{6}}{297675}+\frac{26 x^{4}}{675}-\frac{2 x^{2}}{9}+1\right) x^{2} \\
& +c_{1}\left(\frac{10471 x^{8}}{7144200}-\frac{173 x^{6}}{17010}+\frac{17 x^{4}}{270}-\frac{x^{2}}{3}+1\right) x
\end{aligned}
\]

\subsection*{19.11 problem 3(b)}
19.11.1 Maple step by step solution

3239
Internal problem ID [6451]
Internal file name [OUTPUT/5699_Sunday_June_05_2022_03_47_40_PM_73099135/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
4 x^{2} y^{\prime \prime}+\left(2 x^{4}-5 x\right) y^{\prime}+\left(3 x^{2}+2\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
4 x^{2} y^{\prime \prime}+\left(2 x^{4}-5 x\right) y^{\prime}+\left(3 x^{2}+2\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{2 x^{3}-5}{4 x} \\
& q(x)=\frac{3 x^{2}+2}{4 x^{2}}
\end{aligned}
\]

Table 449: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{2 x^{3}-5}{4 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=\infty\) & "regular" \\
\hline\(x=-\infty\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{3 x^{2}+2}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty,-\infty]\)
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
4 x^{2} y^{\prime \prime}+\left(2 x^{4}-5 x\right) y^{\prime}+\left(3 x^{2}+2\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(2 x^{4}-5 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(3 x^{2}+2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r+3} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{n+r+3} a_{n}(n+r) & =\sum_{n=3}^{\infty} 2 a_{n-3}(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} 3 x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} 3 a_{n-2} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=3}^{\infty} 2 a_{n-3}(n-3+r) x^{n+r}\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} 3 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
4 x^{n+r} a_{n}(n+r)(n+r-1)-5 x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
4 x^{r} a_{0} r(-1+r)-5 x^{r} a_{0} r+2 a_{0} x^{r}=0
\]

Or
\[
\left(4 x^{r} r(-1+r)-5 x^{r} r+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(4 r^{2}-9 r+2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
4 r^{2}-9 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=\frac{1}{4}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(4 r^{2}-9 r+2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{7}{4}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{4}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=-\frac{3}{r(4 r+7)}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+2 a_{n-3}(n-3+r)-5 a_{n}(n+r)+3 a_{n-2}+2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{2 n a_{n-3}+2 r a_{n-3}-6 a_{n-3}+3 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9 n-9 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=\frac{-2 n a_{n-3}+2 a_{n-3}-3 a_{n-2}}{n(4 n+7)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{2 r}{4 r^{2}+15 r+11}
\]

Which for the root \(r=2\) becomes
\[
a_{3}=-\frac{4}{57}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline\(a_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{4}{57}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=\frac{3}{920}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline\(a_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{4}{57}\) \\
\hline\(a_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{3}{920}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}
\]

Which for the root \(r=2\) becomes
\[
a_{5}=\frac{32}{4275}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline\(a_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{4}{57}\) \\
\hline\(a_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{3}{920}\) \\
\hline\(a_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{32}{4275}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{64 r^{6}+672 r^{5}+2564 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}
\]

Which for the root \(r=2\) becomes
\[
a_{6}=\frac{36287}{9753840}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline\(a_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{4}{57}\) \\
\hline\(a_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{3}{920}\) \\
\hline\(a_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{32}{4275}\) \\
\hline\(a_{6}\) & \(\frac{64 r^{6}+672 r^{5}+2564 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}\) & \(\frac{36287}{9753840}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{18\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}
\]

Which for the root \(r=2\) becomes
\[
a_{7}=-\frac{4037}{16059750}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{1}{10}\) \\
\hline\(a_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{4}{57}\) \\
\hline\(a_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{3}{920}\) \\
\hline\(a_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{32}{4275}\) \\
\hline\(a_{6}\) & \(\frac{64 r^{6}+672 r^{5}+2564 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}\) & \(\frac{36287}{9753840}\) \\
\hline\(a_{7}\) & \(-\frac{18\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}\) & \(-\frac{4037}{16059750}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-\frac{x^{2}}{10}-\frac{4 x^{3}}{57}+\frac{3 x^{4}}{920}+\frac{32 x^{5}}{4275}+\frac{36287 x^{6}}{9753840}-\frac{4037 x^{7}}{16059750}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
b_{2}=-\frac{3}{r(4 r+7)}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+2 b_{n-3}(n-3+r)-5 b_{n}(n+r)+3 b_{n-2}+2 b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{2 n b_{n-3}+2 r b_{n-3}-6 b_{n-3}+3 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-9 n-9 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
\begin{equation*}
b_{n}=\frac{-4 n b_{n-3}+11 b_{n-3}-6 b_{n-2}}{8 n^{2}-14 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{1}{4}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{2 r}{4 r^{2}+15 r+11}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
b_{3}=-\frac{1}{30}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline\(b_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{1}{30}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
b_{4}=\frac{1}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline\(b_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{1}{30}\) \\
\hline\(b_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{1}{8}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
b_{5}=\frac{137}{1300}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline\(b_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{1}{30}\) \\
\hline\(b_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{1}{8}\) \\
\hline\(b_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{137}{1300}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{64 r^{6}+672 r^{5}+2564 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
b_{6}=-\frac{19}{12240}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline\(b_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{1}{30}\) \\
\hline\(b_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{1}{8}\) \\
\hline\(b_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{137}{1300}\) \\
\hline\(b_{6}\) & \(\frac{64 r^{6}+672 r^{5}+2564 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}\) & \(-\frac{19}{12240}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=-\frac{18\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
b_{7}=-\frac{7169}{764400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{3}{r(4 r+7)}\) & \(-\frac{3}{2}\) \\
\hline\(b_{3}\) & \(-\frac{2 r}{4 r^{2}+15 r+11}\) & \(-\frac{1}{30}\) \\
\hline\(b_{4}\) & \(\frac{9}{r(4 r+7)\left(4 r^{2}+23 r+30\right)}\) & \(\frac{1}{8}\) \\
\hline\(b_{5}\) & \(\frac{48 r^{3}+180 r^{2}+246 r+132}{(4 r+7) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)}\) & \(\frac{137}{1300}\) \\
\hline\(b_{6}\) & \(\frac{64 r^{6}+672 r^{5}+2544 r^{4}+4212 r^{3}+2412 r^{2}-405 r-297}{\left(4 r^{2}+15 r+11\right) r(4 r+7)\left(4 r^{2}+23 r+30\right)\left(4 r^{2}+39 r+92\right)}\) & \(-\frac{19}{12240}\) \\
\hline\(b_{7}\) & \(-\frac{18\left(48 r^{5}+552 r^{4}+2567 r^{3}+6075 r^{2}+7147 r+3168\right)}{(4 r+7)\left(4 r^{2}+23 r+30\right) r\left(4 r^{2}+15 r+11\right)\left(4 r^{2}+31 r+57\right)\left(4 r^{2}+47 r+135\right)}\) & \(-\frac{7169}{764400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x^{\frac{1}{4}}\left(1-\frac{3 x^{2}}{2}-\frac{x^{3}}{30}+\frac{x^{4}}{8}+\frac{137 x^{5}}{1300}-\frac{19 x^{6}}{12240}-\frac{7169 x^{7}}{764400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{10}-\frac{4 x^{3}}{57}+\frac{3 x^{4}}{920}+\frac{32 x^{5}}{4275}+\frac{36287 x^{6}}{9753840}-\frac{4037 x^{7}}{16059750}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{3 x^{2}}{2}-\frac{x^{3}}{30}+\frac{x^{4}}{8}+\frac{137 x^{5}}{1300}-\frac{19 x^{6}}{12240}-\frac{7169 x^{7}}{764400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1-\frac{x^{2}}{10}-\frac{4 x^{3}}{57}+\frac{3 x^{4}}{920}+\frac{32 x^{5}}{4275}+\frac{36287 x^{6}}{9753840}-\frac{4037 x^{7}}{16059750}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{3 x^{2}}{2}-\frac{x^{3}}{30}+\frac{x^{4}}{8}+\frac{137 x^{5}}{1300}-\frac{19 x^{6}}{12240}-\frac{7169 x^{7}}{764400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{10}-\frac{4 x^{3}}{57}+\frac{3 x^{4}}{920}+\frac{32 x^{5}}{4275}+\frac{36287 x^{6}}{9753840}-\frac{4037 x^{7}}{16059750}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{3 x^{2}}{2}-\frac{x^{3}}{30}+\frac{x^{4}}{8}+\frac{137 x^{5}}{1300}-\frac{19 x^{6}}{12240}-\frac{7169 x^{7}}{764400}+O\left(x^{8}\right)\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{2}\left(1-\frac{x^{2}}{10}-\frac{4 x^{3}}{57}+\frac{3 x^{4}}{920}+\frac{32 x^{5}}{4275}+\frac{36287 x^{6}}{9753840}-\frac{4037 x^{7}}{16059750}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{\frac{1}{4}}\left(1-\frac{3 x^{2}}{2}-\frac{x^{3}}{30}+\frac{x^{4}}{8}+\frac{137 x^{5}}{1300}-\frac{19 x^{6}}{12240}-\frac{7169 x^{7}}{764400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{19.11.1 Maple step by step solution}

Let's solve
\[
4 x^{2} y^{\prime \prime}+\left(2 x^{4}-5 x\right) y^{\prime}+\left(3 x^{2}+2\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{\left(3 x^{2}+2\right) y}{4 x^{2}}-\frac{\left(2 x^{3}-5\right) y^{\prime}}{4 x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{\left(2 x^{3}-5\right) y^{\prime}}{4 x}+\frac{\left(3 x^{2}+2\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2 x^{3}-5}{4 x}, P_{3}(x)=\frac{3 x^{2}+2}{4 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-\frac{5}{4}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}+x\left(2 x^{3}-5\right) y^{\prime}+\left(3 x^{2}+2\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .4\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(-1+4 r)(-2+r) x^{r}+a_{1}(3+4 r)(-1+r) x^{1+r}+\left(a_{2}(7+4 r) r+3 a_{0}\right) x^{2+r}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k}(4 k+\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-1+4 r)(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{2, \frac{1}{4}\right\}
\]
- The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(3+4 r)(-1+r)=0, a_{2}(7+4 r) r+3 a_{0}=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\[
\left\{a_{1}=0, a_{2}=-\frac{3 a_{0}}{r(7+4 r)}\right\}
\]
- Each term in the series must be 0, giving the recursion relation
\(a_{k}(4 k+4 r-1)(k+r-2)+3 a_{k-2}+2 a_{k-3}(k-3+r)=0\)
- \(\quad\) Shift index using \(k->k+3\)
\(a_{k+3}(4 k+11+4 r)(k+1+r)+3 a_{k+1}+2 a_{k}(k+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+3}=-\frac{2 k a_{k}+2 r a_{k}+3 a_{k+1}}{(4 k+11+4 r)(k+1+r)}\)
- Recursion relation for \(r=2\)
\(a_{k+3}=-\frac{2 k a_{k}+4 a_{k}+3 a_{k+1}}{(4 k+19)(k+3)}\)
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+3}=-\frac{2 k a_{k}+4 a_{k}+3 a_{k+1}}{(4 k+19)(k+3)}, a_{1}=0, a_{2}=-\frac{a_{0}}{10}\right]
\]
- Recursion relation for \(r=\frac{1}{4}\)
\(a_{k+3}=-\frac{2 k a_{k}+\frac{1}{2} a_{k}+3 a_{k+1}}{(4 k+12)\left(k+\frac{5}{4}\right)}\)
- \(\quad\) Solution for \(r=\frac{1}{4}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+3}=-\frac{2 k a_{k}+\frac{1}{2} a_{k}+3 a_{k+1}}{(4 k+12)\left(k+\frac{5}{4}\right)}, a_{1}=0, a_{2}=-\frac{3 a_{0}}{2}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+2}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}}\right), a_{k+3}=-\frac{2 k a_{k}+4 a_{k}+3 a_{k+1}}{(4 k+19)(k+3)}, a_{1}=0, a_{2}=-\frac{a_{0}}{10}, b_{k+3}=-\frac{2 k b_{k}+\frac{1}{2} b}{(4 k+12}\right.
\]
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Whittaker
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu

```
 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
\(\rightarrow\) trying a solution of the form \(\mathrm{r} 0(\mathrm{x}) * \mathrm{Y}+\mathrm{r} 1(\mathrm{x}) * \mathrm{Y}\) where \(\mathrm{Y}=\exp (\operatorname{int}(\mathrm{r}(\mathrm{x}), \mathrm{dx})) * 2 \mathrm{~F}\) ([a
 trying a symmetry of the form [xi=0, eta=F(x)]
 trying differential order: 2; exact nonlinear
 trying symmetries linear in \(x\) and \(y(x)\)
 trying to convert to a linear ODE with constant coefficients
 trying 2nd order, integrating factor of the form mu(x,y)
 -> Trying a solution in terms of special functions:
 -> Bessel
 -> elliptic
 -> Legendre
 -> Whittaker
 -> hyper3: Equivalence to 1F1 under a power @ Moebius
 -> hypergeometric
 -> heuristic approach
 -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
 -> Mathieu
 -> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
 trying 2nd order exact linear
 trying symmetries linear in \(x\) and \(y(x)\)
 trying to convert to a linear \(Q_{2} \sum_{2} 2^{\text {with }}\) constant coefficients
 trying to convert to an ODE of Bessel type
 trying to convert to an ODE of Bessel type
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 51
```

Order:=8;
dsolve(4*x^2*diff(y(x),x\$2)+(2*x^4-5*x)*diff (y(x),x)+(3*x^2+2)*y(x)=0,y(x),type='series', x=0

```
\(y(x)=c_{1} x^{\frac{1}{4}}\left(1-\frac{3}{2} x^{2}-\frac{1}{30} x^{3}+\frac{1}{8} x^{4}+\frac{137}{1300} x^{5}-\frac{19}{12240} x^{6}-\frac{7169}{764400} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\)
\(+c_{2} x^{2}\left(1-\frac{1}{10} x^{2}-\frac{4}{57} x^{3}+\frac{3}{920} x^{4}+\frac{32}{4275} x^{5}+\frac{36287}{9753840} x^{6}-\frac{4037}{16059750} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 106
AsymptoticDSolveValue[4*x^2*y' ' \([x]+\left(2 * x^{\wedge} 4-5 * x\right) * y\) ' \(\left.[x]+\left(3 * x^{\wedge} 2+2\right) * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{4037 x^{7}}{16059750}+\frac{36287 x^{6}}{9753840}+\frac{32 x^{5}}{4275}+\frac{3 x^{4}}{920}-\frac{4 x^{3}}{57}-\frac{x^{2}}{10}+1\right) x^{2} \\
& +c_{2}\left(-\frac{7169 x^{7}}{764400}-\frac{19 x^{6}}{12240}+\frac{137 x^{5}}{1300}+\frac{x^{4}}{8}-\frac{x^{3}}{30}-\frac{3 x^{2}}{2}+1\right) \sqrt[4]{x}
\end{aligned}
\]

\subsection*{19.12 problem 3(c)}
19.12.1 Maple step by step solution

3258
Internal problem ID [6452]
Internal file name [OUTPUT/5700_Sunday_June_05_2022_03_47_44_PM_82017572/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 3(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0
\]

Or
\[
x\left(y^{\prime \prime} x+4 y+3 y^{\prime}\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
y^{\prime \prime} x+4 y+3 y^{\prime}=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{3}{x} \\
q(x) & =\frac{4}{x}
\end{aligned}
\]

Table 451: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4 x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+3 x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+3 x^{r} a_{0} r=0
\]

Or
\[
\left(x^{r} r(-1+r)+3 x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r(2+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r(2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x^{2}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+4 a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n^{2}+2 n r+r^{2}+2 n+2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n(n+2)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{4}{r^{2}+4 r+3}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-\frac{4}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{2}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{8}{45}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline\(a_{3}\) & \(-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}\) & \(-\frac{8}{45}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{256}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{4}{135}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline\(a_{3}\) & \(-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}\) & \(-\frac{8}{45}\) \\
\hline\(a_{4}\) & \(\frac{256}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}\) & \(\frac{4}{135}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1024}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{16}{4725}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline\(a_{3}\) & \(-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}\) & \(-\frac{8}{45}\) \\
\hline\(a_{4}\) & \(\frac{256}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}\) & \(\frac{4}{135}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}\) & \(-\frac{16}{4725}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{4096}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)^{2}(r+7)(r+8)}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=\frac{4}{14175}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline\(a_{3}\) & \(-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}\) & \(-\frac{8}{45}\) \\
\hline\(a_{4}\) & \(\frac{256}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}\) & \(\frac{4}{135}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}\) & \(-\frac{16}{4725}\) \\
\hline\(a_{6}\) & \(\frac{4096}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)^{2}(r+7)(r+8)}\) & \(\frac{4}{14175}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{16384}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)^{2}(r+7)^{2}(r+8)(r+9)}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=-\frac{16}{893025}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{r^{2}+4 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}\) & \(\frac{2}{3}\) \\
\hline\(a_{3}\) & \(-\frac{64}{(r+3)^{2}(r+1)(r+4)(2+r)(r+5)}\) & \(-\frac{8}{45}\) \\
\hline\(a_{4}\) & \(\frac{256}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)(r+6)}\) & \(\frac{4}{135}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)(r+7)}\) & \(-\frac{16}{4725}\) \\
\hline\(a_{6}\) & \(\frac{4096}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)^{2}(r+7)(r+8)}\) & \(\frac{4}{14175}\) \\
\hline\(a_{7}\) & \(-\frac{16384}{(r+3)^{2}(r+1)(r+4)^{2}(2+r)(r+5)^{2}(r+6)^{2}(r+7)^{2}(r+8)(r+9)}\) & \(-\frac{16}{893025}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=2\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{2}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{2} \\
& =\frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)} & =\lim _{r \rightarrow-2} \frac{16}{\left(r^{2}+4 r+3\right)\left(r^{2}+6 r+8\right)} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0\) gives
\[
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +3 x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +4 x\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(y_{1}^{\prime \prime}(x) x^{2}+4 y_{1}(x) x+3 y_{1}^{\prime}(x) x\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+3 y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +3 x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+4 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
y_{1}^{\prime \prime}(x) x^{2}+4 y_{1}(x) x+3 y_{1}^{\prime}(x) x=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+3 y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +3 x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+4 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\right)\right) C \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +3\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x+4 x\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Since \(r_{1}=0\) and \(r_{2}=-2\) then the above becomes
\[
\begin{align*}
& \left(2\left(\sum_{n=0}^{\infty} x^{n-1} a_{n} n\right) x+2\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\right) C+\left(\sum_{n=0}^{\infty} x^{-4+n} b_{n}(n-2)(-3+n)\right) x^{2} \tag{10}\\
& +3\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-2)\right) x+4 x\left(\sum_{n=0}^{\infty} b_{n} x^{n-2}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 C a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} 3 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=0}^{\infty} 4 x^{n-1} b_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-2\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-2}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C n x^{n} a_{n} & =\sum_{n=2}^{\infty} 2 C(n-2) a_{n-2} x^{n-2} \\
\sum_{n=0}^{\infty} 2 C a_{n} x^{n} & =\sum_{n=2}^{\infty} 2 C a_{n-2} x^{n-2} \\
\sum_{n=0}^{\infty} 4 x^{n-1} b_{n} & =\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-2}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n-2\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C(n-2) a_{n-2} x^{n-2}\right)+\left(\sum_{n=2}^{\infty} 2 C a_{n-2} x^{n-2}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}\left(n^{2}-5 n+6\right)\right)+\left(\sum_{n=0}^{\infty} 3 x^{n-2} b_{n}(n-2)\right)+\left(\sum_{n=1}^{\infty} 4 b_{n-1} x^{n-2}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=1\), Eq (2B) gives
\[
-b_{1}+4 b_{0}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-b_{1}+4=0
\]

Solving the above for \(b_{1}\) gives
\[
b_{1}=4
\]

For \(n=N\), where \(N=2\) which is the difference between the two roots, we are free to choose \(b_{2}=0\). Hence for \(n=2\), Eq (2B) gives
\[
2 C+16=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=-8
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
4 C a_{1}+4 b_{2}+3 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
3 b_{3}+\frac{128}{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=-\frac{128}{9}
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
6 C a_{2}+4 b_{3}+8 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
8 b_{4}-\frac{800}{9}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=\frac{100}{9}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
8 C a_{3}+4 b_{4}+15 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
15 b_{5}+\frac{2512}{45}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=-\frac{2512}{675}
\]

For \(n=6, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
10 C a_{4}+4 b_{5}+24 b_{6}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
24 b_{6}-\frac{11648}{675}=0
\]

Solving the above for \(b_{6}\) gives
\[
b_{6}=\frac{1456}{2025}
\]

For \(n=7, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
12 C a_{5}+4 b_{6}+35 b_{7}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
35 b_{7}+\frac{45376}{14175}=0
\]

Solving the above for \(b_{7}\) gives
\[
b_{7}=-\frac{45376}{496125}
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=-8\) and all \(b_{n}\), then the second solution becomes
\[
\begin{aligned}
y_{2}(x)= & (-8)\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \ln (x) \\
& +\frac{1+4 x-\frac{128 x^{3}}{9}+\frac{100 x^{4}}{9}-\frac{2512 x^{5}}{675}+\frac{1456 x^{6}}{2025}-\frac{45376 x^{7}}{496125}+O\left(x^{8}\right)}{x^{2}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \\
& +c_{2}\left((-8)\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+4 x-\frac{128 x^{3}}{9}+\frac{100 x^{4}}{9}-\frac{2512 x^{5}}{675}+\frac{1456 x^{6}}{2025}-\frac{45376 x^{7}}{496125}+O\left(x^{8}\right)}{x^{2}}\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(-8+\frac{32 x}{3}-\frac{16 x^{2}}{3}+\frac{64 x^{3}}{45}-\frac{32 x^{4}}{135}+\frac{128 x^{5}}{4725}-\frac{32 x^{6}}{14175}+\frac{128 x^{7}}{893025}-8 O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+4 x-\frac{128 x^{3}}{9}+\frac{100 x^{4}}{9}-\frac{2512 x^{5}}{675}+\frac{1456 x^{6}}{2025}-\frac{45376 x^{7}}{496125}+O\left(x^{8}\right)}{x^{2}}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(-8+\frac{32 x}{3}-\frac{16 x^{2}}{3}+\frac{64 x^{3}}{45}-\frac{32 x^{4}}{135}+\frac{128 x^{5}}{4725}-\frac{32 x^{6}}{14175}+\frac{128 x^{7}}{893025}\right.\right. \tag{1}\\
& \left.\left.-8 O\left(x^{8}\right)\right) \ln (x)+\frac{1+4 x-\frac{128 x^{3}}{9}+\frac{100 x^{4}}{9}-\frac{2512 x^{5}}{675}+\frac{1456 x^{6}}{2025}-\frac{45376 x^{7}}{496125}+O\left(x^{8}\right)}{x^{2}}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1-\frac{4 x}{3}+\frac{2 x^{2}}{3}-\frac{8 x^{3}}{45}+\frac{4 x^{4}}{135}-\frac{16 x^{5}}{4725}+\frac{4 x^{6}}{14175}-\frac{16 x^{7}}{893025}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(-8+\frac{32 x}{3}-\frac{16 x^{2}}{3}+\frac{64 x^{3}}{45}-\frac{32 x^{4}}{135}+\frac{128 x^{5}}{4725}-\frac{32 x^{6}}{14175}+\frac{128 x^{7}}{893025}-8 O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+\frac{1+4 x-\frac{128 x^{3}}{9}+\frac{100 x^{4}}{9}-\frac{2512 x^{5}}{675}+\frac{1456 x^{6}}{2025}-\frac{45376 x^{7}}{496125}+O\left(x^{8}\right)}{x^{2}}\right)
\end{aligned}
\]

Verified OK.

\subsection*{19.12.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+3 x y^{\prime}+4 x y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{4 y}{x}-\frac{3 y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{3 y^{\prime}}{x}+\frac{4 y}{x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{3}{x}, P_{3}(x)=\frac{4}{x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=3\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+4 y+3 y^{\prime}=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(2+r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+3+r)+4 a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-2,0\}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+1+r)(k+3+r)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{4 a_{k}}{(k+1+r)(k+3+r)}\)
- \(\quad\) Recursion relation for \(r=-2\)
\(a_{k+1}=-\frac{4 a_{k}}{(k-1)(k+1)}\)
- \(\quad\) Series not valid for \(r=-2\), division by 0 in the recursion relation at \(k=1\)
\(a_{k+1}=-\frac{4 a_{k}}{(k-1)(k+1)}\)
- \(\quad\) Recursion relation for \(r=0\)
\(a_{k+1}=-\frac{4 a_{k}}{(k+1)(k+3)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{4 a_{k}}{(k+1)(k+3)}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 74
```

Order:=8;
dsolve(x^2*diff(y(x),x\$2)+3*x*diff (y (x),x)+4*x*y(x)=0,y(x),type='series', x=0);

```
\(y(x)\)
\(=\underline{c_{1}\left(1-\frac{4}{3} x+\frac{2}{3} x^{2}-\frac{8}{45} x^{3}+\frac{4}{135} x^{4}-\frac{16}{4725} x^{5}+\frac{4}{14175} x^{6}-\frac{16}{893025} x^{7}+\mathrm{O}\left(x^{8}\right)\right) x^{2}+c_{2}\left(\ln (x)\left(16 x^{2}-\frac{64}{3} x^{3}+\right.\right.}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 116
AsymptoticDSolveValue [x^2*y' ' \([x]+3 * x * y\) ' \([x]+4 * x * y[x]==0, y[x],\{x, 0,7\}]\)
\[
\left.\begin{array}{rl}
y(x) \rightarrow & c_{2}\left(\frac{4 x^{6}}{14175}-\frac{16 x^{5}}{4725}+\frac{4 x^{4}}{135}-\frac{8 x^{3}}{45}+\frac{2 x^{2}}{3}-\frac{4 x}{3}+1\right) \\
+ & c_{1}\left(\frac{1696 x^{6}-8976 x^{5}+}{} 27900 x^{4}-39600 x^{3}+8100 x^{2}+8100 x+2025\right. \\
2025 x^{2}
\end{array}\right)
\]

\subsection*{19.13 problem 3(d)}
19.13.1 Maple step by step solution

Internal problem ID [6453]
Internal file name [OUTPUT/5701_Sunday_June_05_2022_03_47_49_PM_13646004/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 3(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
x^{3} y^{\prime \prime}-4 x^{2} y^{\prime}+3 x y=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{3} y^{\prime \prime}-4 x^{2} y^{\prime}+3 x y=0
\]

Or
\[
x\left(x^{2} y^{\prime \prime}-4 x y^{\prime}+3 y\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
x^{2} y^{\prime \prime}-4 x y^{\prime}+3 y=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{3} y^{\prime \prime}-4 x^{2} y^{\prime}+3 x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=\frac{3}{x^{2}}
\end{aligned}
\]

Table 453: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{4}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{3}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{3} y^{\prime \prime}-4 x^{2} y^{\prime}+3 x y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x^{3} \tag{1}\\
& -4 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+3 x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(1+n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{1+n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(1+n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 3 x^{1+n+r} a_{n}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{1+n+r} a_{n}(n+r)(n+r-1)-4 x^{1+n+r} a_{n}(n+r)+3 x^{1+n+r} a_{n}=0
\]

When \(n=0\) the above becomes
\[
x^{1+r} a_{0} r(-1+r)-4 x^{1+r} a_{0} r+3 x^{1+r} a_{0}=0
\]

Or
\[
\left(x^{1+r} r(-1+r)-4 x^{1+r} r+3 x^{1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-5 r+3\right) x^{1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-5 r+3=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{5}{2}+\frac{\sqrt{13}}{2} \\
& r_{2}=\frac{5}{2}-\frac{\sqrt{13}}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-5 r+3\right) x^{1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\sqrt{13}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{5}{2}+\frac{\sqrt{13}}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{5}{2}-\frac{\sqrt{13}}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-4 a_{n}(n+r)+3 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{5}{2}+\frac{\sqrt{13}}{2}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{5}{2}+\frac{\sqrt{13}}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-4 b_{n}(n+r)+3 b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{5}{2}-\frac{\sqrt{13}}{2}\) becomes
\[
\begin{equation*}
b_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{5}{2}-\frac{\sqrt{13}}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =x^{\frac{5}{2}-\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)+c_{2} x^{\frac{5}{2}-\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)+c_{2} x^{\frac{5}{2}-\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)+c_{2} x^{\frac{5}{2}-\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{\frac{5}{2}+\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)+c_{2} x^{\frac{5}{2}-\frac{\sqrt{13}}{2}}\left(1+O\left(x^{8}\right)\right)
\]

Verified OK.

\subsection*{19.13.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x^{3}-4 x^{2} y^{\prime}+3 x y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-\frac{3 y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{4 y^{\prime}}{x}+\frac{3 y}{x^{2}}=0\)
- Multiply by denominators of the ODE
\[
x^{2} y^{\prime \prime}-4 x y^{\prime}+3 y=0
\]
- Make a change of variables
\(t=\ln (x)\)
Substitute the change of variables back into the ODE
- Calculate the 1st derivative of y with respect to x , using the chain rule \(y^{\prime}=\left(\frac{d}{d t} y(t)\right) t^{\prime}(x)\)
- Compute derivative
\[
y^{\prime}=\frac{\frac{d}{d t} y(t)}{x}
\]
- Calculate the 2nd derivative of y with respect to x , using the chain rule \(y^{\prime \prime}=\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{\prime}(x)^{2}+t^{\prime \prime}(x)\left(\frac{d}{d t} y(t)\right)\)
- Compute derivative
\(y^{\prime \prime}=\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{\frac{d}{d t} y(t)}{x^{2}}\)
Substitute the change of variables back into the ODE
\(x^{2}\left(\frac{\frac{d^{2}}{d t^{2}} y(t)}{x^{2}}-\frac{d}{d t} y(t)\right)-4 \frac{d}{d t} y(t)+3 y(t)=0\)
- \(\quad\) Simplify
\(\frac{d^{2}}{d t^{2}} y(t)-5 \frac{d}{d t} y(t)+3 y(t)=0\)
- Characteristic polynomial of ODE
\(r^{2}-5 r+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{5 \pm(\sqrt{13})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(\frac{5}{2}-\frac{\sqrt{13}}{2}, \frac{5}{2}+\frac{\sqrt{13}}{2}\right)\)
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t}\)
- \(\quad 2\) nd solution of the ODE
\(y_{2}(t)=\mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}\)
- General solution of the ODE
\(y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
- Substitute in solutions
\(y(t)=c_{1} \mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) t}+c_{2} \mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) t}\)
- \(\quad\) Change variables back using \(t=\ln (x)\)
\(y=c_{1} \mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{13}}{2}\right) \ln (x)}+c_{2} \mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{13}}{2}\right) \ln (x)}\)
- \(\quad\) Simplify
\(y=x^{\frac{5}{2}}\left(x^{\frac{\sqrt{13}}{2}} c_{2}+x^{-\frac{\sqrt{13}}{2}} c_{1}\right)\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 39
```

Order:=8;
dsolve(x^3*diff(y(x),x\$2)-4*x^2*diff(y(x),x)+3*x*y(x)=0,y(x),type='series',x=0);

```
\[
y(x)=x^{\frac{5}{2}}\left(x^{-\frac{\sqrt{13}}{2}} c_{1}+x^{\frac{\sqrt{13}}{2}} c_{2}\right)+O\left(x^{8}\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 38
AsymptoticDSolveValue \(\left[x^{\wedge} 3 * y\right.\) ' ' \([x]-4 * x^{\wedge} 2 * y\) ' \(\left.[x]+3 * x * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
y(x) \rightarrow c_{1} x^{\frac{1}{2}(5+\sqrt{13})}+c_{2} x^{\frac{1}{2}(5-\sqrt{13})}
\]

\subsection*{19.14 problem 4(a)}
19.14.1 Maple step by step solution

Internal problem ID [6454]
Internal file name [OUTPUT/5702_Sunday_June_05_2022_03_47_51_PM_11707740/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler]]

```
\[
4 y^{\prime \prime} x+3 y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
4 y^{\prime \prime} x+3 y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3}{4 x} \\
& q(x)=\frac{1}{4 x}
\end{aligned}
\]

Table 455: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3}{4 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{4 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
4 y^{\prime \prime} x+3 y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(4\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+3\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0\)

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
4 x^{n+r-1} a_{n}(n+r)(n+r-1)+3(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
4 x^{-1+r} a_{0} r(-1+r)+3 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(4 x^{-1+r} r(-1+r)+3 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-1+4 r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
4 r^{2}-r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{4} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-1+4 r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{4}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{4}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+3 a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{4 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{4}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{4 r^{2}+7 r+3}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{1}=-\frac{1}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{5}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{2}=\frac{1}{90}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{90}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}
\]

Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{3}=-\frac{1}{3510}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{90}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(-\frac{1}{3510}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\(a_{4}=\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\)
Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{4}=\frac{1}{238680}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{90}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & 1 \\
\hline\(a_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(\frac{1}{238680}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}\)
Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{5}=-\frac{1}{25061400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{90}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(-\frac{1}{3510}\) \\
\hline\(a_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(\frac{1}{238680}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) & \(-\frac{1}{25061400}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(a_{6}=\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}\right.}\)
Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{6}=\frac{1}{3759210000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(-\frac{1}{5}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(\frac{1}{90}\) \\
\hline\(a_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(-\frac{1}{3510}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) & \(\frac{1}{238680}\) \\
\hline\(a_{6}\) & \(\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)}\) & \(\frac{1}{3759210000}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}\)
Which for the root \(r=\frac{1}{4}\) becomes
\[
a_{7}=-\frac{1}{763119630000}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(a_{n, r}\) \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) \\
\hline\(a_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) \\
\hline\(a_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) \\
\hline\(a_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) \\
\hline\(a_{6}\) & \(\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)}\) \\
\hline\(a_{7}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)\left(4 r^{2}+55 r+189\right.}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{1}{4}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+\frac{x^{6}}{3759210000}-\frac{x^{7}}{763119630000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
4 b_{n}(n+r)(n+r-1)+3(n+r) b_{n}+b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{4 n^{2}+8 n r+4 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}}{n(4 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-\frac{1}{4 r^{2}+7 r+3}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=-\frac{1}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=\frac{1}{42}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{42}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=-\frac{1}{1386}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{42}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(-\frac{1}{1386}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\(b_{4}=\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\)
Which for the root \(r=0\) becomes
\[
b_{4}=\frac{1}{83160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & \(-\frac{1}{3}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(\frac{1}{42}\) \\
\hline\(b_{3}\) & \(-\frac{1}{44 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & 1 \\
\hline\(b_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(-\frac{1}{1386}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}\)
Which for the root \(r=0\) becomes
\[
b_{5}=-\frac{1}{7900200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(-\frac{1}{3}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(\frac{1}{42}\) \\
\hline\(b_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(-\frac{1}{1386}\) \\
\hline\(b_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) & \(-\frac{1}{7900200}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}\right.}\)
Which for the root \(r=0\) becomes
\[
b_{6}=\frac{1}{1090227600}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) & \(-\frac{1}{3}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) & \(\frac{1}{42}\) \\
\hline\(b_{4}\) & \(\frac{1}{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}\) & \(-\frac{1}{1386}\) \\
\hline\(b_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) & \(\frac{1}{83160}\) \\
\hline\(b_{6}\) & \(\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)}\) & \(\frac{1}{1090227600}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)(4}\)
Which for the root \(r=0\) becomes
\[
b_{7}=-\frac{1}{206053016400}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(b_{n, r}\) \\
\hline\(b_{0}\) & 1 \\
\hline\(b_{1}\) & \(-\frac{1}{4 r^{2}+7 r+3}\) \\
\hline\(b_{2}\) & \(\frac{1}{16 r^{4}+88 r^{3}+173 r^{2}+143 r+42}\) \\
\hline\(b_{3}\) & \(-\frac{1}{64 r^{6}+720 r^{5}+3244 r^{4}+7455 r^{3}+9166 r^{2}+5685 r+1386}\) \\
\hline\(b_{4}\) & \(\frac{256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160}{1}\) \\
\hline\(b_{5}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)}\) \\
\hline\(b_{6}\) & \(\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)}\) \\
\hline\(b_{7}\) & \(-\frac{1}{\left(256 r^{8}+4864 r^{7}+39136 r^{6}+173584 r^{5}+462409 r^{4}+754186 r^{3}+731739 r^{2}+384066 r+83160\right)\left(4 r^{2}+39 r+95\right)\left(4 r^{2}+47 r+138\right)\left(4 r^{2}+55 r+189\right)}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+\frac{x^{6}}{1090227600}-\frac{x^{7}}{206053016400}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& \qquad \begin{array}{r}
=c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+\frac{x^{6}}{3759210000}-\frac{x^{7}}{763119630000}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+\frac{x^{6}}{1090227600}\right. \\
\\
\left.-\frac{x^{7}}{206053016400}+O\left(x^{8}\right)\right)
\end{array}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+\frac{x^{6}}{3759210000}-\frac{x^{7}}{763119630000}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+\frac{x^{6}}{1090227600}-\frac{x^{7}}{206053016400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{array}{r}
y=c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+\frac{x^{6}}{3759210000}-\frac{x^{7}}{763119630000}\right. \\
\left.+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+\frac{x^{6}(1)}{1090227600}\right. \\
\left.-\frac{x^{7}}{206053016400}+O\left(x^{8}\right)\right)
\end{array}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{4}}\left(1-\frac{x}{5}+\frac{x^{2}}{90}-\frac{x^{3}}{3510}+\frac{x^{4}}{238680}-\frac{x^{5}}{25061400}+\frac{x^{6}}{3759210000}-\frac{x^{7}}{763119630000}\right. \\
& \left.+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-\frac{x}{3}+\frac{x^{2}}{42}-\frac{x^{3}}{1386}+\frac{x^{4}}{83160}-\frac{x^{5}}{7900200}+\frac{x^{6}}{1090227600}-\frac{x^{7}}{206053016400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{19.14.1 Maple step by step solution}

Let's solve
\[
4 y^{\prime \prime} x+3 y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{4 x}-\frac{3 y^{\prime}}{4 x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{3 y^{\prime}}{4 x}+\frac{y}{4 x}=0
\]
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{3}{4 x}, P_{3}(x)=\frac{1}{4 x}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{4}
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(4 y^{\prime \prime} x+3 y^{\prime}+y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-1+4 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(4 k+3+4 r)+a_{k}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+4 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{4}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
4\left(k+\frac{3}{4}+r\right)(k+1+r) a_{k+1}+a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{(4 k+3+4 r)(k+1+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}}{(4 k+3)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{(4 k+3)(k+1)}\right]
\]
- Recursion relation for \(r=\frac{1}{4}\)
\[
a_{k+1}=-\frac{a_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{4}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{4}}, a_{k+1}=-\frac{a_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{4}}\right), a_{k+1}=-\frac{a_{k}}{(4 k+3)(k+1)}, b_{k+1}=-\frac{b_{k}}{(4 k+4)\left(k+\frac{5}{4}\right)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 52
```

Order:=8;
dsolve(4*x*diff(y(x),x\$2)+3*diff(y(x),x)+y(x)=0,y(x),type='series', x=0);

```
\[
y(x)=c_{1} x^{\frac{1}{4}}\left(1-\frac{1}{5} x+\frac{1}{90} x^{2}-\frac{1}{3510} x^{3}+\frac{1}{238680} x^{4}-\frac{1}{25061400} x^{5}+\frac{1}{3759210000} x^{6}\right.
\]
\[
\left.-\frac{1}{763119630000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(1-\frac{1}{3} x+\frac{1}{42} x^{2}-\frac{1}{1386} x^{3}+\frac{1}{83160} x^{4}\right.
\]
\[
\left.-\frac{1}{7900200} x^{5}+\frac{1}{1090227600} x^{6}-\frac{1}{206053016400} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 113
AsymptoticDSolveValue[4*x*y' ' \([\mathrm{x}]+3 * y\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\left.\begin{array}{rl}
y(x) \rightarrow & c_{1} \sqrt[4]{x}\left(-\frac{x^{7}}{763119630000}+\frac{x^{6}}{3759210000}-\frac{x^{5}}{25061400}+\frac{x^{4}}{238680}-\frac{x^{3}}{3510}+\frac{x^{2}}{90}-\frac{x}{5}\right. \\
+1
\end{array}\right)
\]

\subsection*{19.15 problem 4(b)}
19.15.1 Maple step by step solution

3302
Internal problem ID [6455]
Internal file name [OUTPUT/5703_Sunday_June_05_2022_03_47_55_PM_19812894/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
2 y^{\prime \prime} x+(-x+3) y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 y^{\prime \prime} x+(-x+3) y^{\prime}-y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{x-3}{2 x} \\
& q(x)=-\frac{1}{2 x}
\end{aligned}
\]

Table 457: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x-3}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 y^{\prime \prime} x+(-x+3) y^{\prime}-y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(-x+3)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} 3(n+r) a_{n} x^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+3(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
2 x^{-1+r} a_{0} r(-1+r)+3 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(2 x^{-1+r} r(-1+r)+3 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}+r\right) x^{-1+r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}+r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}+r\right) x^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+3 a_{n}(n+r)-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n+1+2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n+1} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{3+2 r}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=\frac{1}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4 r^{2}+16 r+15}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{15}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8 r^{3}+60 r^{2}+142 r+105}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=\frac{1}{105}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{105}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{945}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{105}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{945}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=\frac{1}{10395}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{105}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{945}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{10395}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=\frac{1}{135135}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{105}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{945}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{10395}\) \\
\hline\(a_{6}\) & \(\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{1}{135135}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=\frac{1}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\)
Which for the root \(r=0\) becomes
\[
a_{7}=\frac{1}{2027025}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{3}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{15}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{105}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{945}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{10395}\) \\
\hline\(a_{6}\) & \(\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{1}{135135}\) \\
\hline\(a_{7}\) & \(\frac{1}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\) & \(\frac{1}{2027025}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1+\frac{x}{3}+\frac{x^{2}}{15}+\frac{x^{3}}{105}+\frac{x^{4}}{945}+\frac{x^{5}}{10395}+\frac{x^{6}}{135135}+\frac{x^{7}}{2027025}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+3(n+r) b_{n}-b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{2 n+1+2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{1}{3+2 r}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{1}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{4 r^{2}+16 r+15}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=\frac{1}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{1}{8 r^{3}+60 r^{2}+142 r+105}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{3}=\frac{1}{48}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{48}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{384}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{48}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{384}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{5}=\frac{1}{3840}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{48}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{384}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{3840}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{6}=\frac{1}{46080}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{48}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{384}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{3840}\) \\
\hline\(b_{6}\) & \(\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{1}{46080}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\frac{1}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{7}=\frac{1}{645120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{3+2 r}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{2}+16 r+15}\) & \(\frac{1}{8}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{1}{48}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{1}{384}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{1}{3840}\) \\
\hline\(b_{6}\) & \(\frac{1}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{1}{46080}\) \\
\hline\(b_{7}\) & \(\frac{1}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\) & \(\frac{1}{645120}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}+\frac{x^{4}}{384}+\frac{x^{5}}{3840}+\frac{x^{6}}{46080}+\frac{x^{7}}{645120}+O\left(x^{8}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{15}+\frac{x^{3}}{105}+\frac{x^{4}}{945}+\frac{x^{5}}{10395}+\frac{x^{6}}{135135}+\frac{x^{7}}{2027025}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}+\frac{x^{4}}{384}+\frac{x^{5}}{3840}+\frac{x^{6}}{46080}+\frac{x^{7}}{645120}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{15}+\frac{x^{3}}{105}+\frac{x^{4}}{945}+\frac{x^{5}}{10395}+\frac{x^{6}}{135135}+\frac{x^{7}}{2027025}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}+\frac{x^{4}}{384}+\frac{x^{5}}{3840}+\frac{x^{6}}{46080}+\frac{x^{7}}{645120}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{15}+\frac{x^{3}}{105}+\frac{x^{4}}{945}+\frac{x^{5}}{10395}+\frac{x^{6}}{135135}+\frac{x^{7}}{2027025}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}+\frac{x^{4}}{384}+\frac{x^{5}}{8840}+\frac{x^{6}}{46080}+\frac{x^{7}}{645120}+O\left(x^{8}\right)\right)}{\sqrt{x}} \tag{1}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1+\frac{x}{3}+\frac{x^{2}}{15}+\frac{x^{3}}{105}+\frac{x^{4}}{945}+\frac{x^{5}}{10395}+\frac{x^{6}}{135135}+\frac{x^{7}}{2027025}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{8}+\frac{x^{3}}{48}+\frac{x^{4}}{384}+\frac{x^{5}}{3840}+\frac{x^{6}}{46080}+\frac{x^{7}}{645120}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

\section*{Verified OK.}

\subsection*{19.15.1 Maple step by step solution}

Let's solve
\[
2 y^{\prime \prime} x+(-x+3) y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\(y^{\prime \prime}=\frac{y}{2 x}+\frac{(x-3) y^{\prime}}{2 x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x-3) y^{\prime}}{2 x}-\frac{y}{2 x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x-3}{2 x}, P_{3}(x)=-\frac{1}{2 x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(2 y^{\prime \prime} x+(-x+3) y^{\prime}-y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+3+2 r)-a_{k}(k+1+r)\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0,-\frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(2(k+1+r)\left(\left(k+r+\frac{3}{2}\right) a_{k+1}-\frac{a_{k}}{2}\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}}{2 k+3+2 r}\)
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}}{2 k+3}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=\frac{a_{k}}{2 k+3}\right]
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}}{2 k+2}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}}{2 k+2}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{2}}\right), a_{k+1}=\frac{a_{k}}{2 k+3}, b_{k+1}=\frac{b_{k}}{2 k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 52
```

Order:=8;
dsolve(2*x*diff ( }\textrm{y}(\textrm{x}),\textrm{x}\$2)+(3-x)*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})-\textrm{y}(\textrm{x})=0,y(\textrm{x}),\mathrm{ type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \frac{c_{1}\left(1+\frac{1}{2} x+\frac{1}{8} x^{2}+\frac{1}{48} x^{3}+\frac{1}{384} x^{4}+\frac{1}{3840} x^{5}+\frac{1}{46080} x^{6}+\frac{1}{645120} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{\sqrt{x}}+c_{2}(1 \\
& \left.+\frac{1}{3} x+\frac{1}{15} x^{2}+\frac{1}{105} x^{3}+\frac{1}{945} x^{4}+\frac{1}{10395} x^{5}+\frac{1}{135135} x^{6}+\frac{1}{2027025} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 113
AsymptoticDSolveValue \(\left[2 * x * y{ }^{\prime} '[x]+(3-x) * y '[x]-y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{7}}{2027025}+\frac{x^{6}}{135135}+\frac{x^{5}}{10395}+\frac{x^{4}}{945}+\frac{x^{3}}{105}+\frac{x^{2}}{15}+\frac{x}{3}+1\right) \\
& +\frac{c_{2}\left(\frac{x^{7}}{645120}+\frac{x^{6}}{46080}+\frac{x^{5}}{3840}+\frac{x^{4}}{384}+\frac{x^{3}}{48}+\frac{x^{2}}{8}+\frac{x}{2}+1\right)}{\sqrt{x}}
\end{aligned}
\]

\subsection*{19.16 problem 4(c)}
19.16.1 Maple step by step solution

3318
Internal problem ID [6456]
Internal file name [OUTPUT/5704_Sunday_June_05_2022_03_47_58_PM_92248162/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 y^{\prime \prime} x+(1+x) y^{\prime}+3 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 y^{\prime \prime} x+(1+x) y^{\prime}+3 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1+x}{2 x} \\
& q(x)=\frac{3}{2 x}
\end{aligned}
\]

Table 459: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1+x}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{3}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 y^{\prime \prime} x+(1+x) y^{\prime}+3 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(1+x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+3\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 3 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} 3 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-1+2 r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-1+2 r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n}(n+r)+3 a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}(n+r+2)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{-2 n a_{n-1}-5 a_{n-1}}{4 n^{2}+2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-3-r}{2 r^{2}+3 r+1}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=-\frac{7}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{21}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline\(a_{2}\) & \(\frac{4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{21}{40}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=-\frac{11}{80}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline\(a_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{21}{40}\) \\
\hline\(a_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{11}{80}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{143}{5760}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline\(a_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{21}{40}\) \\
\hline\(a_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{11}{80}\) \\
\hline\(a_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(\frac{143}{5760}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{(6+r)(7+r)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=-\frac{13}{3840}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline\(a_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{21}{40}\) \\
\hline\(a_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{11}{80}\) \\
\hline\(a_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) \\
\hline\(a_{5}\) & \(-\frac{(6+r)(7+r)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}\) & \(-\frac{143}{3840}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{(8+r)(7+r)}{64 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=\frac{17}{46080}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(-\frac{7}{6}\) \\
\hline\(a_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{21}{40}\) \\
\hline\(a_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+25 r^{2}+137 r+30}\) & \(-\frac{11}{80}\) \\
\hline\(a_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}(6+r)(7+r)\) & \(\frac{143}{5760}\) \\
\hline\(a_{5}\) & \(-\frac{(604)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}(8+r)(7+r)\) & \(-\frac{13}{3840}\) \\
\hline\(a_{6}\) & \(\frac{\left(8 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790\right.}{64}\) & \(\frac{17}{46080}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=-\frac{(9+r)(8+r)}{128 r^{9}+3520 r^{8}+40800 r^{7}+260400 r^{6}+1003464 r^{5}+2407860 r^{4}+3574450 r^{3}+3139025 r^{2}+1462}\)

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=-\frac{323}{9676800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(-\frac{7}{6}\) \\
\hline\(a_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & \(\frac{21}{40}\) \\
\hline\(a_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{11}{80}\) \\
\hline\(a_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(\frac{143}{5760}\) \\
\hline\(a_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(-\frac{13}{3840}\) \\
\hline\(a_{5}\) & \(-\frac{(6+r)(7+r)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}\) \\
\hline\(a_{6}\) & \(\frac{(8+r)(7+r)}{64 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790}(9+r)(8+r)\) & \(\frac{17}{46080}\) \\
\hline\(a_{7}\) & \(-\frac{12}{128 r^{9}+3520 r^{8}+40800 r^{7}+260400 r^{6}+1003464 r^{5}+2407860 r^{4}+3574450 r^{3}+3139025 r^{2}+1462233 r+270270}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{7 x}{6}+\frac{21 x^{2}}{40}-\frac{11 x^{3}}{80}+\frac{143 x^{4}}{5760}-\frac{13 x^{5}}{3840}+\frac{17 x^{6}}{46080}-\frac{323 x^{7}}{9676800}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n-1}(n+r-1)+(n+r) b_{n}+3 b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}(n+r+2)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}(n+2)}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{-3-r}{2 r^{2}+3 r+1}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=-3
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=2
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=-\frac{2}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline\(b_{3}\) & \(-\frac{4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{2}{3}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{1}{7}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+33+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline\(b_{3}\) & \(-\frac{4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{2}{3}\) \\
\hline\(b_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(\frac{1}{7}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=-\frac{(6+r)(7+r)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}
\]

Which for the root \(r=0\) becomes
\[
b_{5}=-\frac{1}{45}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline\(b_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{2}{3}\) \\
\hline\(b_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(\frac{1}{7}\) \\
\hline\(b_{5}\) & \(-\frac{(6+r)(7+r)}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}\) & \(-\frac{1}{45}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{(8+r)(7+r)}{64 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790}\)
Which for the root \(r=0\) becomes
\[
b_{6}=\frac{4}{1485}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline\(b_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(-\frac{2}{3}\) \\
\hline\(b_{4}\) & \(\frac{(5+r)(6+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(-6+r(7+r)\) \\
\hline\(b_{5}\) & \(-\frac{1}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}\) & \(\frac{1}{7}\) \\
\hline\(b_{6}\) & \(\frac{(8+r)(7+r)}{64 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790}\) & \(\frac{4}{1485}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=-\frac{(9+r)(8+r)}{128 r^{9}+3520 r^{8}+40800 r^{7}+260400 r^{6}+1003464 r^{5}+2407860 r^{4}+3574450 r^{3}+3139025 r^{2}+1462}\)
Which for the root \(r=0\) becomes
\[
b_{7}=-\frac{4}{15015}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-3-r}{2 r^{2}+3 r+1}\) & -3 \\
\hline\(b_{2}\) & \(\frac{(4+r)(3+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 2 \\
\hline\(b_{3}\) & \(-\frac{(4+r)(5+r)}{8 r^{5}+60 r^{4}+170 r^{3}+225 r^{2}+137 r+30}\) & \(\frac{(5+r)(6+r)}{(6)}\) \\
\hline\(b_{4}\) & \(\frac{(6+r)(7+r)}{16 r^{6}+176 r^{5}+760 r^{4}+1640 r^{3}+1849 r^{2}+1019 r+210}\) & \(-\frac{2}{3}\) \\
\hline\(b_{5}\) & \(-\frac{1}{32 r^{7}+496 r^{6}+3104 r^{5}+10120 r^{4}+18458 r^{3}+18679 r^{2}+9591 r+1890}\) \\
\hline\(b_{6}\) & \(\frac{(8+r)(7+r)}{64 r^{8}+1344 r^{7}+11664 r^{6}+54384 r^{5}+148236 r^{4}+240396 r^{3}+224651 r^{2}+109281 r+20790}\) \\
\hline\(b_{7}\) & \(-\frac{(9+r)(8+r)}{128 r^{9}+3520 r^{8}+40800 r^{7}+260400 r^{6}+1003464 r^{5}+2407860 r^{4}+3574450 r^{3}+3139025 r^{2}+1462233 r+270270}\) & \(-\frac{4}{15015}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-3 x+2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{7}-\frac{x^{5}}{45}+\frac{4 x^{6}}{1485}-\frac{4 x^{7}}{15015}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{7 x}{6}+\frac{21 x^{2}}{40}-\frac{11 x^{3}}{80}+\frac{143 x^{4}}{5760}-\frac{13 x^{5}}{3840}+\frac{17 x^{6}}{46080}-\frac{323 x^{7}}{9676800}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-3 x+2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{7}-\frac{x^{5}}{45}+\frac{4 x^{6}}{1485}-\frac{4 x^{7}}{15015}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-\frac{7 x}{6}+\frac{21 x^{2}}{40}-\frac{11 x^{3}}{80}+\frac{143 x^{4}}{5760}-\frac{13 x^{5}}{3840}+\frac{17 x^{6}}{46080}-\frac{323 x^{7}}{9676800}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-3 x+2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{7}-\frac{x^{5}}{45}+\frac{4 x^{6}}{1485}-\frac{4 x^{7}}{15015}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{7 x}{6}+\frac{21 x^{2}}{40}-\frac{11 x^{3}}{80}+\frac{143 x^{4}}{5760}-\frac{13 x^{5}}{3840}+\frac{17 x^{6}}{46080}-\frac{323 x^{7}}{9676800}+O\left(x^{8}\right)\right)_{1)} \\
& +c_{2}\left(1-3 x+2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{7}-\frac{x^{5}}{45}+\frac{4 x^{6}}{1485}-\frac{4 x^{7}}{15015}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{7 x}{6}+\frac{21 x^{2}}{40}-\frac{11 x^{3}}{80}+\frac{143 x^{4}}{5760}-\frac{13 x^{5}}{3840}+\frac{17 x^{6}}{46080}-\frac{323 x^{7}}{9676800}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-3 x+2 x^{2}-\frac{2 x^{3}}{3}+\frac{x^{4}}{7}-\frac{x^{5}}{45}+\frac{4 x^{6}}{1485}-\frac{4 x^{7}}{15015}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verified OK.}

\subsection*{19.16.1 Maple step by step solution}

Let's solve
\[
2 y^{\prime \prime} x+(1+x) y^{\prime}+3 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y^{\prime}}{2 x}-\frac{3 y}{2 x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(1+x) y^{\prime}}{2 x}+\frac{3 y}{2 x}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1+x}{2 x}, P_{3}(x)=\frac{3}{2 x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(2 y^{\prime \prime} x+(1+x) y^{\prime}+3 y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+r+3)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+r+3)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{a_{k}(k+r+3)}{(2 k+1+2 r)(k+1+r)}\)
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}(k+3)}{(2 k+1)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}(k+3)}{(2 k+1)(k+1)}\right]\)
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=-\frac{a_{k}\left(k+\frac{7}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=-\frac{a_{k}\left(k+\frac{7}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+1}=-\frac{a_{k}(k+3)}{(2 k+1)(k+1)}, b_{k+1}=-\frac{b_{k}\left(k+\frac{7}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Kummer successful     <- special function solution successful     Solution using Kummer functions still has integrals. Trying a hypergeometric solution.     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 1F1 ODE     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - returning wi     <- Kovacics algorithm successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 52
\[
\begin{aligned}
& \text { Order: }=8 ; \\
& \text { dsolve }(2 * \mathrm{x} * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x} \$ 2)+(\mathrm{x}+1) * \operatorname{diff}(\mathrm{y}(\mathrm{x}), \mathrm{x})+3 * \mathrm{y}(\mathrm{x})=0, \mathrm{y}(\mathrm{x}), \text { type='series' }, \mathrm{x}=0) ; \\
& \begin{aligned}
y(x)= & c_{1} \sqrt{x}\left(1-\frac{7}{6} x+\frac{21}{40} x^{2}-\frac{11}{80} x^{3}+\frac{143}{5760} x^{4}-\frac{13}{3840} x^{5}+\frac{17}{46080} x^{6}-\frac{323}{9676800} x^{7}\right. \\
& \left.+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(1-3 x+2 x^{2}-\frac{2}{3} x^{3}+\frac{1}{7} x^{4}-\frac{1}{45} x^{5}+\frac{4}{1485} x^{6}-\frac{4}{15015} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.047 (sec). Leaf size: 106
AsymptoticDSolveValue[2*x*x*y' ' \([\mathrm{x}]+(\mathrm{x}+1) * \mathrm{y}\) ' \([\mathrm{x}]+3 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{array}{r}
y(x) \rightarrow \\
c_{1}\left(-\frac{1386072 x^{7}}{35}+\frac{20088 x^{6}}{5}-\frac{2511 x^{5}}{5}+81 x^{4}-18 x^{3}+6 x^{2}-3 x+1\right) \\
\\
+c_{2} e^{\frac{1}{2} / x}\left(\frac{257243688 x^{7}}{35}+\frac{2381886 x^{6}}{5}+\frac{176436 x^{5}}{5}+3042 x^{4}+312 x^{3}+39 x^{2}\right. \\
\\
+6 x+1) x^{3 / 2}
\end{array}
\]

\subsection*{19.17 problem 4(d)}
19.17.1 Maple step by step solution

3335
Internal problem ID [6457]
Internal file name [OUTPUT/5705_Sunday_June_05_2022_03_48_02_PM_72168280/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 4(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}-(1+x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}+(-1-x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{2 x} \\
q(x) & =-\frac{1+x}{2 x^{2}}
\end{aligned}
\]

Table 461: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1+x}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x^{2} y^{\prime \prime}+x y^{\prime}+(-1-x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(-1-x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}\right)=\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
2 x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
\]

Or
\[
\left(2 x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(2 r^{2}-r-1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-r-1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(2 r^{2}-r-1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{3}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{1+n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)+a_{n}(n+r)-a_{n}-a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}}{n(2 n+3)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{1}{r(2 r+3)}
\]

Which for the root \(r=1\) becomes
\[
a_{1}=\frac{1}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=\frac{1}{70}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}
\]

Which for the root \(r=1\) becomes
\[
a_{3}=\frac{1}{1890}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(\frac{1}{1890}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{83160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(\frac{1}{1890}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & \(\frac{1}{83160}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+}\)
Which for the root \(r=1\) becomes
\[
a_{5}=\frac{1}{5405400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{4}\) \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(\frac{1}{1890}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) & \(\frac{1}{5405400}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(a_{6}=\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r-\right.}\)
Which for the root \(r=1\) becomes
\[
a_{6}=\frac{1}{486486000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{5}\) \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(\frac{1}{1890}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & \(\frac{1}{83160}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) & \\
\hline\(a_{6}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)}\) & \(\frac{1}{486486000}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r\right.}\)
Which for the root \(r=1\) becomes
\[
a_{7}=\frac{1}{57891834000}
\]

And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{1}{r(2 r+3)}\) & \(\frac{1}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(\frac{1}{70}\) \\
\hline\(a_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(\frac{1}{18}\) \\
\hline\(a_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & \(\overline{83}\) \\
\hline\(a_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) \\
\hline\(a_{6}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)}\) & \(\overline{54}\) \\
\hline\(a_{7}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)\left(2 r^{2}+27 r+90\right)}\) & \(\overline{57}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+\frac{x^{6}}{486486000}+\frac{x^{7}}{57891834000}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)+b_{n}(n+r)-b_{n}-b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{2 n^{2}+4 n r+2 r^{2}-n-r-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}}{n(2 n-3)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{1}{r(2 r+3)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{3}=-\frac{1}{18}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(-\frac{1}{18}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=-\frac{1}{360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & 1 \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(-\frac{1}{2}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & \(-\frac{1}{360}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{5}=-\frac{1}{12600}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & -1 \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(-\frac{1}{2}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) & \(-\frac{1}{12600}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+\right.}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{6}=-\frac{1}{680400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & -1 \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & \(-\frac{1}{18}\) \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & \(-\frac{1}{360}\) \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) & \(-\frac{1}{12}\) \\
\hline\(b_{6}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)}\) & \(-\frac{1}{680400}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+\right.}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{7}=-\frac{1}{52390800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{1}{r(2 r+3)}\) & - \\
\hline\(b_{2}\) & \(\frac{1}{4 r^{4}+20 r^{3}+31 r^{2}+15 r}\) & -1 \\
\hline\(b_{3}\) & \(\frac{1}{8 r^{6}+84 r^{5}+338 r^{4}+651 r^{3}+599 r^{2}+210 r}\) & -1 \\
\hline\(b_{4}\) & \(\frac{1}{16 r^{8}+288 r^{7}+2152 r^{6}+8640 r^{5}+20089 r^{4}+26982 r^{3}+19323 r^{2}+5670 r}\) & -1 \\
\hline\(b_{5}\) & \(\frac{1}{32 r^{10}+880 r^{9}+10480 r^{8}+70840 r^{7}+299026 r^{6}+815815 r^{5}+1435220 r^{4}+1565685 r^{3}+957942 r^{2}+249480 r}\) \\
\hline\(b_{6}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)}\) & -1 \\
\hline\(b_{7}\) & \(\frac{1}{r\left(32 r^{9}+880 r^{8}+10480 r^{7}+70840 r^{6}+299026 r^{5}+815815 r^{4}+1435220 r^{3}+1565685 r^{2}+957942 r+249480\right)\left(2 r^{2}+23 r+65\right)\left(2 r^{2}+27 r+90\right)}\) & - \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}-\frac{x^{6}}{680400}-\frac{x^{7}}{52390800}+O\left(x^{8}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+\frac{x^{6}}{486486000}+\frac{x^{7}}{57891834000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}-\frac{x^{6}}{680400}-\frac{x^{7}}{52390800}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+\frac{x^{6}}{486486000}+\frac{x^{7}}{57891834000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}-\frac{x^{6}}{680400}-\frac{x^{7}}{52390800}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y=c_{1} x & \left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+\frac{x^{6}}{486486000}+\frac{x^{7}}{57891834000}\right. \\
& \left.+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}-\frac{x^{6}}{680400}-\frac{x^{7}}{52390800}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x\left(1+\frac{x}{5}+\frac{x^{2}}{70}+\frac{x^{3}}{1890}+\frac{x^{4}}{83160}+\frac{x^{5}}{5405400}+\frac{x^{6}}{486486000}+\frac{x^{7}}{57891834000}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-x-\frac{x^{2}}{2}-\frac{x^{3}}{18}-\frac{x^{4}}{360}-\frac{x^{5}}{12600}-\frac{x^{6}}{680400}-\frac{x^{7}}{52390800}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Verified OK.

\subsection*{19.17.1 Maple step by step solution}

Let's solve
\(2 x^{2} y^{\prime \prime}+x y^{\prime}+(-1-x) y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{2 x}+\frac{(1+x) y}{2 x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{y^{\prime}}{2 x}-\frac{(1+x) y}{2 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{2 x}, P_{3}(x)=-\frac{1+x}{2 x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(2 x^{2} y^{\prime \prime}+x y^{\prime}+(-1-x) y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0}(1+2 r)(-1+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(2 k+2 r+1)(k+r-1)-a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{1,-\frac{1}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(2(k+r-1)\left(k+\frac{1}{2}+r\right) a_{k}-a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(2(k+r)\left(k+\frac{3}{2}+r\right) a_{k+1}-a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}}{(k+r)(2 k+3+2 r)}
\]
- Recursion relation for \(r=1\)
\[
a_{k+1}=\frac{a_{k}}{(k+1)(2 k+5)}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+1}=\frac{a_{k}}{(k+1)(2 k+5)}\right]
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}}{\left(k-\frac{1}{2}\right)(2 k+2)}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+1}=\frac{a_{k}}{\left(k-\frac{1}{2}\right)(2 k+2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{2}}\right), a_{k+1}=\frac{a_{k}}{(k+1)(2 k+5)}, b_{k+1}=\frac{b_{k}}{\left(k-\frac{1}{2}\right)(2 k+2)}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Group is reducible or imprimitive
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 53
```

Order:=8;
dsolve(2*x^2*diff (y (x),x\$2)+x*diff (y (x),x)-(x+1)*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \frac{c_{1}\left(1-x-\frac{1}{2} x^{2}-\frac{1}{18} x^{3}-\frac{1}{360} x^{4}-\frac{1}{12600} x^{5}-\frac{1}{680400} x^{6}-\frac{1}{52390800} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{\sqrt{x}} \\
& +c_{2} x\left(1+\frac{1}{5} x+\frac{1}{70} x^{2}+\frac{1}{1890} x^{3}+\frac{1}{83160} x^{4}+\frac{1}{5405400} x^{5}+\frac{1}{486486000} x^{6}\right. \\
& \left.+\frac{1}{57891834000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 112

AsymptoticDSolveValue \(\left[2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{y}^{\prime}[\mathrm{x}]-(\mathrm{x}+1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} x\left(\frac{x^{7}}{57891834000}+\frac{x^{6}}{486486000}+\frac{x^{5}}{5405400}+\frac{x^{4}}{83160}+\frac{x^{3}}{1890}+\frac{x^{2}}{70}+\frac{x}{5}+1\right) \\
& +\frac{c_{2}\left(-\frac{x^{7}}{52390800}-\frac{x^{6}}{680400}-\frac{x^{5}}{12600}-\frac{x^{4}}{360}-\frac{x^{3}}{18}-\frac{x^{2}}{2}-x+1\right)}{\sqrt{x}}
\end{aligned}
\]

\subsection*{19.18 problem 5}
19.18.1 Maple step by step solution . 3347

Internal problem ID [6458]
Internal file name [OUTPUT/5706_Sunday_June_05_2022_03_48_06_PM_15641277/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[_Lienard]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
\]

With the expansion point for the power series method at \(x=0\).
The ODE is
\[
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
\]

Or
\[
x\left(y^{\prime \prime} x+y^{\prime}+x y\right)=0
\]

For \(x \neq 0\) the above simplifies to
\[
y^{\prime \prime} x+y^{\prime}+x y=0
\]

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=1
\end{aligned}
\]

Table 463: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\(x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)+x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x^{2}=0\)

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{2+n+r} a_{n}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{2+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{(r+2)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=-\frac{1}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+2)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{64}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+2)^{2}(r+4)^{2}}\) & \(\frac{1}{64}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+2)^{2}(r+4)^{2}}\) & \(\frac{1}{64}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{1}{(r+2)^{2}(r+4)^{2}(r+6)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=-\frac{1}{2304}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+2)^{2}(r+4)^{2}}\) & \(\frac{1}{64}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{(r+2)^{2}(r+4)^{2}(r+6)^{2}}\) & \(-\frac{1}{2304}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+2)^{2}(r+4)^{2}}\) & \(\frac{1}{64}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{(r+2)^{2}(r+4)^{2}(r+6)^{2}}\) & \(-\frac{1}{2304}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{(r+2)^{2}}\) & \(-\frac{1}{4}\) & \(\frac{2}{(r+2)^{3}}\) & \(\frac{1}{4}\) \\
\hline\(b_{3}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{(r+2)^{2}(r+4)^{2}}\) & \(\frac{1}{64}\) & \(\frac{-4 r-12}{(r+2)^{3}(r+4)^{3}}\) & \(-\frac{3}{128}\) \\
\hline\(b_{5}\) & 0 & 0 & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{1}{(r+2)^{2}(r+4)^{2}(r+6)^{2}}\) & \(-\frac{1}{2304}\) & \(\frac{6 r^{2}+48 r+88}{(r+2)^{3}(r+4)^{3}(r+6)^{3}}\) & \(\frac{11}{13824}\) \\
\hline\(b_{7}\) & 0 & 0 & 0 & 0 \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-\frac{x^{2}}{4}+\frac{x^{4}}{64}-\frac{x^{6}}{2304}+O\left(x^{8}\right)\right) \ln (x)+\frac{x^{2}}{4}-\frac{3 x^{4}}{128}+\frac{11 x^{6}}{13824}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verified OK.}

\subsection*{19.18.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+y x^{2}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x}-y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}+y=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=1\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+y^{\prime}+x y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}\)
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}\)
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+a_{1}(1+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)^{2}+a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation \(r=0\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)^{2}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k+1}(k+1)^{2}+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2)^{2}+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
\]
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)^{2}}, a_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 47
```

Order:=8;
dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+x^2*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-\frac{1}{4} x^{2}+\frac{1}{64} x^{4}-\frac{1}{2304} x^{6}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\left(\frac{1}{4} x^{2}-\frac{3}{128} x^{4}+\frac{11}{13824} x^{6}+\mathrm{O}\left(x^{8}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 81
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+x * y\) ' \(\left.[x]+x^{\wedge} 2 * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{6}}{2304}+\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \\
& +c_{2}\left(\frac{11 x^{6}}{13824}-\frac{3 x^{4}}{128}+\frac{x^{2}}{4}+\left(-\frac{x^{6}}{2304}+\frac{x^{4}}{64}-\frac{x^{2}}{4}+1\right) \log (x)\right)
\end{aligned}
\]

\subsection*{19.19 problem 6}

Internal problem ID [6459]
Internal file name [OUTPUT/5707_Sunday_June_05_2022_03_48_08_PM_91319078/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_change_of__variable_on_y_method_2", "second order series method. Irregular singular point"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear,
_with_symmetry_[0,F(x)]`]]

```

Unable to solve or complete the solution.
\[
y^{\prime \prime}+\frac{y^{\prime}}{x^{2}}-\frac{y}{x^{3}}=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime}+\frac{y^{\prime}}{x^{2}}-\frac{y}{x^{3}}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x^{2}} \\
& q(x)=-\frac{1}{x^{3}}
\end{aligned}
\]

Table 465: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{1}{x^{3}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [\(\infty\)]
Irregular singular points : [0]
Since \(x=0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x=0\) is not regular singular point. Terminating.

Verification of solutions N/A
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(X\) Solution by Maple
```

Order:=8;
dsolve(diff (y (x),x\$2)+1/x^2*diff(y(x),x)-1/x^3*y(x)=0,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 17
AsymptoticDSolveValue \(\left[y\right.\) ' ' \([x]+1 / x^{\wedge} 2 * y\) ' \(\left.[x]-1 / x^{\wedge} 3 * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
y(x) \rightarrow c_{1} x+c_{2} e^{\frac{1}{x}} x
\]

\subsection*{19.20 problem 8}

Internal problem ID [6460]
Internal file name [OUTPUT/5708_Sunday_June_05_2022_03_48_09_PM_26176461/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.4. REGULAR SINGULAR POINTS. Page 175
Problem number: 8.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Irregular singular point"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```

Unable to solve or complete the solution.
\[
x^{2} y^{\prime \prime}+(3 x-1) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+(3 x-1) y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{3 x-1}{x^{2}} \\
& q(x)=\frac{1}{x^{2}}
\end{aligned}
\]

Table 466: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{3 x-1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "irregular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [\(\infty\)]
Irregular singular points : [0]
Since \(x=0\) is not an ordinary point, then we will now check if it is a regular singular point. Unable to solve since \(x=0\) is not regular singular point. Terminating.

Verification of solutions N/A
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(X\) Solution by Maple
```

Order:=8;
dsolve(x^2*diff(y(x), x\$2)+(3*x-1)*diff(y(x),x)+y(x)=0,y(x),type='series', x=0);

```

No solution found
\(\checkmark\) Solution by Mathematica
Time used: 0.043 (sec). Leaf size: 53
AsymptoticDSolveValue [x^2*y' ' \([x]+(3 * x-1) * y '[x]+y[x]==0, y[x],\{x, 0,7\}]\)
\[
y(x) \rightarrow c_{1}\left(5040 x^{7}+720 x^{6}+120 x^{5}+24 x^{4}+6 x^{3}+2 x^{2}+x+1\right)+\frac{c_{2} e^{-1 / x}}{x}
\]
20 Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
20.1 problem 1 3358
20.2 problem 2 3371
20.3 problem 3(a) 3384
20.4 problem 3(b) 3399
20.5 problem 3(c) 3416
20.6 problem 4 3430
20.7 problem 5 3443
20.8 problem 6 3456
20.9 problem 7 3473

\section*{20.1 problem 1}
20.1.1 Maple step by step solution 3367

Internal problem ID [6461]
Internal file name [OUTPUT/5709_Sunday_June_05_2022_03_48_10_PM_16788399/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 1.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{3}{x} \\
& q(x)=\frac{4 x+4}{x^{2}}
\end{aligned}
\]

Table 467: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{3}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x+4}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-3 x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(4 x+4)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& \quad+\left(\sum_{n=1}^{\infty} 4 a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-3 x^{n+r} a_{n}(n+r)+4 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-3 x^{r} a_{0} r+4 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-3 x^{r} r+4 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
(r-2)^{2} x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
(r-2)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=2
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
(r-2)^{2} x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r=2\), Eqs (1A,1B) become
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+2}\right)
\end{aligned}
\]

We start by finding the first solution \(y_{1}(x) . \mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-3 a_{n}(n+r)+4 a_{n-1}+4 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n^{2}+2 n r+r^{2}-4 n-4 r+4} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{4}{(-1+r)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{1}=-4
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{16}{(-1+r)^{2} r^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{2}=4
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{3}=-\frac{16}{9}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline\(a_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=\frac{4}{9}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline\(a_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) \\
\hline\(a_{4}\) & \(\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}\) & \(\frac{4}{9}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{5}=-\frac{16}{225}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline\(a_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) \\
\hline\(a_{4}\) & \(\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}\) & \(\frac{4}{9}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{16}{225}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{4096}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{6}=\frac{16}{2025}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline\(a_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) \\
\hline\(a_{4}\) & \(\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}\) & \(\frac{4}{9}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{16}{225}\) \\
\hline\(a_{6}\) & \(\frac{4096}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{16}{2025}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{16384}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=2\) becomes
\[
a_{7}=-\frac{64}{99225}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 \\
\hline\(a_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 \\
\hline\(a_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) \\
\hline\(a_{4}\) & \(\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}\) & \(\frac{4}{9}\) \\
\hline\(a_{5}\) & \(-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{16}{225}\) \\
\hline\(a_{6}\) & \(\frac{4096}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{16}{2025}\) \\
\hline\(a_{7}\) & \(-\frac{16384}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{64}{99225}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=2\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 \\
\hline\(b_{1}\) & \(-\frac{4}{(-1+r)^{2}}\) & -4 & \(\frac{8}{(-1+r)^{3}}\) \\
\hline\(b_{2}\) & \(\frac{16}{(-1+r)^{2} r^{2}}\) & 4 & \(\frac{-64 r+32}{(-1+r)^{3} r^{3}}\) \\
\hline\(b_{3}\) & \(-\frac{64}{(-1+r)^{2} r^{2}(r+1)^{2}}\) & \(-\frac{16}{9}\) & \(\frac{384 r^{2}-128}{(-1+r)^{3} r^{3}(r+1)^{3}}\) \\
\hline\(b_{4}\) & \(\frac{256}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}}\) & \(\frac{4}{9}\) & \(\frac{-2048 r^{3}-3072 r^{2}+104 r+1024}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}}\) \\
\hline\(b_{5}\) & \(-\frac{1024}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{16}{225}\) & \(\frac{10240 r^{4}+40960^{3}+3070 r^{2}-2040 r-12288}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}(r+3)^{3}}\) \\
\hline\(b_{6}\) & \(\frac{4096}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{16}{2025}\) & \(-\frac{49152\left(r^{4}+6 r^{3}+\frac{32}{3} r^{2}-4 r-\frac{8}{3}\right)\left(\frac{3}{2}+r\right)}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}}\) \\
\hline\(b_{7}\) & \(-\frac{16384}{(-1+r)^{2} r^{2}(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{64}{9925}\) & \(\frac{229376 r^{6}+2752512 r^{5}+11468800 r^{4}+18350080 r^{3}+4816896 r^{2}-1009254}{(-1+r)^{3} r^{3}(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
= & x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x) \\
& +x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}-\frac{392 x^{6}}{10125}+\frac{3872 x^{7}}{1157625}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}-\frac{392 x^{6}}{10125}+\frac{3872 x^{7}}{1157625}+O\left(x^{8}\right)\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
\begin{aligned}
= & c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}-\frac{392 x^{6}}{10125}+\frac{3872 x^{7}}{1157625}+O\left(x^{8}\right)\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x \cdot x)\right) \\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}-\frac{392 x^{6}}{10125}+\frac{3872 x^{7}}{1157625}+O\left(x^{8}\right)\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \\
+ & c_{2}\left(x^{2}\left(4 x^{2}-4 x+1-\frac{16 x^{3}}{9}+\frac{4 x^{4}}{9}-\frac{16 x^{5}}{225}+\frac{16 x^{6}}{2025}-\frac{64 x^{7}}{99225}+O\left(x^{8}\right)\right) \ln (x)\right. \\
& \left.+x^{2}\left(-12 x^{2}+8 x+\frac{176 x^{3}}{27}-\frac{50 x^{4}}{27}+\frac{1096 x^{5}}{3375}-\frac{392 x^{6}}{10125}+\frac{3872 x^{7}}{1157625}+O\left(x^{8}\right)\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{20.1.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{3 y^{\prime}}{x}-\frac{4(1+x) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{3 y^{\prime}}{x}+\frac{4(1+x) y}{x^{2}}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{3}{x}, P_{3}(x)=\frac{4(1+x)}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-3\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=4\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}-3 x y^{\prime}+(4 x+4) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(-2+r)^{2} x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}(k+r-2)^{2}+4 a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
(-2+r)^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r=2
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k}(k+r-2)^{2}+4 a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
a_{k+1}(k+r-1)^{2}+4 a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{4 a_{k}}{(k+r-1)^{2}}
\]
- Recursion relation for \(r=2\)
\[
a_{k+1}=-\frac{4 a_{k}}{(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+1}=-\frac{4 a_{k}}{(k+1)^{2}}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 81
```

Order:=8;
dsolve(x^2*diff(y(x),x\$2)-3*x*diff(y(x),x)+(4*x+4)*y(x)=0,y(x),type='series',x=0);

```
\(y(x)=\left(\left(c_{2} \ln (x)+c_{1}\right)\left(1-4 x+4 x^{2}-\frac{16}{9} x^{3}+\frac{4}{9} x^{4}-\frac{16}{225} x^{5}+\frac{16}{2025} x^{6}-\frac{64}{99225} x^{7}\right.\right.\)
\[
\begin{array}{r}
\left.+\mathrm{O}\left(x^{8}\right)\right) \\
\left.+\left(8 x-12 x^{2}+\frac{176}{27} x^{3}-\frac{50}{27} x^{4}+\frac{1096}{3375} x^{5}-\frac{392}{10125} x^{6}+\frac{3872}{1157625} x^{7}+\mathrm{O}\left(x^{8}\right)\right) c_{2}\right) x^{2}
\end{array}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 158
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]-3 * x * y\) ' \(\left.[x]+(4 * x+4) * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{64 x^{7}}{99225}+\frac{16 x^{6}}{2025}-\frac{16 x^{5}}{225}+\frac{4 x^{4}}{9}-\frac{16 x^{3}}{9}+4 x^{2}-4 x+1\right) x^{2} \\
+ & c_{2}\left(\left(\frac{3872 x^{7}}{1157625}-\frac{392 x^{6}}{10125}+\frac{1096 x^{5}}{3375}-\frac{50 x^{4}}{27}+\frac{176 x^{3}}{27}-12 x^{2}+8 x\right) x^{2}\right. \\
& \left.+\left(-\frac{64 x^{7}}{99225}+\frac{16 x^{6}}{2025}-\frac{16 x^{5}}{225}+\frac{4 x^{4}}{9}-\frac{16 x^{3}}{9}+4 x^{2}-4 x+1\right) x^{2} \log (x)\right)
\end{aligned}
\]

\section*{20.2 problem 2}
20.2.1 Maple step by step solution

3380
Internal problem ID [6462]
Internal file name [OUTPUT/5710_Sunday_June_05_2022_03_48_13_PM_75573943/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 2.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-2 \\
& q(x)=\frac{4 x^{2}+1}{4 x^{2}}
\end{aligned}
\]

Table 469: Table \(p(x), q(x)\) singularites.
\[

\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x^{2}+1}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-8 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(4 x^{2}+1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-8 x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} 4 x^{n+r+2} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-8 x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-8 a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} 4 x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} 4 a_{n-2} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-8 a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} 4 a_{n-2} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
4 x^{n+r} a_{n}(n+r)(n+r-1)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
4 x^{r} a_{0} r(-1+r)+a_{0} x^{r}=0
\]

Or
\[
\left(4 x^{r} r(-1+r)+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{r}(2 r-1)^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
(2 r-1)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{r}(2 r-1)^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. Using the value of the indicial root found earlier, \(r=\frac{1}{2}\), Eqs (1A,1B) become
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+\frac{1}{2}}\right)
\end{aligned}
\]

We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the
indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{8 r}{(2 r+1)^{2}}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
4 a_{n}(n+r)(n+r-1)-8 a_{n-1}(n+r-1)+4 a_{n-2}+a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{8 n a_{n-1}+8 r a_{n-1}-4 a_{n-2}-8 a_{n-1}}{4 n^{2}+8 n r+4 r^{2}-4 n-4 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{(2 n-1) a_{n-1}-a_{n-2}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1280 r^{4}+7680 r^{3}+13440 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1280 r^{4}+7680 r^{3}+1340 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{6144(2+r)\left(r^{4}+8 r^{3}+\frac{109}{6} r^{2}+\frac{26}{3} r-\frac{31}{16}\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}(9+2 r)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1280 r^{4}+7680 r^{3}+13440 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(\frac{6144(2+r)\left(r^{4}+8 r^{3}+\frac{109}{6} r^{2}+\frac{26}{3} r-\frac{31}{16}\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}(9+2 r)^{2}}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{28672 r^{6}+430080 r^{5}+2401280 r^{4}+6092800 r^{3}+6650112 r^{2}+1890560 r-584256}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{256 r^{3}+768 r^{2}+48 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1280 r^{4}+76803^{3}+13440 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(\frac{6144(2+r)\left(r^{4}+8 r^{3}+\frac{109}{6} r^{2}+\frac{26}{3} r-\frac{31}{16}\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}(9+2 r)^{2}}\) & \(\frac{1}{120}\) \\
\hline\(a_{6}\) & \(\frac{28672 r^{6}+430080 r^{5}+2401280 r^{4}+609280 r^{3}+6650112 r^{2}+1890560 r-584256}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{720}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{131072\left(r^{6}+18 r^{5}+\frac{477}{4} r^{4}+351 r^{3}+\frac{6819}{16} r^{2}+\frac{1017}{8} r-\frac{2689}{64}\right)(r+3)}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(13+2 r)^{2}}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=\frac{1}{5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 \\
\hline\(a_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1280 r^{4}+7680 r^{3}+13440 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(\frac{6144(2+r)\left(r^{4}+8 r^{3}+\frac{109}{6} r^{2}+\frac{26}{3} r-\frac{31}{16}\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}(9+2 r)^{2}}\) & \(\frac{1}{120}\) \\
\hline\(a_{6}\) & \(\frac{28672 r^{6}+430080 r^{5}+2401280 r^{4}+6092800 r^{3}+6650112 r^{2}+1890560 r-584256}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{720}\) \\
\hline\(a_{7}\) & \(\frac{131072\left(r^{6}+18 r^{5}+\frac{477}{4} r^{4}+351 r^{3}+\frac{6819}{16} r^{2}+\frac{1017}{8} r-\frac{2689}{64}\right)(r+3)}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(13+2 r)^{2}}\) & \(\frac{1}{5040}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=\frac{1}{2}\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 \\
\hline\(b_{1}\) & \(\frac{8 r}{(2 r+1)^{2}}\) & 1 & \(\frac{-16 r+8}{(2 r+1)^{3}}\) \\
\hline\(b_{2}\) & \(\frac{48 r^{2}+48 r-4}{(3+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{2}\) & \(\frac{-384 r^{3}-576 r^{2}-32 r+208}{(3+2 r)^{3}(2 r+1)^{3}}\) \\
\hline\(b_{3}\) & \(\frac{256 r^{3}+768 r^{2}+448 r-64}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{6}\) & \(-\frac{6144\left(r^{4}+6 r^{3}+13 r^{2}+12 r+\frac{197}{48}\right)\left(r-\frac{1}{2}\right)}{(3+2 r)^{3}(5+2 r)^{3}(2 r+1)^{3}}\) \\
\hline\(b_{4}\) & \(\frac{1280 r^{4}+7680 r^{3}+1340 r^{2}+5760 r-1136}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}}\) & \(\frac{1}{24}\) & \(-\frac{81920\left(r-\frac{1}{2}\right)\left(r^{6}+12 r^{5}+\frac{231}{4} r^{4}+142 r^{3}+\frac{15003}{80}\right.}{(3+2 r)^{3}(5+2 r)^{3}(2 r+1)^{3}(7+2}\) \\
\hline\(b_{5}\) & \(\frac{6144(2+r)\left(r^{4}+8 r^{3}+\frac{109}{6} r^{2}+\frac{26}{3} r-\frac{31}{16}\right)}{(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(7+2 r)^{2}(9+2 r)^{2}}\) & \(\frac{1}{120}\) & \(-\frac{983040\left(r-\frac{1}{2}\right)\left(r^{8}+20 r^{7}+\frac{508}{3} r^{6}+790 r^{5}+\frac{1702}{8}\right.}{(9+2 r)^{3}(7+2 r)^{3}(3+2 r)}\) \\
\hline\(b_{6}\) & \(\frac{28672 r^{6}+430080 r^{5}+2401288 r^{4}+6092800 r^{3}+6650112 r^{2}+1890560 r-584256}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}}\) & \(\frac{1}{720}\) & \(\left.-\frac{11010048\left(r-\frac{1}{2}\right)\left(r^{10}+30 r^{9}+\frac{1575}{4} r^{8}+2970 r^{7}+\right.}{9} 9+2 r\right)\) \\
\hline\(b_{7}\) & \(\frac{131072\left(r^{6}+18 r^{5}+\frac{477}{4} r^{4}+351 r^{3}+\frac{6819}{16} r^{2}+\frac{1017}{8} r-\frac{2649}{64}\right)(r+3)}{(9+2 r)^{2}(7+2 r)^{2}(11+2 r)^{2}(3+2 r)^{2}(5+2 r)^{2}(2 r+1)^{2}(13+2 r)^{2}}\) & \(\frac{1}{5040}\) & \(-\frac{117440512\left(r^{12}+42 r^{11}+789 r^{10}+8750 r^{9}+\frac{1018}{1}\right.}{}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x) & =y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+\sqrt{x} O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+\sqrt{x} O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+\sqrt{x} O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)\right. \tag{1}\\
& \left.+\sqrt{x} O\left(x^{8}\right)\right)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\sqrt{x}\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{120}+\frac{x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+\sqrt{x} O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{20.2.1 Maple step by step solution}

Let's solve
\[
4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=2 y^{\prime}-\frac{\left(4 x^{2}+1\right) y}{4 x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-2 y^{\prime}+\frac{\left(4 x^{2}+1\right) y}{4 x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-2, P_{3}(x)=\frac{4 x^{2}+1}{4 x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}-8 x^{2} y^{\prime}+\left(4 x^{2}+1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime}\) to series expansion
\(x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}\)
- Shift index using \(k->k-1\)
\(x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(-1+2 r)^{2} x^{r}+\left(a_{1}(1+2 r)^{2}-8 a_{0} r\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(2 k+2 r-1)^{2}-8 a_{k-1}(k-1+r)+4 a_{k}\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((-1+2 r)^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=\frac{1}{2}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+2 r)^{2}-8 a_{0} r=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=\frac{8 a_{0} r}{4 r^{2}+4 r+1}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(2 k+2 r-1)^{2}+(-8 k-8 r+8) a_{k-1}+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\[
a_{k+2}(2 k+3+2 r)^{2}+(-8 k-8-8 r) a_{k+1}+4 a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=\frac{4\left(2 k a_{k+1}+2 r a_{k+1}-a_{k}+2 a_{k+1}\right)}{(2 k+3+2 r)^{2}}
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=\frac{4\left(2 k a_{k+1}-a_{k}+3 a_{k+1}\right)}{(2 k+4)^{2}}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=\frac{4\left(2 k a_{k+1}-a_{k}+3 a_{k+1}\right)}{(2 k+4)^{2}}, a_{1}=a_{0}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 57
```

Order:=8;
dsolve(4*x^2*diff (y(x),x\$2)-8*x^2*diff (y (x),x)+(4*x^2+1)*y(x)=0,y(x),type='series',x=0);

```
\(y(x)=\sqrt{x}\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}\right)\left(c_{2} \ln (x)+c_{1}\right)+O\left(x^{8}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.008 (sec). Leaf size: 112
AsymptoticDSolveValue[4*x^2*y' ' \([\mathrm{x}]-8 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\left(4 * \mathrm{x}^{\wedge} 2+1\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right) \\
& +c_{2} \sqrt{x}\left(\frac{x^{7}}{5040}+\frac{x^{6}}{720}+\frac{x^{5}}{120}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right) \log (x)
\end{aligned}
\]

\section*{20.3 problem 3(a)}
20.3.1 Maple step by step solution

3395
Internal problem ID [6463]
Internal file name [OUTPUT/5711_Sunday_June_05_2022_03_48_16_PM_5850439/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]
\[
y^{\prime \prime} x+2 y^{\prime}+x y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime} x+2 y^{\prime}+x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{2}{x} \\
q(x) & =1
\end{aligned}
\]

Table 471: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
y^{\prime \prime} x+2 y^{\prime}+x y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x+2\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+2(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+2 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+2 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(1+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(1+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+2 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(1+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}+5 r+6}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{1}{\left(r^{4}+14 r^{3}+71 r^{2}+154 r+120\right)\left(r^{2}+13 r+42\right)}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=-\frac{1}{5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{\left(r^{4}+14 r^{3}+71 r^{2}+154 r+120\right)\left(r^{2}+13 r+42\right)}\) & \(-\frac{1}{5040}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{\left(r^{4}+14 r^{3}+71 r^{2}+154 r+120\right)\left(r^{2}+13 r+42\right)}\) & \(-\frac{1}{5040}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if
\(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-1} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+2(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}(n-1)(n-2)+2(n-1) b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}+n+r} \tag{5}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{1}{r^{2}+5 r+6}
\]

Which for the root \(r=-1\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)}
\]

Which for the root \(r=-1\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=-\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)\left(r^{2}+13 r+42\right)}
\]

Which for the root \(r=-1\) becomes
\[
b_{6}=-\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)\left(r^{2}+13 r+42\right)}\) & \(-\frac{1}{720}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}+5 r+6}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+14 r^{3}+71 r^{2}+154 r+120}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{1}{\left(r^{2}+5 r+6\right)\left(r^{2}+9 r+20\right)\left(r^{2}+13 r+42\right)}\) & \(-\frac{1}{720}\) \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{x}
\]

Verified OK.

\subsection*{20.3.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+2 y^{\prime}+x y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{2 y^{\prime}}{x}-y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 y^{\prime}}{x}+y=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2}{x}, P_{3}(x)=1\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=2\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+2 y^{\prime}+x y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}\)
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}\)
- Convert \(y^{\prime}\) to series expansion
\(y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(1+r) x^{-1+r}+a_{1}(1+r)(2+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k+2+r)+a_{k-1}\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(1+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-1,0\}
\]
- Each term must be 0
\(a_{1}(1+r)(2+r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+r+1)(k+2+r)+a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k+3+r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k}}{(k+2+r)(k+3+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}\)
- \(\quad\) Solution for \(r=-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0\right]\)
- Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)(k+3)}, 2 a_{1}=0\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right), a_{k+2}=-\frac{a_{k}}{(k+1)(k+2)}, 0=0, b_{k+2}=-\frac{b_{k}}{(k+2)(k+3)}, 2 b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 36
```

Order:=8;
dsolve(x*diff(y(x),x\$2)+2*diff(y(x),x)+x*y(x)=0,y(x),type='series',x=0);

```
\(y(x)=c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}-\frac{1}{5040} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\mathrm{O}\left(x^{8}\right)\right)}{x}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 56
```

AsymptoticDSolveValue[x*y''[x]+2*y'[x]+x*y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{5}}{720}+\frac{x^{3}}{24}-\frac{x}{2}+\frac{1}{x}\right)+c_{2}\left(-\frac{x^{6}}{5040}+\frac{x^{4}}{120}-\frac{x^{2}}{6}+1\right)
\]

\section*{20.4 problem 3(b)}
20.4.1 Maple step by step solution . 3412

Internal problem ID [6464]
Internal file name [OUTPUT/5712_Sunday_June_05_2022_03_48_19_PM_62898894/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-1 \\
& q(x)=\frac{x^{2}-2}{x^{2}}
\end{aligned}
\]

Table 473: Table \(p(x), q(x)\) singularites.
\[

\]
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x^{2}-2}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& \quad-x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-2\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \\
\sum_{n=0}^{\infty} x^{n+r+2} a_{n} & =\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-2 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-r-2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-r-2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-r-2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=3\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{r}{r^{2}+r-2}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n-2}-2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{n a_{n-1}+r a_{n-1}-a_{n-2}-a_{n-1}}{n^{2}+2 n r+r^{2}-n-r-2} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=\frac{n a_{n-1}-a_{n-2}+a_{n-1}}{n(n+3)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{2}{\left(r^{2}+r-2\right) r(r+3)}
\]

Which for the root \(r=2\) becomes
\[
a_{2}=\frac{1}{20}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}
\]

Which for the root \(r=2\) becomes
\[
a_{3}=-\frac{1}{60}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline\(a_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(-\frac{1}{60}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=-\frac{1}{210}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline\(a_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(-\frac{1}{60}\) \\
\hline\(a_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(-\frac{1}{210}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}
\]

Which for the root \(r=2\) becomes
\[
a_{5}=-\frac{1}{3360}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline\(a_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(-\frac{1}{60}\) \\
\hline\(a_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(-\frac{1}{210}\) \\
\hline\(a_{5}\) & \(-\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}\) & \(-\frac{1}{3360}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{r^{2}+5 r-8}{(r+7)(r+4)(r+5)(-1+r)(r+2) r(r+3)(r+6)}
\]

Which for the root \(r=2\) becomes
\[
a_{6}=\frac{1}{20160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline\(a_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(-\frac{1}{60}\) \\
\hline\(a_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(-\frac{1}{210}\) \\
\hline\(a_{5}\) & \(-\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}\) & \(-\frac{1}{3360}\) \\
\hline\(a_{6}\) & \(\frac{r^{2}+5 r-8}{(r+7)(r+4)(r+5)(-1+r)(r+2) r(r+3)(r+6)}\) & \(\frac{1}{20160}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{r^{2}+6 r-4}{(r+8)(r+5)(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+7)}
\]

Which for the root \(r=2\) becomes
\[
a_{7}=\frac{1}{100800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{20}\) \\
\hline\(a_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(-\frac{1}{60}\) \\
\hline\(a_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(-\frac{1}{210}\) \\
\hline\(a_{5}\) & \(\frac{-\frac{1}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}}{r^{2}+5 r-8}\) & \(-\frac{1}{3360}\) \\
\hline\(a_{6}\) & \(\frac{1}{(r+7)(r+4)(r+5)(-1+r)(r+2) r(r+3)(r+6)}\) & \(\frac{1}{20160}\) \\
\hline\(a_{7}\) & \(\frac{r^{2}+6 r-4}{(r+8)(r+5)(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+7)}\) & \(\frac{1}{100800}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1+\frac{x}{2}+\frac{x^{2}}{20}-\frac{x^{3}}{60}-\frac{x^{4}}{210}-\frac{x^{5}}{3360}+\frac{x^{6}}{20160}+\frac{x^{7}}{100800}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=3\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{3}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{3} \\
& =\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} \frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)} & =\lim _{r \rightarrow-1} \frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)} \\
& =\frac{5}{12}
\end{aligned}
\]

The limit is \(\frac{5}{12}\). Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-1}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=\frac{r}{r^{2}+r-2}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+b_{n-2}-2 b_{n}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}(n-1)(n-2)-b_{n-1}(n-2)+b_{n-2}-2 b_{n}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{n b_{n-1}+r b_{n-1}-b_{n-2}-b_{n-1}}{n^{2}+2 n r+r^{2}-n-r-2} \tag{5}
\end{equation*}
\]

Which for the root \(r=-1\) becomes
\[
\begin{equation*}
b_{n}=\frac{n b_{n-1}-b_{n-2}-2 b_{n-1}}{n^{2}-3 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{2}{\left(r^{2}+r-2\right) r(r+3)}
\]

Which for the root \(r=-1\) becomes
\[
b_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-\frac{r^{2}+2 r-4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}
\]

Which for the root \(r=-1\) becomes
\[
b_{3}=\frac{5}{12}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{5}{12}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=-\frac{r^{2}+3 r-2}{\left(r^{2}+7 r+10\right)(r+3) r(-1+r)(r+4)}
\]

Which for the root \(r=-1\) becomes
\[
b_{4}=\frac{1}{12}
\]

And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{5}{12}\) \\
\hline\(b_{4}\) & \(\frac{-r^{2}-3+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(\frac{1}{12}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=-\frac{4}{\left(r^{2}+9 r+18\right) r\left(r^{2}+r-2\right)(r+4)(r+5)}
\]

Which for the root \(r=-1\) becomes
\[
b_{5}=-\frac{1}{60}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{5}{12}\) \\
\hline\(b_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(\frac{1}{12}\) \\
\hline\(b_{5}\) & \(-\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}\) & \(-\frac{1}{60}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{r^{2}+5 r-8}{(-1+r) r(r+3)\left(r^{2}+7 r+10\right)(r+6)\left(r^{2}+11 r+28\right)}
\]

Which for the root \(r=-1\) becomes
\[
b_{6}=-\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{5}{12}\) \\
\hline\(b_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(\frac{1}{12}\) \\
\hline\(b_{5}\) & \(-\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}\) & \(-\frac{1}{60}\) \\
\hline\(b_{6}\) & \(\frac{r^{2}+5 r-8}{(r+7)(r+4)(r+5)(-1+r)(r+2) r(r+3)(r+6)}\) & \(-\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=\frac{r^{2}+6 r-4}{(r+4)\left(r^{2}+r-2\right) r\left(r^{2}+9 r+18\right)(r+7)\left(r^{2}+13 r+40\right)}
\]

Which for the root \(r=-1\) becomes
\[
b_{7}=-\frac{1}{1120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{r}{r^{2}+r-2}\) & \(\frac{1}{2}\) \\
\hline\(b_{2}\) & \(\frac{2}{\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{1}{2}\) \\
\hline\(b_{3}\) & \(\frac{-r^{2}-2 r+4}{(r+4)\left(r^{2}+r-2\right) r(r+3)}\) & \(\frac{5}{12}\) \\
\hline\(b_{4}\) & \(\frac{-r^{2}-3 r+2}{(r+5)(r+2)(r+3) r(-1+r)(r+4)}\) & \(\frac{1}{12}\) \\
\hline\(b_{5}\) & \(\frac{4}{(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+5)}\) & \(-\frac{1}{60}\) \\
\hline\(b_{6}\) & \(\frac{r^{2}+5 r-8}{(r+7)(r+4)(r+5)(-1+r)(r+2) r(r+3)(r+6)}\) & \(-\frac{1}{120}\) \\
\hline\(b_{7}\) & \(\frac{r^{2}+6 r-4}{(r+8)(r+5)(r+6)(r+3) r(r+2)(-1+r)(r+4)(r+7)}\) & \(-\frac{1}{1120}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =x^{2}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1+\frac{x}{2}+\frac{x^{2}}{2}+\frac{5 x^{3}}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{120}-\frac{x^{7}}{1120}+O\left(x^{8}\right)}{x}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{2}\left(1+\frac{x}{2}+\frac{x^{2}}{20}-\frac{x^{3}}{60}-\frac{x^{4}}{210}-\frac{x^{5}}{3360}+\frac{x^{6}}{20160}+\frac{x^{7}}{100800}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{2}+\frac{5 x^{3}}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{120}-\frac{x^{7}}{1120}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x^{2}\left(1+\frac{x}{2}+\frac{x^{2}}{20}-\frac{x^{3}}{60}-\frac{x^{4}}{210}-\frac{x^{5}}{3360}+\frac{x^{6}}{20160}+\frac{x^{7}}{100800}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{2}+\frac{5 x^{3}}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{120}-\frac{x^{7}}{1120}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x^{2}\left(1+\frac{x}{2}+\frac{x^{2}}{20}-\frac{x^{3}}{60}-\frac{x^{4}}{210}-\frac{x^{5}}{3360}+\frac{x^{6}}{20160}+\frac{x^{7}}{100800}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{2}+\frac{5 x^{3}}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{120}-\frac{x^{7}}{1120}+O\left(x^{8}\right)\right)}{x} \tag{1}
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} x^{2}\left(1+\frac{x}{2}+\frac{x^{2}}{20}-\frac{x^{3}}{60}-\frac{x^{4}}{210}-\frac{x^{5}}{3360}+\frac{x^{6}}{20160}+\frac{x^{7}}{100800}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{x}{2}+\frac{x^{2}}{2}+\frac{5 x^{3}}{12}+\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{120}-\frac{x^{7}}{1120}+O\left(x^{8}\right)\right)}{x}
\end{aligned}
\]

Verified OK.

\subsection*{20.4.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=y^{\prime}-\frac{\left(x^{2}-2\right) y}{x^{2}}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-y^{\prime}+\frac{\left(x^{2}-2\right) y}{x^{2}}=0\)

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-1, P_{3}(x)=\frac{x^{2}-2}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-2\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}-x^{2} y^{\prime}+\left(x^{2}-2\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime}\) to series expansion
\(x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}\)
- \(\quad\) Shift index using \(k->k-1\)
\[
x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}(1+r)(-2+r) x^{r}+\left(a_{1}(2+r)(-1+r)-a_{0} r\right) x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k+r-2)-a_{k-}\right.\right.\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+r)(-2+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,2\}\)
- \(\quad\) Each term must be 0
\(a_{1}(2+r)(-1+r)-a_{0} r=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=\frac{a_{0} r}{r^{2}+r-2}\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}(k+r+1)(k+r-2)-a_{k-1} k-a_{k-1} r+a_{k-2}+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+3+r)(k+r)-a_{k+1}(k+2)-a_{k+1} r+a_{k}+a_{k+1}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=\frac{k a_{k+1}+a_{k+1} r-a_{k}+a_{k+1}}{(k+3+r)(k+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+2}=\frac{k a_{k+1}-a_{k}}{(k+2)(k-1)}\)
- Series not valid for \(r=-1\), division by 0 in the recursion relation at \(k=1\)
\[
a_{k+2}=\frac{k a_{k+1}-a_{k}}{(k+2)(k-1)}
\]
- \(\quad\) Recursion relation for \(r=2\)
\[
a_{k+2}=\frac{k a_{k+1}-a_{k}+3 a_{k+1}}{(k+5)(k+2)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+2}=\frac{k a_{k+1}-a_{k}+3 a_{k+1}}{(k+5)(k+2)}, a_{1}=\frac{a_{0}}{2}\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 55
```

Order:=8;
dsolve(x^2*diff (y(x),x\$2)-x^2*diff(y(x),x)+(x^2-2)*y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x^{2}\left(1+\frac{1}{2} x+\frac{1}{20} x^{2}-\frac{1}{60} x^{3}-\frac{1}{210} x^{4}-\frac{1}{3360} x^{5}+\frac{1}{20160} x^{6}+\frac{1}{100800} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(12+6 x+6 x^{2}+5 x^{3}+x^{4}-\frac{1}{5} x^{5}-\frac{1}{10} x^{6}-\frac{3}{280} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{x}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.069 (sec). Leaf size: 96
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' \(\left.\quad[x]-x^{\wedge} 2 * y '[x]+(x \wedge 2-2) * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{5}}{120}-\frac{x^{4}}{60}+\frac{x^{3}}{12}+\frac{5 x^{2}}{12}+\frac{x}{2}+\frac{1}{x}+\frac{1}{2}\right) \\
& +c_{2}\left(\frac{x^{8}}{20160}-\frac{x^{7}}{3360}-\frac{x^{6}}{210}-\frac{x^{5}}{60}+\frac{x^{4}}{20}+\frac{x^{3}}{2}+x^{2}\right)
\end{aligned}
\]

\section*{20.5 problem 3(c)}
20.5.1 Maple step by step solution 3426

Internal problem ID [6465]
Internal file name [OUTPUT/5713_Sunday_June_05_2022_03_48_23_PM_95481906/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 3(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_Emden, _Fowler], [_2nd_order, _linear, ` _with_symmetry_[0,F(     x)]`]]

```
\[
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{x} \\
& q(x)=4 x^{2}
\end{aligned}
\]

Table 475: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=4 x^{2}\)} \\
\hline singularity & type \\
\hline\(x=\infty\) & "regular" \\
\hline\(x=-\infty\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty,-\infty]\)
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right) x^{3}=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 4 x^{3+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 4 x^{3+n+r} a_{n}=\sum_{n=4}^{\infty} 4 a_{n-4} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=4}^{\infty} 4 a_{n-4} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)-(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)-r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)-r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-2+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(-2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-2+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{2}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+2} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=0
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=0
\]

For \(4 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n}(n+r)+4 a_{n-4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-4}}{n^{2}+2 n r+r^{2}-2 n-2 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=2\) becomes
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-4}}{n(n+2)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=-\frac{4}{r^{2}+6 r+8}
\]

Which for the root \(r=2\) becomes
\[
a_{4}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{6}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{6}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{6}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{2}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{2}\left(1-\frac{x^{4}}{6}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=2\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{2}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{2} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow 0} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\operatorname{Eq}(3)\) gives
\[
b_{1}=0
\]

Substituting \(n=2\) in \(\mathrm{Eq}(3)\) gives
\[
b_{2}=0
\]

Substituting \(n=3\) in \(\mathrm{Eq}(3)\) gives
\[
b_{3}=0
\]

For \(4 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-(n+r) b_{n}+4 b_{n-4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n} n(n-1)-n b_{n}+4 b_{n-4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-4}}{n^{2}+2 n r+r^{2}-2 n-2 r} \tag{5}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-4}}{n^{2}-2 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=-\frac{4}{r^{2}+6 r+8}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{2}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{2}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(-\frac{4}{r^{2}+6 r+8}\) & \(-\frac{1}{2}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-\frac{x^{4}}{2}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{2}\left(1-\frac{x^{4}}{6}+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y & =y_{h} \\
& =c_{1} x^{2}\left(1-\frac{x^{4}}{6}+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{2}\left(1-\frac{x^{4}}{6}+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{8}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{2}\left(1-\frac{x^{4}}{6}+O\left(x^{8}\right)\right)+c_{2}\left(1-\frac{x^{4}}{2}+O\left(x^{8}\right)\right)
\]

Verified OK.

\subsection*{20.5.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{y^{\prime}}{x}-4 y x^{2}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{y^{\prime}}{x}+4 y x^{2}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{1}{x}, P_{3}(x)=4 x^{2}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
y^{\prime \prime} x-y^{\prime}+4 y x^{3}=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x^{3} \cdot y\) to series expansion
\(x^{3} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+3}\)
- Shift index using \(k->k-3\)
\[
x^{3} \cdot y=\sum_{k=3}^{\infty} a_{k-3} x^{k+r}
\]
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(-2+r) x^{-1+r}+a_{1}(1+r)(-1+r) x^{r}+a_{2}(2+r) r x^{1+r}+a_{3}(3+r)(1+r) x^{2+r}+\left(\sum _ { k = 3 } ^ { \infty } \left(a_{k}\right.\right.
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-2+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{0,2\}
\]
- \(\quad\) The coefficients of each power of \(x\) must be 0
\[
\left[a_{1}(1+r)(-1+r)=0, a_{2}(2+r) r=0, a_{3}(3+r)(1+r)=0\right]
\]
- \(\quad\) Solve for the dependent coefficient(s)
\(\left\{a_{1}=0, a_{2}=0, a_{3}=0\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k+1}(k+1+r)(k+r-1)+4 a_{k-3}=0
\]
- \(\quad\) Shift index using \(k->k+3\)
\[
a_{k+4}(k+4+r)(k+2+r)+4 a_{k}=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+4}=-\frac{4 a_{k}}{(k+4+r)(k+2+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
\]
- Recursion relation for \(r=2\)
\[
a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}
\]
- \(\quad\) Solution for \(r=2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+2}, a_{k+4}=-\frac{4 a_{k}}{(k+6)(k+4)}, a_{1}=0, a_{2}=0, a_{3}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+2}\right), a_{k+4}=-\frac{4 a_{k}}{(k+4)(k+2)}, a_{1}=0, a_{2}=0, a_{3}=0, b_{k+4}=-\frac{4 b_{k}}{(k+6)(k+4)}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 28
```

Order:=8;
dsolve(x*diff(y(x),x\$2)-diff(y(x),x)+4*x^3*y(x)=0,y(x),type='series', x=0);

```
\[
y(x)=c_{1} x^{2}\left(1-\frac{1}{6} x^{4}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(-2+x^{4}+\mathrm{O}\left(x^{8}\right)\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 30
AsymptoticDSolveValue[x*y''[x]-y'[x]+4*x^3*y[x]==0,y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{1}\left(1-\frac{x^{4}}{2}\right)+c_{2}\left(x^{2}-\frac{x^{6}}{6}\right)
\]

\section*{20.6 problem 4}
20.6.1 Maple step by step solution

Internal problem ID [6466]
Internal file name [OUTPUT/5714_Sunday_June_05_2022_03_48_25_PM_35635026/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 4.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
(x-1)^{2} y^{\prime \prime}-3(x-1) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=1\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=x-1
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-3 t\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the
homogeneous part of the ODE.
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-3 t\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
& p(t)=-\frac{3}{t} \\
& q(t)=\frac{2}{t^{2}}
\end{aligned}
\]

Table 477: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=-\frac{3}{t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{2}{t^{2}}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-3 t\left(\frac{d}{d t} y(t)\right)+2 y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t^{2}-3 t\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 t^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} t^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(t\) be \(n+r\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in Eq (2A) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-3 t^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} t^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
t^{n+r} a_{n}(n+r)(n+r-1)-3 t^{n+r} a_{n}(n+r)+2 a_{n} t^{n+r}=0
\]

When \(n=0\) the above becomes
\[
t^{r} a_{0} r(-1+r)-3 t^{r} a_{0} r+2 a_{0} t^{r}=0
\]

Or
\[
\left(t^{r} r(-1+r)-3 t^{r} r+2 t^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-4 r+2\right) t^{r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
r^{2}-4 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=2+\sqrt{2} \\
& r_{2}=2-\sqrt{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-4 r+2\right) t^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2 \sqrt{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+2+\sqrt{2}} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n+2-\sqrt{2}}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-3 a_{n}(n+r)+2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=2+\sqrt{2}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=2+\sqrt{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =t^{2+\sqrt{2}}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =t^{2+\sqrt{2}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-3 b_{n}(n+r)+2 b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=2-\sqrt{2}\) becomes
\[
\begin{equation*}
b_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=2-\sqrt{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =t^{2+\sqrt{2}}\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots\right) \\
& =t^{2-\sqrt{2}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t) & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =c_{1} t^{2+\sqrt{2}}\left(1+O\left(t^{8}\right)\right)+c_{2} t^{2-\sqrt{2}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t) & =y_{h} \\
& =c_{1} t^{2+\sqrt{2}}\left(1+O\left(t^{8}\right)\right)+c_{2} t^{2-\sqrt{2}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x s\) using \(t=x-1\) results in
\[
y=c_{1}(x-1)^{2+\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right)+c_{2}(x-1)^{2-\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}(x-1)^{2+\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right)+c_{2}(x-1)^{2-\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1}(x-1)^{2+\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right)+c_{2}(x-1)^{2-\sqrt{2}}\left(1+O\left((x-1)^{8}\right)\right)
\]

Verified OK.

\subsection*{20.6.1 Maple step by step solution}

Let's solve
\((x-1)^{2} y^{\prime \prime}+(3-3 x) y^{\prime}+2 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{3 y^{\prime}}{x-1}-\frac{2 y}{(x-1)^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{3 y^{\prime}}{x-1}+\frac{2 y}{(x-1)^{2}}=0\)
Check to see if \(x_{0}=1\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{3}{x-1}, P_{3}(x)=\frac{2}{(x-1)^{2}}\right]\)
- \((x-1) \cdot P_{2}(x)\) is analytic at \(x=1\)
\(\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=-3\)
- \((x-1)^{2} \cdot P_{3}(x)\) is analytic at \(x=1\)
\(\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=2\)
- \(x=1\) is a regular singular point

Check to see if \(x_{0}=1\) is a regular singular point
\[
x_{0}=1
\]
- Multiply by denominators
\[
(x-1)^{2} y^{\prime \prime}+(3-3 x) y^{\prime}+2 y=0
\]
- \(\quad\) Change variables using \(x=u+1\) so that the regular singular point is at \(u=0\) \(u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)-3 u\left(\frac{d}{d u} y(u)\right)+2 y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite DE with series expansions
- Convert \(u \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion
\(u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}\)
- Convert \(u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\[
u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}
\]

Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty} a_{k}\left(k^{2}+2 k r+r^{2}-4 k-4 r+2\right) u^{k+r}=0
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r=0
\]
- \(\quad\) Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(k^{2}-4 k+2\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k}=0
\]
- Recursion relation for \(r=0\)
\(a_{k}=0\)
- \(\quad\) Solution for \(r=0\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]\)
- \(\quad\) Revert the change of variables \(u=x-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type <- LODE of Euler type successful`

```

Solution by Maple
Time used: 0.016 (sec). Leaf size: 41
```

Order:=8;
dsolve((x-1)^2*diff(y(x),x\$2)-3*(x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series', x=1);

```
\[
y(x)=(x-1)^{2}\left(c_{1}(x-1)^{-\sqrt{2}}+c_{2}(x-1)^{\sqrt{2}}\right)+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 34
AsymptoticDSolveValue \([(x-1) \sim 2 * y '\) ' \([\mathrm{x}]-3 *(\mathrm{x}-1) * \mathrm{y}\) ' \([\mathrm{x}]+2 * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 1,7\}]\)
\[
y(x) \rightarrow c_{1}(x-1)^{2+\sqrt{2}}+c_{2}(x-1)^{2-\sqrt{2}}
\]

\section*{20.7 problem 5}
20.7.1 Maple step by step solution 3453

Internal problem ID [6467]
Internal file name [OUTPUT/5715_Sunday_June_05_2022_03_48_28_PM_75065673/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
3(1+x)^{2} y^{\prime \prime}-(1+x) y^{\prime}-y=0
\]

With the expansion point for the power series method at \(x=-1\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=1+x
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
3\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-t\left(\frac{d}{d t} y(t)\right)-y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the
homogeneous part of the ODE.
\[
3\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-t\left(\frac{d}{d t} y(t)\right)-y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
& p(t)=-\frac{1}{3 t} \\
& q(t)=-\frac{1}{3 t^{2}}
\end{aligned}
\]

Table 479: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=-\frac{1}{3 t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=-\frac{1}{3 t^{2}}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, \infty]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
3\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-t\left(\frac{d}{d t} y(t)\right)-y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
3\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t^{2}-t\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} t^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(t\) be \(n+r\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r}\) and adjusting the power and the corresponding index gives Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-a_{n} t^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
3 t^{n+r} a_{n}(n+r)(n+r-1)-t^{n+r} a_{n}(n+r)-a_{n} t^{n+r}=0
\]

When \(n=0\) the above becomes
\[
3 t^{r} a_{0} r(-1+r)-t^{r} a_{0} r-a_{0} t^{r}=0
\]

Or
\[
\left(3 t^{r} r(-1+r)-t^{r} r-t^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(3 r^{2}-4 r-1\right) t^{r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
3 r^{2}-4 r-1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{2}{3}+\frac{\sqrt{7}}{3} \\
& r_{2}=\frac{2}{3}-\frac{\sqrt{7}}{3}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(3 r^{2}-4 r-1\right) t^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{2 \sqrt{7}}{3}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+\frac{2}{3}+\frac{\sqrt{7}}{3}} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n+\frac{2}{3}-\frac{\sqrt{7}}{3}}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
3 a_{n}(n+r)(n+r-1)-a_{n}(n+r)-a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{2}{3}+\frac{\sqrt{7}}{3}\) becomes
\[
\begin{equation*}
a_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{2}{3}+\frac{\sqrt{7}}{3}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & 0 & 0 \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & 0 & 0 \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & 0 & 0 \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =t^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =t^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(0 \leq n\) the recursive equation is
\[
\begin{equation*}
3 b_{n}(n+r)(n+r-1)-b_{n}(n+r)-b_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=0 \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{2}{3}-\frac{\sqrt{7}}{3}\) becomes
\[
\begin{equation*}
b_{n}=0 \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=\frac{2}{3}-\frac{\sqrt{7}}{3}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & 0 & 0 \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & 0 & 0 \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & 0 & 0 \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =t^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots\right) \\
& =t^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t) & =c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
& =c_{1} t^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)+c_{2} t^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t) & =y_{h} \\
& =c_{1} t^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)+c_{2} t^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left(t^{8}\right)\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x\) susing \(t=1+x\) results in
\[
y=c_{1}(1+x)^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right)+c_{2}(1+x)^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1}(1+x)^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right)+c_{2}(1+x)^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right) \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=c_{1}(1+x)^{\frac{2}{3}+\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right)+c_{2}(1+x)^{\frac{2}{3}-\frac{\sqrt{7}}{3}}\left(1+O\left((1+x)^{8}\right)\right)
\]

Verified OK.

\subsection*{20.7.1 Maple step by step solution}

Let's solve
\[
3(1+x)^{2} y^{\prime \prime}+(-1-x) y^{\prime}-y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{y}{3(1+x)^{2}}+\frac{y^{\prime}}{3(1+x)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{y^{\prime}}{3(1+x)}-\frac{y}{3(1+x)^{2}}=0
\]

Check to see if \(x_{0}=-1\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{1}{3(1+x)}, P_{3}(x)=-\frac{1}{3(1+x)^{2}}\right]
\]
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=-\frac{1}{3}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=-\frac{1}{3}
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}=-1\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(3(1+x)^{2} y^{\prime \prime}+(-1-x) y^{\prime}-y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\(3 u^{2}\left(\frac{d^{2}}{d u^{2}} y(u)\right)-u\left(\frac{d}{d u} y(u)\right)-y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite DE with series expansions
- Convert \(u \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion
\(u \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r}\)
- Convert \(u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\(u^{2} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r}\)
Rewrite DE with series expansions
\[
\sum_{k=0}^{\infty} a_{k}\left(3 k^{2}+6 k r+3 r^{2}-4 k-4 r-1\right) u^{k+r}=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation \(r=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(3 k^{2}-4 k-1\right)=0\)
- Recursion relation that defines series solution to ODE \(a_{k}=0\)
- Recursion relation for \(r=0\)
\[
a_{k}=0
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k}=0\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k}=0\right]
\]

Maple trace
-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients checking if the LODE is of Euler type
<- LODE of Euler type successful`
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 43
```

Order:=8;
dsolve(3*(x+1)~2*diff (y (x),x\$2)-(x+1)*diff (y (x), x)-y(x)=0,y(x),type='series', x=-1);

```
\[
y(x)=(x+1)^{\frac{2}{3}}\left((x+1)^{-\frac{\sqrt{7}}{3}} c_{1}+(x+1)^{\frac{\sqrt{7}}{3}} c_{2}\right)+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 42
AsymptoticDSolveValue \(\left[3 *(x+1)^{\wedge} 2 * y\right.\) ' ' \([x]-(x+1) * y\) ' \(\left.[x]-y[x]==0, y[x],\{x,-1,7\}\right]\)
\[
y(x) \rightarrow c_{1}(x+1)^{\frac{1}{3}(2+\sqrt{7})}+c_{2}(x+1)^{\frac{1}{3}(2-\sqrt{7})}
\]

\section*{20.8 problem 6}
20.8.1 Maple step by step solution

Internal problem ID [6468]
Internal file name [OUTPUT/5716_Sunday_June_05_2022_03_48_31_PM_19121695/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 6.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Bessel]
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{x^{2}-1}{x^{2}}
\end{aligned}
\]

Table 481: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x^{2}-1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r-x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1 \\
& r_{2}=-1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=2\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{x}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=1\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+2)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}+4 r+3}
\]

Which for the root \(r=1\) becomes
\[
a_{2}=-\frac{1}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+3)^{2}(1+r)(r+5)}
\]

Which for the root \(r=1\) becomes
\[
a_{4}=\frac{1}{192}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+3)^{2}(1+r)(r+5)}\) & \(\frac{1}{192}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+3)^{2}(1+r)(r+5)}\) & \(\frac{1}{192}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{1}{(r+3)^{2}(1+r)(r+5)^{2}(r+7)}
\]

Which for the root \(r=1\) becomes
\[
a_{6}=-\frac{1}{9216}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+3)^{2}(1+r)(r+5)}\) & \(\frac{1}{192}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{(r+3)^{2}(1+r)(r+5)^{2}(r+7)}\) & \(-\frac{1}{9216}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}+4 r+3}\) & \(-\frac{1}{8}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{(r+3)^{2}(1+r)(r+5)}\) & \(\frac{1}{192}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{(r+3)^{2}(1+r)(r+5)^{2}(r+7)}\) & \(-\frac{1}{9216}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=2\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{2}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{2} \\
& =-\frac{1}{r^{2}+4 r+3}
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}}-\frac{1}{r^{2}+4 r+3} & =\lim _{r \rightarrow-1}-\frac{1}{r^{2}+4 r+3} \\
& =\text { undefined }
\end{aligned}
\]

Since the limit does not exist then the log term is needed. Therefore the second solution has the form
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Therefore
\[
\begin{aligned}
\frac{d}{d x} y_{2}(x)= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right) \\
= & C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) \\
\frac{d^{2}}{d x^{2}} y_{2}(x)= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}} \\
& +\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right) \\
= & C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}+\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right)
\end{aligned}
\]

Substituting these back into the given ode \(x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0\) gives
\[
\begin{aligned}
& x^{2}\left(C y_{1}^{\prime \prime}(x) \ln (x)+\frac{2 C y_{1}^{\prime}(x)}{x}-\frac{C y_{1}(x)}{x^{2}}\right. \\
& \left.+\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \\
& +x\left(C y_{1}^{\prime}(x) \ln (x)+\frac{C y_{1}(x)}{x}+\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)\right) \\
& +\left(x^{2}-1\right)\left(C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)\right)=0
\end{aligned}
\]

Which can be written as
\[
\begin{align*}
& \left(\left(x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+\left(x^{2}-1\right) y_{1}(x)\right) \ln (x)+x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{7}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

But since \(y_{1}(x)\) is a solution to the ode, then
\[
x^{2} y_{1}^{\prime \prime}(x)+y_{1}^{\prime}(x) x+\left(x^{2}-1\right) y_{1}(x)=0
\]

Eq (7) simplifes to
\[
\begin{align*}
& \left(x^{2}\left(\frac{2 y_{1}^{\prime}(x)}{x}-\frac{y_{1}(x)}{x^{2}}\right)+y_{1}(x)\right) C \\
& +x^{2}\left(\sum_{n=0}^{\infty}\left(\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)^{2}}{x^{2}}-\frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x^{2}}\right)\right) \tag{8}\\
& +x\left(\sum_{n=0}^{\infty} \frac{b_{n} x^{n+r_{2}}\left(n+r_{2}\right)}{x}\right)+\left(x^{2}-1\right)\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Substituting \(y_{1}=\sum_{n=0}^{\infty} a_{n} x^{n+r_{1}}\) into the above gives
\[
\begin{align*}
& 2 x\left(\sum_{n=0}^{\infty} x^{-1+n+r_{1}} a_{n}\left(n+r_{1}\right)\right) C+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right) x^{2} \\
& +\left(\sum_{n=0}^{\infty} x^{-2+n+r_{2}} b_{n}\left(n+r_{2}\right)\left(-1+n+r_{2}\right)\right) x^{2} \tag{9}\\
& +\left(\sum_{n=0}^{\infty} x^{-1+n+r_{2}} b_{n}\left(n+r_{2}\right)\right) x-\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)=0
\end{align*}
\]

Since \(r_{1}=1\) and \(r_{2}=-1\) then the above becomes
\[
\begin{align*}
& 2 x\left(\sum_{n=0}^{\infty} x^{n} a_{n}(n+1)\right) C+\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right) x^{2}+\left(\sum_{n=0}^{\infty} x^{-3+n} b_{n}(n-1)(n-2)\right) x^{2} \tag{10}\\
& +\left(\sum_{n=0}^{\infty} x^{n-2} b_{n}(n-1)\right) x-\left(\sum_{n=0}^{\infty} b_{n} x^{n-1}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1)\right)+\left(\sum_{n=0}^{\infty} x^{n+1} b_{n}\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 C x^{n+1} a_{n}(n+1) & =\sum_{n=2}^{\infty} 2 C a_{n-2}(n-1) x^{n-1} \\
\sum_{n=0}^{\infty} x^{n+1} b_{n} & =\sum_{n=2}^{\infty} b_{n-2} x^{n-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n-1\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} 2 C a_{n-2}(n-1) x^{n-1}\right)+\left(\sum_{n=2}^{\infty} b_{n-2} x^{n-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}\left(n^{2}-3 n+2\right)\right)+\left(\sum_{n=0}^{\infty} x^{n-1} b_{n}(n-1)\right)+\sum_{n=0}^{\infty}\left(-b_{n} x^{n-1}\right)=0
\end{align*}
\]

For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0}=1\). For \(n=1, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
-b_{1}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
-b_{1}=0
\]

Solving the above for \(b_{1}\) gives
\[
b_{1}=0
\]

For \(n=N\), where \(N=2\) which is the difference between the two roots, we are free to choose \(b_{2}=0\). Hence for \(n=2\), Eq (2B) gives
\[
2 C+1=0
\]

Which is solved for \(C\). Solving for \(C\) gives
\[
C=-\frac{1}{2}
\]

For \(n=3, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
4 C a_{1}+b_{1}+3 b_{3}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
3 b_{3}=0
\]

Solving the above for \(b_{3}\) gives
\[
b_{3}=0
\]

For \(n=4, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
6 C a_{2}+b_{2}+8 b_{4}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
8 b_{4}+\frac{3}{8}=0
\]

Solving the above for \(b_{4}\) gives
\[
b_{4}=-\frac{3}{64}
\]

For \(n=5, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
8 C a_{3}+b_{3}+15 b_{5}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
15 b_{5}=0
\]

Solving the above for \(b_{5}\) gives
\[
b_{5}=0
\]

For \(n=6, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
10 C a_{4}+b_{4}+24 b_{6}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
24 b_{6}-\frac{7}{96}=0
\]

Solving the above for \(b_{6}\) gives
\[
b_{6}=\frac{7}{2304}
\]

For \(n=7, \mathrm{Eq}(2 \mathrm{~B})\) gives
\[
12 C a_{5}+b_{5}+35 b_{7}=0
\]

Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives
\[
35 b_{7}=0
\]

Solving the above for \(b_{7}\) gives
\[
b_{7}=0
\]

Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from
\[
y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n+r_{2}}\right)
\]

Using the above value found for \(C=-\frac{1}{2}\) and all \(b_{n}\), then the second solution becomes
\[
y_{2}(x)=-\frac{1}{2}\left(x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{1}{2}\left(x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right)\right) \ln (x)+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right) \tag{1}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(-\frac{x\left(1-\frac{x^{2}}{8}+\frac{x^{4}}{192}-\frac{x^{6}}{9216}+O\left(x^{8}\right)\right) \ln (x)}{2}+\frac{1-\frac{3 x^{4}}{64}+\frac{7 x^{6}}{2304}+O\left(x^{8}\right)}{x}\right)
\end{aligned}
\]

Verified OK.

\subsection*{20.8.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{\left(x^{2}-1\right) y}{x^{2}}-\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(x^{2}-1\right) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{x^{2}-1}{x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-1\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0
\]
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\(a_{0}(1+r)(-1+r) x^{r}+a_{1}(2+r) r x^{1+r}+\left(\sum_{k=2}^{\infty}\left(a_{k}(k+r+1)(k+r-1)+a_{k-2}\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+r)(-1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,1\}\)
- Each term must be 0
\(a_{1}(2+r) r=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0, giving the recursion relation
\(a_{k}(k+r+1)(k+r-1)+a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}(k+3+r)(k+r+1)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k}}{(k+3+r)(k+r+1)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+2}=-\frac{a_{k}}{(k+2) k}\)
- \(\quad\) Solution for \(r=-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-1}, a_{k+2}=-\frac{a_{k}}{(k+2) k}, a_{1}=0\right]\)
- Recursion relation for \(r=1\)
\[
a_{k+2}=-\frac{a_{k}}{(k+4)(k+2)}
\]
- \(\quad\) Solution for \(r=1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1}, a_{k+2}=-\frac{a_{k}}{(k+4)(k+2)}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1}\right), a_{k+2}=-\frac{a_{k}}{(k+2) k}, a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+4)(k+2)}, b_{1}=0\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
 Solution by Maple

Time used: 0.031 (sec). Leaf size: 53
```

Order:=8;
dsolve(x^2*diff(y(x), x\$2)+x*diff(y(x),x)+(x^2-1)*y(x)=0,y(x),type='series', x=0);

```
\(y(x)\)
\(=\frac{c_{1} x^{2}\left(1-\frac{1}{8} x^{2}+\frac{1}{192} x^{4}-\frac{1}{9216} x^{6}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(\left(x^{2}-\frac{1}{8} x^{4}+\frac{1}{192} x^{6}+\mathrm{O}\left(x^{8}\right)\right) \ln (x)+\left(-2+\frac{3}{32} x^{4}-\frac{7}{1152} x\right.\right.}{x}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.013 (sec). Leaf size: 75
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' \(\quad[x]+x * y\) ' \(\left.[x]+\left(x^{\wedge} 2-1\right) * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{x^{7}}{9216}+\frac{x^{5}}{192}-\frac{x^{3}}{8}+x\right) \\
& +c_{1}\left(\frac{5 x^{6}-90 x^{4}+288 x^{2}+1152}{1152 x}-\frac{1}{384} x\left(x^{4}-24 x^{2}+192\right) \log (x)\right)
\end{aligned}
\]

\section*{20.9 problem 7}
20.9.1 Maple step by step solution . 3484

Internal problem ID [6469]
Internal file name [OUTPUT/5717_Sunday_June_05_2022_03_48_35_PM_34738364/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.5. More on Regular Singular Points. Page 183
Problem number: 7.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{1}{x} \\
q(x) & =\frac{4 x^{2}-1}{4 x^{2}}
\end{aligned}
\]

Table 483: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{4 x^{2}-1}{4 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(x^{2}-\frac{1}{4}\right)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2B}\\
& +\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r}\right)+\sum_{n=0}^{\infty}\left(-\frac{a_{n} x^{n+r}}{4}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)-\frac{a_{n} x^{n+r}}{4}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r-\frac{a_{0} x^{r}}{4}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r-\frac{x^{r}}{4}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-\frac{1}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\frac{\left(4 r^{2}-1\right) x^{r}}{4}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=1\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sqrt{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\frac{\sum_{n=0}^{\infty} b_{n} x^{n}}{\sqrt{x}}
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-2}-\frac{a_{n}}{4}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{4 a_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=-\frac{1}{5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}\) & \(-\frac{1}{5040}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{6}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{120}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}\) & \(-\frac{1}{5040}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{1}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{1} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow-\frac{1}{2}} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)+b_{n}(n+r)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}\left(n-\frac{1}{2}\right)\left(n-\frac{3}{2}\right)+b_{n}\left(n-\frac{1}{2}\right)+b_{n-2}-\frac{b_{n}}{4}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}+8 n r+4 r^{2}-1} \tag{5}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=-\frac{4 b_{n-2}}{4 n^{2}-4 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{4}{4 r^{2}+16 r+15}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{6}=-\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{16}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{\left.14 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}{\left(4 r^{2}\right.}\) & \(-\frac{1}{720}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{4}{4 r^{2}+16 r+15}\) & \(-\frac{1}{2}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{64}{\left(4 r^{2}+16 r+15\right)\left(4 r^{2}+32 r+63\right)\left(4 r^{2}+48 r+143\right)}\) & \(-\frac{1}{720}\) \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =\sqrt{x}\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} \sqrt{x}\left(1-\frac{x^{2}}{6}+\frac{x^{4}}{120}-\frac{x^{6}}{5040}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\]

Verified OK.

\subsection*{20.9.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0
\]
- Highest derivative means the order of the ODE is 2 \(y^{\prime \prime}\)
- Isolate 2 nd derivative
\(y^{\prime \prime}=-\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}-\frac{y^{\prime}}{x}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{\left(4 x^{2}-1\right) y}{4 x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{4 x^{2}-1}{4 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=-\frac{1}{4}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\(4 x^{2} y^{\prime \prime}+4 x y^{\prime}+\left(4 x^{2}-1\right) y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .2\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\[
x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}(1+2 r)(-1+2 r) x^{r}+a_{1}(3+2 r)(1+2 r) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}(2 k+2 r+1)(2 k+2 r-1)+4 a_{k}-\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\((1+2 r)(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{-\frac{1}{2}, \frac{1}{2}\right\}
\]
- \(\quad\) Each term must be 0
\(a_{1}(3+2 r)(1+2 r)=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k}\left(4 k^{2}+8 k r+4 r^{2}-1\right)+4 a_{k-2}=0\)
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k+2}\left(4(k+2)^{2}+8(k+2) r+4 r^{2}-1\right)+4 a_{k}=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+8 k r+4 r^{2}+16 k+16 r+15}
\]
- Recursion relation for \(r=-\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}
\]
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+20 k+24}, a_{1}=0\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), a_{k+2}=-\frac{4 a_{k}}{4 k^{2}+12 k+8}, a_{1}=0, b_{k+2}=-\frac{4 b_{k}}{4 k^{2}+20 k+24}, b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 39
```

Order:=8;
dsolve( }\mp@subsup{x}{~}{~}2*\operatorname{diff}(y(x),x\$2)+x*diff(y(x),x)+(x^2-1/4)*y(x)=0,y(x),type='series', x=0)

```
\(y(x)=\frac{c_{1}\left(1-\frac{1}{6} x^{2}+\frac{1}{120} x^{4}-\frac{1}{5040} x^{6}+\mathrm{O}\left(x^{8}\right)\right) x+c_{2}\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{720} x^{6}+\mathrm{O}\left(x^{8}\right)\right)}{\sqrt{x}}\)
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 76
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y^{\prime}{ }^{\prime}[\mathrm{x}]+\mathrm{x} * \mathrm{y} \mathrm{'}^{\prime}[\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2-1 / 4\right) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{11 / 2}}{720}+\frac{x^{7 / 2}}{24}-\frac{x^{3 / 2}}{2}+\frac{1}{\sqrt{x}}\right)+c_{2}\left(-\frac{x^{13 / 2}}{5040}+\frac{x^{9 / 2}}{120}-\frac{x^{5 / 2}}{6}+\sqrt{x}\right)
\]
21 Chapter 4. Power Series Solutions and SpecialFunctions. Section 4.6. Gauss's HypergeometricEquation. Page 187
21.1 problem 2(a) 3489
21.2 problem 2(b) 3505
21.3 problem 2(x) 3520
21.4 problem 2(d) 3538
21.5 problem 3 3556
21.6 problem 5 3579

\section*{21.1 problem 2(a)}
21.1.1 Maple step by step solution 3501

Internal problem ID [6470]
Internal file name [OUTPUT/5718_Sunday_June_05_2022_03_48_39_PM_66849501/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Jacobi]
\[
x(1-x) y^{\prime \prime}+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(-x^{2}+x\right) y^{\prime \prime}+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{-3+4 x}{2 x(x-1)} \\
q(x) & =-\frac{2}{x(x-1)}
\end{aligned}
\]

Table 485: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{-3+4 x}{2 x(x-1)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{2}{x(x-1)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0,1, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
-y^{\prime \prime} x(x-1)+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& -\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x(x-1) \tag{1}\\
& +\left(\frac{3}{2}-2 x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r\right. \tag{2A}\\
&-1))+\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right) \\
&+\left(\sum_{n=0}^{\infty} \frac{3(n+r) a_{n} x^{n+r-1}}{2}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-2 x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-2 a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2~B}\\
& \quad+\left(\sum_{n=0}^{\infty} \frac{3(n+r) a_{n} x^{n+r-1}}{2}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+\frac{3(n+r) a_{n} x^{n+r-1}}{2}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+\frac{3 r a_{0} x^{-1+r}}{2}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+\frac{3 r x^{-1+r}}{2}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}\left(\frac{1}{2}+r\right)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}+\frac{1}{2} r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{1}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}\left(\frac{1}{2}+r\right)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-\frac{1}{2}}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& -a_{n-1}(n+r-1)(n+r-2)+a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad-2 a_{n-1}(n+r-1)+\frac{3 a_{n}(n+r)}{2}+2 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{2 a_{n-1}\left(n^{2}+2 n r+r^{2}-n-r-2\right)}{2 n^{2}+4 n r+2 r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{2 a_{n-1}\left(n^{2}-n-2\right)}{2 n^{2}+n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-\frac{4}{3}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline\(a_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline\(a_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & 0 \\
\hline\(a_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline\(a_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & 0 \\
\hline\(a_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & 0 \\
\hline\(a_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline\(a_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & 0 \\
\hline\(a_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & 0 \\
\hline\(a_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & 0 \\
\hline\(a_{6}\) & \(\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{128(r+8)(r+5)(-1+r) r(r+3)(r+2)(r+4)}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & 0 \\
\hline\(a_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & 0 \\
\hline\(a_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & 0 \\
\hline\(a_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & 0 \\
\hline\(a_{6}\) & \(\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & 0 \\
\hline\(a_{7}\) & \(\frac{128(r+8)(r+5)(-1+r) r(r+3)(r+2)(r+4)}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\) & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-\frac{4 x}{3}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& -b_{n-1}(n+r-1)(n+r-2)+b_{n}(n+r)(n+r-1) \tag{3}\\
& \quad-2 b_{n-1}(n+r-1)+\frac{3(n+r) b_{n}}{2}+2 b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{2 b_{n-1}\left(n^{2}+2 n r+r^{2}-n-r-2\right)}{2 n^{2}+4 n r+2 r^{2}+n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}\left(4 n^{2}-8 n-5\right)}{4 n^{2}-2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{1}=-\frac{9}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{2}=\frac{15}{8}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{3}=\frac{7}{16}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & \(\frac{8 r^{3}(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{7}{16}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{4}=\frac{27}{128}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{7}{16}\) \\
\hline\(b_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{27}{128}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{5}=\frac{33}{256}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{7}{16}\) \\
\hline\(b_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{27}{128}\) \\
\hline\(b_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{33}{256}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}
\]

Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{6}=\frac{91}{1024}
\]

And the table now becomes
\begin{tabular}{|c|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{7}{16}\) \\
\hline\(b_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{27}{128}\) \\
\hline\(b_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{33}{256}\) \\
\hline\(b_{6}\) & \(\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{91}{1024}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\frac{128(r+8)(r+5)(-1+r) r(r+3)(r+2)(r+4)}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\)
Which for the root \(r=-\frac{1}{2}\) becomes
\[
b_{7}=\frac{135}{2048}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{2 r^{2}+2 r-4}{2 r^{2}+5 r+3}\) & \(-\frac{9}{2}\) \\
\hline\(b_{2}\) & \(\frac{4(-1+r) r(r+3)}{4 r^{3}+20 r^{2}+31 r+15}\) & \(\frac{15}{8}\) \\
\hline\(b_{3}\) & \(\frac{8(-1+r) r(r+4)}{8 r^{3}+60 r^{2}+142 r+105}\) & \(\frac{7}{16}\) \\
\hline\(b_{4}\) & \(\frac{16(r+5)(r+2) r(-1+r)}{16 r^{4}+192 r^{3}+824 r^{2}+1488 r+945}\) & \(\frac{27}{128}\) \\
\hline\(b_{5}\) & \(\frac{32(r+6)(r+3)(-1+r) r(r+2)}{32 r^{5}+560 r^{4}+3760 r^{3}+12040 r^{2}+18258 r+10395}\) & \(\frac{33}{256}\) \\
\hline\(b_{6}\) & \(\frac{64(r+7)(r+4)(r+2)(-1+r) r(r+3)}{64 r^{6}+1536 r^{5}+14800 r^{4}+72960 r^{3}+193036 r^{2}+258144 r+135135}\) & \(\frac{91}{1024}\) \\
\hline\(b_{7}\) & \(\frac{128(r+8)(r+5)(-1+r) r(r+3)(r+2)(r+4)}{128 r^{7}+4032 r^{6}+52640 r^{5}+367920 r^{4}+1480472 r^{3}+3411828 r^{2}+4142430 r+2027025}\) & \(\frac{135}{2048}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =1\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots\right) \\
& =\frac{1-\frac{9 x}{2}+\frac{15 x^{2}}{8}+\frac{7 x^{3}}{16}+\frac{27 x^{4}}{128}+\frac{33 x^{5}}{256}+\frac{91 x^{6}}{1024}+\frac{135 x^{7}}{2048}+O\left(x^{8}\right)}{\sqrt{x}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1}\left(1-\frac{4 x}{3}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{9 x}{2}+\frac{15 x^{2}}{8}+\frac{7 x^{3}}{16}+\frac{27 x^{4}}{128}+\frac{33 x^{5}}{256}+\frac{91 x^{6}}{1024}+\frac{135 x^{7}}{2048}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
=c_{1}\left(1-\frac{4 x}{3}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{9 x}{2}+\frac{15 x^{2}}{8}+\frac{7 x^{3}}{16}+\frac{27 x^{4}}{128}+\frac{33 x^{5}}{256}+\frac{91 x^{6}}{1024}+\frac{135 x^{7}}{2048}+O\left(x^{8}\right)\right)}{\sqrt{x}}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1}\left(1-\frac{4 x}{3}+O\left(x^{8}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{9 x}{2}+\frac{15 x^{2}}{8}+\frac{7 x^{3}}{16}+\frac{27 x^{4}}{128}+\frac{33 x^{5}}{256}+\frac{91 x^{6}}{1024}+\frac{135 x^{7}}{2048}+O\left(x^{8}\right)\right)}{\sqrt{x}} \tag{1}
\end{align*}
\]

Verification of solutions
\(y=c_{1}\left(1-\frac{4 x}{3}+O\left(x^{8}\right)\right)+\frac{c_{2}\left(1-\frac{9 x}{2}+\frac{15 x^{2}}{8}+\frac{7 x^{3}}{16}+\frac{27 x^{4}}{128}+\frac{33 x^{5}}{256}+\frac{91 x^{6}}{1024}+\frac{135 x^{7}}{2048}+O\left(x^{8}\right)\right)}{\sqrt{x}}\)
Verified OK.

\subsection*{21.1.1 Maple step by step solution}

Let's solve
\[
-y^{\prime \prime} x(x-1)+\left(\frac{3}{2}-2 x\right) y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(-3+4 x) y^{\prime}}{2 x(x-1)}+\frac{2 y}{x(x-1)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(-3+4 x) y^{\prime}}{2 x(x-1)}-\frac{2 y}{x(x-1)}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{-3+4 x}{2 x(x-1)}, P_{3}(x)=-\frac{2}{x(x-1)}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{3}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\[
2 y^{\prime \prime} x(x-1)+(-3+4 x) y^{\prime}-4 y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k+r}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=1 . .2\)
\(x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}\)
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\(-a_{0} r(2 r+1) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+3+2 r)+2 a_{k}(k+r+2)(k+r-1)\right) x^{k+r}\right)\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(2 r+1)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0,-\frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(-2(k+1+r)\left(k+\frac{3}{2}+r\right) a_{k+1}+2 a_{k}(k+r+2)(k+r-1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{2 a_{k}(k+r+2)(k+r-1)}{(k+1+r)(2 k+3+2 r)}\)
- Recursion relation for \(r=0\); series terminates at \(k=1\)
\(a_{k+1}=\frac{2 a_{k}(k+2)(k-1)}{(k+1)(2 k+3)}\)
- Apply recursion relation for \(k=0\)
\(a_{1}=-\frac{4 a_{0}}{3}\)
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li \(y=a_{0} \cdot\left(1-\frac{4 x}{3}\right)\)
- Recursion relation for \(r=-\frac{1}{2}\)
\(a_{k+1}=\frac{2 a_{k}\left(k+\frac{3}{2}\right)\left(k-\frac{3}{2}\right)}{\left(k+\frac{1}{2}\right)(2 k+2)}\)
- \(\quad\) Solution for \(r=-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\frac{1}{2}}, a_{k+1}=\frac{2 a_{k}\left(k+\frac{3}{2}\right)\left(k-\frac{3}{2}\right)}{\left(k+\frac{1}{2}\right)(2 k+2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=a_{0} \cdot\left(1-\frac{4 x}{3}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k-\frac{1}{2}}\right), b_{k+1}=\frac{2 b_{k}\left(k+\frac{3}{2}\right)\left(k-\frac{3}{2}\right)}{\left(k+\frac{1}{2}\right)(2 k+2)}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Reducible group (found another exponential solution) <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 40
```

Order:=8;
dsolve(x*(1-x)*diff(y(x),x\$2)+(3/2-2*x)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \frac{c_{1}\left(1-\frac{9}{2} x+\frac{15}{8} x^{2}+\frac{7}{16} x^{3}+\frac{27}{128} x^{4}+\frac{33}{256} x^{5}+\frac{91}{1024} x^{6}+\frac{135}{2048} x^{7}+\mathrm{O}\left(x^{8}\right)\right)}{\sqrt{x}} \\
& +c_{2}\left(1-\frac{4}{3} x+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 71
```

AsymptoticDSolveValue[x*(1-x)*y''[x]+(3/2-2*x)*y'[x]+2*y[x]==0,y[x],{x,0,7}]

```
\[
y(x) \rightarrow \frac{c_{2}\left(\frac{135 x^{7}}{2048}+\frac{91 x^{6}}{1024}+\frac{33 x^{5}}{256}+\frac{27 x^{4}}{128}+\frac{7 x^{3}}{16}+\frac{15 x^{2}}{8}-\frac{9 x}{2}+1\right)}{\sqrt{x}}+c_{1}\left(1-\frac{4 x}{3}\right)
\]

\section*{21.2 problem 2(b)}
21.2.1 Maple step by step solution

3516
Internal problem ID [6471]
Internal file name [OUTPUT/5719_Sunday_June_05_2022_03_48_43_PM_20153980/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
\left(2 x^{2}+2 x\right) y^{\prime \prime}+(5 x+1) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(2 x^{2}+2 x\right) y^{\prime \prime}+(5 x+1) y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =\frac{5 x+1}{2 x(1+x)} \\
q(x) & =\frac{1}{2 x(1+x)}
\end{aligned}
\]

Table 487: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{5 x+1}{2 x(1+x)}\)} \\
\hline singularity & type \\
\hline\(x=-1\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{2 x(1+x)}\)} \\
\hline singularity & type \\
\hline\(x=-1\) & "regular" \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-1,0, \infty]\)
Irregular singular points: []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 y^{\prime \prime} x(1+x)+(5 x+1) y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x(1+x) \tag{1}\\
& +(5 x+1)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} 2 x^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1} \\
\sum_{n=0}^{\infty} 5 x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} 2 a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(2 r-1)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(2 r-1)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& 2 a_{n-1}(n+r-1)(n+r-2)+2 a_{n}(n+r)(n+r-1) \tag{3}\\
& +5 a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-a_{n-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-a_{n-1} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline\(a_{3}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline\(a_{3}\) & -1 & -1 \\
\hline\(a_{4}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline\(a_{3}\) & -1 & -1 \\
\hline\(a_{4}\) & 1 & 1 \\
\hline\(a_{5}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline\(a_{3}\) & -1 & -1 \\
\hline\(a_{4}\) & 1 & 1 \\
\hline\(a_{5}\) & -1 & -1 \\
\hline\(a_{6}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-1
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & -1 & -1 \\
\hline\(a_{2}\) & 1 & 1 \\
\hline\(a_{3}\) & -1 & -1 \\
\hline\(a_{4}\) & 1 & 1 \\
\hline\(a_{5}\) & -1 & -1 \\
\hline\(a_{6}\) & 1 & 1 \\
\hline\(a_{7}\) & -1 & -1 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& 2 b_{n-1}(n+r-1)(n+r-2)+2 b_{n}(n+r)(n+r-1) \tag{3}\\
& +5 b_{n-1}(n+r-1)+(n+r) b_{n}+b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-b_{n-1} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-b_{n-1} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=-1
\]

Which for the root \(r=0\) becomes
\[
b_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=1
\]

Which for the root \(r=0\) becomes
\[
b_{2}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=-1
\]

Which for the root \(r=0\) becomes
\[
b_{3}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline\(b_{3}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=1
\]

Which for the root \(r=0\) becomes
\[
b_{4}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline\(b_{3}\) & -1 & -1 \\
\hline\(b_{4}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=-1
\]

Which for the root \(r=0\) becomes
\[
b_{5}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline\(b_{3}\) & -1 & -1 \\
\hline\(b_{4}\) & 1 & 1 \\
\hline\(b_{5}\) & -1 & -1 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=1
\]

Which for the root \(r=0\) becomes
\[
b_{6}=1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline\(b_{3}\) & -1 & -1 \\
\hline\(b_{4}\) & 1 & 1 \\
\hline\(b_{5}\) & -1 & -1 \\
\hline\(b_{6}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=-1
\]

Which for the root \(r=0\) becomes
\[
b_{7}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & -1 & -1 \\
\hline\(b_{2}\) & 1 & 1 \\
\hline\(b_{3}\) & -1 & -1 \\
\hline\(b_{4}\) & 1 & 1 \\
\hline\(b_{5}\) & -1 & -1 \\
\hline\(b_{6}\) & 1 & 1 \\
\hline\(b_{7}\) & -1 & -1 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y= & y_{h} \\
= & c_{1} \sqrt{x}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \sqrt{x}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right) \tag{1}\\
& +c_{2}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{21.2.1 Maple step by step solution}

Let's solve
\[
2 y^{\prime \prime} x(1+x)+(5 x+1) y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{2 x(1+x)}-\frac{(5 x+1) y^{\prime}}{2 x(1+x)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(5 x+1) y^{\prime}}{2 x(1+x)}+\frac{y}{2 x(1+x)}=0\)Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{5 x+1}{2 x(1+x)}, P_{3}(x)=\frac{1}{2 x(1+x)}\right]
\]
- \(\quad(1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=2
\]
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\[
\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0
\]
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-1
\]
- Multiply by denominators
\[
2 y^{\prime \prime} x(1+x)+(5 x+1) y^{\prime}+y=0
\]
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\)
\[
\left(2 u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(5 u-4)\left(\frac{d}{d u} y(u)\right)+y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\(-2 a_{0} r(1+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+r+1)(k+2+r)+a_{k}(k+r+1)(2 k+2 r+1)\right) u^{k+r}\right)\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-1,0\}\)
- Each term in the series must be 0 , giving the recursion relation
\(2(k+r+1)\left((-k-r-2) a_{k+1}+a_{k}\left(k+r+\frac{1}{2}\right)\right)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(2 k+2 r+1)}{2(k+2+r)}\)
- \(\quad\) Recursion relation for \(r=-1\)
\(a_{k+1}=\frac{a_{k}(2 k-1)}{2(k+1)}\)
- \(\quad\) Solution for \(r=-1\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-1}, a_{k+1}=\frac{a_{k}(2 k-1)}{2(k+1)}\right]\)
- \(\quad\) Revert the change of variables \(u=1+x\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k-1}, a_{k+1}=\frac{a_{k}(2 k-1)}{2(k+1)}\right]\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(2 k+1)}{2(k+2)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(2 k+1)}{2(k+2)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(2 k+1)}{2(k+2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k}\right), a_{k+1}=\frac{a_{k}(2 k-1)}{2(k+1)}, b_{k+1}=\frac{b_{k}(2 k+1)}{2(k+2)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 52
```

Order:=8;
dsolve((2*x^2+2*x)*diff (y(x),x\$2)+(1+5*x)*diff (y (x), x)+y(x)=0,y(x),type='series', x=0);

$$
y(x)=\left(-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\left(c_{1} \sqrt{x}+c_{2}\right)+O\left(x^{8}\right)
$$

```

Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 73
```

AsymptoticDSolveValue[(2*x^2+2*x)*y''[x]+(1+5*x)*y'[x]+y[x]==0,y[x],{x,0,7}]

```
\(y(x) \rightarrow c_{1} \sqrt{x}\left(-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)+c_{2}\left(-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1\right)\)

\section*{21.3 problem 2(x)}
21.3.1 Maple step by step solution 3534

Internal problem ID [6472]
Internal file name [OUTPUT/5720_Sunday_June_05_2022_03_48_46_PM_21098881/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187
Problem number: 2(x).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
\left(x^{2}-1\right) y^{\prime \prime}+(5 x+4) y^{\prime}+4 y=0
\]

With the expansion point for the power series method at \(x=-1\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=1+x
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
\left((t-1)^{2}-1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(-1+5 t)\left(\frac{d}{d t} y(t)\right)+4 y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the
homogeneous part of the ODE.
\[
\left(t^{2}-2 t\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(-1+5 t)\left(\frac{d}{d t} y(t)\right)+4 y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
p(t) & =\frac{-1+5 t}{t(-2+t)} \\
q(t) & =\frac{4}{(-2+t) t}
\end{aligned}
\]

Table 489: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{-1+5 t}{t(-2+t)}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline\(t=2\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{4}{(-2+t) t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline\(t=2\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0,2, \infty]\)
Irregular singular points: []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t(-2+t)+(-1+5 t)\left(\frac{d}{d t} y(t)\right)+4 y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t(-2+t) \tag{1}\\
& +(-1+5 t)\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+4\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 5 t^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 4 a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1} \\
\sum_{n=0}^{\infty} 5 t^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) t^{n+r-1} \\
\sum_{n=0}^{\infty} 4 a_{n} t^{n+r} & =\sum_{n=1}^{\infty} 4 a_{n-1} t^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& +\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 5 a_{n-1}(n+r-1) t^{n+r-1}\right) \tag{2B}\\
& \quad+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1} t^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-2 t^{n+r-1} a_{n}(n+r)(n+r-1)-(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
-2 t^{-1+r} a_{0} r(-1+r)-r a_{0} t^{-1+r}=0
\]

Or
\[
\left(-2 t^{-1+r} r(-1+r)-r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(-2 r^{2}+r\right) t^{-1+r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
-2 r^{2}+r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(-2 r^{2}+r\right) t^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+\frac{1}{2}} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)-2 a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+5 a_{n-1}(n+r-1)-a_{n}(n+r)+4 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}\left(n^{2}+2 n r+r^{2}+2 n+2 r+1\right)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(3+2 n)^{2}}{8 n^{2}+4 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{(r+2)^{2}}{2 r^{2}+3 r+1}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=\frac{25}{12}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{245}{96}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=\frac{315}{128}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline\(a_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{315}{128}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{4235}{2048}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline\(a_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{315}{128}\) \\
\hline\(a_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{4235}{2048}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=\frac{13013}{8192}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline\(a_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{315}{128}\) \\
\hline\(a_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{4235}{2048}\) \\
\hline\(a_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{13013}{8192}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=\frac{75075}{65536}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline\(a_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{315}{128}\) \\
\hline\(a_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{4235}{2048}\) \\
\hline\(a_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{13013}{8192}\) \\
\hline\(a_{6}\) & \(\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}\) & \(\frac{75075}{65536}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{(r+8)^{2}(r+6)(r+4)(r+2)(r+3)(r+5)(r+7)}{128 r^{8}+3264 r^{7}+34272 r^{6}+191856 r^{5}+619752 r^{4}+1168356 r^{3}+1237738 r^{2}+663549 r+135135}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=\frac{206635}{262144}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & \(\frac{25}{12}\) \\
\hline\(a_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & \(\frac{245}{96}\) \\
\hline\(a_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{315}{128}\) \\
\hline\(a_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{4235}{2048}\) \\
\hline\(a_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{13013}{8192}\) \\
\hline\(a_{6}\) & \(\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}\) & \(\frac{75075}{65536}\) \\
\hline\(a_{7}\) & \(\frac{(r+8)^{2}(r+6)(r+4)(r+2)(r+3)(r+5)(r+7)}{128 r^{8}+3264 r^{7}+34272 r^{6}+191856 r^{5}+619752 r^{4}+1168356 r^{3}+1237738 r^{2}+663549 r+135135}\) & \(\frac{206635}{262144}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =\sqrt{t}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =\sqrt{t}\left(1+\frac{25 t}{12}+\frac{245 t^{2}}{96}+\frac{315 t^{3}}{128}+\frac{4235 t^{4}}{2048}+\frac{13013 t^{5}}{8192}+\frac{75075 t^{6}}{65536}+\frac{206635 t^{7}}{262144}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n-1}(n+r-1)(n+r-2)-2 b_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+5 b_{n-1}(n+r-1)-(n+r) b_{n}+4 b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}\left(n^{2}+2 n r+r^{2}+2 n+2 r+1\right)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+1)^{2}}{2 n^{2}-n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{(r+2)^{2}}{2 r^{2}+3 r+1}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=4
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=6
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=\frac{32}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline\(b_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{32}{5}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{40}{7}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline\(b_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{32}{5}\) \\
\hline\(b_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{40}{7}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}
\]

Which for the root \(r=0\) becomes
\[
b_{5}=\frac{32}{7}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline\(b_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{32}{5}\) \\
\hline\(b_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{40}{7}\) \\
\hline\(b_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{32}{7}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}
\]

Which for the root \(r=0\) becomes
\[
b_{6}=\frac{112}{33}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline\(b_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{32}{5}\) \\
\hline\(b_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{40}{7}\) \\
\hline\(b_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{32}{7}\) \\
\hline\(b_{6}\) & \(\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}\) & \(\frac{112}{33}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\frac{(r+8)^{2}(r+6)(r+4)(r+2)(r+3)(r+5)(r+7)}{128 r^{8}+3264 r^{7}+34272 r^{6}+191856 r^{5}+619752 r^{4}+1168356 r^{3}+1237738 r^{2}+663549 r+135135}\)
Which for the root \(r=0\) becomes
\[
b_{7}=\frac{1024}{429}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{(r+2)^{2}}{2 r^{2}+3 r+1}\) & 4 \\
\hline\(b_{2}\) & \(\frac{(r+3)^{2}(r+2)}{4 r^{3}+12 r^{2}+11 r+3}\) & 6 \\
\hline\(b_{3}\) & \(\frac{(r+4)^{2}(r+2)(r+3)}{8 r^{4}+44 r^{3}+82 r^{2}+61 r+15}\) & \(\frac{32}{5}\) \\
\hline\(b_{4}\) & \(\frac{(r+5)^{2}(r+3)(r+2)(r+4)}{16 r^{5}+144 r^{4}+472 r^{3}+696 r^{2}+457 r+105}\) & \(\frac{40}{7}\) \\
\hline\(b_{5}\) & \(\frac{(r+6)^{2}(r+4)(r+2)(r+3)(r+5)}{32 r^{6}+432 r^{5}+2240 r^{4}+5640 r^{3}+7178 r^{2}+4323 r+945}\) & \(\frac{32}{7}\) \\
\hline\(b_{6}\) & \(\frac{(r+7)^{2}(r+5)(r+3)(r+2)(r+4)(r+6)}{64 r^{7}+1216 r^{6}+9232 r^{5}+35920 r^{4}+76396 r^{3}+87604 r^{2}+49443 r+10395}\) \\
\hline\(b_{7}\) & \(\frac{(r+8)^{2}(r+6)(r+4)(r+2)(r+3)(r+5)(r+7)}{128 r^{8}+3264 r^{7}+34272 r^{6}+191856 r^{5}+619752 r^{4}+1168356 r^{3}+1237738 r^{2}+663549 r+135135}\) & \(\frac{1024}{429}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots \\
& =1+4 t+6 t^{2}+\frac{32 t^{3}}{5}+\frac{40 t^{4}}{7}+\frac{32 t^{5}}{7}+\frac{112 t^{6}}{33}+\frac{1024 t^{7}}{429}+O\left(t^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1} \sqrt{t}\left(1+\frac{25 t}{12}+\frac{245 t^{2}}{96}+\frac{315 t^{3}}{128}+\frac{4235 t^{4}}{2048}+\frac{13013 t^{5}}{8192}+\frac{75075 t^{6}}{65536}+\frac{206635 t^{7}}{262144}+O\left(t^{8}\right)\right) \\
& +c_{2}\left(1+4 t+6 t^{2}+\frac{32 t^{3}}{5}+\frac{40 t^{4}}{7}+\frac{32 t^{5}}{7}+\frac{112 t^{6}}{33}+\frac{1024 t^{7}}{429}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1} \sqrt{t}\left(1+\frac{25 t}{12}+\frac{245 t^{2}}{96}+\frac{315 t^{3}}{128}+\frac{4235 t^{4}}{2048}+\frac{13013 t^{5}}{8192}+\frac{75075 t^{6}}{65536}+\frac{206635 t^{7}}{262144}+O\left(t^{8}\right)\right) \\
& +c_{2}\left(1+4 t+6 t^{2}+\frac{32 t^{3}}{5}+\frac{40 t^{4}}{7}+\frac{32 t^{5}}{7}+\frac{112 t^{6}}{33}+\frac{1024 t^{7}}{429}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x\) susing \(t=1+x\) results in
\[
\begin{array}{r}
y=c_{1} \sqrt{1+x}\left(\frac{37}{12}+\frac{25 x}{12}+\frac{245(1+x)^{2}}{96}+\frac{315(1+x)^{3}}{128}+\frac{4235(1+x)^{4}}{2048}+\frac{13013(1+x)^{5}}{8192}\right. \\
\left.+\frac{75075(1+x)^{6}}{65536}+\frac{206635(1+x)^{7}}{262144}+O\left((1+x)^{8}\right)\right) \\
+c_{2}\left(5+4 x+6(1+x)^{2}+\frac{32(1+x)^{3}}{5}+\frac{40(1+x)^{4}}{7}+\frac{32(1+x)^{5}}{7}+\frac{112(1+x)^{6}}{33}\right. \\
\left.+\frac{1024(1+x)^{7}}{429}+O\left((1+x)^{8}\right)\right)
\end{array}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
y= & c_{1} \sqrt{1+x}\left(\frac{37}{12}+\frac{25 x}{12}+\frac{245(1+x)^{2}}{96}+\frac{315(1+x)^{3}}{128}+\frac{4235(1+x)^{4}}{2048}\right. \\
& \left.+\frac{13013(1+x)^{5}}{8192}+\frac{75075(1+x)^{6}}{65536}+\frac{206635(1+x)^{7}}{262144}+O\left((1+x)^{8}\right)\right) \\
+ & c_{2}\left(5+4 x+6(1+x)^{2}+\frac{32(1+x)^{3}}{5}+\frac{40(1+x)^{4}}{7}+\frac{32(1+x)^{5}}{7}\right. \tag{1}\\
& \left.+\frac{112(1+x)^{6}}{33}+\frac{1024(1+x)^{7}}{429}+O\left((1+x)^{8}\right)\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1} \sqrt{1+x}\left(\frac{37}{12}+\frac{25 x}{12}+\frac{245(1+x)^{2}}{96}+\frac{315(1+x)^{3}}{128}+\frac{4235(1+x)^{4}}{2048}\right. \\
& \left.+\frac{13013(1+x)^{5}}{8192}+\frac{75075(1+x)^{6}}{65536}+\frac{206635(1+x)^{7}}{262144}+O\left((1+x)^{8}\right)\right) \\
+ & c_{2}\left(5+4 x+6(1+x)^{2}+\frac{32(1+x)^{3}}{5}+\frac{40(1+x)^{4}}{7}+\frac{32(1+x)^{5}}{7}+\frac{112(1+x)^{6}}{33}\right. \\
& \left.+\frac{1024(1+x)^{7}}{429}+O\left((1+x)^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{21.3.1 Maple step by step solution}

Let's solve
\(\left(x^{2}-1\right) y^{\prime \prime}+(5 x+4) y^{\prime}+4 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2 nd derivative
\[
y^{\prime \prime}=-\frac{(5 x+4) y^{\prime}}{x^{2}-1}-\frac{4 y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(5 x+4) y^{\prime}}{x^{2}-1}+\frac{4 y}{x^{2}-1}=0\)
Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{5 x+4}{x^{2}-1}, P_{3}(x)=\frac{4}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(\left(x^{2}-1\right) y^{\prime \prime}+(5 x+4) y^{\prime}+4 y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(5 u-1)\left(\frac{d}{d u} y(u)\right)+4 y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+r+2)^{2}\right) u^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation \(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\[
a_{k}(k+r+2)^{2}-2\left(k+r+\frac{1}{2}\right) a_{k+1}(k+1+r)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(k+r+2)^{2}}{(2 k+1+2 r)(k+1+r)}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(k+2)^{2}}{(2 k+1)(k+1)}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+2)^{2}}{(2 k+1)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+2)^{2}}{(2 k+1)(k+1)}\right]
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)^{2}}{(2 k+2)\left(k+\frac{3}{2}\right)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)^{2}}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+\frac{5}{2}\right)^{2}}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}}\right), a_{k+1}=\frac{a_{k}(k+2)^{2}}{(2 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k+\frac{5}{2}\right)^{2}}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.062 (sec). Leaf size: 54
```

Order:=8;
dsolve((x^2-1)*diff (y(x),x\$2)+(5*x+4)*diff (y(x),x)+4*y(x)=0,y(x),type='series', x=-1);

```
\[
\begin{array}{r}
y(x)=c_{1} \sqrt{x+1}\left(1+\frac{25}{12}(x+1)+\frac{245}{96}(x+1)^{2}+\frac{315}{128}(x+1)^{3}+\frac{4235}{2048}(x+1)^{4}\right. \\
\left.+\frac{13013}{8192}(x+1)^{5}+\frac{75075}{65536}(x+1)^{6}+\frac{206635}{262144}(x+1)^{7}+\mathrm{O}\left((x+1)^{8}\right)\right) \\
+c_{2}\left(1+4(x+1)+6(x+1)^{2}+\frac{32}{5}(x+1)^{3}+\frac{40}{7}(x+1)^{4}+\frac{32}{7}(x+1)^{5}\right. \\
\\
\left.+\frac{112}{33}(x+1)^{6}+\frac{1024}{429}(x+1)^{7}+\mathrm{O}\left((x+1)^{8}\right)\right)
\end{array}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 139
AsymptoticDSolveValue \(\left[\left(x^{\wedge} 2-1\right) * y^{\prime} '[x]+(5 * x+4) * y\right.\) ' \(\left.[x]+4 * y[x]==0, y[x],\{x,-1,7\}\right]\)
\[
\begin{array}{r}
y(x) \rightarrow c_{1} \sqrt{x+1}\left(\frac{206635(x+1)^{7}}{262144}+\frac{75075(x+1)^{6}}{65536}+\frac{13013(x+1)^{5}}{8192}+\frac{4235(x+1)^{4}}{2048}\right. \\
\left.+\frac{315}{128}(x+1)^{3}+\frac{245}{96}(x+1)^{2}+\frac{25(x+1)}{12}+1\right)+c_{2}\left(\frac{1024}{429}(x+1)^{7}+\frac{112}{33}(x+1)^{6}\right. \\
\left.+\frac{32}{7}(x+1)^{5}+\frac{40}{7}(x+1)^{4}+\frac{32}{5}(x+1)^{3}+6(x+1)^{2}+4(x+1)+1\right)
\end{array}
\]

\section*{21.4 problem 2(d)}
21.4.1 Maple step by step solution . 3551

Internal problem ID [6473]
Internal file name [OUTPUT/5721_Sunday_June_05_2022_03_48_51_PM_38879378/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
\left(x^{2}-x-6\right) y^{\prime \prime}+(3 x+5) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=3\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=x-3
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
\left((t+3)^{2}-t-9\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(3 t+14)\left(\frac{d}{d t} y(t)\right)+y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the
homogeneous part of the ODE.
\[
\left(t^{2}+5 t\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(3 t+14)\left(\frac{d}{d t} y(t)\right)+y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
& p(t)=\frac{3 t+14}{t(t+5)} \\
& q(t)=\frac{1}{(t+5) t}
\end{aligned}
\]

Table 491: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{3 t+14}{t(t+5)}\)} \\
\hline singularity & type \\
\hline\(t=-5\) & "regular" \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{1}{(t+5) t}\)} \\
\hline singularity \\
\hline\(t=-5\) \\
"rype \\
\hline\(t=0\)
\end{tabular} "regular" \(^{\text {regular" }}\).

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-5,0, \infty]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t(t+5)+(3 t+14)\left(\frac{d}{d t} y(t)\right)+y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t(t+5) \tag{1}\\
& +(3 t+14)\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 5 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 14(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} t^{n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1} \\
\sum_{n=0}^{\infty} 3 t^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) t^{n+r-1} \\
\sum_{n=0}^{\infty} a_{n} t^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} t^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} 5 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 3 a_{n-1}(n+r-1) t^{n+r-1}\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} 14(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} t^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
5 t^{n+r-1} a_{n}(n+r)(n+r-1)+14(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
5 t^{-1+r} a_{0} r(-1+r)+14 r a_{0} t^{-1+r}=0
\]

Or
\[
\left(5 t^{-1+r} r(-1+r)+14 r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r t^{-1+r}(9+5 r)=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
5 r^{2}+9 r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{9}{5}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r t^{-1+r}(9+5 r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{9}{5}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n-\frac{9}{5}}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& a_{n-1}(n+r-1)(n+r-2)+5 a_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+3 a_{n-1}(n+r-1)+14 a_{n}(n+r)+a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{(n+r) a_{n-1}}{5 n+9+5 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{n a_{n-1}}{5 n+9} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-1-r}{14+5 r}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-\frac{1}{14}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{133}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{1}{1064}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(-\frac{1}{1064}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{7714}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(-\frac{1}{1064}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(\frac{1}{7714}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{5}{262276}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(-\frac{1}{1064}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(\frac{1}{7714}\) \\
\hline\(a_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) & \(-\frac{5}{262276}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+644685 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=\frac{5}{1704794}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(-\frac{1}{1064}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(\frac{1}{7714}\) \\
\hline\(a_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) & \(-\frac{5}{262276}\) \\
\hline\(a_{6}\) & \(\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+6446875 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}\) & \(\frac{5}{1704794}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{-r^{7}-28 r^{6}-322 r^{5}-1960 r^{4}-6769 r^{3}-13132 r^{2}-13068 r-5040}{78125 r^{7}+3171875 r^{6}+54096875 r^{5}+501790625 r^{4}+2730245000 r^{3}+8700925100 r^{2}+15013629360}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=-\frac{5}{10715848}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(-\frac{1}{14}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(\frac{1}{133}\) \\
\hline\(a_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(-\frac{1}{1064}\) \\
\hline\(a_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(\frac{1}{7714}\) \\
\hline\(a_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) \\
\hline\(a_{6}\) & \(\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+6446875 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}\) & \(-\frac{5}{262276}\) \\
\hline\(a_{7}\) & \(\frac{-r^{7}-28 r^{6}-322 r^{5}-1960 r^{4}-6769 r^{3}-13132 r^{2}-13068 r-5040}{78125 r^{7}+3171875 r^{6}+54096875 r^{5}+501790625 r^{4}+2730245000 r^{3}+8700925100 r^{2}+15013629360 r+10801574784}\) & \(-\frac{5}{10715848}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots \\
& =1-\frac{t}{14}+\frac{t^{2}}{133}-\frac{t^{3}}{1064}+\frac{t^{4}}{7714}-\frac{5 t^{5}}{262276}+\frac{5 t^{6}}{1704794}-\frac{5 t^{7}}{10715848}+O\left(t^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& b_{n-1}(n+r-1)(n+r-2)+5 b_{n}(n+r)(n+r-1) \tag{3}\\
& \quad+3 b_{n-1}(n+r-1)+14(n+r) b_{n}+b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{(n+r) b_{n-1}}{5 n+9+5 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
\begin{equation*}
b_{n}=-\frac{(5 n-9) b_{n-1}}{25 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{9}{5}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{-1-r}{14+5 r}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{1}=\frac{4}{25}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{2}=-\frac{2}{625}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(-\frac{2}{625}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{3}=\frac{4}{15625}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(-\frac{2}{625}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(\frac{4}{15625}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{4}=-\frac{11}{390625}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(-\frac{2}{625}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(\frac{4}{15625}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(-\frac{11}{390625}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{5}=\frac{176}{48828125}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+365 r+266}\) & \(-\frac{2}{625}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(\frac{4}{15625}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(-\frac{11}{390625}\) \\
\hline\(b_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) & \(\frac{176}{48828125}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+6446875 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}\)
Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{6}=-\frac{616}{1220703125}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(-\frac{2}{625}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(\frac{4}{15625}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+67775 r^{2}+185330 r+185136}\) & \(-\frac{11}{390625}\) \\
\hline\(b_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) & \(\frac{176}{48828125}\) \\
\hline\(b_{6}\) & \(\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+6446875 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}\) & \(-\frac{616}{1220703125}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=\frac{-r^{7}-28 r^{6}-322 r^{5}-1960 r^{4}-6769 r^{3}-13132 r^{2}-13068 r-5040}{78125 r^{7}+3171875 r^{6}+54096875 r^{5}+501790625 r^{4}+2730245000 r^{3}+8700925100 r^{2}+15013629360}
\]

Which for the root \(r=-\frac{9}{5}\) becomes
\[
b_{7}=\frac{2288}{30517578125}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1-r}{14+5 r}\) & \(\frac{4}{25}\) \\
\hline\(b_{2}\) & \(\frac{r^{2}+3 r+2}{25 r^{2}+165 r+266}\) & \(-\frac{2}{625}\) \\
\hline\(b_{3}\) & \(\frac{-r^{3}-6 r^{2}-11 r-6}{125 r^{3}+1425 r^{2}+5290 r+6384}\) & \(\frac{4}{15625}\) \\
\hline\(b_{4}\) & \(\frac{r^{4}+10 r^{3}+35 r^{2}+50 r+24}{625 r^{4}+10750 r^{3}+6777 r^{2}+185330 r+185136}\) & \(-\frac{11}{390625}\) \\
\hline\(b_{5}\) & \(\frac{-r^{5}-15 r^{4}-85 r^{3}-225 r^{2}-274 r-120}{3125 r^{5}+75000 r^{4}+704375 r^{3}+3231000 r^{2}+7226900 r+6294624}\) & \(\frac{176}{48828125}\) \\
\hline\(b_{6}\) & \(\frac{r^{6}+21 r^{5}+175 r^{4}+735 r^{3}+1624 r^{2}+1764 r+720}{15625 r^{6}+496875 r^{5}+6446875 r^{4}+43625625 r^{3}+162143500 r^{2}+313322220 r+245490336}\) & \(-\frac{616}{1220703125}\) \\
\hline\(b_{7}\) & \(\frac{-r^{7}-28 r^{6}-322 r^{5}-1960 r^{4}-6769 r^{3}-13132 r^{2}-13068 r-5040}{78125 r^{7}+3171875 r^{6}+54096875 r^{5}+501790625 r^{4}+2730245000 r^{3}+8700925100 r^{2}+15013629360 r+10801574784}\) & \(\frac{2288}{30517578125}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =1\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} 7^{7}+b_{8} t^{8} \ldots\right) \\
& =\frac{1+\frac{4 t}{25}-\frac{2 t^{2}}{625}+\frac{4 t^{3}}{15625}-\frac{11 t^{4}}{390625}+\frac{1786 t^{5}}{48888125}-\frac{616 t^{6}}{1220703125}+\frac{2887^{7}}{30518578125}+O\left(t^{8}\right)}{t^{\frac{9}{5}}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1}\left(1-\frac{t}{14}+\frac{t^{2}}{133}-\frac{t^{3}}{1064}+\frac{t^{4}}{7714}-\frac{5 t^{5}}{262276}+\frac{5 t^{6}}{1704794}-\frac{5 t^{7}}{10715848}+O\left(t^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{4 t}{25}-\frac{2 t^{2}}{625}+\frac{4 t^{3}}{15625}-\frac{11 t^{4}}{390625}+\frac{176 t^{5}}{48828125}-\frac{616 t^{6}}{1220703125}+\frac{2288 t^{7}}{30517578125}+O\left(t^{8}\right)\right)}{t^{9}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1}\left(1-\frac{t}{14}+\frac{t^{2}}{133}-\frac{t^{3}}{1064}+\frac{t^{4}}{7714}-\frac{5 t^{5}}{262276}+\frac{5 t^{6}}{1704794}-\frac{5 t^{7}}{10715848}+O\left(t^{8}\right)\right) \\
& +\frac{c_{2}\left(1+\frac{4 t}{25}-\frac{2 t^{2}}{625}+\frac{4 t^{3}}{15625}-\frac{11 t^{4}}{390625}+\frac{176 t^{5}}{48828125}-\frac{616 t^{6}}{1220703125}+\frac{2288 t^{7}}{30517578125}+O\left(t^{8}\right)\right)}{t^{\frac{9}{5}}}
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x s\) using \(t=x-3\) results in
\[
\begin{aligned}
& y= c_{1}\left(\frac{17}{14}-\frac{x}{14}+\frac{(x-3)^{2}}{133}-\frac{(x-3)^{3}}{1064}+\frac{(x-3)^{4}}{7714}-\frac{5(x-3)^{5}}{262276}+\frac{5(x-3)^{6}}{1704794}\right. \\
&\left.-\frac{5(x-3)^{7}}{10715848}+O\left((x-3)^{8}\right)\right) \\
&+ c_{2}\left(\frac{13}{25}+\frac{4 x}{25}-\frac{2(x-3)^{2}}{625}+\frac{4(x-3)^{3}}{15625}-\frac{11(x-3)^{4}}{390625}+\frac{176(x-3)^{5}}{48828125}-\frac{616(x-3)^{6}}{1220703125}+\frac{2288(x-3)^{7}}{30517578125}+O\left((x-3)^{8}\right)\right) \\
&(x-3)^{\frac{9}{5}}
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y= c_{1}\left(\frac{17}{14}-\frac{x}{14}+\frac{(x-3)^{2}}{133}-\frac{(x-3)^{3}}{1064}+\frac{(x-3)^{4}}{7714}-\frac{5(x-3)^{5}}{262276}+\frac{5(x-3)^{6}}{1704794}\right. \\
&\left.-\frac{5(x-3)^{7}}{10715848}+O\left((x-3)^{8}\right)\right) \\
&+ c_{2}\left(\frac{13}{25}+\frac{4 x}{25}-\frac{2(x-3)^{2}}{625}+\frac{4(x-3)^{3}}{15625}-\frac{11(x-3)^{4}}{390625}+\frac{176(x-3)^{5}}{48828125}-\frac{616(x-3)^{6}}{1220703125}+\frac{2288(x-3)^{7}}{30517578125}+O\left((x-3)^{8}\right)\right) \\
&(x-3)^{\frac{9}{5}}
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y= c_{1}\left(\frac{17}{14}-\frac{x}{14}+\frac{(x-3)^{2}}{133}-\frac{(x-3)^{3}}{1064}+\frac{(x-3)^{4}}{7714}-\frac{5(x-3)^{5}}{262276}+\frac{5(x-3)^{6}}{1704794}\right. \\
&\left.-\frac{5(x-3)^{7}}{10715848}+O\left((x-3)^{8}\right)\right) \\
&+ c_{2}\left(\frac{13}{25}+\frac{4 x}{25}-\frac{2(x-3)^{2}}{625}+\frac{4(x-3)^{3}}{15625}-\frac{11(x-3)^{4}}{390625}+\frac{176(x-3)^{5}}{48828125}-\frac{616(x-3)^{6}}{1220703125}+\frac{2288(x-3)^{7}}{30517578125}+O\left((x-3)^{8}\right)\right) \\
&(x-3)^{\frac{9}{5}}
\end{aligned}
\]

Verified OK.

\subsection*{21.4.1 Maple step by step solution}

Let's solve
\[
\left(x^{2}-x-6\right) y^{\prime \prime}+(3 x+5) y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{x^{2}-x-6}-\frac{(3 x+5) y^{\prime}}{x^{2}-x-6}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(3 x+5) y^{\prime}}{x^{2}-x-6}+\frac{y}{x^{2}-x-6}=0
\]
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{3 x+5}{x^{2}-x-6}, P_{3}(x)=\frac{1}{x^{2}-x-6}\right]
\]
- \((x+2) \cdot P_{2}(x)\) is analytic at \(x=-2\)
\[
\left.\left((x+2) \cdot P_{2}(x)\right)\right|_{x=-2}=\frac{1}{5}
\]
- \((x+2)^{2} \cdot P_{3}(x)\) is analytic at \(x=-2\)
\[
\left.\left((x+2)^{2} \cdot P_{3}(x)\right)\right|_{x=-2}=0
\]
- \(x=-2\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-2
\]
- Multiply by denominators
\[
\left(x^{2}-x-6\right) y^{\prime \prime}+(3 x+5) y^{\prime}+y=0
\]
- \(\quad\) Change variables using \(x=u-2\) so that the regular singular point is at \(u=0\)
\[
\left(u^{2}-5 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(3 u-1)\left(\frac{d}{d u} y(u)\right)+y(u)=0
\]
- \(\quad\) Assume series solution for \(y(u)\)
\[
y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}
\]

Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-a_{0} r(-4+5 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+r+1)(5 k+1+5 r)+a_{k}(k+r+1)^{2}\right) u^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
-r(-4+5 r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\left\{0, \frac{4}{5}\right\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
\left((-5 k-5 r-1) a_{k+1}+a_{k}(k+r+1)\right)(k+r+1)=0
\]
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+r+1)}{5 k+1+5 r}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+1)}{5 k+1}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+1)}{5 k+1}\right]\)
- \(\quad\) Revert the change of variables \(u=x+2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k}, a_{k+1}=\frac{a_{k}(k+1)}{5 k+1}\right]
\]
- Recursion relation for \(r=\frac{4}{5}\)
\(a_{k+1}=\frac{a_{k}\left(k+\frac{9}{5}\right)}{5 k+5}\)
- \(\quad\) Solution for \(r=\frac{4}{5}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{4}{5}}, a_{k+1}=\frac{a_{k}\left(k+\frac{9}{5}\right)}{5 k+5}\right]
\]
- \(\quad\) Revert the change of variables \(u=x+2\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x+2)^{k+\frac{4}{5}}, a_{k+1}=\frac{a_{k}\left(k+\frac{9}{5}\right)}{5 k+5}\right]
\]
- Combine solutions and rename parameters
\(\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x+2)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x+2)^{k+\frac{4}{5}}\right), a_{k+1}=\frac{a_{k}(k+1)}{5 k+1}, b_{k+1}=\frac{b_{k}\left(k+\frac{9}{5}\right)}{5 k+5}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)]     One independent solution has integrals. Trying a hypergeometric solution free of integral     -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius     <- hyper3 successful: received ODE is equivalent to the 2F1 ODE     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form for at least one hypergeometric solution is achieved - returning with <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 54
```

Order:=8;
dsolve((x^2-x-6)*diff (y(x),x\$2)+(5+3*x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=3);
y(x)
=}\frac{\mp@subsup{c}{1}{}(1+\frac{4}{25}(x-3)-\frac{2}{625}(x-3\mp@subsup{)}{}{2}+\frac{4}{15625}(x-3\mp@subsup{)}{}{3}-\frac{11}{390625}(x-3\mp@subsup{)}{}{4}+\frac{1776}{48828125}(x-3\mp@subsup{)}{}{5}-\frac{616}{1220703125}}{(x-3\mp@subsup{)}{}{6}
+c2}(1-\frac{1}{14}(x-3)+\frac{1}{133}(x-3\mp@subsup{)}{}{2}-\frac{1}{1064}(x-3\mp@subsup{)}{}{3}+\frac{1}{7714}(x-3\mp@subsup{)}{}{4}-\frac{5}{262276}(x-3\mp@subsup{)}{}{5
+}\frac{5}{1704794}(x-3\mp@subsup{)}{}{6}-\frac{5}{10715848}(x-3\mp@subsup{)}{}{7}+\textrm{O}((x-3\mp@subsup{)}{}{8})

```
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 145

AsymptoticDSolveValue \(\left[\left(x^{\wedge} 2-x-6\right) * y^{\prime} '[x]+(5+3 * x) * y^{\prime}[x]+y[x]==0, y[x],\{x, 3,7\}\right]\)
\[
\begin{array}{r}
y(x) \rightarrow c_{1}\left(-\frac{5(x-3)^{7}}{10715848}+\frac{5(x-3)^{6}}{1704794}-\frac{5(x-3)^{5}}{262276}+\frac{(x-3)^{4}}{7714}-\frac{(x-3)^{3}}{1064}+\frac{1}{133}(x-3)^{2}\right. \\
\left.+\frac{3-x}{14}+1\right) \\
+\frac{c_{2}\left(\frac{2288(x-3)^{7}}{30517578125}-\frac{616(x-3)^{6}}{1220703125}+\frac{176(x-3)^{5}}{48828125}-\frac{11(x-3)^{4}}{390625}+\frac{4(x-3)^{3}}{15625}-\frac{2}{625}(x-3)^{2}+\frac{4(x-3)}{25}+1\right)}{(x-3)^{9 / 5}}
\end{array}
\]

\section*{21.5 problem 3}
21.5.1 Maple step by step solution 3573

Internal problem ID [6474]
Internal file name [OUTPUT/5722_Sunday_June_05_2022_03_49_05_PM_56011628/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's
Hypergeometric Equation. Page 187
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

```
\[
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
\]

With the expansion point for the power series method at \(x=1\).
The ode does not have its expansion point at \(x=0\), therefore to simplify the computation of power series expansion, change of variable is made on the independent variable to shift the initial conditions and the expasion point back to zero. The new ode is then solved more easily since the expansion point is now at zero. The solution converted back to the original independent variable. Let
\[
t=x-1
\]

The ode is converted to be in terms of the new independent variable \(t\). This results in
\[
\left(-(t+1)^{2}+1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)-(t+1)\left(\frac{d}{d t} y(t)\right)+p^{2} y(t)=0
\]

With its expansion point and initial conditions now at \(t=0\). The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the
homogeneous part of the ODE.
\[
\left(-t^{2}-2 t\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+(-t-1)\left(\frac{d}{d t} y(t)\right)+p^{2} y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
p(t) & =\frac{t+1}{t(t+2)} \\
q(t) & =-\frac{p^{2}}{t(t+2)}
\end{aligned}
\]

Table 493: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{t+1}{t(t+2)}\)} \\
\hline singularity & type \\
\hline\(t=-2\) & "regular" \\
\hline\(t=0\) & "regular" \\
\hline \multicolumn{2}{|c|}{\(q(t)=-\frac{p^{2}}{t(t+2)}\)} \\
\hline singularity & type \\
\hline\(t=-2\) & "regular" \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-2,0, \infty]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
-\left(\frac{d^{2}}{d t^{2}} y(t)\right) t(t+2)+(-t-1)\left(\frac{d}{d t} y(t)\right)+p^{2} y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& -\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t(t+2) \tag{1}\\
& +(-t-1)\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+p^{2}\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
\sum_{n=0}^{\infty} & \left(-t^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} p^{2} a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty} p^{2} a_{n} t^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} p^{2} t^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& \quad+\sum_{n=0}^{\infty}\left(-2 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) t^{n+r-1}\right) \tag{2~B}\\
& \quad+\sum_{n=0}^{\infty}\left(-(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} p^{2} t^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-2 t^{n+r-1} a_{n}(n+r)(n+r-1)-(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
-2 t^{-1+r} a_{0} r(-1+r)-r a_{0} t^{-1+r}=0
\]

Or
\[
\left(-2 t^{-1+r} r(-1+r)-r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(-2 r^{2}+r\right) t^{-1+r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
-2 r^{2}+r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(-2 r^{2}+r\right) t^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+\frac{1}{2}} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& -a_{n-1}(n+r-1)(n+r-2)-2 a_{n}(n+r)(n+r-1) \tag{3}\\
& -a_{n-1}(n+r-1)-a_{n}(n+r)+a_{n-1} p^{2}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(n^{2}+2 n r-p^{2}+r^{2}-2 n-2 r+1\right)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}\left(4 n^{2}-4 p^{2}-4 n+1\right)}{8 n^{2}+4 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=\frac{p^{2}}{3}-\frac{1}{12}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline\(a_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{5806080}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline\(a_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\) \\
\hline\(a_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{5806080}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{1277337600}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline\(a_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\) \\
\hline\(a_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{5806080}\) \\
\hline\(a_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{1277337600}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}\right.}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{398529331200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{p^{2}}{3}-\frac{1}{12}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline\(a_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\) \\
\hline\(a_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{5806080}\) \\
\hline\(a_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}\right.}{1277337600}\) \\
\hline\(a_{6}\) & \(\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)}\) & \(\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)(4)}{398529331200}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{\left(p^{2}-r^{2}-12 r-36\right)\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6}{(2 r+3}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)}{167382319104000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(\frac{1}{3}-\frac{1}{12}\) \\
\hline\(a_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\) \\
\hline\(a_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{144}\) \\
\hline\(a_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}\right.}{5806080}\) \\
\hline\(a_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}\right.}{127733}\) \\
\hline\(a_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)(4 p}{39}\) \\
\hline\(a_{6}\) & \(\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)}\) & \\
\hline\(a_{7}\) & \(\frac{\left(p^{2}-r^{2}-12 r-36\right)\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)(7+r)(2 r+13)}\) & \(\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)(4}{2}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =\sqrt{t}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =\sqrt{t}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right) t+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right) t^{2}+\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right) t^{3}+\frac{\left(4 p^{2}\right.}{}\right.
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{align*}
& -b_{n-1}(n+r-1)(n+r-2)-2 b_{n}(n+r)(n+r-1) \tag{3}\\
& \quad-b_{n-1}(n+r-1)-(n+r) b_{n}+b_{n-1} p^{2}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}\left(n^{2}+2 n r-p^{2}+r^{2}-2 n-2 r+1\right)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-1}\left(n^{2}-p^{2}-2 n+1\right)}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=p^{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=\frac{1}{6} p^{4}-\frac{1}{6} p^{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline\(b_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)}{2520}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline\(b_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}\) \\
\hline\(b_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)}{2520}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(b_{5}=\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\)
Which for the root \(r=0\) becomes
\[
b_{5}=\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)}{113400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline\(b_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}\) \\
\hline\(b_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)}{2520}\) \\
\hline\(b_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)}{113400}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}\right.}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+}
\]

Which for the root \(r=0\) becomes
\[
b_{6}=\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}}{7484400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline\(b_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}\) \\
\hline\(b_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)}{2520}\) \\
\hline\(b_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)}{113400}\) \\
\hline\(b_{6}\) & \(\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)}\) & \(\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}}{7484400}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=\frac{\left(p^{2}-r^{2}-12 r-36\right)\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)(}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6}
\]

Which for the root \(r=0\) becomes
\[
b_{7}=\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}}{681080400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{p^{2}-r^{2}}{2 r^{2}+3 r+1}\) & \(p^{2}\) \\
\hline\(b_{2}\) & \(\frac{\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\) \\
\hline\(b_{3}\) & \(\frac{\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90}\) & \(\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)}{90}\) \\
\hline\(b_{4}\) & \(\frac{\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)}\) & \(\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)}{2520}\) \\
\hline\(b_{5}\) & \(\frac{\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)}\) & \(\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-821\right.}{113400}\) \\
\hline\(b_{6}\) & \(\frac{\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)}\) & \(\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)}{748440}\) \\
\hline\(b_{7}\) & \(\frac{\left(p^{2}-r^{2}-12 r-36\right)\left(p^{2}-r^{2}-10 r-25\right)\left(p^{2}-r^{2}-8 r-16\right)\left(p^{2}-r^{2}-6 r-9\right)\left(p^{2}-r^{2}-4 r-4\right)\left(p^{2}-r^{2}-2 r-1\right)\left(p^{2}-r^{2}\right)}{\left(8 r^{6}+84 r^{5}+350 r^{4}+735 r^{3}+812 r^{2}+441 r+90\right)(2 r+7)(r+4)(r+5)(2 r+9)(2 r+11)(6+r)(7+r)(2 r+13)}\) & \(\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right.}{6810}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots \\
& =1+p^{2} t+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right) t^{2}+\frac{p^{2}\left(p^{4}-5 p^{2}+4\right) t^{3}}{90}+\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right) t^{4}}{2520}+\frac{p^{2}\left(p^{8}-30 p^{6}+\right.}{}
\end{aligned}
\]

Therefore the homogeneous solution is
\(y_{h}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)\)
\[
\begin{aligned}
& =c_{1} \sqrt{t}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right) t+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right) t^{2}\right. \\
& +\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right) t^{3} \\
& +\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{4}}{5806080} \\
& +\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{5}}{1277337600} \\
& +\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{6}}{398529331200} \\
& +\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{7}}{167382319104000} \\
& \left.+O\left(t^{8}\right)\right)+c_{2}\left(1+p^{2} t+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right) t^{2}+\frac{p^{2}\left(p^{4}-5 p^{2}+4\right) t^{3}}{90}\right. \\
& +\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right) t^{4}}{2520}+\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right) t^{5}}{113400} \\
& +\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2} t^{6}}{7484400} \\
& \left.+\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2} t^{7}}{681080400}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
y(t)=y_{h}
\]
\[
\begin{aligned}
&= c_{1} \sqrt{t}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right) t+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right) t^{2}\right. \\
&+\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right) t^{3}+\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{4}}{5806080} \\
&+\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{5}}{1277337600} \\
&+\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{6}}{398529331200} \\
&+\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right) t^{7}}{167382319104000} \\
&\left.+O\left(t^{8}\right)\right)+c_{2}\left(1+p^{2} t+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right) t^{2}+\frac{p^{2}\left(p^{4}-5 p^{2}+4\right) t^{3}}{90}\right. \\
&\left.+\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2} t^{7}}{681080400}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Replacing \(t\) in the above with the original independent variable \(x s u \operatorname{sing} t=x-1\) results
in
\[
\begin{aligned}
& y=c_{1} \sqrt{x-1}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right)(x-1)+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right)(x-1)^{2}\right. \\
& +\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right)(x-1)^{3} \\
& +\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{4}}{5806080} \\
& +\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{5}}{1277337600} \\
& +\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{6}}{398529331200} \\
& +\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{7}}{167382319104000} \\
& \left.+O\left((x-1)^{8}\right)\right)+c_{2}\left(1+p^{2}(x-1)+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right)(x-1)^{2}\right. \\
& +\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)(x-1)^{3}}{90}+\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)(x-1)^{4}}{2520} \\
& +\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)(x-1)^{5}}{113400} \\
& +\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{6}}{7484400} \\
& \left.+\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{7}}{681080400}+O\left((x-1)^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} \sqrt{x-1}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right)(x-1)+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right)(x-1)^{2}\right. \\
& +\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right)(x-1)^{3} \\
& +\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{4}}{5806080} \\
& +\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{5}}{1277337600} \\
& +\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{6}}{398529331200} \\
& +\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{7}}{167382319104000} \\
& \left.+O\left((x-1)^{8}\right)\right)+c_{2}\left(1+p^{2}(x-1)+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right)(x-1)^{2}\right. \\
& +\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)(x-1)^{3}}{90}+\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)(x-1)^{4}}{2520} \\
& +\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)(x-1)^{5}}{113400} \\
& +\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{6}}{7484400} \\
& \left.+\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{7}}{681080400}+O\left((x-1)^{8}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=c_{1} \sqrt{x-1}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right)(x-1)+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right)(x-1)^{2}\right. \\
& +\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right)(x-1)^{3} \\
& +\frac{\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{4}}{5806080} \\
& +\frac{\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{5}}{1277337600} \\
& +\frac{\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{6}}{398529331200} \\
& +\frac{\left(4 p^{2}-169\right)\left(4 p^{2}-121\right)\left(4 p^{2}-81\right)\left(4 p^{2}-49\right)\left(4 p^{2}-25\right)\left(4 p^{2}-9\right)\left(4 p^{2}-1\right)(x-1)^{7}}{167382319104000} \\
& \left.+O\left((x-1)^{8}\right)\right)+c_{2}\left(1+p^{2}(x-1)+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right)(x-1)^{2}\right. \\
& +\frac{p^{2}\left(p^{4}-5 p^{2}+4\right)(x-1)^{3}}{90}+\frac{p^{2}\left(p^{6}-14 p^{4}+49 p^{2}-36\right)(x-1)^{4}}{2520} \\
& +\frac{p^{2}\left(p^{8}-30 p^{6}+273 p^{4}-820 p^{2}+576\right)(x-1)^{5}}{113400} \\
& +\frac{\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{6}}{7484400} \\
& \left.+\frac{\left(p^{2}-36\right)\left(p^{2}-25\right)\left(p^{2}-16\right)\left(p^{2}-9\right)\left(p^{2}-4\right)\left(p^{2}-1\right) p^{2}(x-1)^{7}}{681080400}+O\left((x-1)^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{21.5.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+p^{2} y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{x y^{\prime}}{x^{2}-1}+\frac{p^{2} y}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{x y^{\prime}}{x^{2}-1}-\frac{p^{2} y}{x^{2}-1}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{x}{x^{2}-1}, P_{3}(x)=-\frac{p^{2}}{x^{2}-1}\right]\)
- \(\quad(1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=\frac{1}{2}\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\(x_{0}=-1\)
- Multiply by denominators
\(\left(x^{2}-1\right) y^{\prime \prime}+x y^{\prime}-p^{2} y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(u-1)\left(\frac{d}{d u} y(u)\right)-p^{2} y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1\).. 2
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
-a_{0} r(-1+2 r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-a_{k+1}(k+1+r)(2 k+1+2 r)+a_{k}(k+p+r)(k-p+r)\right) u^{k+r}\right)
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(-2\left(k+\frac{1}{2}+r\right)(k+1+r) a_{k+1}+a_{k}(k+p+r)(k-p+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+p+r)(k-p+r)}{(2 k+1+2 r)(k+1+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\)
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{1}{2}\)
\(a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\)
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(1+x)^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k}(1+x)^{k+\frac{1}{2}}\right), a_{k+1}=\frac{a_{k}(k+p)(k-p)}{(2 k+1)(k+1)}, b_{k+1}=\frac{b_{k}\left(k+p+\frac{1}{2}\right)\left(k-p+\frac{1}{2}\right)}{(2 k+2)\left(k+\frac{3}{2}\right)}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 338
```

Order:=8;
dsolve((1-x^2)*diff(y(x), x\$2)-x*diff(y(x),x)+p^2*y(x)=0,y(x),type='series',x=1);

```
\(y(x)=c_{1} \sqrt{x-1}\left(1+\left(\frac{p^{2}}{3}-\frac{1}{12}\right)(x-1)+\left(\frac{1}{30} p^{4}-\frac{1}{12} p^{2}+\frac{3}{160}\right)(x-1)^{2}\right.\)
 \(+\left(\frac{1}{630} p^{6}-\frac{1}{72} p^{4}+\frac{37}{1440} p^{2}-\frac{5}{896}\right)(x-1)^{3}\)
 \(+\left(\frac{1}{22680} p^{8}-\frac{1}{1080} p^{6}+\frac{47}{8640} p^{4}-\frac{3229}{362880} p^{2}+\frac{35}{18432}\right)(x-1)^{4}\)
 \(+\left(\frac{1}{1247400} p^{10}-\frac{1}{30240} p^{8}+\frac{19}{43200} p^{6}-\frac{1571}{725760} p^{4}+\frac{10679}{3225600} p^{2}-\frac{63}{90112}\right)(x-1)^{5}\)
 \(+\left(\frac{1}{97297200} p^{12}-\frac{1}{1360800} p^{10}+\frac{67}{3628800} p^{8}-\frac{2159}{10886400} p^{6}+\frac{153617}{174182400} p^{4}\right.\)
 \(\left.-\frac{550499}{425779200} p^{2}+\frac{231}{851968}\right)(x-1)^{6}\)
 \(+\left(\frac{1}{10216206000} p^{14}-\frac{1}{89812800} p^{12}+\frac{11}{23328000} p^{10}-\frac{8521}{914457600} p^{8}\right.\)
 \(\left.+\frac{230443}{2612736000} p^{6}-\frac{1206053}{3284582400} p^{4}+\frac{2430898831}{4649508864000} p^{2}-\frac{143}{1310720}\right)(x-1)^{7}\)
 \(\left.+\mathrm{O}\left((x-1)^{8}\right)\right)+c_{2}\left(1+p^{2}(x-1)+\left(\frac{1}{6} p^{4}-\frac{1}{6} p^{2}\right)(x-1)^{2}\right.\)
 \(+\left(\frac{1}{90} p^{6}-\frac{1}{18} p^{4}+\frac{2}{45} p^{2}\right)(x-1)^{3}+\left(\frac{1}{2520} p^{8}-\frac{1}{180} p^{6}+\frac{7}{360} p^{4}-\frac{1}{70} p^{2}\right)(x-1)^{4}\)
 \(+\left(\frac{1}{113400} p^{10}-\frac{1}{3780} p^{8}+\frac{13}{5400} p^{6}-\frac{41}{5670} p^{4}+\frac{8}{1575} p^{2}\right)(x-1)^{5}\)
 \(+\left(\frac{1}{7484400} p^{12}-\frac{1}{136080} p^{10}+\frac{31}{226800} p^{8}-\frac{139}{136080} p^{6}+\frac{479}{170100} p^{4}\right.\)
 \(\left.-\frac{4}{2079} p^{2}\right)(x-1)^{6}+\left(\frac{1}{681080400} p^{14}-\frac{1}{7484400} p^{12}+\frac{1}{226800} p^{10}-\frac{311}{4762800} p^{8}\right.\)
 \(\left.\left.+\frac{37}{85050} p^{6}-\frac{59}{51975} p^{4}+\frac{16}{21021} p^{2}\right)(x-1)^{7}+\mathrm{O}\left((x-1)^{8}\right)\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.007 (sec). Leaf size: 5699
AsymptoticDSolveValue \(\left[\left(1-x^{\wedge} 2\right) * y '\right.\) ' \(\left.[x]-x * y '[x]+p^{\wedge} 2 * y[x]==0, y[x],\{x, 1,7\}\right]\)

Too large to display

\section*{21.6 problem 5}

Internal problem ID [6475]
Internal file name [OUTPUT/5723_Sunday_June_05_2022_03_49_11_PM_96073013/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Section 4.6. Gauss's Hypergeometric Equation. Page 187
Problem number: 5.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
\left(1-\mathrm{e}^{x}\right) y^{\prime \prime}+\frac{y^{\prime}}{2}+\mathrm{e}^{x} y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(1-\mathrm{e}^{x}\right) y^{\prime \prime}+\frac{y^{\prime}}{2}+\mathrm{e}^{x} y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{1}{2\left(\mathrm{e}^{x}-1\right)} \\
& q(x)=-\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}-1}
\end{aligned}
\]

Table 495: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{2\left(\mathrm{e}^{x}-1\right)}\)} \\
\hline singularity & type \\
\hline\(x=2 i \pi Z\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=-\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}-1}\)} \\
\hline singularity & type \\
\hline\(x=2 i \pi Z\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points: [2imZ, 2imZ]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(1-\mathrm{e}^{x}\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\frac{\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)}{2}+\mathrm{e}^{x}\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Expanding \(1-\mathrm{e}^{x}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
1-\mathrm{e}^{x} & =-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}-\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}-\frac{1}{40320} x^{8}+\ldots \\
& =-x-\frac{1}{2} x^{2}-\frac{1}{6} x^{3}-\frac{1}{24} x^{4}-\frac{1}{120} x^{5}-\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}-\frac{1}{40320} x^{8}
\end{aligned}
\]

Expanding \(\mathrm{e}^{x}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
\mathrm{e}^{x} & =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}+\frac{1}{40320} x^{8}+\ldots \\
& =1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{120} x^{5}+\frac{1}{720} x^{6}+\frac{1}{5040} x^{7}+\frac{1}{40320} x^{8}
\end{aligned}
\]

Which simplifies to
\[
\begin{align*}
\sum_{n=0}^{\infty} & \left(-\frac{x^{n+r+6} a_{n}(n+r)(n+r-1)}{40320}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)(n+r-1)}{5040}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)(n+r-1)}{720}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}(n+r)(n+r-1)}{120}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)(n+r-1)}{24}\right) \\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}(n+r)(n+r-1)}{6}\right) \tag{2~A}\\
& +\sum_{n=0}^{\infty}\left(-\frac{x^{n+r} a_{n}(n+r)(n+r-1)}{2}\right) \\
& +\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{(n+r) a_{n} x^{n+r-1}}{2}\right) \\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}\right) \\
& +\left(\sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}}{5040}\right)+\left(\sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and
adjusting the power and the corresponding index gives
\[
\begin{aligned}
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+6} a_{n}(n+r)(n+r-1)}{40320}\right)=\sum_{n=7}^{\infty}\left(-\frac{a_{n-7}(n+r-7)(n+r-8) x^{n+r-1}}{40320}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+5} a_{n}(n+r)(n+r-1)}{5040}\right)=\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n+r-6)(n+r-7) x^{n+r-1}}{5040}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+4} a_{n}(n+r)(n+r-1)}{720}\right)=\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(-5+n+r)(n+r-6) x^{n+r-1}}{720}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+3} a_{n}(n+r)(n+r-1)}{120}\right)=\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n+r-4)(-5+n+r) x^{n+r-1}}{120}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r+2} a_{n}(n+r)(n+r-1)}{24}\right)=\sum_{n=3}^{\infty}\left(-\frac{a_{n-3}(n+r-3)(n+r-4) x^{n+r-1}}{24}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{1+n+r} a_{n}(n+r)(n+r-1)}{6}\right)=\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2)(n+r-3) x^{n+r-1}}{6}\right) \\
& \sum_{n=0}^{\infty}\left(-\frac{x^{n+r} a_{n}(n+r)(n+r-1)}{2}\right)=\sum_{n=1}^{\infty}\left(-\frac{a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}}{2}\right) \\
& \sum_{n=0}^{\infty} a_{n} x^{n+r}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1} \\
& \sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+2} a_{n}}{2}=\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r-1}}{2} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+3} a_{n}}{6}=\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r-1}}{6} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+4} a_{n}}{24}=\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r-1}}{24} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+5} a_{n}}{120}=\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r-1}}{120}
\end{aligned}
\]
\[
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{x^{n+r+6} a_{n}}{720}=\sum_{n=7}^{\infty} \frac{a_{n-7} x^{n+r-1}}{720} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+7} a_{n}}{5040}=\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r-1}}{5040} \\
& \sum_{n=0}^{\infty} \frac{x^{n+r+8} a_{n}}{40320}=\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n+r-1}}{40320}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers
of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
\sum_{n=7}^{\infty} & \left(-\frac{a_{n-7}(n+r-7)(n+r-8) x^{n+r-1}}{40320}\right) \\
& +\sum_{n=6}^{\infty}\left(-\frac{a_{n-6}(n+r-6)(n+r-7) x^{n+r-1}}{5040}\right) \\
& +\sum_{n=5}^{\infty}\left(-\frac{a_{n-5}(-5+n+r)(n+r-6) x^{n+r-1}}{720}\right) \\
& +\sum_{n=4}^{\infty}\left(-\frac{a_{n-4}(n+r-4)(-5+n+r) x^{n+r-1}}{120}\right) \\
& +\sum_{n=3}^{\infty}\left(-\frac{a_{n-3}(n+r-3)(n+r-4) x^{n+r-1}}{24}\right) \\
& +\sum_{n=2}^{\infty}\left(-\frac{a_{n-2}(n+r-2)(n+r-3) x^{n+r-1}}{6}\right) \tag{2~B}\\
& +\sum_{n=1}^{\infty}\left(-\frac{a_{n-1}(n+r-1)(n+r-2) x^{n+r-1}}{2}\right) \\
& +\sum_{n=0}^{\infty}\left(-x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} \frac{(n+r) a_{n} x^{n+r-1}}{2}\right) \\
& +\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)+\left(\sum_{n=3}^{\infty} \frac{a_{n-3} x^{n+r-1}}{2}\right) \\
& +\left(\sum_{n=4}^{\infty} \frac{a_{n-4} x^{n+r-1}}{6}\right)+\left(\sum_{n=5}^{\infty} \frac{a_{n-5} x^{n+r-1}}{24}\right) \\
& +\left(\sum_{n=6}^{\infty} \frac{a_{n-6} x^{n+r-1}}{120}\right)+\left(\sum_{n=7}^{\infty} \frac{a_{n-7} x^{n+r-1}}{720}\right) \\
& +\left(\sum_{n=8}^{\infty} \frac{a_{n-8} x^{n+r-1}}{5040}\right)+\left(\sum_{n=9}^{\infty} \frac{a_{n-9} x^{n+r-1}}{40320}\right)=0 \\
&
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
-x^{n+r-1} a_{n}(n+r)(n+r-1)+\frac{(n+r) a_{n} x^{n+r-1}}{2}=0
\]

When \(n=0\) the above becomes
\[
-x^{-1+r} a_{0} r(-1+r)+\frac{r a_{0} x^{-1+r}}{2}=0
\]

Or
\[
\left(-x^{-1+r} r(-1+r)+\frac{r x^{-1+r}}{2}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}\left(\frac{3}{2}-r\right)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
-r^{2}+\frac{3}{2} r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{3}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}\left(\frac{3}{2}-r\right)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{3}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{3}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{-r+2}{2 r-1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{r^{2}-2 r+3}{12 r^{2}-3}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
a_{3}=\frac{-4 r^{2}+5 r+12}{96 r^{3}+144 r^{2}-24 r-36}
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
a_{4}=\frac{-4 r^{4}+24 r^{3}-44 r^{2}+39 r+225}{2880 r^{4}+11520 r^{3}+10080 r^{2}-2880 r-2700}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
a_{5}=\frac{8 r^{4}-6 r^{3}-158 r^{2}+291 r+630}{360\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)}
\]

Substituting \(n=6\) in Eq. (2B) gives
\[
a_{6}=\frac{32 r^{6}-96 r^{5}+224 r^{4}+948 r^{3}-8311 r^{2}+16653 r+39690}{15120\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)}
\]

Substituting \(n=7\) in Eq. (2B) gives
\[
a_{7}=\frac{-128 r^{6}-864 r^{5}+2944 r^{4}-1176 r^{3}-51308 r^{2}+125943 r+249480}{60480\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)}
\]

Substituting \(n=8\) in Eq. (2B) gives
\[
a_{8}=\frac{\left.224 r^{9}+4128 r^{8}+28272 r^{7}+70968 r^{6}+47004 r^{5}+213042 r^{4}-779417 r^{3}-3196848 r^{2}+15434577 r-1-15\right)(2 r+7)(2 r+9)(2 r+11)\left(2 r^{2}+29 r+104\right)}{453600\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r}
\]

For \(9 \leq n\) the recursive equation is
\[
\begin{align*}
- & \frac{a_{n-7}(n+r-7)(n+r-8)}{40320}-\frac{a_{n-6}(n+r-6)(n+r-7)}{5040} \\
& -\frac{a_{n-5}(-5+n+r)(n+r-6)}{720}-\frac{a_{n-4}(n+r-4)(-5+n+r)}{120} \\
& -\frac{a_{n-3}(n+r-3)(n+r-4)}{24}-\frac{a_{n-2}(n+r-2)(n+r-3)}{6} \tag{3}\\
& -\frac{a_{n-1}(n+r-1)(n+r-2)}{2}-a_{n}(n+r)(n+r-1)+\frac{a_{n}(n+r)}{2}+a_{n-1} \\
& +a_{n-2}+\frac{a_{n-3}}{2}+\frac{a_{n-4}}{6}+\frac{a_{n-5}}{24}+\frac{a_{n-6}}{120}+\frac{a_{n-7}}{720}+\frac{a_{n-8}}{5040}+\frac{a_{n-9}}{40320}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\(a_{n}=-\frac{n^{2} a_{n-7}+8 n^{2} a_{n-6}+56 n^{2} a_{n-5}+336 n^{2} a_{n-4}+1680 n^{2} a_{n-3}+6720 n^{2} a_{n-2}+20160 n^{2} a_{n-1}+2 n r a_{n-}-1 .}{}\)

Which for the root \(r=\frac{3}{2}\) becomes
\(a_{n}=\underline{\left(-80640 a_{n-1}-4 a_{n-7}-32 a_{n-6}-224 a_{n-5}-1344 a_{n-4}-6720 a_{n-3}-26880 a_{n-2}\right) n^{2}+\left(48 a_{n-7}+32\right.}\)

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{3}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-r+2}{2 r-1}\) & \(\frac{1}{4}\) \\
\hline\(a_{2}\) & \(\frac{r^{2}-2 r+3}{12 r^{2}-3}\) & \(\frac{3}{32}\) \\
\hline\(a_{3}\) & \(\frac{-4 r^{2}+5 r+12}{96 r^{3}+144 r^{2}-24 r-36}\) & \(\frac{7}{384}\) \\
\hline\(a_{4}\) & \(\frac{-4 r^{4}+24 r^{3}-44 r^{2}+39 r+225}{2880 r^{4}+11520 r^{3}+10080 r^{2}-2880 r-2700}\) & \(\frac{109}{30720}\) \\
\hline\(a_{5}\) & \(\frac{8 r^{4}-6 r^{3}-158 r^{2}+291 r+630}{360\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)}\) & \(\frac{13}{24576}\) \\
\hline\(a_{6}\) & \(\frac{32 r^{6}-96 r^{5}+224 r^{4}+948 r^{3}-8311 r^{2}+16653 r+39690}{15120\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)}\) & \(\frac{4439}{61931520}\) \\
\hline\(a_{7}\) & \(\frac{-128 r^{6}-864 r^{5}+2944 r^{4}-1176 r^{3}-51308 r^{2}+125943 r+249480}{60480\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)}\) & \(\frac{2069}{247726080}\) \\
\hline\(a_{8}\) & \(\frac{224 r^{9}+4128 r^{8}+28272 r^{7}+70968 r^{6}+47004 r^{5}+213042 r^{4}-779417 r^{3}-3196848 r^{2}+15434577 r+24324300}{453600\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)\left(2 r^{2}+29 r+104\right)}\) & \(\frac{685613}{753087283200}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{\frac{3}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{3 x^{2}}{32}+\frac{7 x^{3}}{384}+\frac{109 x^{4}}{30720}+\frac{13 x^{5}}{24576}+\frac{4439 x^{6}}{61931520}+\frac{2069 x^{7}}{247726080}+\frac{685613 x^{8}}{753087283200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. \(\mathrm{Eq}(2 \mathrm{~B})\) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{-r+2}{2 r-1}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
b_{2}=\frac{r^{2}-2 r+3}{12 r^{2}-3}
\]

Substituting \(n=3\) in Eq. (2B) gives
\[
b_{3}=\frac{-4 r^{2}+5 r+12}{96 r^{3}+144 r^{2}-24 r-36}
\]

Substituting \(n=4\) in Eq. (2B) gives
\[
b_{4}=\frac{-4 r^{4}+24 r^{3}-44 r^{2}+39 r+225}{2880 r^{4}+11520 r^{3}+10080 r^{2}-2880 r-2700}
\]

Substituting \(n=5\) in Eq. (2B) gives
\[
b_{5}=\frac{8 r^{4}-6 r^{3}-158 r^{2}+291 r+630}{360\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)}
\]

Substituting \(n=6\) in Eq. (2B) gives
\[
b_{6}=\frac{32 r^{6}-96 r^{5}+224 r^{4}+948 r^{3}-8311 r^{2}+16653 r+39690}{15120\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)}
\]

Substituting \(n=7\) in Eq. (2B) gives
\[
b_{7}=\frac{-128 r^{6}-864 r^{5}+2944 r^{4}-1176 r^{3}-51308 r^{2}+125943 r+249480}{60480\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)}
\]

Substituting \(n=8\) in Eq. (2B) gives
\[
b_{8}=\frac{224 r^{9}+4128 r^{8}+28272 r^{7}+70968 r^{6}+47004 r^{5}+213042 r^{4}-779417 r^{3}-3196848 r^{2}+15434577 r+}{453600\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)\left(2 r^{2}+29 r+104\right)}
\]

For \(9 \leq n\) the recursive equation is
\[
\begin{align*}
- & \frac{b_{n-7}(n+r-7)(n+r-8)}{40320}-\frac{b_{n-6}(n+r-6)(n+r-7)}{5040} \\
& -\frac{b_{n-5}(-5+n+r)(n+r-6)}{720}-\frac{b_{n-4}(n+r-4)(-5+n+r)}{120} \\
& -\frac{b_{n-3}(n+r-3)(n+r-4)}{24}-\frac{b_{n-2}(n+r-2)(n+r-3)}{6} \tag{3}\\
& -\frac{b_{n-1}(n+r-1)(n+r-2)}{2}-b_{n}(n+r)(n+r-1)+\frac{(n+r) b_{n}}{2} \\
& +b_{n-1}+b_{n-2}+\frac{b_{n-3}}{2}+\frac{b_{n-4}}{6}+\frac{b_{n-5}}{24}+\frac{b_{n-6}}{120}+\frac{b_{n-7}}{720}+\frac{b_{n-8}}{5040}+\frac{b_{n-9}}{40320}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\(b_{n}=-\frac{n^{2} b_{n-7}+8 n^{2} b_{n-6}+56 n^{2} b_{n-5}+336 n^{2} b_{n-4}+1680 n^{2} b_{n-3}+6720 n^{2} b_{n-2}+20160 n^{2} b_{n-1}+2 n r b_{n-7}}{\text {. }}\)

Which for the root \(r=0\) becomes
\(b_{n}=\frac{\left(-20160 b_{n-1}-b_{n-7}-8 b_{n-6}-56 b_{n-5}-336 b_{n-4}-1680 b_{n-3}-6720 b_{n-2}\right) n^{2}+\left(60480 b_{n-1}+15 b_{n-7}\right.}{40320 n^{2}-60480 n}\)
At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-r+2}{2 r-1}\) & -2 \\
\hline\(b_{2}\) & \(\frac{r^{2}-2 r+3}{12 r^{2}-3}\) & -1 \\
\hline\(b_{3}\) & \(\frac{-4 r^{2}+5 r+12}{96 r^{3}+144 r^{2}-24 r-36}\) & \(-\frac{1}{3}\) \\
\hline\(b_{4}\) & \(\frac{-4 r^{4}+24 r^{3}-44 r^{2}+39 r+225}{2880 r^{4}+11520 r^{3}+10080 r^{2}-2880 r-2700}\) & \(-\frac{1}{12}\) \\
\hline\(b_{5}\) & \(\frac{8 r^{4}-6 r^{3}-158 r^{2}+291 r+630}{360\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)}\) & \(-\frac{1}{60}\) \\
\hline\(b_{6}\) & \(\frac{32 r^{6}-96 r^{5}+224 r^{4}+948 r^{3}-8311 r^{2}+16653 r+39690}{15120\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)}\) & \(-\frac{1}{360}\) \\
\hline\(b_{7}\) & \(\frac{-128 r^{6}-864 r^{5}+2944 r^{4}-1176 r^{3}-51308 r^{2}+125943 r+249480}{60480\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)}\) & \(-\frac{1}{2520}\) \\
\hline\(b_{8}\) & \(\frac{224 r^{9}+4128 r^{8}+28272 r^{7}+70968 r^{6}+47004 r^{5}+213042 r^{4}-779417 r^{3}-3196848 r^{2}+15434577 r+24324300}{453600\left(16 r^{4}+64 r^{3}+56 r^{2}-16 r-15\right)(2 r+7)(2 r+9)(2 r+11)\left(2 r^{2}+29 r+104\right)}\) & \(-\frac{1}{20160}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-2 x-x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{360}-\frac{x^{7}}{2520}-\frac{x^{8}}{20160}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{3 x^{2}}{32}+\frac{7 x^{3}}{384}+\frac{109 x^{4}}{30720}+\frac{13 x^{5}}{24576}+\frac{4439 x^{6}}{61931520}+\frac{2069 x^{7}}{247726080}+\frac{685613 x^{8}}{753087283200}\right. \\
& \left.+O\left(x^{8}\right)\right)+c_{2}\left(1-2 x-x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{360}-\frac{x^{7}}{2520}-\frac{x^{8}}{20160}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{3 x^{2}}{32}+\frac{7 x^{3}}{384}+\frac{109 x^{4}}{30720}+\frac{13 x^{5}}{24576}+\frac{4439 x^{6}}{61931520}+\frac{2069 x^{7}}{247726080}+\frac{685613 x^{8}}{753087283200}\right. \\
& \\
& \left.\quad+O\left(x^{8}\right)\right)+c_{2}\left(1-2 x-x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{360}-\frac{x^{7}}{2520}-\frac{x^{8}}{20160}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{3 x^{2}}{32}+\frac{7 x^{3}}{384}+\frac{109 x^{4}}{30720}+\frac{13 x^{5}}{24576}+\frac{4439 x^{6}}{61931520}+\frac{2069 x^{7}}{247726080}\right. \\
& \left.+\frac{685613 x^{8}}{753087283200}+O\left(x^{8}\right)^{1}\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
& y=c_{1} x^{\frac{3}{2}}\left(1+\frac{x}{4}+\frac{3 x^{2}}{32}+\frac{7 x^{3}}{384}+\frac{109 x^{4}}{30720}+\frac{13 x^{5}}{24576}+\frac{4439 x^{6}}{61931520}+\frac{2069 x^{7}}{247726080}+\frac{685613 x^{8}}{753087283200}\right. \\
&\left.+O\left(x^{8}\right)\right)+c_{2}\left(1-2 x-x^{2}-\frac{x^{3}}{3}-\frac{x^{4}}{12}-\frac{x^{5}}{60}-\frac{x^{6}}{360}-\frac{x^{7}}{2520}-\frac{x^{8}}{20160}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.
Maple trace
\(`\) Methods for second order ODEs:
--- Trying classification methods ---
trying a symmetry of the form [xi=0, eta=F(x)]
<- linear_1 successful`
\(\checkmark\) Solution by Maple
Time used: 0.281 (sec). Leaf size: 52
```

Order:=8;
dsolve((1-exp(x))*diff (y (x), x\$2)+1/2*diff (y (x), x)+exp(x)*y(x)=0,y(x),type='series',x=0);

```
\(y(x)=c_{1} x^{\frac{3}{2}}\left(1+\frac{1}{4} x+\frac{3}{32} x^{2}+\frac{7}{384} x^{3}+\frac{109}{30720} x^{4}+\frac{13}{24576} x^{5}+\frac{4439}{61931520} x^{6}+\frac{2069}{247726080} x^{7}\right.\)
\[
\left.+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(1-2 x-x^{2}-\frac{1}{3} x^{3}-\frac{1}{12} x^{4}-\frac{1}{60} x^{5}-\frac{1}{360} x^{6}-\frac{1}{2520} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 109
AsymptoticDSolveValue[(1-Exp[x])*y' \([\mathrm{x}]+1 / 2 * \mathrm{y}\) ' \([\mathrm{x}]+\operatorname{Exp}[\mathrm{x}] * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{2}\left(-\frac{x^{7}}{2520}-\frac{x^{6}}{360}-\frac{x^{5}}{60}-\frac{x^{4}}{12}-\frac{x^{3}}{3}-x^{2}-2 x+1\right) \\
& +c_{1}\left(\frac{2069 x^{7}}{247726080}+\frac{4439 x^{6}}{61931520}+\frac{13 x^{5}}{24576}+\frac{109 x^{4}}{30720}+\frac{7 x^{3}}{384}+\frac{3 x^{2}}{32}+\frac{x}{4}+1\right) x^{3 / 2}
\end{aligned}
\]
22 Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
22.1 problem 1(a) 3593
22.2 problem 1(b) 3603
22.3 problem 1(c) 3613
22.4 problem 1(d) 3626
22.5 problem 1(e) 3636
22.6 problem 1(f) 3647
22.7 problem 1(g) 3656
22.8 problem 1(h) 3668
22.9 problem 2(a) 3681
22.10problem 2(b) 3695
22.11problem 2(c) 3709
22.12problem 2(d) 3724
22.13problem 2(e) 3738
22.14problem 2(f) 3754
22.15problem 2(g) 3767
22.16problem 2(h) 3781
22.17problem 3(a) 3794
22.18problem 3(b) 3797
22.19problem 3(c) 3799
22.20problem 3(d) 3802

\section*{22.1 problem 1(a)}

Internal problem ID [6476]
Internal file name [OUTPUT/5724_Sunday_June_05_2022_03_49_14_PM_43329030/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_airy", "second_order_bessel_ode", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+2 x y=x^{2}
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{723}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{724}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-2 x y+x^{2} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =-2 x y^{\prime}-2 y+2 x \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =4 y x^{2}-2 x^{3}-4 y^{\prime}+2 \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =4 x\left(x y^{\prime}-\frac{5 x}{2}+4 y\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =-8 y x^{3}+4 x^{4}+24 x y^{\prime}+16 y-20 x \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =-8 y^{\prime} x^{3}-72 y x^{2}+40 x^{3}+40 y^{\prime}-20 \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =-8 x\left(-2 y x^{3}+x^{4}+12 x y^{\prime}+28 y-20 x\right)
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=0 \\
& F_{1}=-2 y(0) \\
& F_{2}=-4 y^{\prime}(0)+2 \\
& F_{3}=0 \\
& F_{4}=16 y(0) \\
& F_{5}=40 y^{\prime}(0)-20 \\
& F_{6}=0
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) y^{\prime}(0)+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-2 x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x^{2} \tag{1}
\end{equation*}
\]

Expanding \(x^{2}\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x^{2} & =x^{2}+\ldots \\
& =x^{2}
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+2 x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{2}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=0}^{\infty} 2 x^{1+n} a_{n}\right)=x^{2} \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=0}^{\infty} 2 x^{1+n} a_{n} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}\right)=x^{2} \tag{3}
\end{equation*}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+2) a_{n+2}(1+n)+2 a_{n-1}\right) x^{n}=x^{2} \tag{4}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{3}+2 a_{0}\right) x=0 \\
6 a_{3}+2 a_{0}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{0}}{3}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(12 a_{4}+2 a_{1}\right) x^{2}=x^{2} \\
12 a_{4}+2 a_{1}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{12}-\frac{a_{1}}{6}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{aligned}
\left(20 a_{5}+2 a_{2}\right) x^{3} & =0 \\
20 a_{5}+2 a_{2} & =0
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=0
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(30 a_{6}+2 a_{3}\right) x^{4}=0 \\
30 a_{6}+2 a_{3}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{a_{0}}{45}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}+2 a_{4}\right) x^{5}=0 \\
42 a_{7}+2 a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{1}{252}+\frac{a_{1}}{126}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(56 a_{8}+2 a_{5}\right) x^{6}=0 \\
56 a_{8}+2 a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=0
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(72 a_{9}+2 a_{6}\right) x^{7}=0 \\
72 a_{9}+2 a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=-\frac{a_{0}}{1620}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{a_{0} x^{3}}{3}+\left(\frac{1}{12}-\frac{a_{1}}{6}\right) x^{4}+\frac{a_{0} x^{6}}{45}+\left(-\frac{1}{252}+\frac{a_{1}}{126}\right) x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) a_{0}+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) a_{1}+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) c_{2}+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) y^{\prime}(0)+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right) \tag{1}\\
& y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) c_{2}+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) y^{\prime}(0)+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) c_{2}+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right)
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 38
```

Order:=8;
dsolve(diff(y(x),x\$2)+2*x*y(x)=x^2,y(x),type='series', x=0);

```
\[
y(x)=\left(1-\frac{1}{3} x^{3}+\frac{1}{45} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{4}+\frac{1}{126} x^{7}\right) D(y)(0)+\frac{x^{4}}{12}-\frac{x^{7}}{252}+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 56
AsymptoticDSolveValue [y' ' \([\mathrm{x}]+2 * \mathrm{x} * \mathrm{y}[\mathrm{x}]==\mathrm{x} \wedge 2, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
y(x) \rightarrow-\frac{x^{7}}{252}+\frac{x^{4}}{12}+c_{2}\left(\frac{x^{7}}{126}-\frac{x^{4}}{6}+x\right)+c_{1}\left(\frac{x^{6}}{45}-\frac{x^{3}}{3}+1\right)
\]

\section*{22.2 problem 1(b)}

Internal problem ID [6477]
Internal file name [OUTPUT/5725_Sunday_June_05_2022_03_49_16_PM_84230385/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant__coeff_transformation_on_B"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-x y^{\prime}+y=x
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{726}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{727}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =x y^{\prime}-y+x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =x^{2} y^{\prime}-x y+x^{2}+1 \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+x\right) y^{\prime}+x^{3}-y x^{2}+2 x-y \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =y^{\prime} x^{4}-y x^{3}+x^{4}+3 x^{2} y^{\prime}-3 x y+4 x^{2}+2 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+6 x^{3}+3 x\right) y^{\prime}+\left(-x^{4}-6 x^{2}-3\right) y+x^{5}+7 x^{3}+8 x \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{6}+10 x^{4}+15 x^{2}\right) y^{\prime}+\left(-x^{5}-10 x^{3}-15 x\right) y+x^{6}+11 x^{4}+24 x^{2}+8 \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(x^{7}+15 x^{5}+45 x^{3}+15 x\right) y^{\prime}+\left(-x^{6}-15 x^{4}-45 x^{2}-15\right) y+x^{7}+16 x^{5}+59 x^{3}+48 x
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=1 \\
& F_{2}=-y(0) \\
& F_{3}=2 \\
& F_{4}=-3 y(0) \\
& F_{5}=8 \\
& F_{6}=-15 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}-\frac{1}{2688} x^{8}\right) y(0)+x y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x \tag{1}
\end{equation*}
\]

Expanding \(x\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x & =x+\ldots \\
& =x
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+2) a_{n+2}(n+1)-n a_{n}+a_{n}\right) x^{n}=x \tag{4}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{3}\right) x=x \\
6 a_{3}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{1}{6}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(12 a_{4}-a_{2}\right) x^{2}=0 \\
12 a_{4}-a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=-\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{aligned}
\left(20 a_{5}-2 a_{3}\right) x^{3} & =0 \\
20 a_{5}-2 a_{3} & =0
\end{aligned}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{60}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(30 a_{6}-3 a_{4}\right) x^{4}=0 \\
30 a_{6}-3 a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{240}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}-4 a_{5}\right) x^{5}=0 \\
42 a_{7}-4 a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{630}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(56 a_{8}-5 a_{6}\right) x^{6}=0 \\
56 a_{8}-5 a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=-\frac{a_{0}}{2688}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(72 a_{9}-6 a_{7}\right) x^{7}=0 \\
72 a_{9}-6 a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{1}{7560}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}+\frac{1}{6} x^{3}-\frac{1}{24} a_{0} x^{4}+\frac{1}{60} x^{5}-\frac{1}{240} a_{0} x^{6}+\frac{1}{630} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) a_{0}+a_{1} x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) c_{1}+c_{2} x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}-\frac{1}{2688} x^{8}\right) y(0)+x y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x\left(^{81}\right)\right. \\
& y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) c_{1}+c_{2} x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}-\frac{1}{2688} x^{8}\right) y(0)+x y^{\prime}(0)+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) c_{1}+c_{2} x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right)
\]

Verified OK.
Maple trace Kovacic algorithm successful
- Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
<- Kovacics algorithm successful
<- solving first the homogeneous part of the ODE successful`
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
```

Order:=8;
dsolve(diff ( }\textrm{y}(\textrm{x}),\textrm{x}\$2)-\textrm{x}*\operatorname{diff}(\textrm{y}(\textrm{x}),\textrm{x})+\textrm{y}(\textrm{x})=\textrm{x},\textrm{y}(\textrm{x}),\mathrm{ ,type='series',}\textrm{x}=0)

```
\[
y(x)=\left(1-\frac{1}{2} x^{2}-\frac{1}{24} x^{4}-\frac{1}{240} x^{6}\right) y(0)+D(y)(0) x+\frac{x^{3}}{6}+\frac{x^{5}}{60}+\frac{x^{7}}{630}+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 55
AsymptoticDSolveValue[y' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]=\mathrm{x}, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
y(x) \rightarrow \frac{x^{7}}{630}+\frac{x^{5}}{60}+\frac{x^{3}}{6}+c_{1}\left(-\frac{x^{6}}{240}-\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)+c_{2} x
\]

\section*{22.3 problem 1(c)}
22.3.1 Maple step by step solution 3623

Internal problem ID [6478]
Internal file name [OUTPUT/5726_Sunday_June_05_2022_03_49_18_PM_4455029/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_linear_constant_ccoeff", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+y^{\prime}+y=x^{3}-x
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{729}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{730}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =-y^{\prime}-y+x^{3}-x \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =y-x^{3}+x+3 x^{2}-1 \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =y^{\prime}-3 x^{2}+1+6 x \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =-y^{\prime}-y+x^{3}-7 x+6 \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =y-x^{3}+x+3 x^{2}-7 \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =y^{\prime}-3 x^{2}+1+6 x \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =-y^{\prime}-y+x^{3}-7 x+6
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y^{\prime}(0)-y(0) \\
& F_{1}=y(0)-1 \\
& F_{2}=y^{\prime}(0)+1 \\
& F_{3}=-y(0)-y^{\prime}(0)+6 \\
& F_{4}=y(0)-7 \\
& F_{5}=y^{\prime}(0)+1 \\
& F_{6}=-y(0)-y^{\prime}(0)+6
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{40320} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}-\frac{1}{40320} x^{8}\right) y^{\prime}(0) \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+\frac{x^{8}}{6720}+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)-\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+x^{3}-x \tag{1}
\end{equation*}
\]

Expanding \(x^{3}-x\) as Taylor series around \(x=0\) and keeping only the first 8 terms gives
\[
\begin{aligned}
x^{3}-x & =x^{3}-x+\ldots \\
& =x^{3}-x
\end{aligned}
\]

Hence the ODE in Eq (1) becomes
\[
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{3}-x
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{3}-x \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=x^{3}-x \tag{3}
\end{equation*}
\]

For \(0 \leq n\), the recurrence equation is
\[
\begin{equation*}
\left((n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+a_{n}\right) x^{n}=x^{3}-x \tag{4}
\end{equation*}
\]

For \(n=0\) the recurrence equation gives
\[
\begin{array}{r}
\left(2 a_{2}+a_{1}+a_{0}\right) 1=0 \\
2 a_{2}+a_{1}+a_{0}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{2}=-\frac{a_{1}}{2}-\frac{a_{0}}{2}
\]

For \(n=1\) the recurrence equation gives
\[
\begin{array}{r}
\left(6 a_{3}+2 a_{2}+a_{1}\right) x=-x \\
6 a_{3}+2 a_{2}+a_{1}=-1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{1}{6}+\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
\begin{array}{r}
\left(12 a_{4}+3 a_{3}+a_{2}\right) x^{2}=0 \\
12 a_{4}+3 a_{3}+a_{2}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{1}{24}+\frac{a_{1}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
\begin{array}{r}
\left(20 a_{5}+4 a_{4}+a_{3}\right) x^{3}=x^{3} \\
20 a_{5}+4 a_{4}+a_{3}=1
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{1}{20}-\frac{a_{1}}{120}-\frac{a_{0}}{120}
\]

For \(n=4\) the recurrence equation gives
\[
\begin{array}{r}
\left(30 a_{6}+5 a_{5}+a_{4}\right) x^{4}=0 \\
30 a_{6}+5 a_{5}+a_{4}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{7}{720}+\frac{a_{0}}{720}
\]

For \(n=5\) the recurrence equation gives
\[
\begin{array}{r}
\left(42 a_{7}+6 a_{6}+a_{5}\right) x^{5}=0 \\
42 a_{7}+6 a_{6}+a_{5}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{1}{5040}+\frac{a_{1}}{5040}
\]

For \(n=6\) the recurrence equation gives
\[
\begin{array}{r}
\left(56 a_{8}+7 a_{7}+a_{6}\right) x^{6}=0 \\
56 a_{8}+7 a_{7}+a_{6}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{1}{6720}-\frac{a_{1}}{40320}-\frac{a_{0}}{40320}
\]

For \(n=7\) the recurrence equation gives
\[
\begin{array}{r}
\left(72 a_{9}+8 a_{8}+a_{7}\right) x^{7}=0 \\
72 a_{9}+8 a_{8}+a_{7}=0
\end{array}
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=-\frac{1}{51840}+\frac{a_{0}}{362880}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{a_{1}}{2}-\frac{a_{0}}{2}\right) x^{2}+\left(-\frac{1}{6}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{1}{24}+\frac{a_{1}}{24}\right) x^{4} \\
& +\left(\frac{1}{20}-\frac{a_{1}}{120}-\frac{a_{0}}{120}\right) x^{5}+\left(-\frac{7}{720}+\frac{a_{0}}{720}\right) x^{6}+\left(\frac{1}{5040}+\frac{a_{1}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) a_{0}+\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}\right) a_{1} \tag{3}\\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}\right) c_{2} \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{40320} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}-\frac{1}{40320} x^{8}\right) y^{\prime}(0) \tag{1}\\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+\frac{x^{8}}{6720}+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}\right) c_{(2)} \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{align*}
\]

Figure 473: Slope field plot

Verification of solutions
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{40320} x^{8}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}-\frac{1}{40320} x^{8}\right) y^{\prime}(0) \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+\frac{x^{8}}{6720}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) c_{1}+\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}\right) c_{2} \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.3.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-y^{\prime}-y+x^{3}-x
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+y^{\prime}+y=x^{3}-x\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+r+1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(x)=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(x)=\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right)
\]
- General solution of the ODE
\(y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)\)
- Substitute in solutions of the homogeneous ODE
\(y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+y_{p}(x)\)
Find a particular solution \(y_{p}(x)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(x)\) is the forcing function
\[
\left[y_{p}(x)=-y_{1}(x)\left(\int \frac{y_{2}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right)+y_{2}(x)\left(\int \frac{y_{1}(x) f(x)}{W\left(y_{1}(x), y_{2}(x)\right)} d x\right), f(x)=x^{3}-x\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(x), y_{2}(x)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) & \mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right)}{2}-\frac{\mathrm{e}^{-\frac{x}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2} & -\frac{\mathrm{e}^{-\frac{x}{2} \sin \left(\frac{\sqrt{3} x}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) \sqrt{3}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(x), y_{2}(x)\right)=\frac{\sqrt{3} \mathrm{e}^{-x}}{2}
\]
- Substitute functions into equation for \(y_{p}(x)\)
\[
y_{p}(x)=-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{x}{2}}\left(\cos \left(\frac{\sqrt{3} x}{2}\right)\left(\int\left(x^{3}-x\right) \mathrm{e}^{\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) d x\right)-\sin \left(\frac{\sqrt{3} x}{2}\right)\left(\int\left(x^{3}-x\right) \mathrm{e}^{\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) d x\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(x)=x^{3}-3 x^{2}-x+7
\]
- Substitute particular solution into general solution to ODE
\[
y=\mathrm{e}^{-\frac{x}{2}} \cos \left(\frac{\sqrt{3} x}{2}\right) c_{1}+\mathrm{e}^{-\frac{x}{2}} \sin \left(\frac{\sqrt{3} x}{2}\right) c_{2}+x^{3}-3 x^{2}-x+7
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 63
```

Order:=8;
dsolve(diff(y(x),x\$2)+diff(y(x),x)+y(x)=x^3-x,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{2} x^{2}+\frac{1}{6} x^{3}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}\right) y(0) \\
& +\left(x-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{5040} x^{7}\right) D(y)(0) \\
& -\frac{x^{3}}{6}+\frac{x^{4}}{24}+\frac{x^{5}}{20}-\frac{7 x^{6}}{720}+\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.031 (sec). Leaf size: 105
AsymptoticDSolveValue[y'' \([x]+y\) ' \(\left.[x]+y[x]==x^{\wedge} 3-x, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \frac{x^{7}}{5040}-\frac{7 x^{6}}{720}+\frac{x^{5}}{20}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+c_{2}\left(\frac{x^{7}}{5040}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+x\right) \\
& +c_{1}\left(\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{3}}{6}-\frac{x^{2}}{2}+1\right)
\end{aligned}
\]

\section*{22.4 problem 1(d)}
22.4.1 Maple step by step solution

3634
Internal problem ID [6479]
Internal file name [OUTPUT/5727_Sunday_June_05_2022_03_49_21_PM_84936219/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
2 y^{\prime \prime}+x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{732}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{733}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=-\frac{x y^{\prime}}{2}-\frac{y}{2} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{x^{2} y^{\prime}}{4}+\frac{x y}{4}-y^{\prime} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{\left(-x^{3}+10 x\right) y^{\prime}}{8}+\frac{\left(-x^{2}+6\right) y}{8} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{\left(x^{4}-18 x^{2}+32\right) y^{\prime}}{16}+\frac{y x\left(x^{2}-14\right)}{16} \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=\frac{\left(-x^{5}+28 x^{3}-132 x\right) y^{\prime}}{32}-\frac{y\left(x^{4}-24 x^{2}+60\right)}{32} \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
&=\frac{\left(x^{6}-40 x^{4}+348 x^{2}-384\right) y^{\prime}}{64}+\frac{y x\left(x^{4}-36 x^{2}+228\right)}{64} \\
& F_{6}=\frac{d F_{5}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
&=\frac{\left(-x^{7}+54 x^{5}-740 x^{3}+2232 x\right) y^{\prime}}{128}-\frac{y\left(x^{2}-14\right)\left(x^{4}-36 x^{2}+60\right)}{128} \\
& \hline
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-\frac{y(0)}{2} \\
& F_{1}=-y^{\prime}(0) \\
& F_{2}=\frac{3 y(0)}{4} \\
& F_{3}=2 y^{\prime}(0) \\
& F_{4}=-\frac{15 y(0)}{8} \\
& F_{5}=-6 y^{\prime}(0) \\
& F_{6}=\frac{105 y(0)}{16}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\(y=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=-\frac{x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)}{2}-\frac{\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)}{2} \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} 2 n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 2(n+2) a_{n+2}(n+1) x^{n}\right)+\left(\sum_{n=1}^{\infty} n x^{n} a_{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
4 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{4}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
2(n+2) a_{n+2}(n+1)+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n}}{2(n+2)} \tag{5}
\end{equation*}
\]

For \(n=1\) the recurrence equation gives
\[
12 a_{3}+2 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=-\frac{a_{1}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
24 a_{4}+3 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{32}
\]

For \(n=3\) the recurrence equation gives
\[
40 a_{5}+4 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{60}
\]

For \(n=4\) the recurrence equation gives
\[
60 a_{6}+5 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{384}
\]

For \(n=5\) the recurrence equation gives
\[
84 a_{7}+6 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{a_{1}}{840}
\]

For \(n=6\) the recurrence equation gives
\[
112 a_{8}+7 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{a_{0}}{6144}
\]

For \(n=7\) the recurrence equation gives
\[
144 a_{9}+8 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{a_{1}}{15120}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{4} a_{0} x^{2}-\frac{1}{6} a_{1} x^{3}+\frac{1}{32} a_{0} x^{4}+\frac{1}{60} a_{1} x^{5}-\frac{1}{384} a_{0} x^{6}-\frac{1}{840} a_{1} x^{7}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}\right) a_{0}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) a_{1}+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0) \tag{1}\\
& +\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

Verification of solutions
\(y=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}+\frac{1}{6144} x^{8}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) y^{\prime}(0)+O\left(x^{8}\right)\)
Verified OK.
\[
y=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}\right) c_{1}+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) c_{2}+O\left(x^{8}\right)
\]

Verified OK.

\subsection*{22.4.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=-\frac{x y^{\prime}}{2}-\frac{y}{2}
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{x y^{\prime}}{2}+\frac{y}{2}=0\)
- Multiply by denominators
\(2 y^{\prime \prime}+x y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k}\)
\(\square \quad\) Rewrite DE with series expansions
- Convert \(x \cdot y^{\prime}\) to series expansion
\(x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k} k x^{k}\)
- Convert \(y^{\prime \prime}\) to series expansion
\(y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}\)
- Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite DE with series expansions
\(\sum_{k=0}^{\infty}\left(2 a_{k+2}(k+2)(k+1)+a_{k}(k+1)\right) x^{k}=0\)
- Each term in the series must be 0 , giving the recursion relation
\((k+1)\left(2 k a_{k+2}+a_{k}+4 a_{k+2}\right)=0\)
- Recursion relation that defines the series solution to the ODE
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{2(k+2)}\right]\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 44
```

Order:=8;
dsolve(2*diff(y(x),x\$2)+x*diff (y(x),x)+y(x)=0,y(x),type='series', x=0);

```
\(y(x)=\left(1-\frac{1}{4} x^{2}+\frac{1}{32} x^{4}-\frac{1}{384} x^{6}\right) y(0)+\left(x-\frac{1}{6} x^{3}+\frac{1}{60} x^{5}-\frac{1}{840} x^{7}\right) D(y)(0)+O\left(x^{8}\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 56
AsymptoticDSolveValue[2*y''[x]+x*y'[x]+y[x]==0,y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{2}\left(-\frac{x^{7}}{840}+\frac{x^{5}}{60}-\frac{x^{3}}{6}+x\right)+c_{1}\left(-\frac{x^{6}}{384}+\frac{x^{4}}{32}-\frac{x^{2}}{4}+1\right)
\]

\section*{22.5 problem 1(e)}

Internal problem ID [6480]
Internal file name [OUTPUT/5728_Sunday_June_05_2022_03_49_23_PM_55990753/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
\left(x^{2}+4\right) y^{\prime \prime}-y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{735}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{736}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\left.\begin{array}{rl}
F_{0} & =-\frac{-y^{\prime}+y}{x^{2}+4} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\frac{\left(-x^{2}-2 x-3\right) y^{\prime}+(2 x-1) y}{\left(x^{2}+4\right)^{2}} \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\frac{\left(4 x^{3}+4 x^{2}+10 x-15\right) y^{\prime}-5 y x^{2}+6 x y+11 y}{\left(x^{2}+4\right)^{3}} \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\frac{\left(-17 x^{4}-6 x^{3}-7 x^{2}+156 x+69\right) y^{\prime}+16 y\left(x^{3}-\frac{17}{8} x^{2}-\frac{29}{4} x+\frac{39}{16}\right)}{\left(x^{2}+4\right)^{4}} \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\frac{\left(84 x^{5}-21 x^{4}-288 x^{3}-1268 x^{2}-916 x+849\right) y^{\prime}-63\left(x^{4}-\frac{10}{3} x^{3}-\frac{337}{21} x^{2}+\frac{740}{63} x+\frac{533}{63}\right) y}{\left(x^{2}+4\right)^{5}} \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\frac{\left(-483 x^{6}+420 x^{5}+4434 x^{4}+9620 x^{3}+7031 x^{2}-22510 x-4947\right) y^{\prime}+294 y\left(x^{5}-\frac{69}{14} x^{4}-\frac{1468}{49} x^{3}+\frac{5}{1}\right.}{\left(x^{2}+4\right)^{6}} \\
& =\frac{d F_{5}}{d x} \\
\partial x
\end{array} \frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \quad\left(3192 x^{7}-4872 x^{6}-54276 x^{5}-69094 x^{4}-10644 x^{3}+408064 x^{2}+150438 x-110223\right) y^{\prime}-1575 y\left(x^{6}\right)\left(x^{2}+4\right)^{7}\right]
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=\frac{y^{\prime}(0)}{4}-\frac{y(0)}{4} \\
& F_{1}=-\frac{y(0)}{16}-\frac{3 y^{\prime}(0)}{16} \\
& F_{2}=\frac{11 y(0)}{64}-\frac{15 y^{\prime}(0)}{64} \\
& F_{3}=\frac{39 y(0)}{256}+\frac{69 y^{\prime}(0)}{256} \\
& F_{4}=-\frac{533 y(0)}{1024}+\frac{849 y^{\prime}(0)}{1024} \\
& F_{5}=-\frac{3809 y(0)}{4096}-\frac{4947 y^{\prime}(0)}{4096} \\
& F_{6}=\frac{62283 y(0)}{16384}-\frac{110223 y^{\prime}(0)}{16384}
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
& y=\left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right. \\
&\left.+\frac{20761}{220200960} x^{8}\right) y(0)+\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}\right. \\
&\left.-\frac{1649}{6881280} x^{7}-\frac{12247}{73400320} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(x^{2}+4\right) y^{\prime \prime}-y^{\prime}+y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(x^{2}+4\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} 4 n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n} \\
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty} 4(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& +\sum_{n=0}^{\infty}\left(-(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
8 a_{2}-a_{1}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{8}+\frac{a_{1}}{8}
\end{gathered}
\]
\(n=1\) gives
\[
24 a_{3}-2 a_{2}+a_{1}=0
\]

Which after substituting earlier equations, simplifies to
\[
a_{3}=-\frac{a_{0}}{96}-\frac{a_{1}}{32}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
n a_{n}(n-1)+4(n+2) a_{n+2}(n+1)-(n+1) a_{n+1}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =-\frac{n^{2} a_{n}-n a_{n}-n a_{n+1}+a_{n}-a_{n+1}}{4(n+2)(n+1)} \\
& =-\frac{\left(n^{2}-n+1\right) a_{n}}{4(n+2)(n+1)}-\frac{(-n-1) a_{n+1}}{4(n+2)(n+1)} \tag{5}
\end{align*}
\]

For \(n=2\) the recurrence equation gives
\[
3 a_{2}+48 a_{4}-3 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{11 a_{0}}{1536}-\frac{5 a_{1}}{512}
\]

For \(n=3\) the recurrence equation gives
\[
7 a_{3}+80 a_{5}-4 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{13 a_{0}}{10240}+\frac{23 a_{1}}{10240}
\]

For \(n=4\) the recurrence equation gives
\[
13 a_{4}+120 a_{6}-5 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{533 a_{0}}{737280}+\frac{283 a_{1}}{245760}
\]

For \(n=5\) the recurrence equation gives
\[
21 a_{5}+168 a_{7}-6 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=-\frac{3809 a_{0}}{20643840}-\frac{1649 a_{1}}{6881280}
\]

For \(n=6\) the recurrence equation gives
\[
31 a_{6}+224 a_{8}-7 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{20761 a_{0}}{220200960}-\frac{12247 a_{1}}{73400320}
\]

For \(n=7\) the recurrence equation gives
\[
43 a_{7}+288 a_{9}-8 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{717431 a_{0}}{23781703680}+\frac{246887 a_{1}}{7927234560}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(-\frac{a_{0}}{8}+\frac{a_{1}}{8}\right) x^{2}+\left(-\frac{a_{0}}{96}-\frac{a_{1}}{32}\right) x^{3} \\
& +\left(\frac{11 a_{0}}{1536}-\frac{5 a_{1}}{512}\right) x^{4}+\left(\frac{13 a_{0}}{10240}+\frac{23 a_{1}}{10240}\right) x^{5} \\
& +\left(-\frac{533 a_{0}}{737280}+\frac{283 a_{1}}{245760}\right) x^{6}+\left(-\frac{3809 a_{0}}{20643840}-\frac{1649 a_{1}}{6881280}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right) a_{0} \tag{3}\\
& +\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}-\frac{1649}{6881280} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}-\frac{1649}{6881280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right. \\
& \left.+\frac{20761}{220200960} x^{8}\right) y(0)+\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760}\left(x^{\phi}\right)\right. \\
& \left.-\frac{1649}{6881280} x^{7}-\frac{12247}{73400320} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}-\frac{1649}{6881280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y=\left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right. \\
&\left.+\frac{20761}{220200960} x^{8}\right) y(0)+\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}\right. \\
&\left.-\frac{1649}{6881280} x^{7}-\frac{12247}{73400320} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}-\frac{1649}{6881280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer         -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         <- heuristic approach successful     <- hypergeometric successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 74
```

Order:=8;
dsolve((4+x^2)*diff(y(x),x\$2)-diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1-\frac{1}{8} x^{2}-\frac{1}{96} x^{3}+\frac{11}{1536} x^{4}+\frac{13}{10240} x^{5}-\frac{533}{737280} x^{6}-\frac{3809}{20643840} x^{7}\right) y(0) \\
& +\left(x+\frac{1}{8} x^{2}-\frac{1}{32} x^{3}-\frac{5}{512} x^{4}+\frac{23}{10240} x^{5}+\frac{283}{245760} x^{6}-\frac{1649}{6881280} x^{7}\right) D(y)(0) \\
& +O\left(x^{8}\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 98
AsymptoticDSolveValue[(4+x^2)*y' ' \([x]-y\) ' \([x]+y[x]==0, y[x],\{x, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{3809 x^{7}}{20643840}-\frac{533 x^{6}}{737280}+\frac{13 x^{5}}{10240}+\frac{11 x^{4}}{1536}-\frac{x^{3}}{96}-\frac{x^{2}}{8}+1\right) \\
& +c_{2}\left(-\frac{1649 x^{7}}{6881280}+\frac{283 x^{6}}{245760}+\frac{23 x^{5}}{10240}-\frac{5 x^{4}}{512}-\frac{x^{3}}{32}+\frac{x^{2}}{8}+x\right)
\end{aligned}
\]

\section*{22.6 problem 1(f)}

Internal problem ID [6481]
Internal file name [OUTPUT/5729_Sunday_June_05_2022_03_49_24_PM_28259875/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(f).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second_order_change_of_cvariable_on_y_method_2", "second order series method. Taylor series method", "second__order_ode_non_constant_coeff_transformation_on_B"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
\left(x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{738}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{739}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=\frac{-y+x y^{\prime}}{x^{2}+1} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=-\frac{\left(-y+x y^{\prime}\right) x}{\left(x^{2}+1\right)^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{\left(-y+x y^{\prime}\right)\left(2 x^{2}-1\right)}{\left(x^{2}+1\right)^{3}} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=-\frac{6\left(x^{2}-\frac{3}{2}\right)\left(-y+x y^{\prime}\right) x}{\left(x^{2}+1\right)^{4}} \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=\frac{24\left(x^{4}-3 x^{2}+\frac{3}{8}\right)\left(-y+x y^{\prime}\right)}{\left(x^{2}+1\right)^{5}} \\
&=\frac{45\left(-y+x y^{\prime}\right)\left(16 x^{6}-120 x^{4}+90 x^{2}-5\right)}{\left(x^{2}+1\right)^{7}} \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
&=-\frac{\partial 0\left(-y+x y^{\prime}\right) x\left(x^{4}-5 x^{2}+\frac{15}{8}\right)}{\left(x^{2}+1\right)^{6}} \\
& \partial y \\
& \hline
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=-y(0) \\
& F_{1}=0 \\
& F_{2}=y(0) \\
& F_{3}=0 \\
& F_{4}=-9 y(0) \\
& F_{5}=0 \\
& F_{6}=225 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}+\frac{5}{896} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
\left(x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(x^{2}+1\right)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)-x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} x^{n} a_{n} n(n-1)\right)+\left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(n+1) x^{n}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{3}
\end{equation*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}+a_{0}=0 \\
a_{2}=-\frac{a_{0}}{2}
\end{gathered}
\]

For \(2 \leq n\), the recurrence equation is
\[
\begin{equation*}
n a_{n}(n-1)+(n+2) a_{n+2}(n+1)-n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{equation*}
a_{n+2}=-\frac{a_{n}\left(n^{2}-2 n+1\right)}{(n+2)(n+1)} \tag{5}
\end{equation*}
\]

For \(n=2\) the recurrence equation gives
\[
a_{2}+12 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
4 a_{3}+20 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=0
\]

For \(n=4\) the recurrence equation gives
\[
9 a_{4}+30 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=-\frac{a_{0}}{80}
\]

For \(n=5\) the recurrence equation gives
\[
16 a_{5}+42 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=0
\]

For \(n=6\) the recurrence equation gives
\[
25 a_{6}+56 a_{8}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{5 a_{0}}{896}
\]

For \(n=7\) the recurrence equation gives
\[
36 a_{7}+72 a_{9}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=0
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
y=a_{0}+a_{1} x-\frac{1}{2} a_{0} x^{2}+\frac{1}{24} a_{0} x^{4}-\frac{1}{80} a_{0} x^{6}+\ldots
\]

Collecting terms, the solution becomes
\[
\begin{equation*}
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}\right) a_{0}+a_{1} x+O\left(x^{8}\right) \tag{3}
\end{equation*}
\]

At \(x=0\) the solution above becomes
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}+\frac{5}{896} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right) \tag{1}\\
& y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right) \tag{2}
\end{align*}
\]

\section*{Verification of solutions}
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}+\frac{5}{896} x^{8}\right) y(0)+x y^{\prime}(0)+O\left(x^{8}\right)
\]

Verified OK.
\[
y=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}\right) c_{1}+c_{2} x+O\left(x^{8}\right)
\]

Verified OK.

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 29
```

Order:=8;
dsolve(( }\mp@subsup{x}{}{\wedge}2+1)*\operatorname{diff}(y(x),x\$2)-x*diff(y(x),x)+y(x)=0,y(x),type='series',x=0)

```
\[
y(x)=\left(1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}-\frac{1}{80} x^{6}\right) y(0)+D(y)(0) x+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 34
AsymptoticDSolveValue[(\(\left.\mathrm{x}^{\wedge} 2+1\right) * \mathrm{y}\) ' ' \([\mathrm{x}]-\mathrm{x} * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{6}}{80}+\frac{x^{4}}{24}-\frac{x^{2}}{2}+1\right)+c_{2} x
\]

\section*{22.7 problem 1(g)}
22.7.1 Maple step by step solution . 3664

Internal problem ID [6482]
Internal file name [OUTPUT/5730_Sunday_June_05_2022_03_49_26_PM_571338/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Ordinary point", "second order series method. Taylor series method"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}-(1+x) y^{\prime}-x y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{741}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{742}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
F_{0} & =x y^{\prime}+x y+y^{\prime} \\
F_{1} & =\frac{d F_{0}}{d x} \\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
& =\left(x^{2}+3 x+2\right) y^{\prime}+y\left(x^{2}+x+1\right) \\
F_{2} & =\frac{d F_{1}}{d x} \\
& =\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
& =\left(x^{3}+5 x^{2}+8 x+6\right) y^{\prime}+y\left(x^{3}+3 x^{2}+4 x+1\right) \\
F_{3} & =\frac{d F_{2}}{d x} \\
& =\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
& =\left(x^{4}+7 x^{3}+19 x^{2}+28 x+15\right) y^{\prime}+y(x+2)\left(x^{3}+3 x^{2}+5 x+2\right) \\
F_{4} & =\frac{d F_{3}}{d x} \\
& =\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
& =\left(x^{5}+9 x^{4}+35 x^{3}+79 x^{2}+93 x+47\right) y^{\prime}+y\left(x^{5}+7 x^{4}+23 x^{3}+43 x^{2}+37 x+12\right) \\
F_{5} & =\frac{d F_{4}}{d x} \\
& =\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
& =\left(x^{6}+11 x^{5}+56 x^{4}+173 x^{3}+320 x^{2}+335 x+152\right) y^{\prime}+y\left(x^{6}+9 x^{5}+40 x^{4}+107 x^{3}+162 x^{2}+133 x\right. \\
F_{6} & =\frac{d F_{5}}{d x} \\
& =\frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
& =\left(x^{7}+13 x^{6}+82 x^{5}+324 x^{4}+824 x^{3}+1336 x^{2}+1260 x+524\right) y^{\prime}+y\left(x^{7}+11 x^{6}+62 x^{5}+218 x^{4}+4\right.
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and
\(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y^{\prime}(0) \\
& F_{1}=2 y^{\prime}(0)+y(0) \\
& F_{2}=6 y^{\prime}(0)+y(0) \\
& F_{3}=15 y^{\prime}(0)+4 y(0) \\
& F_{4}=47 y^{\prime}(0)+12 y(0) \\
& F_{5}=152 y^{\prime}(0)+37 y(0) \\
& F_{6}=524 y^{\prime}(0)+133 y(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}+\frac{19}{5760} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}+\frac{131}{10080} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=x\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+x\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right) \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right)+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right)=0 \tag{2}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2} & =\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n} \\
\sum_{n=1}^{\infty}\left(-n a_{n} x^{n-1}\right) & =\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right) \\
\sum_{n=0}^{\infty}\left(-x^{1+n} a_{n}\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)
\end{aligned}
\]

Substituting all the above in Eq (2) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+2) a_{n+2}(1+n) x^{n}\right)+\sum_{n=0}^{\infty}\left(-(1+n) a_{1+n} x^{n}\right) \tag{3}\\
& \quad+\sum_{n=1}^{\infty}\left(-n a_{n} x^{n}\right)+\sum_{n=1}^{\infty}\left(-a_{n-1} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
2 a_{2}-a_{1}=0 \\
a_{2}=\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+2) a_{n+2}(1+n)-(1+n) a_{1+n}-n a_{n}-a_{n-1}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =\frac{n a_{n}+n a_{1+n}+a_{1+n}+a_{n-1}}{(n+2)(1+n)} \\
& =\frac{n a_{n}}{(n+2)(1+n)}+\frac{a_{1+n}}{n+2}+\frac{a_{n-1}}{(n+2)(1+n)} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
6 a_{3}-2 a_{2}-a_{1}-a_{0}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{1}}{3}+\frac{a_{0}}{6}
\]

For \(n=2\) the recurrence equation gives
\[
12 a_{4}-3 a_{3}-2 a_{2}-a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{a_{1}}{4}+\frac{a_{0}}{24}
\]

For \(n=3\) the recurrence equation gives
\[
20 a_{5}-4 a_{4}-3 a_{3}-a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{a_{1}}{8}+\frac{a_{0}}{30}
\]

For \(n=4\) the recurrence equation gives
\[
30 a_{6}-5 a_{5}-4 a_{4}-a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{47 a_{1}}{720}+\frac{a_{0}}{60}
\]

For \(n=5\) the recurrence equation gives
\[
42 a_{7}-6 a_{6}-5 a_{5}-a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{19 a_{1}}{630}+\frac{37 a_{0}}{5040}
\]

For \(n=6\) the recurrence equation gives
\[
56 a_{8}-7 a_{7}-6 a_{6}-a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{131 a_{1}}{10080}+\frac{19 a_{0}}{5760}
\]

For \(n=7\) the recurrence equation gives
\[
72 a_{9}-8 a_{8}-7 a_{7}-a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{71 a_{1}}{13440}+\frac{17 a_{0}}{12960}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\frac{a_{1} x^{2}}{2}+\left(\frac{a_{1}}{3}+\frac{a_{0}}{6}\right) x^{3}+\left(\frac{a_{1}}{4}+\frac{a_{0}}{24}\right) x^{4} \\
& +\left(\frac{a_{1}}{8}+\frac{a_{0}}{30}\right) x^{5}+\left(\frac{47 a_{1}}{720}+\frac{a_{0}}{60}\right) x^{6}+\left(\frac{19 a_{1}}{630}+\frac{37 a_{0}}{5040}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}\right) a_{0} \tag{3}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}+\frac{19}{5760} x^{8}\right) y(0) \tag{1}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}+\frac{131}{10080} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}\right) c_{1} \tag{2}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}+\frac{19}{5760} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}+\frac{131}{10080} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.7.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}=x y^{\prime}+x y+y^{\prime}
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+(-1-x) y^{\prime}-x y=0
\]
- \(\quad\) Assume series solution for \(y\)
\[
y=\sum_{k=0}^{\infty} a_{k} x^{k}
\]
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+1}\)
- Shift index using \(k->k-1\)
\[
x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k}
\]
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)}^{\infty} a_{k} k x^{k-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=\max (0,1-m)+m-1}^{\infty} a_{k+1-m}(k+1-m) x^{k}
\]
- Convert \(y^{\prime \prime}\) to series expansion
\[
y^{\prime \prime}=\sum_{k=2}^{\infty} a_{k} k(k-1) x^{k-2}
\]
- \(\quad\) Shift index using \(k->k+2\)
\[
y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1) x^{k}
\]

Rewrite ODE with series expansions
\[
2 a_{2}-a_{1}+\left(\sum_{k=1}^{\infty}\left(a_{k+2}(k+2)(k+1)-a_{k+1}(k+1)-a_{k} k-a_{k-1}\right) x^{k}\right)=0
\]
- Each term must be 0
\[
2 a_{2}-a_{1}=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
k^{2} a_{k+2}+\left(-a_{k}-a_{k+1}+3 a_{k+2}\right) k-a_{k-1}-a_{k+1}+2 a_{k+2}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\[
(k+1)^{2} a_{k+3}+\left(-a_{k+1}-a_{k+2}+3 a_{k+3}\right)(k+1)-a_{k}-a_{k+2}+2 a_{k+3}=0
\]
- Recursion relation that defines the series solution to the ODE
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+3}=\frac{a_{k+1} k+k a_{k+2}+a_{k}+a_{k+1}+2 a_{k+2}}{k^{2}+5 k+6}, 2 a_{2}-a_{1}=0\right]
\]

\section*{Maple trace Kovacic algorithm successful}
```

-Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
A Liouvillian solution exists
Reducible group (found an exponential solution)
Group is reducible, not completely reducible
Solution has integrals. Trying a special function solution free of integrals...
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
<- heuristic approach successful
<- hypergeometric successful
<- special function solution successful
-> Trying to convert hypergeometric functions to elementary form...
<- elementary form could result into a too large expression - returning special functi
<- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 69
```

Order:=8;
dsolve(diff(y(x),x\$2)-(x+1)*diff(y(x),x)-x*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+\frac{1}{6} x^{3}+\frac{1}{24} x^{4}+\frac{1}{30} x^{5}+\frac{1}{60} x^{6}+\frac{37}{5040} x^{7}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{1}{4} x^{4}+\frac{1}{8} x^{5}+\frac{47}{720} x^{6}+\frac{19}{630} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.001 (sec). Leaf size: 91
AsymptoticDSolveValue[y''[x]-(x+1)*y'[x]-x*y[x]==0,y[x],\{x,0,7\}]
\(y(x) \rightarrow c_{1}\left(\frac{37 x^{7}}{5040}+\frac{x^{6}}{60}+\frac{x^{5}}{30}+\frac{x^{4}}{24}+\frac{x^{3}}{6}+1\right)+c_{2}\left(\frac{19 x^{7}}{630}+\frac{47 x^{6}}{720}+\frac{x^{5}}{8}+\frac{x^{4}}{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}+x\right)\)

\section*{22.8 problem 1(h)}
22.8.1 Maple step by step solution . 3677

Internal problem ID [6483]
Internal file name [OUTPUT/5731_Sunday_June_05_2022_03_49_28_PM_80554525/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 1(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact linear second order ode", "second_order_integrable_as_is", "second order series method. Ordinary point", "second__order_change__of_cvariable_on_y_method_1", "second order series method. Taylor series method"

Maple gives the following as the ode type
[[_2nd_order, _exact, _linear, _homogeneous]]
\[
(x-1) y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
Solving ode using Taylor series method. This gives review on how the Taylor series method works for solving second order ode.

Let
\[
y^{\prime \prime}=f\left(x, y, y^{\prime}\right)
\]

Assuming expansion is at \(x_{0}=0\) (we can always shift the actual expansion point to 0 by change of variables) and assuming \(f\left(x, y, y^{\prime}\right)\) is analytic at \(x_{0}\) which must be the case for an ordinary point. Let initial conditions be \(y\left(x_{0}\right)=y_{0}\) and \(y^{\prime}\left(x_{0}\right)=y_{0}^{\prime}\). Using

Taylor series gives
\[
\begin{aligned}
y(x) & =y\left(x_{0}\right)+\left(x-x_{0}\right) y^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2} y^{\prime \prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{3}}{3!} y^{\prime \prime \prime}\left(x_{0}\right)+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\frac{x^{2}}{2} f\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\left.\frac{x^{3}}{3!} f^{\prime}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}+\cdots \\
& =y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} \frac{d^{n} f}{d x^{n}}\right|_{x_{0}, y_{0}, y_{0}^{\prime}}
\end{aligned}
\]

But
\[
\begin{align*}
\frac{d f}{d x} & =\frac{\partial f}{\partial x} \frac{d x}{d x}+\frac{\partial f}{\partial y} \frac{d y}{d x}+\frac{\partial f}{\partial y^{\prime}} \frac{d y^{\prime}}{d x} \tag{1}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \tag{744}\\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{745}\\
\frac{d^{2} f}{d x^{2}} & =\frac{d}{d x}\left(\frac{d f}{d x}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d f}{d x}\right)+\frac{\partial}{\partial y}\left(\frac{d f}{d x}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d f}{d x}\right) f \tag{2}\\
\frac{d^{3} f}{d x^{3}} & =\frac{d}{d x}\left(\frac{d^{2} f}{d x^{2}}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{d^{2} f}{d x^{2}}\right)+\left(\frac{\partial}{\partial y} \frac{d^{2} f}{d x^{2}}\right) y^{\prime}+\frac{\partial}{\partial y^{\prime}}\left(\frac{d^{2} f}{d x^{2}}\right) f \tag{3}
\end{align*}
\]

And so on. Hence if we name \(F_{0}=f\left(x, y, y^{\prime}\right)\) then the above can be written as
\[
\begin{align*}
F_{0} & =f\left(x, y, y^{\prime}\right) \tag{4}\\
F_{1} & =\frac{d f}{d x} \\
& =\frac{d F_{0}}{d x} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} y^{\prime \prime} \\
& =\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} y^{\prime}+\frac{\partial f}{\partial y^{\prime}} f \tag{5}\\
& =\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
F_{2} & =\frac{d}{d x}\left(\frac{d}{d x} f\right) \\
& =\frac{d}{d x}\left(F_{1}\right) \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{1}+\left(\frac{\partial F_{1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{1}}{\partial y^{\prime}}\right) F_{0} \\
& \vdots \\
F_{n} & =\frac{d}{d x}\left(F_{n-1}\right) \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) y^{\prime \prime} \\
& =\frac{\partial}{\partial x} F_{n-1}+\left(\frac{\partial F_{n-1}}{\partial y}\right) y^{\prime}+\left(\frac{\partial F_{n-1}}{\partial y^{\prime}}\right) F_{0} \tag{6}
\end{align*}
\]

Therefore (6) can be used from now on along with
\[
\begin{equation*}
y(x)=y_{0}+x y_{0}^{\prime}+\left.\sum_{n=0}^{\infty} \frac{x^{n+2}}{(n+2)!} F_{n}\right|_{x_{0}, y_{0}, y_{0}^{\prime}} \tag{7}
\end{equation*}
\]

To find \(y(x)\) series solution around \(x=0\). Hence
\[
\begin{aligned}
& F_{0}=-\frac{x y^{\prime}+y^{\prime}+y}{x-1} \\
& F_{1}=\frac{d F_{0}}{d x} \\
&=\frac{\partial F_{0}}{\partial x}+\frac{\partial F_{0}}{\partial y} y^{\prime}+\frac{\partial F_{0}}{\partial y^{\prime}} F_{0} \\
&=\frac{\left(x^{2}+x+4\right) y^{\prime}+(x+2) y}{(x-1)^{2}} \\
& F_{2}=\frac{d F_{1}}{d x} \\
&=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{1}}{\partial y} y^{\prime}+\frac{\partial F_{1}}{\partial y^{\prime}} F_{1} \\
&=\frac{\left(-x^{3}-x^{2}-7 x-15\right) y^{\prime}-y\left(x^{2}+2 x+9\right)}{(x-1)^{3}} \\
& F_{3}=\frac{d F_{2}}{d x} \\
&=\frac{\partial F_{2}}{\partial x}+\frac{\partial F_{2}}{\partial y} y^{\prime}+\frac{\partial F_{2}}{\partial y^{\prime}} F_{2} \\
&=\frac{\left(x^{4}+x^{3}+11 x^{2}+31 x+76\right) y^{\prime}+y\left(x^{3}+2 x^{2}+13 x+44\right)}{(x-1)^{4}} \\
& F_{4}=\frac{d F_{3}}{d x} \\
&=\frac{\partial F_{3}}{\partial x}+\frac{\partial F_{3}}{\partial y} y^{\prime}+\frac{\partial F_{3}}{\partial y^{\prime}} F_{3} \\
&=\frac{\left(-x^{5}-x^{4}-16 x^{3}-56 x^{2}-191 x-455\right) y^{\prime}-y\left(x^{4}+2 x^{3}+18 x^{2}+74 x+265\right)}{(x-1)^{5}} \\
& F_{5}=\frac{d F_{4}}{d x} \\
&=\frac{\partial F_{4}}{\partial x}+\frac{\partial F_{4}}{\partial y} y^{\prime}+\frac{\partial F_{4}}{\partial y^{\prime}} F_{4} \\
&=\frac{\left(x^{6}+x^{5}+22 x^{4}+92 x^{3}+407 x^{2}+1331 x+3186\right) y^{\prime}+y\left(x^{5}+2 x^{4}+24 x^{3}+116 x^{2}+523 x+1854\right)}{(x-1)^{6}} \\
& F_{6}=\frac{d F_{5}}{d x} \\
& \frac{\partial F_{5}}{\partial x}+\frac{\partial F_{5}}{\partial y} y^{\prime}+\frac{\partial F_{5}}{\partial y^{\prime}} F_{5} \\
&\left.=x^{6}-29 x^{5}-141 x^{4}-771 x^{3}-3235 x^{2}-10655 x-25487\right) y^{\prime}-y\left(x^{6}+2 x^{5}+31 x^{4}+172 x^{3}+\right. \\
&(x-1)^{7} \\
& \hline
\end{aligned}
\]

And so on. Evaluating all the above at initial conditions \(x=0\) and \(y(0)=y(0)\) and \(y^{\prime}(0)=y^{\prime}(0)\) gives
\[
\begin{aligned}
& F_{0}=y(0)+y^{\prime}(0) \\
& F_{1}=2 y(0)+4 y^{\prime}(0) \\
& F_{2}=9 y(0)+15 y^{\prime}(0) \\
& F_{3}=44 y(0)+76 y^{\prime}(0) \\
& F_{4}=265 y(0)+455 y^{\prime}(0) \\
& F_{5}=1854 y(0)+3186 y^{\prime}(0) \\
& F_{6}=14833 y(0)+25487 y^{\prime}(0)
\end{aligned}
\]

Substituting all the above in (7) and simplifying gives the solution as
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}+\frac{2119}{5760} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}+\frac{3641}{5760} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Since the expansion point \(x=0\) is an ordinary, we can also solve this using standard power series The ode is normalized to be
\[
(x-1) y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]

Let the solution be represented as power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=1}^{\infty} n a_{n} x^{n-1} \\
y^{\prime \prime} & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
(x-1)\left(\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}\right)+(1+x)\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1)\right)+\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) \tag{2}\\
& \quad+\left(\sum_{n=1}^{\infty} n a_{n} x^{n-1}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=2}^{\infty} n x^{n-1} a_{n}(n-1) & =\sum_{n=1}^{\infty}(n+1) a_{n+1} n x^{n} \\
\sum_{n=2}^{\infty}\left(-n(n-1) a_{n} x^{n-2}\right) & =\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \\
\sum_{n=1}^{\infty} n a_{n} x^{n-1} & =\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2)\) gives the following equation where now all powers of \(x\) are the same and equal to \(n\).
\[
\begin{align*}
& \left(\sum_{n=1}^{\infty}(n+1) a_{n+1} n x^{n}\right)+\sum_{n=0}^{\infty}\left(-(n+2) a_{n+2}(n+1) x^{n}\right) \tag{3}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}\right)+\left(\sum_{n=1}^{\infty} n a_{n} x^{n}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=0
\end{align*}
\]
\(n=0\) gives
\[
\begin{gathered}
-2 a_{2}+a_{1}+a_{0}=0 \\
a_{2}=\frac{a_{0}}{2}+\frac{a_{1}}{2}
\end{gathered}
\]

For \(1 \leq n\), the recurrence equation is
\[
\begin{equation*}
(n+1) a_{n+1} n-(n+2) a_{n+2}(n+1)+(n+1) a_{n+1}+n a_{n}+a_{n}=0 \tag{4}
\end{equation*}
\]

Solving for \(a_{n+2}\), gives
\[
\begin{align*}
a_{n+2} & =\frac{n a_{n+1}+a_{n}+a_{n+1}}{n+2} \\
& =\frac{a_{n}}{n+2}+\frac{(n+1) a_{n+1}}{n+2} \tag{5}
\end{align*}
\]

For \(n=1\) the recurrence equation gives
\[
4 a_{2}-6 a_{3}+2 a_{1}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{3}=\frac{a_{0}}{3}+\frac{2 a_{1}}{3}
\]

For \(n=2\) the recurrence equation gives
\[
9 a_{3}-12 a_{4}+3 a_{2}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{4}=\frac{3 a_{0}}{8}+\frac{5 a_{1}}{8}
\]

For \(n=3\) the recurrence equation gives
\[
16 a_{4}-20 a_{5}+4 a_{3}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{5}=\frac{11 a_{0}}{30}+\frac{19 a_{1}}{30}
\]

For \(n=4\) the recurrence equation gives
\[
25 a_{5}-30 a_{6}+5 a_{4}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{6}=\frac{53 a_{0}}{144}+\frac{91 a_{1}}{144}
\]

For \(n=5\) the recurrence equation gives
\[
36 a_{6}-42 a_{7}+6 a_{5}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{7}=\frac{103 a_{0}}{280}+\frac{177 a_{1}}{280}
\]

For \(n=6\) the recurrence equation gives
\[
49 a_{7}-56 a_{8}+7 a_{6}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{8}=\frac{2119 a_{0}}{5760}+\frac{3641 a_{1}}{5760}
\]

For \(n=7\) the recurrence equation gives
\[
64 a_{8}-72 a_{9}+8 a_{7}=0
\]

Which after substituting the earlier terms found becomes
\[
a_{9}=\frac{16687 a_{0}}{45360}+\frac{28673 a_{1}}{45360}
\]

And so on. Therefore the solution is
\[
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
& =a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}+\ldots
\end{aligned}
\]

Substituting the values for \(a_{n}\) found above, the solution becomes
\[
\begin{aligned}
y= & a_{0}+a_{1} x+\left(\frac{a_{0}}{2}+\frac{a_{1}}{2}\right) x^{2}+\left(\frac{a_{0}}{3}+\frac{2 a_{1}}{3}\right) x^{3}+\left(\frac{3 a_{0}}{8}+\frac{5 a_{1}}{8}\right) x^{4} \\
& +\left(\frac{11 a_{0}}{30}+\frac{19 a_{1}}{30}\right) x^{5}+\left(\frac{53 a_{0}}{144}+\frac{91 a_{1}}{144}\right) x^{6}+\left(\frac{103 a_{0}}{280}+\frac{177 a_{1}}{280}\right) x^{7}+\ldots
\end{aligned}
\]

Collecting terms, the solution becomes
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}\right) a_{0} \tag{3}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}\right) a_{1}+O\left(x^{8}\right)
\end{align*}
\]

At \(x=0\) the solution above becomes
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}+\frac{2119}{5760} x^{8}\right) y(0) \tag{1}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}+\frac{3641}{5760} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right) \\
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}\right) c_{1} \tag{2}\\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}+\frac{2119}{5760} x^{8}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}+\frac{3641}{5760} x^{8}\right) y^{\prime}(0)+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.
\[
\begin{aligned}
y= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}\right) c_{1} \\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}\right) c_{2}+O\left(x^{8}\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.8.1 Maple step by step solution}

Let's solve
\[
(x-1) y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{x-1}-\frac{(1+x) y^{\prime}}{x-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{(1+x) y^{\prime}}{x-1}+\frac{y}{x-1}=0\)
Check to see if \(x_{0}=1\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1+x}{x-1}, P_{3}(x)=\frac{1}{x-1}\right]\)
- \((x-1) \cdot P_{2}(x)\) is analytic at \(x=1\)
\(\left.\left((x-1) \cdot P_{2}(x)\right)\right|_{x=1}=2\)
- \((x-1)^{2} \cdot P_{3}(x)\) is analytic at \(x=1\)
\(\left.\left((x-1)^{2} \cdot P_{3}(x)\right)\right|_{x=1}=0\)
- \(x=1\) is a regular singular point

Check to see if \(x_{0}=1\) is a regular singular point
\(x_{0}=1\)
- Multiply by denominators
\[
(x-1) y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]
- Change variables using \(x=u+1\) so that the regular singular point is at \(u=0\) \(u\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2+u)\left(\frac{d}{d u} y(u)\right)+y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
u \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r(1+r) u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(k+2+r)+a_{k}(k+1+r)\right) u^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(1+r)=0\)
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-1,0\}
\]
- Each term in the series must be 0, giving the recursion relation
\((k+1+r)\left(a_{k+1}(k+2+r)+a_{k}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{k+2+r}
\]
- \(\quad\) Recursion relation for \(r=-1\)
\[
a_{k+1}=-\frac{a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=-1\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k-1}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-1\)
\(\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k-1}, a_{k+1}=-\frac{a_{k}}{k+1}\right]\)
- \(\quad\) Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}}{k+2}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=-\frac{a_{k}}{k+2}\right]
\]
- \(\quad\) Revert the change of variables \(u=x-1\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(x-1)^{k}, a_{k+1}=-\frac{a_{k}}{k+2}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(x-1)^{k-1}\right)+\left(\sum_{k=0}^{\infty} b_{k}(x-1)^{k}\right), a_{k+1}=-\frac{a_{k}}{k+1}, b_{k+1}=-\frac{b_{k}}{k+2}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```

Solution by Maple
Time used: 0.0 (sec). Leaf size: 74
```

Order:=8;
dsolve((x-1)*diff(y(x),x\$2)+(x+1)*diff (y (x), x)+y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(1+\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\frac{3}{8} x^{4}+\frac{11}{30} x^{5}+\frac{53}{144} x^{6}+\frac{103}{280} x^{7}\right) y(0) \\
& +\left(x+\frac{1}{2} x^{2}+\frac{2}{3} x^{3}+\frac{5}{8} x^{4}+\frac{19}{30} x^{5}+\frac{91}{144} x^{6}+\frac{177}{280} x^{7}\right) D(y)(0)+O\left(x^{8}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 98
AsymptoticDSolveValue \([(x-1) * y\) ' \('[x]+(x+1) * y '[x]+y[x]==0, y[x],\{x, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{103 x^{7}}{280}+\frac{53 x^{6}}{144}+\frac{11 x^{5}}{30}+\frac{3 x^{4}}{8}+\frac{x^{3}}{3}+\frac{x^{2}}{2}+1\right) \\
& +c_{2}\left(\frac{177 x^{7}}{280}+\frac{91 x^{6}}{144}+\frac{19 x^{5}}{30}+\frac{5 x^{4}}{8}+\frac{2 x^{3}}{3}+\frac{x^{2}}{2}+x\right)
\end{aligned}
\]

\section*{22.9 problem 2(a)}
22.9.1 Maple step by step solution 3690

Internal problem ID [6484]
Internal file name [OUTPUT/5732_Sunday_June_05_2022_03_49_30_PM_54862276/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
\left(x^{2}+1\right) x^{2} y^{\prime \prime}-x y^{\prime}+(x+2) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(x^{4}+x^{2}\right) y^{\prime \prime}-x y^{\prime}+(x+2) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =-\frac{1}{x\left(x^{2}+1\right)} \\
q(x) & =\frac{x+2}{\left(x^{2}+1\right) x^{2}}
\end{aligned}
\]

Table 500: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{1}{x\left(x^{2}+1\right)}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline\(x=-i\) & "regular" \\
\hline\(x=i\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{x+2}{\left(x^{2}+1\right) x^{2}}\)} \\
\hline singularity \\
\hline\(x=0\) \\
type \\
\hline\(x=-i\) \\
\hline "regular" \\
\hline\(x=i\)
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0,-i, i, \infty]\)
Irregular singular points : []
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(x^{2}+1\right) x^{2} y^{\prime \prime}-x y^{\prime}+(x+2) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right)\left(x^{2}+1\right) \tag{1}\\
& \quad-x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(x+2)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2A}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r} \\
\sum_{n=0}^{\infty} x^{1+n+r} a_{n} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& +\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)-x^{n+r} a_{n}(n+r)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)-x^{r} a_{0} r+2 a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)-x^{r} r+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}-2 r+2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}-2 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=1+i \\
& r_{2}=1-i
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}-2 r+2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+1+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+1-i}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=-\frac{1}{r^{2}+1}
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n-2}(n+r-2)(n-3+r)+a_{n}(n+r)(n+r-1)-a_{n}(n+r)+a_{n-1}+2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{n^{2} a_{n-2}+2 n r a_{n-2}+r^{2} a_{n-2}-5 n a_{n-2}-5 r a_{n-2}+6 a_{n-2}+a_{n-1}}{n^{2}+2 n r+r^{2}-2 n-2 r+2} \tag{4}
\end{equation*}
\]

Which for the root \(r=1+i\) becomes
\[
\begin{equation*}
a_{n}=\frac{\left(-n^{2}+(3-2 i) n-1+3 i\right) a_{n-2}-a_{n-1}}{n(n+2 i)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=1+i\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{2}=-\frac{1}{40}-\frac{13 i}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(-\frac{1}{40}-\frac{13 i}{40}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{3}=\frac{71}{520}-\frac{17 i}{520}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(-\frac{1}{40}-\frac{13 i}{40}\) \\
\hline\(a_{3}\) & \(\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{71}{520}-\frac{17 i}{520}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r^{8}+6 r^{7}+13 r^{6}+10 r^{5}-4 r^{4}-15 r^{3}-37 r^{2}-34 r-9}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{4}=-\frac{31}{832}+\frac{541 i}{4160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(-\frac{1}{40}-\frac{13 i}{40}\) \\
\hline\(a_{3}\) & \(\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{71}{520}-\frac{17 i}{520}\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+6 r^{7}+13 r^{6}+10 r^{5}-4 r^{4}-15 r^{3}-37 r^{2}-34 r-9}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(-\frac{31}{832}+\frac{541 i}{4160}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{-3 r^{8}-30 r^{7}-132 r^{6}-330 r^{5}-528 r^{4}-570 r^{3}-303 r^{2}+60 r+69}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{5}=-\frac{1423}{20800}-\frac{7 i}{4160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(-\frac{1}{40}-\frac{13 i}{40}\) \\
\hline\(a_{3}\) & \(\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{71}{520}-\frac{17 i}{520}\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+6 r^{7}+13 r^{6}+10 r^{5}-4 r^{4}-15 r^{3}-37 r^{2}-34 r-9}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(-\frac{31}{832}+\frac{541 i}{4160}\) \\
\hline\(a_{5}\) & \(\frac{-3 r^{8}-30 r^{7}-132 r^{6}-330 r^{5}-528 r^{4}-570 r^{3}-303 r^{2}+60 r+69}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(-\frac{1423}{20800}-\frac{7 i}{4160}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{-r^{12}-21 r^{11}-188 r^{10}-930 r^{9}-2742 r^{8}-4764 r^{7}-4068 r^{6}+1014 r^{5}+8233 r^{4}+14610 r^{3}+15926 r}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{6}=\frac{12849}{416000}-\frac{10853 i}{156000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{40}-\frac{13 i}{40}\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(\frac{71}{520}-\frac{17 i}{520}\) \\
\hline\(a_{3}\) & \(\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{31}{832}+\frac{541 i}{4160}\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+6 r^{7}+13 r^{6}+10 r^{5}-4 r^{4}-15 r^{3}-37 r^{2}-34 r-9}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(-\frac{1423}{20800}-\frac{7 i}{4160}\) \\
\hline\(a_{5}\) & \(\frac{-3 r^{8}-30 r^{7}-132 r^{6}-330 r^{5}-528 r^{4}-570 r^{3}-303 r^{2}+60 r+69}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{12849}{416000}-\frac{10853 i}{156000}\) \\
\hline\(a_{6}\) & \(\frac{-r^{12}-21 r^{11}-188 r^{10}-930 r^{9}-2742 r^{8}-4764 r^{7}-4068 r^{6}+1014 r^{5}+8233 r^{4}+14610 r^{3}+15926 r^{2}+8811 r+1767}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{4 r^{12}+108 r^{11}+1298 r^{10}+9150 r^{9}+42072 r^{8}+133134 r^{7}+298869 r^{6}+482955 r^{5}+553706 r^{4}+4038}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
\]

Which for the root \(r=1+i\) becomes
\[
a_{7}=\frac{209609}{5088000}+\frac{106907 i}{17808000}
\]

And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+1}\) & \(-\frac{1}{5}+\) \\
\hline\(a_{2}\) & \(\frac{-r^{4}+r^{3}-r^{2}+r+1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)}\) & \(-\frac{1}{40}-\) \\
\hline\(a_{3}\) & \(\frac{2 r^{4}+2 r^{3}+5 r^{2}+r-1}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{71}{520}-\) \\
\hline\(a_{4}\) & \(\frac{r^{8}+6 r^{7}+13 r^{6}+10 r^{5}-4 r^{4}-15 r^{3}-37 r^{2}-34 r-9}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(-\frac{31}{832}\) \\
\hline\(a_{5}\) & \(\frac{-3 r^{8}-30 r^{7}-132 r^{6}-330 r^{5}-528 r^{4}-570 r^{3}-303 r^{2}+60 r+69}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(-\frac{1423}{2080}\) \\
\hline\(a_{6}\) & \(\frac{-r^{12}-21 r^{11}-188 r^{10}-930 r^{9}-2742 r^{8}-4764 r^{7}-4068 r^{6}+1014 r^{5}+8233 r^{4}+14610 r^{3}+15926 r^{2}+8811 r+1767}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{12849}{416000}\) \\
\hline\(a_{7}\) & \(\frac{4 r^{12}+108 r^{11}+1298 r^{10}+9150 r^{9}+42072 r^{8}+133134 r^{7}+298869 r^{6}+482955 r^{5}+553706 r^{4}+403821 r^{3}+106210 r^{2}-69957 r-37647}{\left(r^{2}+1\right)\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}\) & \(\frac{209609}{5088000}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
& y_{1}(x)=x^{1+i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{1+i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}\right. \\
& \quad+\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6} \\
& \left.\quad+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{aligned}
& y_{2}(x)=x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
&+\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
&\left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& \begin{aligned}
= & c_{1} x^{1+i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}\right.
\end{aligned} \\
& \quad+\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6} \\
& \\
& \left.\quad+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right) \\
& \\
& +c_{2} x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
& \\
& +\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
& \\
& \left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{array}{r}
=c_{1} x^{1+i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}+\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}\right. \\
\\
\quad+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6}+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7} \\
\\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
\\
\quad+\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
\\
\left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y=c_{1} x^{1+i} & \left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}\right. \\
& +\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6} \\
& \left.+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right) \\
+ & c_{2} x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
& +\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
& \left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{array}{r}
y=c_{1} x^{1+i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}+\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}\right. \\
+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6}+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7} \\
\left.+O\left(x^{8}\right)\right)+c_{2} x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
+\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
\\
\left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\]

Verified OK.

\subsection*{22.9.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}\left(x^{2}+1\right)-x y^{\prime}+(x+2) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(x+2) y}{\left(x^{2}+1\right) x^{2}}+\frac{y^{\prime}}{x\left(x^{2}+1\right)}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{y^{\prime}}{x\left(x^{2}+1\right)}+\frac{(x+2) y}{\left(x^{2}+1\right) x^{2}}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{1}{x\left(x^{2}+1\right)}, P_{3}(x)=\frac{x+2}{\left(x^{2}+1\right) x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=2\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}\left(x^{2}+1\right)-x y^{\prime}+(x+2) y=0
\]
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}
\]
- Shift index using \(k->k-m\)
\[
x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}
\]
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{m} \cdot y^{\prime \prime}\) to series expansion for \(m=2 . .4\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
x^{m} \cdot y^{\prime \prime}=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0}\left(r^{2}-2 r+2\right) x^{r}+\left(\left(r^{2}+1\right) a_{1}+a_{0}\right) x^{1+r}+\left(\sum _ { k = 2 } ^ { \infty } \left(a_{k}\left(k^{2}+2 k r+r^{2}-2 k-2 r+2\right)+a_{k-1}+a\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r^{2}-2 r+2=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{1-\mathrm{I}, 1+\mathrm{I}\}\)
- Each term must be 0
\(\left(r^{2}+1\right) a_{1}+a_{0}=0\)
- \(\quad\) Solve for the dependent coefficient(s)
\(a_{1}=-\frac{a_{0}}{r^{2}+1}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k-2}(k-2+r)(k-3+r)+\left(k^{2}+(2 r-2) k+r^{2}-2 r+2\right) a_{k}+a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+2\)
\(a_{k}(k+r)(k+r-1)+\left((k+2)^{2}+(2 r-2)(k+2)+r^{2}-2 r+2\right) a_{k+2}+a_{k+1}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{k^{2} a_{k}+2 k r a_{k}+r^{2} a_{k}-k a_{k}-r a_{k}+a_{k+1}}{k^{2}+2 k r+r^{2}+2 k+2 r+2}\)
- \(\quad\) Recursion relation for \(r=1-\mathrm{I}\)
\(a_{k+2}=-\frac{k^{2} a_{k}+(2-2 \mathrm{I}) k a_{k}-(1+\mathrm{I}) a_{k}-k a_{k}+a_{k+1}}{k^{2}+(2-2 \mathrm{I}) k+4-4 \mathrm{I}+2 k}\)
- \(\quad\) Solution for \(r=1-\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1-\mathrm{I}}, a_{k+2}=-\frac{k^{2} a_{k}+(2-2 \mathrm{I}) k a_{k}-(1+\mathrm{I}) a_{k}-k a_{k}+a_{k+1}}{k^{2}+(2-2 \mathrm{I}) k+4-4 \mathrm{I}+2 k}, a_{1}=\left(-\frac{1}{5}-\frac{2 \mathrm{I}}{5}\right) a_{0}\right]
\]
- \(\quad\) Recursion relation for \(r=1+\mathrm{I}\)
\[
a_{k+2}=-\frac{k^{2} a_{k}+(2+2 \mathrm{I}) k a_{k}+(-1+\mathrm{I}) a_{k}-k a_{k}+a_{k+1}}{k^{2}+(2+2 \mathrm{I}) k+4+4 \mathrm{I}+2 k}
\]
- \(\quad\) Solution for \(r=1+\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+1+\mathrm{I}}, a_{k+2}=-\frac{k^{2} a_{k}+(2+2 \mathrm{I}) k a_{k}+(-1+\mathrm{I}) a_{k}-k a_{k}+a_{k+1}}{k^{2}+(2+2 \mathrm{I}) k+4+4 \mathrm{I}+2 k}, a_{1}=\left(-\frac{1}{5}+\frac{2 \mathrm{I}}{5}\right) a_{0}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+1-\mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+1+\mathrm{I}}\right), a_{k+2}=-\frac{k^{2} a_{k}+(2-2 \mathrm{I}) k a_{k}-(1+\mathrm{I}) a_{k}-k a_{k}+a_{k+1}}{k^{2}+(2-2 \mathrm{I}) k+4-4 \mathrm{I}+2 k}, a_{1}=\left(-\frac{1}{5}-\frac{2 \mathrm{I}}{5}\right.\right.
\]

Maple trace
```

`Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
-> Kummer
-> hyper3: Equivalence to 1F1 under a power @ Moebius
-> hypergeometric
-> heuristic approach
-> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius
-> Mathieu
-> Equivalence to the rational form of Mathieu ODE under a power @ Moebius
trying a solution in terms of MeijerG functions
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius
<- Heun successful: received ODE is equivalent to the HeunG ODE, case a <> 0, e<> 0, g <

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 87
```

Order:=8;
dsolve(( }\mp@subsup{x}{~}{~}2+1)*x^2*\operatorname{diff}(y(x),x\$2)-x*diff(y(x),x)+(2+x)*y(x)=0,y(x),type='series',x=0)

```
\[
\begin{aligned}
& y(x)= c_{1} x^{1-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}+\frac{17 i}{520}\right) x^{3}\right. \\
&+\left(-\frac{31}{832}-\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}+\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}+\frac{10853 i}{156000}\right) x^{6} \\
&\left.+\left(\frac{209609}{5088000}-\frac{106907 i}{17808000}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
&+ c_{2} x^{1+i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{13 i}{40}\right) x^{2}+\left(\frac{71}{520}-\frac{17 i}{520}\right) x^{3}\right. \\
&+\left(-\frac{31}{832}+\frac{541 i}{4160}\right) x^{4}+\left(-\frac{1423}{20800}-\frac{7 i}{4160}\right) x^{5}+\left(\frac{12849}{416000}-\frac{10853 i}{156000}\right) x^{6} \\
&\left.+\left(\frac{209609}{5088000}+\frac{106907 i}{17808000}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.055 (sec). Leaf size: 122
AsymptoticDSolveValue \(\left[\left(x^{\wedge} 2+1\right) * x^{\wedge} 2 * y '\right.\) ' \(\left.[x]-x * y '[x]+(2+x) * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{array}{r}
y(x) \rightarrow\left(\frac{1}{156000}+\frac{i}{1248000}\right) c_{2} x^{1-i}\left((6080+10093 i) x^{6}-(10476-1572 i) x^{5}\right. \\
-(8220+19260 i) x^{4}+(21600+2400 i) x^{3}+(2400+50400 i) x^{2}-(38400+57600 i) x \\
+(153600-19200 i))-\left(\frac{1}{1248000}+\frac{i}{156000}\right) c_{1} x^{1+i}\left((10093+6080 i) x^{6}\right. \\
\quad+(1572-10476 i) x^{5}-(19260+8220 i) x^{4}+(2400+21600 i) x^{3} \\
\left.+(50400+2400 i) x^{2}-(57600+38400 i) x-(19200-153600 i)\right)
\end{array}
\]

\subsection*{22.10 problem 2(b)}
22.10.1 Maple step by step solution

3704
Internal problem ID [6485]
Internal file name [OUTPUT/5733_Sunday_June_05_2022_03_51_25_PM_79495257/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}+x y^{\prime}+(1+x) y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+x y^{\prime}+(1+x) y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1}{x} \\
& q(x)=\frac{1+x}{x^{2}}
\end{aligned}
\]

Table 502: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1+x}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+x y^{\prime}+(1+x) y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +x\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+(1+x)\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=1}^{\infty} a_{n-1} x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2~B}\\
& +\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n}+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}+2 n r+r^{2}+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=i\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n(2 i+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=i\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{r^{2}+2 r+2}
\]

Which for the root \(r=i\) becomes
\[
a_{1}=-\frac{1}{5}+\frac{2 i}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{2}=-\frac{1}{40}-\frac{3 i}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{3}=\frac{3}{520}+\frac{7 i}{1560}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{3}{520}+\frac{7 i}{1560}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{4}=-\frac{1}{2496}-\frac{i}{12480}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{3}{520}+\frac{7 i}{1560}\) \\
\hline\(a_{4}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(-\frac{1}{2496}-\frac{i}{12480}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{5}=\frac{9}{603200}-\frac{i}{361920}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{3}{520}+\frac{7 i}{1560}\) \\
\hline\(a_{4}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(-\frac{1}{2496}-\frac{i}{12480}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{9}{603200}-\frac{i}{361920}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{6}=-\frac{19}{54288000}+\frac{7 i}{36192000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{3}{520}+\frac{7 i}{1560}\) \\
\hline\(a_{4}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(-\frac{1}{2496}-\frac{1}{12480}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{9}{603200}-\frac{i}{361920}\) \\
\hline\(a_{6}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}\) & \(-\frac{19}{54288000}+\frac{7 i}{36192000}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r\right.}\)

Which for the root \(r=i\) becomes
\[
a_{7}=\frac{1}{179829000}-\frac{223 i}{40281696000}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & \(-\frac{1}{5}+\frac{2 i}{5}\) \\
\hline\(a_{1}\) & \(-\frac{1}{r^{2}+2 r+2}\) & \(-\frac{1}{40}-\frac{3 i}{40}\) \\
\hline\(a_{2}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{3}{520}+\frac{7 i}{1560}\) \\
\hline\(a_{3}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(-\frac{1}{2496}-\frac{1}{12480}\) \\
\hline\(a_{4}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{9}{603200}-\frac{1}{361920}\) \\
\hline\(a_{5}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(-\frac{1}{54288000}+\frac{19}{36192000}\) \\
\hline\(a_{6}\) & \(\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}\) \\
\hline\(a_{7}\) & \(-\frac{1}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r+50\right)}\) & \(\frac{7}{179829000}-\frac{1}{40281696000}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x)= & x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
= & x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{aligned}
& y_{2}(x)= x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\right. \\
&\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3} \\
&+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
&\left.+\left(-\frac{19}{54288000}-\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}+\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right) \\
& +c_{2} x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}-\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}+\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
= & c_{1} x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right) \\
+ & c_{2} x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}-\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}+\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right) \\
+ & c_{2} x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}\right. \\
& +\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
& \left.+\left(-\frac{19}{54288000}-\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}+\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
& y= c_{1} x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
&+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
&+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) \\
&\left.x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right) \\
&+ c_{2} x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3}\right. \\
&+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
&\left.+\left(-\frac{19}{54288000}-\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}+\frac{223 i}{40281696000}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.10.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+x y^{\prime}+(1+x) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y^{\prime}}{x}-\frac{(1+x) y}{x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{y^{\prime}}{x}+\frac{(1+x) y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=\frac{1}{x}, P_{3}(x)=\frac{1+x}{x^{2}}\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\[
x^{2} y^{\prime \prime}+x y^{\prime}+(1+x) y=0
\]
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+m}\)
- Shift index using \(k->k-m\)
\(x^{m} \cdot y=\sum_{k=m}^{\infty} a_{k-m} x^{k+r}\)
- Convert \(x \cdot y^{\prime}\) to series expansion
\[
x \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}\left(r^{2}+1\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}+1\right)+a_{k-1}\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r^{2}+1=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\{-\mathrm{I}, \mathrm{I}\}\)
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k}\left(k^{2}+2 k r+r^{2}+1\right)+a_{k-1}=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}+1\right)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{a_{k}}{k^{2}+2 k r+r^{2}+2 k+2 r+2}\)
- \(\quad\) Recursion relation for \(r=-\mathrm{I}\)
\(a_{k+1}=-\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}\)
- \(\quad\) Solution for \(r=-\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}, a_{k+1}=-\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}\right]
\]
- Recursion relation for \(r=\mathrm{I}\)
\[
a_{k+1}=-\frac{a_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}
\]
- \(\quad\) Solution for \(r=\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\mathrm{I}}, a_{k+1}=-\frac{a_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\mathrm{I}}\right), a_{k+1}=-\frac{a_{k}}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}, b_{k+1}=-\frac{b_{k}}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 85
```

Order:=8;
dsolve(x^2*diff(y(x),x\$2)+x*diff(y(x),x)+(1+x)*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
& y(x)= c_{1} x^{-i}\left(1+\left(-\frac{1}{5}-\frac{2 i}{5}\right) x+\right. \\
&+\left(-\frac{1}{40}+\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}-\frac{7 i}{1560}\right) x^{3} \\
&+\left(-\frac{1}{2496}+\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}+\frac{i}{361920}\right) x^{5} \\
&+ c_{2} x^{i}\left(1+\left(-\frac{1}{5}+\frac{2 i}{5}\right) x+\left(-\frac{1}{40}-\frac{3 i}{40}\right) x^{2}+\left(\frac{3}{520}+\frac{7 i}{1560}\right) x^{3}\right. \\
&+\left(-\frac{1}{2496}-\frac{i}{12480}\right) x^{4}+\left(\frac{9}{603200}-\frac{i}{361920}\right) x^{5} \\
&\left.+\left(-\frac{19}{54288000}+\frac{7 i}{36192000}\right) x^{6}+\left(\frac{1}{179829000}-\frac{223 i}{40281696000}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.016 (sec). Leaf size: 118
AsymptoticDSolveValue [x^2*y' \(\quad[\mathrm{x}]+\mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+(1+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{array}{r}
y(x) \rightarrow\left(\frac{7}{36192000}+\frac{19 i}{54288000}\right) c_{1} x^{i}\left(i x^{6}+(12-36 i) x^{5}-(660-780 i) x^{4}\right. \\
+(16800-7200 i) x^{3}-(194400+36000 i) x^{2}+(633600+921600 i) x \\
+(1209600-2188800 i))-\left(\frac{19}{54288000}+\frac{7 i}{36192000}\right) c_{2} x^{-i}\left(x^{6}-(36-12 i) x^{5}\right. \\
+(780-660 i) x^{4}-(7200-16800 i) x^{3}-(36000+194400 i) x^{2} \\
+(921600+633600 i) x-(2188800-1209600 i))
\end{array}
\]

\subsection*{22.11 problem 2(c)}
22.11.1 Maple step by step solution

3720
Internal problem ID [6486]
Internal file name [OUTPUT/5734_Sunday_June_05_2022_03_51_33_PM_34104880/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type
[_Lienard]
\[
x y^{\prime \prime}-4 y^{\prime}+x y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}-4 y^{\prime}+x y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{4}{x} \\
& q(x)=1
\end{aligned}
\]

Table 504: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{4}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|c|}{\(q(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}-4 y^{\prime}+x y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x-4\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+x\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} x^{1+n+r} a_{n}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} x^{1+n+r} a_{n}=\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-4(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=2}^{\infty} a_{n-2} x^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)-4(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)-4 r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)-4 r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-5+r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r(-5+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=5 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-5+r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=5\) is an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=x^{5}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+5} \\
& y_{2}(x)=C y_{1}(x) \ln (x)+\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-4 a_{n}(n+r)+a_{n-2}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n^{2}+2 n r+r^{2}-5 n-5 r} \tag{4}
\end{equation*}
\]

Which for the root \(r=5\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-2}}{n(n+5)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=5\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{1}{r^{2}-r-6}
\]

Which for the root \(r=5\) becomes
\[
a_{2}=-\frac{1}{14}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}
\]

Which for the root \(r=5\) becomes
\[
a_{4}=\frac{1}{504}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{504}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{504}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{1}{r^{6}+9 r^{5}+7 r^{4}-93 r^{3}-152 r^{2}+84 r+144}
\]

Which for the root \(r=5\) becomes
\[
a_{6}=-\frac{1}{33264}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{504}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{r^{6}+9 r^{5}+7 r^{4}-93 r^{3}-152 r^{2}+84 r+144}\) & \(-\frac{1}{33264}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(-\frac{1}{14}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{504}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{1}{r^{6}+9 r^{5}+7 r^{4}-93 r^{3}-152 r^{2}+84 r+144}\) & \(-\frac{1}{33264}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =x^{5}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =x^{5}\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{504}-\frac{x^{6}}{33264}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Let
\[
r_{1}-r_{2}=N
\]

Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=5\). Now we need to determine if
\(C\) is zero or not. This is done by finding \(\lim _{r \rightarrow r_{2}} a_{5}(r)\). If this limit exists, then \(C=0\), else we need to keep the \(\log\) term and \(C \neq 0\). The above table shows that
\[
\begin{aligned}
a_{N} & =a_{5} \\
& =0
\end{aligned}
\]

Therefore
\[
\begin{aligned}
\lim _{r \rightarrow r_{2}} 0 & =\lim _{r \rightarrow 0} 0 \\
& =0
\end{aligned}
\]

The limit is 0 . Since the limit exists then the log term is not needed and we can set \(C=0\). Therefore the second solution has the form
\[
\begin{aligned}
y_{2}(x) & =\sum_{n=0}^{\infty} b_{n} x^{n+r} \\
& =\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in \(\mathrm{Eq}(3)\) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
b_{n}(n+r)(n+r-1)-4(n+r) b_{n}+b_{n-2}=0 \tag{4}
\end{equation*}
\]

Which for for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n} n(n-1)-4 n b_{n}+b_{n-2}=0 \tag{4~A}
\end{equation*}
\]

Solving for \(b_{n}\) from the recursive equation (4) gives
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}+2 n r+r^{2}-5 n-5 r} \tag{5}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=-\frac{b_{n-2}}{n^{2}-5 n} \tag{6}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{1}{r^{2}-r-6}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{1}{\left(r^{2}-r-6\right)\left(r^{2}+3 r-4\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|c|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=-\frac{1}{\left(r^{2}-r-6\right)\left(r^{2}+3 r-4\right)\left(r^{2}+7 r+6\right)}
\]

Which for the root \(r=0\) becomes
\[
b_{6}=-\frac{1}{144}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{1}{r^{6}+9 r^{5}+7 r^{4}-93 r^{3}-152 r^{2}+84 r+144}\) & \(-\frac{1}{144}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{1}{r^{2}-r-6}\) & \(\frac{1}{6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{1}{r^{4}+2 r^{3}-13 r^{2}-14 r+24}\) & \(\frac{1}{24}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{1}{r^{6}+9 r^{5}+7 r^{4}-93 r^{3}-152 r^{2}+84 r+144}\) & \(-\frac{1}{144}\) \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1+\frac{x^{2}}{6}+\frac{x^{4}}{24}-\frac{x^{6}}{144}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x) & =c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
& =c_{1} x^{5}\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{504}-\frac{x^{6}}{33264}+O\left(x^{8}\right)\right)+c_{2}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{24}-\frac{x^{6}}{144}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1} x^{5}\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{504}-\frac{x^{6}}{33264}+O\left(x^{8}\right)\right)+c_{2}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{24}-\frac{x^{6}}{144}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=c_{1} x^{5}\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{504}-\frac{x^{6}}{33264}+O\left(x^{8}\right)\right)+c_{2}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{24}-\frac{x^{6}}{144}+O\left(x^{8}\right)\right) \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=c_{1} x^{5}\left(1-\frac{x^{2}}{14}+\frac{x^{4}}{504}-\frac{x^{6}}{33264}+O\left(x^{8}\right)\right)+c_{2}\left(1+\frac{x^{2}}{6}+\frac{x^{4}}{24}-\frac{x^{6}}{144}+O\left(x^{8}\right)\right)
\]

Verified OK.

\subsection*{22.11.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x-4 y^{\prime}+x y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{4 y^{\prime}}{x}-y
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}-\frac{4 y^{\prime}}{x}+y=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\[
\left[P_{2}(x)=-\frac{4}{x}, P_{3}(x)=1\right]
\]
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\[
\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=-4
\]
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x-4 y^{\prime}+x y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square\)
Rewrite ODE with series expansions
- Convert \(x \cdot y\) to series expansion
\(x \cdot y=\sum_{k=0}^{\infty} a_{k} x^{k+r+1}\)
- Shift index using \(k->k-1\)
\(x \cdot y=\sum_{k=1}^{\infty} a_{k-1} x^{k+r}\)
- Convert \(y^{\prime}\) to series expansion
\[
y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\[
y^{\prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1) x^{k+r}
\]
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\[
x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}
\]
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+r+1)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r(-5+r) x^{-1+r}+a_{1}(1+r)(-4+r) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k+1}(k+r+1)(k-4+r)+a_{k-1}\right) x^{k+r}\right)=
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r(-5+r)=0
\]
- Values of \(r\) that satisfy the indicial equation
\(r \in\{0,5\}\)
- \(\quad\) Each term must be 0
\(a_{1}(1+r)(-4+r)=0\)
- Each term in the series must be 0 , giving the recursion relation
\(a_{k+1}(k+r+1)(k-4+r)+a_{k-1}=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+2}(k+2+r)(k-3+r)+a_{k}=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+2}=-\frac{a_{k}}{(k+2+r)(k-3+r)}\)
- Recursion relation for \(r=0\)
\(a_{k+2}=-\frac{a_{k}}{(k+2)(k-3)}\)
- \(\quad\) Solution for \(r=0\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+2}=-\frac{a_{k}}{(k+2)(k-3)},-4 a_{1}=0\right]\)
- Recursion relation for \(r=5\)
\(a_{k+2}=-\frac{a_{k}}{(k+7)(k+2)}\)
- \(\quad\) Solution for \(r=5\)
\(\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+5}, a_{k+2}=-\frac{a_{k}}{(k+7)(k+2)}, 6 a_{1}=0\right]\)
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+5}\right), a_{k+2}=-\frac{a_{k}}{(k+2)(k-3)},-4 a_{1}=0, b_{k+2}=-\frac{b_{k}}{(k+7)(k+2)}, 6 b_{1}=0\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Group is reducible or imprimitive <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 36
```

Order:=8;
dsolve(x*diff(y(x), x\$2)-4*diff (y(x), x)+x*y(x)=0,y(x),type='series', x=0);

```
\[
\begin{aligned}
y(x)= & c_{1} x^{5}\left(1-\frac{1}{14} x^{2}+\frac{1}{504} x^{4}-\frac{1}{33264} x^{6}+\mathrm{O}\left(x^{8}\right)\right) \\
& +c_{2}\left(2880+480 x^{2}+120 x^{4}-20 x^{6}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.014 (sec). Leaf size: 58
AsymptoticDSolveValue[x*y''[x]-4*y'[x]+x*y[x]==0,y[x],\{x,0,7\}]
\[
y(x) \rightarrow c_{1}\left(-\frac{x^{6}}{144}+\frac{x^{4}}{24}+\frac{x^{2}}{6}+1\right)+c_{2}\left(-\frac{x^{11}}{33264}+\frac{x^{9}}{504}-\frac{x^{7}}{14}+x^{5}\right)
\]

\subsection*{22.12 problem 2(d)}
22.12.1 Maple step by step solution

Internal problem ID [6487]
Internal file name [OUTPUT/5735_Sunday_June_05_2022_03_51_37_PM_14322178/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
4 x^{2} y^{\prime \prime}+4 x^{2} y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
4 x^{2} y^{\prime \prime}+4 x^{2} y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
p(x) & =1 \\
q(x) & =\frac{1}{2 x^{2}}
\end{aligned}
\]

Table 506: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=1\)} \\
\hline singularity & type \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{2 x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
4 x^{2} y^{\prime \prime}+4 x^{2} y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 4 x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +4 x^{2}\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2A}
\end{equation*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} 4 x^{1+n+r} a_{n}(n+r)=\sum_{n=1}^{\infty} 4 a_{n-1}(n+r-1) x^{n+r}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} 4 x^{n+r} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} 4 a_{n-1}(n+r-1) x^{n+r}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0 \tag{2B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
4 x^{n+r} a_{n}(n+r)(n+r-1)+2 a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
4 x^{r} a_{0} r(-1+r)+2 a_{0} x^{r}=0
\]

Or
\[
\left(4 x^{r} r(-1+r)+2 x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(4 r^{2}-4 r+2\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
4 r^{2}-4 r+2=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2}+\frac{i}{2} \\
& r_{2}=\frac{1}{2}-\frac{i}{2}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(4 r^{2}-4 r+2\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}+\frac{i}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n+\frac{1}{2}-\frac{i}{2}}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
4 a_{n}(n+r)(n+r-1)+4 a_{n-1}(n+r-1)+2 a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{2 a_{n-1}(n+r-1)}{2 n^{2}+4 n r+2 r^{2}-2 n-2 r+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}(2 n-1+i)}{2 n(n+i)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}+\frac{i}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{2 r}{2 r^{2}+2 r+1}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{1}=-\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{2}=\frac{7}{40}-\frac{i}{40}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{3}=-\frac{11}{240}+\frac{i}{80}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}\) & \(-\frac{11}{240}+\frac{i}{80}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{16 r(1+r)(2+r)(3+r)}{16 r^{8}+256 r^{7}+1728 r^{6}+6400 r^{5}+14184 r^{4}+19264 r^{3}+15792 r^{2}+7360 r+1625}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{4}=\frac{31}{3264}-\frac{i}{272}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}\) & \(-\frac{11}{240}+\frac{i}{80}\) \\
\hline\(a_{4}\) & \(\frac{16 r(1+r)(2+r)(3+r)}{16 r^{8}+256 r^{7}+1728 r^{6}+6400 r^{5}+14184 r^{4}+19264 r^{3}+15792 r^{2}+7360 r+1625}\) & \(\frac{31}{3264}-\frac{i}{272}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{r(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+5 r+\frac{13}{2}\right)\left(r^{2}+3 r+\frac{5}{2}\right)\left(r^{2}+7 r+\frac{25}{2}\right)\left(r^{2}+9 r+\frac{41}{2}\right)\left(r^{2}+r+\frac{1}{2}\right)}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{5}=-\frac{53}{32640}+\frac{13 i}{16320}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}\) & \(-\frac{11}{240}+\frac{i}{80}\) \\
\hline\(a_{4}\) & \(\frac{16 r(1+r)(2+r)(3+r)}{16 r^{8}+256 r^{7}+1728 r^{6}+6400 r^{5}+14184 r^{4}+19264 r^{3}+15792 r^{2}+7360 r+1625}\) & \(\frac{31}{3264}-\frac{i}{272}\) \\
\hline\(a_{5}\) & \(-\frac{r(1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+5 r+\frac{13}{2}\right)\left(r^{2}+3 r+\frac{5}{2}\right)\left(r^{2}+7 r+\frac{25}{2}\right)\left(r^{2}+9 r+\frac{41}{2}\right)\left(r^{2}+r+\frac{1}{2}\right)}\) & \(-\frac{53}{32640}+\frac{13 i}{16320}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{64 r(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(2 r^{2}+10 r+13\right)\left(2 r^{2}+6 r+5\right)\left(2 r^{2}+14 r+25\right)\left(2 r^{2}+18 r+41\right)\left(2 r^{2}+2 r+1\right)\left(2 r^{2}+22 r+61\right)}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{6}=\frac{3421}{14492160}-\frac{223 i}{1610240}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}\) & \(-\frac{11}{240}+\frac{i}{80}\) \\
\hline\(a_{4}\) & \(\frac{16 r(1+r)(2+r)(3+r)}{16 r^{8}+256 r^{7}+1728 r^{6}+6400 r^{5}+14184 r^{4}+19264 r^{3}+15792 r^{2}+7360 r+1625}\) & \(\frac{31}{3264}-\frac{i}{272}\) \\
\hline\(a_{5}\) & \(-\frac{1+r)(2+r)(3+r)(4+r)}{\left(r^{2}+5 r+\frac{13}{2}\right)\left(r^{2}+3 r+\frac{5}{2}\right)\left(r^{2}+7 r+\frac{25}{2}\right)\left(r^{2}+9 r+\frac{41}{2}\right)\left(r^{2}+r+\frac{1}{2}\right)}\) & \(-\frac{53}{32640}+\frac{13 i}{16320}\) \\
\hline\(a_{6}\) & \(\frac{64 r(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(2 r^{2}+10 r+13\right)\left(2 r^{2}+6 r+5\right)\left(2 r^{2}+14 r+25\right)\left(2 r^{2}+18 r+41\right)\left(2 r^{2}+2 r+1\right)\left(2 r^{2}+22 r+61\right)}\) & \(\frac{3421}{14492160}-\frac{223 i}{1610240}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{128 r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}{\left(2 r^{2}+10 r+13\right)\left(2 r^{2}+6 r+5\right)\left(2 r^{2}+14 r+25\right)\left(2 r^{2}+18 r+41\right)\left(2 r^{2}+2 r+1\right)\left(2 r^{2}+22 r+61\right)}
\]

Which for the root \(r=\frac{1}{2}+\frac{i}{2}\) becomes
\[
a_{7}=-\frac{30269}{1014451200}+\frac{977 i}{48307200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{2 r}{2 r^{2}+2 r+1}\) & \(-\frac{1}{2}\) \\
\hline\(a_{2}\) & \(\frac{4 r(1+r)}{4 r^{4}+16 r^{3}+24 r^{2}+16 r+5}\) & \(\frac{7}{40}-\frac{i}{40}\) \\
\hline\(a_{3}\) & \(-\frac{8 r(1+r)(2+r)}{8 r^{6}+72 r^{5}+260 r^{4}+480 r^{3}+482 r^{2}+258 r+65}\) & \(-\frac{11}{240}+\frac{i}{80}\) \\
\hline\(a_{4}\) & \(\frac{16 r(1+r)(2+r)(3+r)}{16 r^{8}+256 r^{7}+1728 r^{6}+6400 r^{5}+14184 r^{4}+19264 r^{3}+15792 r^{2}+7360 r+1625}\) & \(\frac{r(1+r)(2+r)(3+r)(4+r)}{31}-\frac{i}{272}\) \\
\hline\(a_{5}\) & \(-\frac{264}{\left(r^{2}+5 r+\frac{13}{2}\right)\left(r^{2}+3 r+\frac{5}{2}\right)\left(r^{2}+7 r+\frac{25}{2}\right)\left(r^{2}+9 r+\frac{41}{2}\right)\left(r^{2}+r+\frac{1}{2}\right)}\) & \(-\frac{53}{32640}+\frac{13 i}{16320}\) \\
\hline\(a_{6}\) & \(\frac{64 r(1+r)(2+r)(3+r)(4+r)(5+r)}{\left(2 r^{2}+10 r+13\right)\left(2 r^{2}+6 r+5\right)\left(2 r^{2}+14 r+25\right)\left(2 r^{2}+18 r+41\right)\left(2 r^{2}+2 r+1\right)\left(2 r^{2}+22 r+61\right)}\) \\
\hline\(a_{7}\) & \(-\frac{128 r(1+r)(2+r)(3+r)(4+r)(5+r)(6+r)}{\left(2 r^{2}+10 r+13\right)\left(2 r^{2}+6 r+5\right)\left(2 r^{2}+14 r+25\right)\left(2 r^{2}+18 r+41\right)\left(2 r^{2}+2 r+1\right)\left(2 r^{2}+22 r+61\right)\left(2 r^{2}+26 r+85\right)}\) & \(-\frac{3421}{1014451200}+\frac{977}{48307200}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{array}{r}
y_{1}(x)=x^{\frac{1}{2}+\frac{i}{2}}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
=x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}\right. \\
+\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6} \\
\left.+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{array}{r}
y_{2}(x)=x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}+\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}\right. \\
+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6} \\
\left.+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& y_{h}(x)= c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
&= c_{1} x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}\right. \\
&+\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6} \\
&\left.+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}+\frac{i}{40}\right) x^{2}\right. \\
& \quad+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5} \\
&\left.+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6}+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
&=c_{1} x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}\right. \\
&+\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6} \\
&\left.+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}+\frac{i}{40}\right) x^{2}\right. \\
&+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5} \\
&\left.+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6}+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}\right. \\
& +\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6} \\
& \left.+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}+\frac{i}{40}\right)\left(x^{7}\right)\right. \\
& \quad+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5} \\
& \left.+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6}+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{array}{r}
y=c_{1} x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}\right. \\
+\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6} \\
\left.+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{x}{2}+\left(\frac{7}{40}+\frac{i}{40}\right) x^{2}\right. \\
\quad+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5} \\
\\
\left.+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6}+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\]

Verified OK.

\subsection*{22.12.1 Maple step by step solution}

Let's solve
\[
4 x^{2} y^{\prime \prime}+4 x^{2} y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-y^{\prime}-\frac{y}{2 x^{2}}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+y^{\prime}+\frac{y}{2 x^{2}}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=1, P_{3}(x)=\frac{1}{2 x^{2}}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=0\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\(2 x^{2} y^{\prime}+2 x^{2} y^{\prime \prime}+y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{2} \cdot y^{\prime}\) to series expansion
\[
x^{2} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r+1}
\]
- Shift index using \(k->k-1\)
\(x^{2} \cdot y^{\prime}=\sum_{k=1}^{\infty} a_{k-1}(k-1+r) x^{k+r}\)
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k-1+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0}\left(2 r^{2}-2 r+1\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(2 k^{2}+4 k r+2 r^{2}-2 k-2 r+1\right)+2 a_{k-1}(k-1+r)\right) x^{k+r}\right)=0\)
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(2 r^{2}-2 r+1=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{\frac{1}{2}-\frac{\mathrm{I}}{2}, \frac{1}{2}+\frac{\mathrm{I}}{2}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(\left(2 k^{2}+(4 r-2) k+2 r^{2}-2 r+1\right) a_{k}+2 a_{k-1}(k-1+r)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(\left(2(k+1)^{2}+(4 r-2)(k+1)+2 r^{2}-2 r+1\right) a_{k+1}+2 a_{k}(k+r)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=-\frac{2 a_{k}(k+r)}{2 k^{2}+4 k r+2 r^{2}+2 k+2 r+1}\)
- Recursion relation for \(r=\frac{1}{2}-\frac{\mathrm{I}}{2}\)
\[
a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}-\frac{1}{2}\right)}{2 k^{2}+(2-21) k+2-2 I+2 k}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}-\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{1}{2}}, a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}-\frac{\mathrm{I}}{2}\right)}{2 k^{2}+(2-21) k+2-2 I+2 k}\right]
\]
- Recursion relation for \(r=\frac{1}{2}+\frac{\mathrm{I}}{2}\)
\[
a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}+\frac{\mathrm{I}}{2}\right)}{2 k^{2}+(2+2 \mathrm{I}) k+2+2 \mathrm{I}+2 k}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}+\frac{\mathrm{I}}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}+\frac{1}{2}}, a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}+\frac{1}{2}\right)}{2 k^{2}+(2+21) k+2+2 I+2 k}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}-\frac{1}{2}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}+\frac{1}{2}}\right), a_{k+1}=-\frac{2 a_{k}\left(k+\frac{1}{2}-\frac{1}{2}\right)}{2 k^{2}+(2-21) k+2-2 I+2 k}, b_{k+1}=-\frac{2 b_{k}\left(k+\frac{1}{2}+\frac{1}{2}\right)}{2 k^{2}+(2+21) k+2+2}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 83
```

Order:=8;
dsolve(4*x^2*diff (y (x),x\$2)+4*x^2*diff ( }\textrm{y}(\textrm{x}),\textrm{x})+2*y(\textrm{x})=0,y(\textrm{x}),\mathrm{ ,type='series', x=0);

```
\[
\begin{aligned}
& y(x)= c_{1} x^{\frac{1}{2}-\frac{i}{2}}\left(1-\frac{1}{2} x+\left(\frac{7}{40}+\frac{i}{40}\right) x^{2}+\left(-\frac{11}{240}-\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{4}\right. \\
&+\left(-\frac{53}{32640}-\frac{13 i}{16320}\right) x^{5}+\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{6} \\
&\left.+\left(-\frac{30269}{1014451200}-\frac{977 i}{48307200}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{\frac{1}{2}+\frac{i}{2}}\left(1-\frac{1}{2} x+\left(\frac{7}{40}-\frac{i}{40}\right) x^{2}\right. \\
& \quad+\left(-\frac{11}{240}+\frac{i}{80}\right) x^{3}+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{4}+\left(-\frac{53}{32640}+\frac{13 i}{16320}\right) x^{5} \\
&\left.+\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{6}+\left(-\frac{30269}{1014451200}+\frac{977 i}{48307200}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.023 (sec). Leaf size: 226
AsymptoticDSolveValue [4*x^2*y' ' \(\left.[x]+4 * x^{\wedge} 2 * y '[x]+2 * y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\left(\frac{3421}{14492160}-\frac{223 i}{1610240}\right) x^{\frac{13}{2}+\frac{i}{2}}-\left(\frac{53}{32640}-\frac{13 i}{16320}\right) x^{\frac{11}{2}+\frac{i}{2}}\right. \\
& \left.+\left(\frac{31}{3264}-\frac{i}{272}\right) x^{\frac{9}{2}+\frac{i}{2}}-\left(\frac{11}{240}-\frac{i}{80}\right) x^{\frac{7}{2}+\frac{i}{2}}+\left(\frac{7}{40}-\frac{i}{40}\right) x^{\frac{5}{2}+\frac{i}{2}}-\frac{1}{2} x^{\frac{3}{2}+\frac{i}{2}}+x^{\frac{1}{2}+\frac{i}{2}}\right) \\
& +c_{2}\left(\left(\frac{3421}{14492160}+\frac{223 i}{1610240}\right) x^{\frac{13}{2}-\frac{i}{2}}-\left(\frac{53}{32640}+\frac{13 i}{16320}\right) x^{\frac{11}{2}-\frac{i}{2}}\right. \\
& \left.+\left(\frac{31}{3264}+\frac{i}{272}\right) x^{\frac{9}{2}-\frac{i}{2}}-\left(\frac{11}{240}+\frac{i}{80}\right) x^{\frac{7}{2}-\frac{i}{2}}+\left(\frac{7}{40}+\frac{i}{40}\right) x^{\frac{5}{2}-\frac{i}{2}}-\frac{1}{2} x^{\frac{3}{2}-\frac{i}{2}}+x^{\frac{1}{2}-\frac{i}{2}}\right)
\end{aligned}
\]

\subsection*{22.13 problem 2(e)}
22.13.1 Maple step by step solution

3750
Internal problem ID [6488]
Internal file name [OUTPUT/5736_Sunday_June_05_2022_03_51_46_PM_78360815/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(e).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
2 x y^{\prime \prime}+(1-x) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
2 x y^{\prime \prime}+(1-x) y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{x-1}{2 x} \\
& q(x)=\frac{1}{2 x}
\end{aligned}
\]

Table 508: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x-1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{2 x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
2 x y^{\prime \prime}+(1-x) y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& 2\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(1-x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} 2 x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
2 x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
2 x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(2 x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
r x^{-1+r}(-1+2 r)=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
2 r^{2}-r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=\frac{1}{2} \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
r x^{-1+r}(-1+2 r)=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{2}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+\frac{1}{2}} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n}
\end{aligned}
\]

We start by finding \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-2)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
\begin{equation*}
a_{n}=\frac{2 n a_{n-1}-3 a_{n-1}}{4 n^{2}+2 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=\frac{1}{2}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-1+r}{2 r^{2}+3 r+1}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{1}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{2}=-\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{3}=-\frac{1}{1680}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline\(a_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(-\frac{1}{1680}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{4}=-\frac{1}{24192}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline\(a_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(-\frac{1}{1680}\) \\
\hline\(a_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & \(-\frac{1}{24192}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{5}=-\frac{1}{380160}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline\(a_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(-\frac{1}{1680}\) \\
\hline\(a_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & \(-\frac{1}{24192}\) \\
\hline\(a_{5}\) & \(\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}\) & \(-\frac{1}{380160}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{r(-1+r)}{64 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850}
\]

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{6}=-\frac{1}{6589440}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline\(a_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(-\frac{1}{1680}\) \\
\hline\(a_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & \(-\frac{1}{24192}\) \\
\hline\(a_{5}\) & \(\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}\) \\
\hline\(a_{6}\) & \(\frac{r(-1+r)}{64 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850}\) & \(-\frac{1}{6589440}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=\frac{r(-1+r)}{128 r^{9}+4800 r^{8}+77280 r^{7}+697200 r^{6}+3856104 r^{5}+13426980 r^{4}+29028970 r^{3}+36796125 r^{2}+23}\)

Which for the root \(r=\frac{1}{2}\) becomes
\[
a_{7}=-\frac{1}{125798400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & \(-\frac{1}{6}\) \\
\hline\(a_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & \(-\frac{1}{120}\) \\
\hline\(a_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(r(-1+r)\) \\
\hline\(a_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & \(-\frac{1}{1680}\) \\
\hline\(a_{5}\) & \(\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}\) \\
\hline\(a_{6}\) & \(\frac{r\left(-14 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850\right.}{r(r)}\) & \(-\frac{1}{24192}\) \\
\hline\(a_{7}\) & \(\frac{r(-1+r)}{128 r^{9}+4800 r^{8}+77280 r^{7}+697200 r^{6}+3856104 r^{5}+13426980 r^{4}+29028970 r^{3}+36796125 r^{2}+23950143 r+5675670}\) & \(-\frac{1}{125798400}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x) & =\sqrt{x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
& =\sqrt{x}\left(1-\frac{x}{6}-\frac{x^{2}}{120}-\frac{x^{3}}{1680}-\frac{x^{4}}{24192}-\frac{x^{5}}{380160}-\frac{x^{6}}{6589440}-\frac{x^{7}}{125798400}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Now the second solution \(y_{2}(x)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
2 b_{n}(n+r)(n+r-1)-b_{n-1}(n+r-1)+(n+r) b_{n}+b_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}(n+r-2)}{2 n^{2}+4 n r+2 r^{2}-n-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-1}(n-2)}{n(2 n-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
b_{1}=\frac{-1+r}{2 r^{2}+3 r+1}
\]

Which for the root \(r=0\) becomes
\[
b_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\]

Which for the root \(r=0\) becomes
\[
b_{2}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline\(b_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 0 \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}
\]

Which for the root \(r=0\) becomes
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline\(b_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 0 \\
\hline\(b_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}
\]

Which for the root \(r=0\) becomes
\[
b_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline\(b_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 0 \\
\hline\(b_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & 0 \\
\hline\(b_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}
\]

Which for the root \(r=0\) becomes
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline\(b_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 0 \\
\hline\(b_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & 0 \\
\hline\(b_{4}\) & \(\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & \(r(-1+r)\) \\
\hline\(b_{5}\) & \(\frac{0}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}\) & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{r(-1+r)}{64 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850}\)
Which for the root \(r=0\) becomes
\[
b_{6}=0
\]

And the table now becomes
\begin{tabular}{|c|c|c|}
\hline \(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline \(b_{0}\) & 1 & 1 \\
\hline \(b_{1}\) & \[
\frac{-1+r}{2 r^{2}+3 r+1}
\] & -1 \\
\hline \(b_{2}\) & \[
\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}
\] & 0 \\
\hline \(b_{3}\) & \[
\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}
\] & 0 \\
\hline \(b_{4}\) & \[
\frac{r(-1+r)}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}
\] & 0 \\
\hline \(b_{5}\) & \[
\frac{r(-1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900}
\] & 0 \\
\hline \(b_{6}\) & \[
\frac{r(-1+r)}{64 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850}
\] & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\frac{r(-1+r)}{128 r^{9}+4800 r^{8}+77280 r^{7}+697200 r^{6}+3856104 r^{5}+13426980 r^{4}+29028970 r^{3}+36796125 r^{2}+23}\)
Which for the root \(r=0\) becomes
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{-1+r}{2 r^{2}+3 r+1}\) & -1 \\
\hline\(b_{2}\) & \(\frac{r(-1+r)}{4 r^{4}+20 r^{3}+35 r^{2}+25 r+6}\) & 0 \\
\hline\(b_{3}\) & \(\frac{r(-1+r)}{8 r^{5}+76 r^{4}+274 r^{3}+461 r^{2}+351 r+90}\) & \(r(-1+r)\) \\
\hline\(b_{4}\) & \(\frac{4}{16 r^{6}+240 r^{5}+1432 r^{4}+4296 r^{3}+6697 r^{2}+4959 r+1260}\) & 0 \\
\hline\(b_{5}\) & \(\frac{r(1+r)}{32 r^{7}+688 r^{6}+6080 r^{5}+28360 r^{4}+74378 r^{3}+107347 r^{2}+76065 r+18900} r(-1+r)\) & 0 \\
\hline\(b_{6}\) & \(\frac{1}{64 r^{8}+1856 r^{7}+22672 r^{6}+151280 r^{5}+597196 r^{4}+1408364 r^{3}+1896603 r^{2}+1285785 r+311850}\) \\
\hline\(b_{7}\) & \(\frac{r(-1+r)}{128 r^{9}+4800 r^{8}+77280 r^{7}+697200 r^{6}+3856104 r^{5}+13426980 r^{4}+29028970 r^{3}+36796125 r^{2}+23950143 r+5675670}\) & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(x)\) is
\[
\begin{aligned}
y_{2}(x) & =b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
& =1-x+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1} \sqrt{x}\left(1-\frac{x}{6}-\frac{x^{2}}{120}-\frac{x^{3}}{1680}-\frac{x^{4}}{24192}-\frac{x^{5}}{380160}-\frac{x^{6}}{6589440}-\frac{x^{7}}{125798400}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-x+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
\begin{aligned}
& =c_{1} \sqrt{x}\left(1-\frac{x}{6}-\frac{x^{2}}{120}-\frac{x^{3}}{1680}-\frac{x^{4}}{24192}-\frac{x^{5}}{380160}-\frac{x^{6}}{6589440}-\frac{x^{7}}{125798400}+O\left(x^{8}\right)\right) \\
& \\
& \quad+c_{2}\left(1-x+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{6}-\frac{x^{2}}{120}-\frac{x^{3}}{1680}-\frac{x^{4}}{24192}-\frac{x^{5}}{380160}-\frac{x^{6}}{6589440}-\frac{x^{7}}{125798400}+O\left(x^{8}{ }_{(1)}\right)\right. \\
& +c_{2}\left(1-x+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1} \sqrt{x}\left(1-\frac{x}{6}-\frac{x^{2}}{120}-\frac{x^{3}}{1680}-\frac{x^{4}}{24192}-\frac{x^{5}}{380160}-\frac{x^{6}}{6589440}-\frac{x^{7}}{125798400}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(1-x+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.13.1 Maple step by step solution}

Let's solve
\(2 y^{\prime \prime} x+(1-x) y^{\prime}+y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(x-1) y^{\prime}}{2 x}-\frac{y}{2 x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x-1) y^{\prime}}{2 x}+\frac{y}{2 x}=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x-1}{2 x}, P_{3}(x)=\frac{1}{2 x}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=\frac{1}{2}\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(2 y^{\prime \prime} x+(1-x) y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\(a_{0} r(-1+2 r) x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)(2 k+1+2 r)-a_{k}(k+r-1)\right) x^{k+r}\right)=0\)
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(r(-1+2 r)=0\)
- Values of \(r\) that satisfy the indicial equation \(r \in\left\{0, \frac{1}{2}\right\}\)
- Each term in the series must be 0, giving the recursion relation
\(2(k+1+r)\left(k+\frac{1}{2}+r\right) a_{k+1}-a_{k}(k+r-1)=0\)
- Recursion relation that defines series solution to ODE
\(a_{k+1}=\frac{a_{k}(k+r-1)}{(k+1+r)(2 k+1+2 r)}\)
- Recursion relation for \(r=0\); series terminates at \(k=1\)
\(a_{k+1}=\frac{a_{k}(k-1)}{(k+1)(2 k+1)}\)
- Apply recursion relation for \(k=0\)
\(a_{1}=-a_{0}\)
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li
\[
y=a_{0} \cdot(1-x)
\]
- Recursion relation for \(r=\frac{1}{2}\)
\[
a_{k+1}=\frac{a_{k}\left(k-\frac{1}{2}\right)}{\left(k+\frac{3}{2}\right)(2 k+2)}
\]
- \(\quad\) Solution for \(r=\frac{1}{2}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\frac{1}{2}}, a_{k+1}=\frac{a_{k}\left(k-\frac{1}{2}\right)}{\left(k+\frac{3}{2}\right)(2 k+2)}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=a_{0} \cdot(1-x)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\frac{1}{2}}\right), b_{k+1}=\frac{b_{k}\left(k-\frac{1}{2}\right)}{\left(k+\frac{3}{2}\right)(2 k+2)}\right]
\]

Maple trace Kovacic algorithm successful
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible     Solution has integrals. Trying a special function solution free of integrals...     -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Kummer successful <- special function solution successful     -> Trying to convert hypergeometric functions to elementary form...     <- elementary form is not straightforward to achieve - returning special function solu <- Kovacics algorithm successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 40
```

Order:=8;
dsolve(2*x*diff(y(x),x\$2)+(1-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)=c_{1} \sqrt{x}\left(1-\frac{1}{6} x-\frac{1}{120} x^{2}-\right. & \frac{1}{1680} x^{3}-\frac{1}{24192} x^{4}-\frac{1}{380160} x^{5}-\frac{1}{6589440} x^{6} \\
& \left.-\frac{1}{125798400} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2}\left(1-x+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 111
AsymptoticDSolveValue [2*x*y' \([\mathrm{x}]+(1-\mathrm{x}) * \mathrm{y}\) ' \([\mathrm{x}]+(2+\mathrm{x}) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1} \sqrt{x}\left(\frac{17333 x^{7}}{48432384000}-\frac{34817 x^{6}}{691891200}-\frac{1171 x^{5}}{4435200}+\frac{121 x^{4}}{40320}+\frac{37 x^{3}}{1680}-\frac{3 x^{2}}{40}-\frac{x}{2}+1\right) \\
& +c_{2}\left(\frac{4 x^{7}}{143325}-\frac{x^{6}}{8400}-\frac{19 x^{5}}{6300}-\frac{x^{4}}{840}+\frac{2 x^{3}}{15}+\frac{x^{2}}{6}-2 x+1\right)
\end{aligned}
\]

\subsection*{22.14 problem 2(f)}
22.14.1 Maple step by step solution

Internal problem ID [6489]
Internal file name [OUTPUT/5737_Sunday_June_05_2022_03_51_51_PM_30794761/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(f).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type

\section*{[_Laguerre]}
\[
x y^{\prime \prime}-(x-1) y^{\prime}+2 y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+(1-x) y^{\prime}+2 y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)=\frac{2}{x}
\end{aligned}
\]

Table 510: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x-1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{2}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+(1-x) y^{\prime}+2 y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(1-x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+2\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 2 a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-x^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 2 a_{n} x^{n+r} & =\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 2 a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{-1+r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
r_{1} & =0 \\
r_{2} & =0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)+2 a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-3)}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-3)}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{-2+r}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-2
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & 0 \\
\hline\(a_{5}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)^{2}(r+5)^{2}(r+6)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & 0 \\
\hline\(a_{5}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & 0 \\
\hline\(a_{6}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & 0 \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)(r+5)^{2}(r+6)^{2}(r+7)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 \\
\hline\(a_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 \\
\hline\(a_{4}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & 0 \\
\hline\(a_{5}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & 0 \\
\hline\(a_{6}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & 0 \\
\hline\(a_{7}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)(r+5)^{2}(r+6)^{2}(r+7)^{2}}\) & 0 \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 \\
\hline\(b_{1}\) & \(\frac{-2+r}{(r+1)^{2}}\) & -2 & \(\frac{-r+5}{(r+1)^{3}}\) \\
\hline\(b_{2}\) & \(\frac{(-2+r)(-1+r)}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{2}\) & \(\frac{-2 r^{3}+9 r^{2}+5 r-18}{(r+1)^{3}(r+2)^{3}}\) \\
\hline\(b_{3}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & 0 & \(\frac{-3 r^{5}+6 r^{4}+37 r^{3}-18 r^{2}-58 r+12}{(r+1)^{3}(r+2)^{3}(r+3)^{3}}\) \\
\hline\(b_{4}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & 0 & \(\frac{-4 r^{6}-6 r^{5}+72 r^{4}+124 r^{3}-158 r^{2}-196 r+48}{(r+1)^{2}(r+2)^{3}(r+3)^{3}(r+4)^{3}}\) \\
\hline\(b_{5}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & 0 & \(\frac{-5 r^{7}-30 r^{6}+50 r^{5}+510 r^{4}+431 r^{3}-108 r^{2}-908 r+240}{(r+1)^{2}(r+2)^{2}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) \\
\hline\(b_{6}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & 0 & \(\frac{-6 r^{8}-69 r^{7}-145 r^{6}+855 r^{5}+3587 r^{4}+1542 r^{3}-7036 r^{2}-5208 r+1440}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{3}(r+5)^{3}(r+6)^{3}}\) \\
\hline\(b_{7}\) & \(\frac{(-2+r)(-1+r) r}{(r+1)(r+2)(r+3)(r+4)(r+5)^{2}(r+6)^{2}(r+7)^{2}}\) & 0 & \(\frac{-7 r^{9}-126 r^{8}-700 r^{7}-238 r^{6}+9863 r^{5}+27356 r^{4}+3900 r^{3}-55072 r^{2}-35376 r+1008}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{3}(r+6)^{3}(r+7)^{3}}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
= & \left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right) \ln (x)+5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+\frac{x^{6}}{43200}+\frac{x^{7}}{529200} \\
& +O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right)+ & c_{2}\left(\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right) \ln (x)+5 x-\frac{9 x^{2}}{4}\right. \\
& \left.+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+\frac{x^{6}}{43200}+\frac{x^{7}}{529200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& =c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right)+c_{2}\left(\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right) \ln (x)+5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18}\right. \\
& \\
& \left.+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+\frac{x^{6}}{43200}+\frac{x^{7}}{529200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{align*}
y=c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right)+ & c_{2}\left(\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right) \ln (x)+5 x-\frac{9 x^{2}}{4}\right. \tag{1}\\
& \left.+\frac{x^{3}}{18}+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+\frac{x^{6}}{43200}+\frac{x^{7}}{529200}+O\left(x^{8}\right)\right)^{1}
\end{align*}
\]

Verification of solutions
\[
\begin{aligned}
y=c_{1}\left(1-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right)+c_{2}((1 & \left.-2 x+\frac{x^{2}}{2}+O\left(x^{8}\right)\right) \ln (x)+5 x-\frac{9 x^{2}}{4}+\frac{x^{3}}{18} \\
& \left.+\frac{x^{4}}{288}+\frac{x^{5}}{3600}+\frac{x^{6}}{43200}+\frac{x^{7}}{529200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.14.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(1-x) y^{\prime}+2 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{(x-1) y^{\prime}}{x}-\frac{2 y}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}+\frac{2 y}{x}=0\)
\(\square \quad\) Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=\frac{2}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\(x_{0}=0\)
- Multiply by denominators
\(y^{\prime \prime} x+(1-x) y^{\prime}+2 y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\[
x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}
\]

Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}-a_{k}(k+r-2)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation \(a_{k+1}(k+1)^{2}-a_{k}(k-2)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(k-2)}{(k+1)^{2}}
\]
- Recursion relation for \(r=0\); series terminates at \(k=2\)
\[
a_{k+1}=\frac{a_{k}(k-2)}{(k+1)^{2}}
\]
- Apply recursion relation for \(k=0\)
\[
a_{1}=-2 a_{0}
\]
- Apply recursion relation for \(k=1\)
\[
a_{2}=-\frac{a_{1}}{4}
\]
- \(\quad\) Express in terms of \(a_{0}\)
\(a_{2}=\frac{a_{0}}{2}\)
- Terminating series solution of the ODE for \(r=0\). Use reduction of order to find the second li
\[
y=a_{0} \cdot\left(1-2 x+\frac{1}{2} x^{2}\right)
\]

\section*{Maple trace Kovacic algorithm successful}
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm     A Liouvillian solution exists     Reducible group (found an exponential solution)     Group is reducible, not completely reducible <- Kovacics algorithm successful`

```

\section*{Solution by Maple}

Time used: 0.031 (sec). Leaf size: 51
```

Order:=8;
dsolve(x*diff(y(x),x\$2)-(x-1)*diff(y(x),x)+2*y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-2 x+\frac{1}{2} x^{2}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\left(5 x-\frac{9}{4} x^{2}+\frac{1}{18} x^{3}+\frac{1}{288} x^{4}+\frac{1}{3600} x^{5}+\frac{1}{43200} x^{6}+\frac{1}{529200} x^{7}+\mathrm{O}\left(x^{8}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 83
AsymptoticDSolveValue \([x * y\) ' ' \([x]-(x-1) * y\) ' \([x]+2 * y[x]==0, y[x],\{x, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(\frac{x^{2}}{2}-2 x+1\right) \\
& +c_{2}\left(\frac{x^{7}}{529200}+\frac{x^{6}}{43200}+\frac{x^{5}}{3600}+\frac{x^{4}}{288}+\frac{x^{3}}{18}-\frac{9 x^{2}}{4}+\left(\frac{x^{2}}{2}-2 x+1\right) \log (x)+5 x\right)
\end{aligned}
\]

\subsection*{22.15 problem 2(g)}
22.15.1 Maple step by step solution

Internal problem ID [6490]
Internal file name [OUTPUT/5738_Sunday_June_05_2022_03_51_54_PM_44733112/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(g).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Complex roots"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
x^{2} y^{\prime \prime}+x(1-x) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=-\frac{x-1}{x} \\
& q(x)={\frac{1}{x^{2}}}
\end{aligned}
\]

Table 512: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=-\frac{x-1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x^{2}}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& x^{2}\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) \tag{1}\\
& +\left(-x^{2}+x\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty}\left(-x^{1+n+r} a_{n}(n+r)\right)=\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right)
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)(n+r-1)\right)+\sum_{n=1}^{\infty}\left(-a_{n-1}(n+r-1) x^{n+r}\right) \tag{2B}\\
& \quad+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
x^{n+r} a_{n}(n+r)(n+r-1)+x^{n+r} a_{n}(n+r)+a_{n} x^{n+r}=0
\]

When \(n=0\) the above becomes
\[
x^{r} a_{0} r(-1+r)+x^{r} a_{0} r+a_{0} x^{r}=0
\]

Or
\[
\left(x^{r} r(-1+r)+x^{r} r+x^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(r^{2}+1\right) x^{r}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}+1=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=i \\
& r_{2}=-i
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(r^{2}+1\right) x^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the roots are complex conjugates, then two linearly independent solutions can be constructed using
\[
\begin{aligned}
& y_{1}(x)=x^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right) \\
& y_{2}(x)=x^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} x^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+i} \\
& y_{2}(x)=\sum_{n=0}^{\infty} b_{n} x^{n-i}
\end{aligned}
\]
\(y_{1}(x)\) is found first. Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)-a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n+r-1)}{n^{2}+2 n r+r^{2}+1} \tag{4}
\end{equation*}
\]

Which for the root \(r=i\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-1}(n-1+i)}{n(2 i+n)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=i\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=\frac{r}{r^{2}+2 r+2}
\]

Which for the root \(r=i\) becomes
\[
a_{1}=\frac{2}{5}+\frac{i}{5}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{2}=\frac{1}{10}+\frac{i}{20}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{3}=\frac{17}{780}+\frac{i}{130}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline\(a_{3}\) & \(\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{17}{780}+\frac{i}{130}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{4}=\frac{5}{1248}+\frac{i}{1248}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline\(a_{3}\) & \(\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{17}{780}+\frac{i}{130}\) \\
\hline\(a_{4}\) & \(\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{5}{1248}+\frac{i}{1248}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{5}=\frac{113}{180960}+\frac{7 i}{180960}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline\(a_{3}\) & \(\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{17}{780}+\frac{i}{130}\) \\
\hline\(a_{4}\) & \(\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{5}{1248}+\frac{i}{1248}\) \\
\hline\(a_{5}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{113}{180960}+\frac{7 i}{180960}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{r(r+1)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}
\]

Which for the root \(r=i\) becomes
\[
a_{6}=\frac{911}{10857600}-\frac{19 i}{3619200}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline\(a_{3}\) & \(\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{17}{780}+\frac{i}{130}\) \\
\hline\(a_{4}\) & \(\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{5}{1248}+\frac{i}{1248}\) \\
\hline\(a_{5}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{113}{180960}+\frac{7 i}{180960}\) \\
\hline\(a_{6}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}\) & \(\frac{911}{10857600}-\frac{19 i}{3619200}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(a_{7}=\frac{r(r+1)(2+r)(3+r)(4+r)(5+r)(6+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r+\right.}\)

Which for the root \(r=i\) becomes
\[
a_{7}=\frac{39799}{4028169600}-\frac{1009 i}{575452800}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{r}{r^{2}+2 r+2}\) & \(\frac{2}{5}+\frac{i}{5}\) \\
\hline\(a_{2}\) & \(\frac{r(r+1)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)}\) & \(\frac{1}{10}+\frac{i}{20}\) \\
\hline\(a_{3}\) & \(\frac{r(r+1)(2+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)}\) & \(\frac{17}{780}+\frac{i}{130}\) \\
\hline\(a_{4}\) & \(\frac{r(r+1)(2+r)(3+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)}\) & \(\frac{5}{1248}+\frac{i}{1248}\) \\
\hline\(a_{5}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)}\) & \(\frac{113}{180960}+\frac{7 i}{180960}\) \\
\hline\(a_{6}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)(5+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)}\) & \(\frac{911}{10857600}-\frac{19 i}{3619200}\) \\
\hline\(a_{7}\) & \(\frac{r(r+1)(2+r)(3+r)(4+r)(5+r)(6+r)}{\left(r^{2}+2 r+2\right)\left(r^{2}+4 r+5\right)\left(r^{2}+6 r+10\right)\left(r^{2}+8 r+17\right)\left(r^{2}+10 r+26\right)\left(r^{2}+12 r+37\right)\left(r^{2}+14 r+50\right)}\) & \(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(x)\) is
\[
\begin{aligned}
y_{1}(x)=x^{i}\left(a_{0}+a_{1} x+a_{2} x^{2}+\right. & \left.a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots\right) \\
=x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x+\right. & \left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4} \\
& +\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
& \left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

The second solution \(y_{2}(x)\) is found by taking the complex conjugate of \(y_{1}(x)\) which gives
\[
\begin{aligned}
y_{2}(x)=x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x+\right. & \left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4} \\
& +\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6} \\
& \left.+\left(\frac{39799}{4028169600}+\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\left.\left.\left.\begin{array}{rl}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
=c_{1} x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x\right. & +\left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4} \\
& +\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
& \left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right) \\
+ & c_{2} x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x\right.
\end{array}\right)\left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4}\right) ~\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6}\right)
\]

Hence the final solution is
\[
\begin{aligned}
& y=y_{h} \\
& \begin{aligned}
&=c_{1} x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4}\right. \\
&+\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
&\left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x\right. \\
&+\left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4}+\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5} \\
&\left.+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6}+\left(\frac{39799}{4028169600}+\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1} x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x+\right.\left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4} \\
&+\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
&\left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right) \\
&+ c_{2} x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x+\left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}\right. \\
&+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4}+\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6} \\
&\left.+\left(\frac{39799}{4028169600}+\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{array}{r}
y=c_{1} x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x+\left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4}\right. \\
+\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
\left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)+c_{2} x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x\right. \\
+\left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4}+\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5} \\
+ \\
\left.+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6}+\left(\frac{39799}{4028169600}+\frac{1009 i}{575452800}\right) x^{7}+O\left(x^{8}\right)\right)
\end{array}
\]

Verified OK.

\subsection*{22.15.1 Maple step by step solution}

Let's solve
\[
x^{2} y^{\prime \prime}+\left(-x^{2}+x\right) y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{y}{x^{2}}+\frac{(x-1) y^{\prime}}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}-\frac{(x-1) y^{\prime}}{x}+\frac{y}{x^{2}}=0\)
Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=-\frac{x-1}{x}, P_{3}(x)=\frac{1}{x^{2}}\right]\)
- \(x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=1\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\(x^{2} y^{\prime \prime}-x(x-1) y^{\prime}+y=0\)
- Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=1 . .2\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}
\]
- Convert \(x^{2} \cdot y^{\prime \prime}\) to series expansion
\(x^{2} \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0}\left(r^{2}+1\right) x^{r}+\left(\sum_{k=1}^{\infty}\left(a_{k}\left(k^{2}+2 k r+r^{2}+1\right)-a_{k-1}(k+r-1)\right) x^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}+1=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r \in\{-\mathrm{I}, \mathrm{I}\}
\]
- Each term in the series must be 0 , giving the recursion relation
\[
a_{k}\left(k^{2}+2 k r+r^{2}+1\right)-a_{k-1}(k+r-1)=0
\]
- \(\quad\) Shift index using \(k->k+1\)
\(a_{k+1}\left((k+1)^{2}+2(k+1) r+r^{2}+1\right)-a_{k}(k+r)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(k+r)}{k^{2}+2 k r+r^{2}+2 k+2 r+2}
\]
- \(\quad\) Recursion relation for \(r=-\mathrm{I}\)
\[
a_{k+1}=\frac{a_{k}(k-\mathrm{I})}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}
\]
- \(\quad\) Solution for \(r=-\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}, a_{k+1}=\frac{a_{k}(k-\mathrm{I})}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}\right]
\]
- Recursion relation for \(r=\mathrm{I}\)
\[
a_{k+1}=\frac{a_{k}(k+\mathrm{I})}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}
\]
- \(\quad\) Solution for \(r=\mathrm{I}\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k+\mathrm{I}}, a_{k+1}=\frac{a_{k}(k+\mathrm{I})}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k} x^{k-\mathrm{I}}\right)+\left(\sum_{k=0}^{\infty} b_{k} x^{k+\mathrm{I}}\right), a_{k+1}=\frac{a_{k}(k-\mathrm{I})}{k^{2}-2 \mathrm{I} k+1-2 \mathrm{I}+2 k}, b_{k+1}=\frac{b_{k}(k+\mathrm{I})}{k^{2}+2 \mathrm{I} k+1+2 \mathrm{I}+2 k}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     <- Kummer successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 85
```

Order:=8;
dsolve(x^2*diff(y(x),x\$2)+x*(1-x)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)=c_{1} x^{-i}\left(1+\left(\frac{2}{5}-\frac{i}{5}\right) x\right. & +\left(\frac{1}{10}-\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}-\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}-\frac{i}{1248}\right) x^{4} \\
& +\left(\frac{113}{180960}-\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}+\frac{19 i}{3619200}\right) x^{6} \\
& \left.+\left(\frac{39799}{4028169600}+\frac{1009 i}{575452800}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
+c_{2} x^{i}\left(1+\left(\frac{2}{5}+\frac{i}{5}\right) x\right. & +\left(\frac{1}{10}+\frac{i}{20}\right) x^{2}+\left(\frac{17}{780}+\frac{i}{130}\right) x^{3}+\left(\frac{5}{1248}+\frac{i}{1248}\right) x^{4} \\
& +\left(\frac{113}{180960}+\frac{7 i}{180960}\right) x^{5}+\left(\frac{911}{10857600}-\frac{19 i}{3619200}\right) x^{6} \\
& \left.+\left(\frac{39799}{4028169600}-\frac{1009 i}{575452800}\right) x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.017 (sec). Leaf size: 122
AsymptoticDSolveValue \(\left[x^{\wedge} 2 * y\right.\) ' ' \([x]+x *(1-x) * y\) ' \(\left.[x]+y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
y(x) \rightarrow & \left(\frac{59}{10857600}-\frac{17 i}{10857600}\right) c_{2} x^{-i}\left((14+5 i) x^{6}+(108+24 i) x^{5}+(720+60 i) x^{4}\right. \\
& \left.+(4080-240 i) x^{3}+(19440-3600 i) x^{2}+(77760-14400 i) x+(169920+48960 i)\right) \\
& +\left(\frac{59}{10857600}+\frac{17 i}{10857600}\right) c_{1} x^{i}\left((14-5 i) x^{6}+(108-24 i) x^{5}+(720-60 i) x^{4}\right. \\
& \left.+(4080+240 i) x^{3}+(19440+3600 i) x^{2}+(77760+14400 i) x+(169920-48960 i)\right)
\end{aligned}
\]

\subsection*{22.16 problem 2(h)}
22.16.1 Maple step by step solution

3790
Internal problem ID [6491]
Internal file name [OUTPUT/5739_Sunday_June_05_2022_03_52_03_PM_28503853/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 2(h).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
```

[[_2nd_order, _exact, _linear, _homogeneous]]

```
\[
x y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=0\).
The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
x y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
\]

Where
\[
\begin{aligned}
& p(x)=\frac{1+x}{x} \\
& q(x)=\frac{1}{x}
\end{aligned}
\]

Table 514: Table \(p(x), q(x)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(x)=\frac{1+x}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(x)=\frac{1}{x}\)} \\
\hline singularity & type \\
\hline\(x=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(x=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
x y^{\prime \prime}+(1+x) y^{\prime}+y=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y=\sum_{n=0}^{\infty} a_{n} x^{n+r}
\]

Then
\[
\begin{aligned}
y^{\prime} & =\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1} \\
y^{\prime \prime} & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} x^{n+r-2}\right) x \tag{1}\\
& +(1+x)\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r)\right) \tag{2A}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} x^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(x\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} x^{n+r} a_{n}(n+r) & =\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1} \\
\sum_{n=0}^{\infty} a_{n} x^{n+r} & =\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(x\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} x^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=1}^{\infty} a_{n-1}(n+r-1) x^{n+r-1}\right) \tag{2B}\\
& +\left(\sum_{n=0}^{\infty}(n+r) a_{n} x^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} x^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From \(\mathrm{Eq}(2 \mathrm{~B})\) this gives
\[
x^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} x^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
x^{-1+r} a_{0} r(-1+r)+r a_{0} x^{-1+r}=0
\]

Or
\[
\left(x^{-1+r} r(-1+r)+r x^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
x^{-1+r} r^{2}=0
\]

Since the above is true for all \(x\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
r_{1} & =0 \\
r_{2} & =0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
x^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(x)=\sum_{n=0}^{\infty} a_{n} x^{n+r} \tag{1~A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(x)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n-1}(n+r-1)+a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n+r} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{1+r}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(1+r)(2+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{(3+r)(1+r)(2+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{1}{6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(4+r)(3+r)(1+r)(2+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1}{(4+r)(3+r)(1+r)(2+r)}\) & \(\frac{1}{24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{1}{120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1}{(4+r)(3+r)(1+r)(2+r)}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)}\) & \(-\frac{1}{120}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=\frac{1}{720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1}{(4+r)(3+r)(1+r)(2+r)}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)}\) & \(-\frac{1}{120}\) \\
\hline\(a_{6}\) & \(\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}\) & \(\frac{1}{720}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{1}{(7+r)(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=-\frac{1}{5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{1+r}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) \\
\hline\(a_{4}\) & \(\frac{1}{(4+r)(3+r)(1+r)(2+r)}\) & \(\frac{1}{24}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)}\) & \(-\frac{1}{120}\) \\
\hline\(a_{6}\) & \(\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}\) & \(\frac{1}{720}\) \\
\hline\(a_{7}\) & \(-\frac{1}{(7+r)(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}\) & \(-\frac{1}{5040}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(x)\) becomes
\[
\begin{aligned}
y_{1}(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8} \ldots \\
& =1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(x)=y_{1}(x) \ln (x)+\left(\sum_{n=1}^{\infty} b_{n} x^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(r=0)\) \\
\hline\(b_{0}\) & 1 & 1 & N/A since \(b_{n}\) starts from 1 & N/A \\
\hline\(b_{1}\) & \(-\frac{1}{1+r}\) & -1 & \(\frac{1}{(1+r)^{2}}\) & 1 \\
\hline\(b_{2}\) & \(\frac{1}{(1+r)(2+r)}\) & \(\frac{1}{2}\) & \(\frac{-3-2 r}{(1+r)^{2}(2+r)^{2}}\) & \(-\frac{3}{4}\) \\
\hline\(b_{3}\) & \(-\frac{1}{(3+r)(1+r)(2+r)}\) & \(-\frac{1}{6}\) & \(\frac{3 r^{2}+12 r+11}{(3+r)^{2}(1+r)^{2}(2+r)^{2}}\) & \(\frac{11}{36}\) \\
\hline\(b_{4}\) & \(\frac{1}{(4+r)(3+r)(1+r)(2+r)}\) & \(\frac{1}{24}\) & \(\frac{-4 r^{3}-30 r^{2}-70 r-50}{(4+r)^{2}(3+r)^{2}(1+r)^{2}(2+r)^{2}}\) & \(-\frac{25}{288}\) \\
\hline\(b_{5}\) & \(-\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)}\) & \(-\frac{1}{120}\) & \(\frac{5 r^{4}+60 r^{3}+255 r^{2}+450 r+274}{(5+r)^{2}(4+r)^{2}(3+r)^{2}(1+r)^{2}(2+r)^{2}}\) & \(\frac{137}{7200}\) \\
\hline\(b_{6}\) & \(\frac{1}{(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}\) & \(\frac{1}{720}\) & \(\frac{-6 r^{5}-105 r^{4}-700 r^{3}-2205 r^{2}-3248 r-1764}{(5+r)^{2}(4+r)^{2}(3+r)^{2}(1+r)^{2}(2+r)^{2}(6+r)^{2}}\) & \(-\frac{49}{14400}\) \\
\hline\(b_{7}\) & \(-\frac{1}{(7+r)(5+r)(4+r)(3+r)(1+r)(2+r)(6+r)}\) & \(-\frac{1}{5040}\) & \(\frac{7 r^{6}+168 r^{5}+1610 r^{4}+7840 r^{3}+20307 r^{2}+26264 r+13068}{(7+r)^{2}(5+r)^{2}(4+r)^{2}(3+r)^{2}(1+r)^{2}(2+r)^{2}(6+r)^{2}}\) & \(\frac{121}{235200}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(x)= & y_{1}(x) \ln (x)+b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8} \ldots \\
= & \left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x) \\
& +x-\frac{3 x^{2}}{4}+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}-\frac{49 x^{6}}{14400}+\frac{121 x^{7}}{235200}+O\left(x^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(x)= & c_{1} y_{1}(x)+c_{2} y_{2}(x) \\
= & c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+x-\frac{3 x^{2}}{4}\right. \\
& \left.\quad+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}-\frac{49 x^{6}}{14400}+\frac{121 x^{7}}{235200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
y=y_{h}
\]
\[
\begin{aligned}
& =c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+x-\frac{3 x^{2}}{4}\right. \\
& \left.+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}-\frac{49 x^{6}}{14400}+\frac{121 x^{7}}{235200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
y= & c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
+ & c_{2}\left(\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+x-\frac{3\left(x^{2}\right)}{4}\right. \\
& \left.+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}-\frac{49 x^{6}}{14400}+\frac{121 x^{7}}{235200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y= & c_{1}\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{24}-\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \\
& +c_{2}\left(\left(1-x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\right.\right.
\end{aligned} \begin{aligned}
& x^{4} \\
& 24\left.\frac{x^{5}}{120}+\frac{x^{6}}{720}-\frac{x^{7}}{5040}+O\left(x^{8}\right)\right) \ln (x)+x-\frac{3 x^{2}}{4} \\
&\left.+\frac{11 x^{3}}{36}-\frac{25 x^{4}}{288}+\frac{137 x^{5}}{7200}-\frac{49 x^{6}}{14400}+\frac{121 x^{7}}{235200}+O\left(x^{8}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{22.16.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime} x+(1+x) y^{\prime}+y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=-\frac{(1+x) y^{\prime}}{x}-\frac{y}{x}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{(1+x) y^{\prime}}{x}+\frac{y}{x}=0
\]

Check to see if \(x_{0}=0\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{1+x}{x}, P_{3}(x)=\frac{1}{x}\right]\)
- \(\quad x \cdot P_{2}(x)\) is analytic at \(x=0\)
\(\left.\left(x \cdot P_{2}(x)\right)\right|_{x=0}=1\)
- \(x^{2} \cdot P_{3}(x)\) is analytic at \(x=0\)
\(\left.\left(x^{2} \cdot P_{3}(x)\right)\right|_{x=0}=0\)
- \(x=0\) is a regular singular point

Check to see if \(x_{0}=0\) is a regular singular point
\[
x_{0}=0
\]
- Multiply by denominators
\(y^{\prime \prime} x+(1+x) y^{\prime}+y=0\)
- \(\quad\) Assume series solution for \(y\)
\(y=\sum_{k=0}^{\infty} a_{k} x^{k+r}\)
\(\square \quad\) Rewrite ODE with series expansions
- Convert \(x^{m} \cdot y^{\prime}\) to series expansion for \(m=0 . .1\)
\(x^{m} \cdot y^{\prime}=\sum_{k=0}^{\infty} a_{k}(k+r) x^{k+r-1+m}\)
- Shift index using \(k->k+1-m\)
\(x^{m} \cdot y^{\prime}=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) x^{k+r}\)
- Convert \(x \cdot y^{\prime \prime}\) to series expansion
\(x \cdot y^{\prime \prime}=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) x^{k+r-1}\)
- Shift index using \(k->k+1\)
\(x \cdot y^{\prime \prime}=\sum_{k=-1}^{\infty} a_{k+1}(k+1+r)(k+r) x^{k+r}\)
Rewrite ODE with series expansions
\[
a_{0} r^{2} x^{-1+r}+\left(\sum_{k=0}^{\infty}\left(a_{k+1}(k+1+r)^{2}+a_{k}(k+1+r)\right) x^{k+r}\right)=0
\]
- \(a_{0}\) cannot be 0 by assumption, giving the indicial equation
\[
r^{2}=0
\]
- Values of \(r\) that satisfy the indicial equation
\[
r=0
\]
- Each term in the series must be 0 , giving the recursion relation
\[
(k+1)\left(a_{k+1}(k+1)+a_{k}\right)=0
\]
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=-\frac{a_{k}}{k+1}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=-\frac{a_{k}}{k+1}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k} x^{k}, a_{k+1}=-\frac{a_{k}}{k+1}\right]
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] <- linear_1 successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 71
```

Order:=8;
dsolve(x*diff(y(x),x\$2)+(x+1)*diff(y(x),x)+y(x)=0,y(x),type='series',x=0);

```
\[
\begin{aligned}
y(x)= & \left(c_{2} \ln (x)+c_{1}\right)\left(1-x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+\frac{1}{24} x^{4}-\frac{1}{120} x^{5}+\frac{1}{720} x^{6}-\frac{1}{5040} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +\left(x-\frac{3}{4} x^{2}+\frac{11}{36} x^{3}-\frac{25}{288} x^{4}+\frac{137}{7200} x^{5}-\frac{49}{14400} x^{6}+\frac{121}{235200} x^{7}+\mathrm{O}\left(x^{8}\right)\right) c_{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 151
AsymptoticDSolveValue \([x * y\) '' \([x]+(x+1) * y\) ' \([x]+y[x]==0, y[x],\{x, 0,7\}]\)
\[
\begin{aligned}
y(x) \rightarrow & c_{1}\left(-\frac{x^{7}}{5040}+\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right)+c_{2}\left(\frac{121 x^{7}}{235200}-\frac{49 x^{6}}{14400}+\frac{137 x^{5}}{7200}\right. \\
& \left.-\frac{25 x^{4}}{288}+\frac{11 x^{3}}{36}-\frac{3 x^{2}}{4}+\left(-\frac{x^{7}}{5040}+\frac{x^{6}}{720}-\frac{x^{5}}{120}+\frac{x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}-x+1\right) \log (x)+x\right)
\end{aligned}
\]

\subsection*{22.17 problem 3(a)}

Internal problem ID [6492]
Internal file name [OUTPUT/5740_Sunday_June_05_2022_03_52_06_PM_96721303/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 3(a).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_3rd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
Unable to parse ODE.
Maple trace
```

`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
<- pFq successful: received ODE is equivalent to the 1F2 ODE, case c=0 -

```
\(\checkmark\) Solution by Maple
Time used: 0.047 (sec). Leaf size: 1219
```

Order:=8;
dsolve(x^3*diff(y(x),x\$3)+2*x^2*diff (y (x),x\$2)+(x+x^2)*diff (y (x),x)+x*y(x)=0,y(x),type='seri

```
\(\begin{aligned} & y(x)=c_{1} \sqrt{x} x^{-\frac{i \sqrt{3}}{2}}\left(1+\frac{1}{i \sqrt{3}-1} x-\frac{1}{2+6 i \sqrt{3}} x^{2}\right. \\ &- \frac{1}{18} \frac{1}{\left(\frac{\sqrt{3}}{3}+i\right)(-2+i \sqrt{3})(\sqrt{3}+i)} x^{3}+\frac{1}{-1728-480 i \sqrt{3}} x^{4}+\frac{1}{3360 i \sqrt{3}+50400} x^{5} \\ &-\frac{1}{720} \frac{1}{(\sqrt{3}+6 i)(\sqrt{3}+5 i)(\sqrt{3}+4 i)(\sqrt{3}+3 i)(2 i+\sqrt{3})(\sqrt{3}+i)} x^{6} \\ &- \frac{1}{5040} \frac{1}{(-2+i \sqrt{3})(\sqrt{3}+7 i)(\sqrt{3}+6 i)(\sqrt{3}+5 i)(\sqrt{3}+4 i)(\sqrt{3}+3 i)(\sqrt{3}+i)} x^{7}\end{aligned}\)
 \(\left.+\mathrm{O}\left(x^{8}\right)\right)\)
 \(+c_{2} \sqrt{x} x^{\frac{i \sqrt{3}}{2}}\left(1+\frac{1}{-i \sqrt{3}-1} x+\frac{1}{6 i \sqrt{3}-2} x^{2}+\frac{1}{6} \frac{1}{(\sqrt{3}-2 i)(-i+\sqrt{3})(i \sqrt{3}+3)} x^{3}\right.\)
 \(+\frac{1}{24} \frac{1}{(-\sqrt{3}+2 i)(i \sqrt{3}+4)(i \sqrt{3}+3)(-i+\sqrt{3})} x^{4}\)
 \(+\frac{1}{120} \frac{1}{(\sqrt{3}-2 i)(-i+\sqrt{3})(i \sqrt{3}+5)(i \sqrt{3}+4)(i \sqrt{3}+3)} x^{5}\)
 \(+\frac{1}{720} \frac{1}{(-\sqrt{3}+2 i)(i \sqrt{3}+6)(i \sqrt{3}+5)(i \sqrt{3}+4)(i \sqrt{3}+3)(-i+\sqrt{3})} x^{6}\)
 \(+\frac{1}{5040} \frac{1}{(\sqrt{3}-2 i)(-i+\sqrt{3})(i \sqrt{3}+7)(i \sqrt{3}+6)(i \sqrt{3}+5)(i \sqrt{3}+4)(i \sqrt{3}+3)} x^{7}\)
 \(\left.+\mathrm{O}\left(x^{8}\right)\right)\)
 \(+c_{3}\left(1-x+\frac{1}{3} x^{2}-\frac{1}{21} x^{3}+\frac{1}{273} x^{4}-\frac{1}{5733} x^{5}+\frac{1}{177723} x^{6}-\frac{1}{7642089} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\)
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 3447
AsymptoticDSolveValue \(\left[x^{\wedge} 3 * y\right.\) ' ' ' \([\mathrm{x}]+2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\) ' \('[\mathrm{x}]+\left(\mathrm{x}+\mathrm{x}^{\wedge} 2\right) * \mathrm{y}\) ' \(\left.[\mathrm{x}]+\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)

Too large to display

\subsection*{22.18 problem 3(b)}

Internal problem ID [6493]
Internal file name [OUTPUT/5741_Sunday_June_05_2022_03_52_10_PM_60465236/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 3(b).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_3rd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
Unable to parse ODE.
Maple trace
```

`Methods for third order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying high order exact linear fully integrable
trying to convert to a linear ODE with constant coefficients
trying differential order: 3; missing the dependent variable
trying Louvillian solutions for 3rd order ODEs, imprimitive case
-> pFq: Equivalence to the 3F2 or one of its 3 confluent cases under a power @ Moebius
<- pFq successful: received ODE is equivalent to the OF2 ODE, case c=0 -

```
\(\checkmark\) Solution by Maple
Time used: 0.11 (sec). Leaf size: 12916
```

Order:=8;
dsolve(x^3*\operatorname{diff}(y(x),x\$3)+\mp@subsup{x}{}{\wedge}2*\operatorname{diff}(y(x),x\$2)-3*x*\operatorname{diff}(y(x),x)+(x-1)*y(x)=0,y(x),type='series

```

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 11815
AsymptoticDSolveValue[x^3*y'' ' \([\mathrm{x}]+\mathrm{x} \wedge 2 * \mathrm{y}\) ' ' \([\mathrm{x}]-3 * \mathrm{x} * \mathrm{y}\) ' \([\mathrm{x}]+(\mathrm{x}-1) * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}]\)

Too large to display

\subsection*{22.19 problem 3(c)}

Internal problem ID [6494]
Internal file name [OUTPUT/5742_Sunday_June_05_2022_03_52_23_PM_43449969/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 3(c).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_3rd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
Unable to parse ODE.

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying high order exact linear fully integrable trying to convert to a linear ODE with constant coefficients trying differential order: 3; missing the dependent variable Equation is the LCLM of -1/(x+2)*y(x)+diff (y(x),x), 1/x*y(x)-2/x*diff(y(x),x)+diff(diff(y(x) trying differential order: 1; missing the dependent variable checking if the LODE is of Euler type <- LODE of Euler type successful Euler equation successful     trying a quadrature     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving the LCLM ode successful `

```
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 120
```

Order:=8;
dsolve(x^3*diff(y(x),x\$3)-2*x^2*diff (y (x) , x\$2)+(x^2+2*x)*diff (y (x), x) -x*y (x)=0,y(x),type='se

```
\[
y(x)=c_{1} x^{3}\left(1-\frac{1}{4} x+\frac{1}{40} x^{2}-\frac{1}{720} x^{3}+\frac{1}{20160} x^{4}-\frac{1}{806400} x^{5}+\frac{1}{43545600} x^{6}\right.
\]
\[
\left.-\frac{1}{3048192000} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{2}\left(\operatorname { l n } (x) \left((-240) x+60 x^{2}-6 x^{3}+\frac{1}{3} x^{4}\right.\right.
\]
\[
\left.-\frac{1}{84} x^{5}+\frac{1}{3360} x^{6}-\frac{1}{181440} x^{7}+\mathrm{O}\left(x^{8}\right)\right)+\left(720-908 x+152 x^{2}-11 x^{3}+\frac{4}{9} x^{4}\right.
\]
\[
\left.\left.-\frac{79}{7056} x^{5}+\frac{517}{2822400} x^{6}-\frac{851}{457228800} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\]
\[
+c_{3}\left(2 \ln (x)\left(x^{3}-\frac{1}{4} x^{4}+\frac{1}{40} x^{5}-\frac{1}{720} x^{6}+\frac{1}{20160} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right.
\]
\[
\left.+\left(-24-12 x-6 x^{2}+\frac{5}{8} x^{4}-\frac{39}{400} x^{5}+\frac{49}{7200} x^{6}-\frac{199}{705600} x^{7}+\mathrm{O}\left(x^{8}\right)\right)\right)
\]

\section*{\(\checkmark\) Solution by Mathematica}

Time used: 0.664 (sec). Leaf size: 186
AsymptoticDSolveValue[x^3*y' '' \([\mathrm{x}]-2 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\) ' ' \([\mathrm{x}]+\left(\mathrm{x}^{\wedge} 2+2 * \mathrm{x}\right) * \mathrm{y}\) ' \(\left.[\mathrm{x}]-\mathrm{x} * \mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}, 0,7\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{1}\left(\frac{\left(x^{3}-18 x^{2}+180 x-720\right) x^{3} \log (x)}{4320}\right. \\
& \quad \\
& \left.\quad+\frac{-167 x^{6}+2466 x^{5}-17100 x^{4}+14400 x^{3}+129600 x^{2}+259200 x+518400}{259200}\right) \\
& + \\
& \quad c_{2}\left(\frac{x^{3}\left(x^{5}-40 x^{4}+1120 x^{3}-20160 x^{2}+201600 x-806400\right) \log (x)}{2419200}\right. \\
& - \\
& \left.-\frac{x^{2}\left(2941 x^{6}-106720 x^{5}+2618560 x^{4}-38666880 x^{3}+268128000 x^{2}-225792000 x-2032128000\right)}{2032128000}\right) \\
& + \\
& c_{3}\left(\frac{x^{9}}{43545600}-\frac{x^{8}}{806400}+\frac{x^{7}}{20160}-\frac{x^{6}}{720}+\frac{x^{5}}{40}-\frac{x^{4}}{4}+x^{3}\right)
\end{aligned}
\]

\subsection*{22.20 problem 3(d)}

Internal problem ID [6495]
Internal file name [OUTPUT/5743_Sunday_June_05_2022_03_52_25_PM_11483593/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (A) Drill Exercises . Page 194
Problem number: 3(d).
ODE order: 3.
ODE degree: 1 .

The type(s) of ODE detected by this program : "unknown"
Maple gives the following as the ode type
```

[[_3rd_order, _with_linear_symmetries]]

```

Unable to solve or complete the solution.
Unable to parse ODE.

Maple trace
```

`Methods for third order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying high order exact linear fully integrable trying to convert to a linear ODE with constant coefficients trying differential order: 3; missing the dependent variable Equation is the LCLM of -1/x*y(x)+diff(y(x),x), -(2*x+1)/x^2*y(x)+2*(x-1)/x*diff(y(x),x)+dif trying differential order: 1; missing the dependent variable checking if the LODE is of Euler type <- LODE of Euler type successful Euler equation successful     trying a quadrature     checking if the LODE has constant coefficients     checking if the LODE is of Euler type     trying a symmetry of the form [xi=0, eta=F(x)]     checking if the LODE is missing y     -> Trying a Liouvillian solution using Kovacics algorithm     <- No Liouvillian solutions exists     -> Trying a solution in terms of special functions:         -> Bessel         <- Bessel successful     <- special function solution successful <- solving the LCLM ode successful `

```
\(\checkmark\) Solution by Maple
Time used: 0.032 (sec). Leaf size: 1506
```

Order:=8;
dsolve(x^3*diff (y (x),x\$3)+(2*x^3-x^2)*diff (y(x),x\$2)-x*diff (y (x),x)+y(x)=0,y(x),type='series

```
\[
\begin{aligned}
& y(x)=c_{3} x\left(1+\mathrm{O}\left(x^{8}\right)\right)+c_{2} x^{\frac{3}{2}-\frac{\sqrt{13}}{2}}\left(1-x+\frac{-3+\sqrt{13}}{-4+2 \sqrt{13}} x^{2}+\frac{5-\sqrt{13}}{6 \sqrt{13}-12} x^{3}\right. \\
& +\frac{1}{24} \frac{(-5+\sqrt{13})(-7+\sqrt{13})}{(-2+\sqrt{13})(-4+\sqrt{13})} x^{4}+\frac{1}{30} \frac{-19+4 \sqrt{13}}{(-2+\sqrt{13})(-4+\sqrt{13})} x^{5} \\
& +\frac{1}{20} \frac{-29+7 \sqrt{13}}{(-2+\sqrt{13})(-4+\sqrt{13})(-6+\sqrt{13})} x^{6} \\
& \left.+\frac{-\frac{117}{35}+\frac{6 \sqrt{13}}{7}}{(-2+\sqrt{13})(-4+\sqrt{13})(-6+\sqrt{13})(-7+\sqrt{13})} x^{7}+\mathrm{O}\left(x^{8}\right)\right) \\
& +c_{1} x^{\frac{3}{2}+\frac{\sqrt{13}}{2}}\left(1-x+\frac{3+\sqrt{13}}{4+2 \sqrt{13}} x^{2}+\frac{-5-\sqrt{13}}{6 \sqrt{13}+12} x^{3}+\frac{1}{24} \frac{(5+\sqrt{13})(7+\sqrt{13})}{(2+\sqrt{13})(4+\sqrt{13})} x^{4}\right. \\
& -\frac{1}{30} \frac{19+4 \sqrt{13}}{(2+\sqrt{13})(4+\sqrt{13})} x^{5}+\frac{1}{20} \frac{29+7 \sqrt{13}}{(2+\sqrt{13})(4+\sqrt{13})(6+\sqrt{13})} x^{6} \\
& \left.+\frac{-\frac{117}{35}-\frac{6 \sqrt{13}}{7}}{(2+\sqrt{13})(4+\sqrt{13})(6+\sqrt{13})(7+\sqrt{13})} x^{7}+\mathrm{O}\left(x^{8}\right)\right)
\end{aligned}
\]

> Solution by Mathematica

Time used: 0.24 (sec). Leaf size: 310
AsymptoticDSolveValue \(\left[x^{\wedge} 3 * y\right.\) ' ' ' \([x]+\left(2 * x^{\wedge} 3-x^{\wedge} 2\right) * y\) ' \(\quad[x]-y\) ' \(\left.[x]+y[x]==0, y[x],\{x, 0,7\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{1}\left(\frac{99473 x^{7}}{1008}+\frac{1043 x^{6}}{144}+\frac{19 x^{5}}{24}+\frac{11 x^{4}}{24}-\frac{x^{3}}{6}+\frac{x^{2}}{2}+x+1\right) \\
& +c_{2} e^{-\frac{2}{\sqrt{x}}\left(-\frac{279112936065458899252220570230691 x^{13 / 2}}{160251477454333302276096}\right.} \begin{array}{r}
100317681699677798400
\end{array} \\
& \quad-\frac{2005991558758787 x^{7 / 2}}{193273528320}-\frac{43999069453 x^{5 / 2}}{125829120}-\frac{438565 x^{3 / 2}}{24576} \\
& \quad+\frac{14436319972596450047835320516938615783 x^{7}}{897408273744266492746137600} \\
& \\
& \quad+\frac{3840864007433053956366665361751 x^{6}}{19260994886338137292800}+\frac{1786308115320202497636167 x^{5}}{569986827839078400} \\
& +
\end{aligned}
\]

\section*{23 Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (B) Challenge Problems . Page 194}
23.1 problem 1(a) . 3807
23.2 problem 1(b) . 3819
23.3 problem 1(c) . 3837

\section*{23.1 problem 1(a)}

Internal problem ID [6496]
Internal file name [OUTPUT/5744_Sunday_June_05_2022_03_52_28_PM_85151222/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (B) Challenge Problems . Page 194
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Repeated root"

Maple gives the following as the ode type
[[_Emden, _Fowler]]
\[
x^{3} y^{\prime \prime}+x^{2} y^{\prime}+y=0
\]

With the expansion point for the power series method at \(x=\infty\).
Since expansion is around \(\infty\), then the independent variable \(x\) is replaced by \(\frac{1}{t}\) and the expansion is made around \(t=0\) and after solving, the solution is changed back to \(x\) using \(x=\frac{1}{t}\). Changing variables results in the new ode
\[
-\frac{-\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-2 t\left(\frac{d}{d t} y(t)\right)}{t}-\frac{d}{d t} y(t)+y(t)=0
\]

The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t+\frac{d}{d t} y(t)+y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
p(t) & =\frac{1}{t} \\
q(t) & =\frac{1}{t}
\end{aligned}
\]

Table 516: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{1}{t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{1}{t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : [0]
Irregular singular points : \([\infty]\)
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right) t+\frac{d}{d t} y(t)+y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) t+\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0 \tag{1}
\end{equation*}
\]

Which simplifies to
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0 \tag{2~A}
\end{equation*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\sum_{n=0}^{\infty} a_{n} t^{n+r}=\sum_{n=1}^{\infty} a_{n-1} t^{n+r-1}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{equation*}
\left(\sum_{n=0}^{\infty} t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} a_{n-1} t^{n+r-1}\right)=0 \tag{2~B}
\end{equation*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
t^{n+r-1} a_{n}(n+r)(n+r-1)+(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
t^{-1+r} a_{0} r(-1+r)+r a_{0} t^{-1+r}=0
\]

Or
\[
\left(t^{-1+r} r(-1+r)+r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
t^{-1+r} r^{2}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=0
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
t^{-1+r} r^{2}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since the root of the indicial equation is repeated, then we can construct two linearly independent solutions. The first solution has the form
\[
\begin{equation*}
y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r} \tag{1A}
\end{equation*}
\]

Now the second solution \(y_{2}\) is found using
\[
\begin{equation*}
y_{2}(t)=y_{1}(t) \ln (t)+\left(\sum_{n=1}^{\infty} b_{n} t^{n+r}\right) \tag{1B}
\end{equation*}
\]

Then the general solution will be
\[
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]

In \(\mathrm{Eq}(1 \mathrm{~B})\) the sum starts from 1 and not zero. In \(\mathrm{Eq}(1 \mathrm{~A}), a_{0}\) is never zero, and is arbitrary and is typically taken as \(a_{0}=1\), and \(\left\{c_{1}, c_{2}\right\}\) are two arbitray constants of integration which can be found from initial conditions. We start by finding the first solution \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). For \(1 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n}(n+r)(n+r-1)+a_{n}(n+r)+a_{n-1}=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}+2 n r+r^{2}} \tag{4}
\end{equation*}
\]

Which for the root \(r=0\) becomes
\[
\begin{equation*}
a_{n}=-\frac{a_{n-1}}{n^{2}} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline
\end{tabular}

For \(n=1\), using the above recursive equation gives
\[
a_{1}=-\frac{1}{(r+1)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{1}=-1
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=\frac{1}{(r+1)^{2}(r+2)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{2}=\frac{1}{4}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{1}{36}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=\frac{1}{576}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{1}{14400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{1}{14400}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=\frac{1}{518400}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{1}{14400}\) \\
\hline\(a_{6}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & \(\frac{1}{518400}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}(r+7)^{2}}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=-\frac{1}{25401600}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 \\
\hline\(a_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) \\
\hline\(a_{3}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) \\
\hline\(a_{4}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) \\
\hline\(a_{5}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{1}{14400}\) \\
\hline\(a_{6}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & \(\frac{1}{518400}\) \\
\hline\(a_{7}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}(r+7)^{2}}\) & \(-\frac{1}{25401600}\) \\
\hline
\end{tabular}

Using the above table, then the first solution \(y_{1}(t)\) becomes
\[
\begin{aligned}
y_{1}(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots \\
& =-t+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)
\end{aligned}
\]

Now the second solution is found. The second solution is given by
\[
y_{2}(t)=y_{1}(t) \ln (t)+\left(\sum_{n=1}^{\infty} b_{n} t^{n+r}\right)
\]

Where \(b_{n}\) is found using
\[
b_{n}=\frac{d}{d r} a_{n, r}
\]

And the above is then evaluated at \(r=0\). The above table for \(a_{n, r}\) is used for this purpose. Computing the derivatives gives the following table
\begin{tabular}{|l|l|l|l|c|}
\hline\(n\) & \(b_{n, r}\) & \(a_{n}\) & \(b_{n, r}=\frac{d}{d r} a_{n, r}\) & \(b_{n}(\) \\
\hline\(b_{0}\) & 1 & 1 & \(\mathrm{~N} / \mathrm{A}\) since \(b_{n}\) starts from 1 & \(\mathrm{~N} /\) \\
\hline\(b_{1}\) & \(-\frac{1}{(r+1)^{2}}\) & -1 & \(\frac{2}{(r+1)^{3}}\) & 2 \\
\hline\(b_{2}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}}\) & \(\frac{1}{4}\) & \(\frac{-4 r-6}{(r+1)^{3}(r+2)^{3}}\) & \(-\frac{3}{4}\) \\
\hline\(b_{3}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}}\) & \(-\frac{1}{36}\) & \(\frac{6 r^{2}+24 r+22}{(r+1)^{3}(r+2)^{3}(r+3)^{3}}\) & \(\frac{11}{108}\) \\
\hline\(b_{4}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}}\) & \(\frac{1}{576}\) & \(\frac{-8 r^{3}-60 r^{2}-140 r-100}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}}\) & \(-\frac{1}{3}\) \\
\hline\(b_{5}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}}\) & \(-\frac{1}{14400}\) & \(\frac{10 r^{4}+120 r^{3}+510 r^{2}+900 r+548}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}}\) & \(\frac{13}{432}\) \\
\hline\(b_{6}\) & \(\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}}\) & \(\frac{1}{518400}\) & \(\frac{-12 r^{5}-210 r^{4}-1400 r^{3}-4410 r^{2}-6496 r-3528}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}(r+6)^{3}}\) & \(-\frac{1}{5}\) \\
\hline\(b_{7}\) & \(-\frac{1}{(r+1)^{2}(r+2)^{2}(r+3)^{2}(r+4)^{2}(r+5)^{2}(r+6)^{2}(r+7)^{2}}\) & \(-\frac{1}{25401600}\) & \(\frac{14 r^{6}+336 r^{5}+3220 r^{4}+15680 r^{3}+40614 r^{2}+52528 r+26136}{(r+1)^{3}(r+2)^{3}(r+3)^{3}(r+4)^{3}(r+5)^{3}(r+6)^{3}(r+7)^{3}}\) & \(\frac{592}{59}\) \\
\hline
\end{tabular}

The above table gives all values of \(b_{n}\) needed. Hence the second solution is
\[
\begin{aligned}
y_{2}(t)= & y_{1}(t) \ln (t)+b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots \\
= & \left(-t+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)\right) \ln (t) \\
& +2 t-\frac{3 t^{2}}{4}+\frac{11 t^{3}}{108}-\frac{25 t^{4}}{3456}+\frac{137 t^{5}}{432000}-\frac{49 t^{6}}{5184000}+\frac{121 t^{7}}{592704000}+O\left(t^{8}\right)
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1}\left(-t+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)\right) \\
& +c_{2}\left(\left(-t+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)\right) \ln (t)\right. \\
& \left.\quad+2 t-\frac{3 t^{2}}{4}+\frac{11 t^{3}}{108}-\frac{25 t^{4}}{3456}+\frac{137 t^{5}}{432000}-\frac{49 t^{6}}{5184000}+\frac{121 t^{7}}{592704000}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\(y(t)=y_{h}\)
\[
\begin{aligned}
=c_{1}(-t & \left.+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)\right) \\
& +c_{2}\left(\left(-t+1+\frac{t^{2}}{4}-\frac{t^{3}}{36}+\frac{t^{4}}{576}-\frac{t^{5}}{14400}+\frac{t^{6}}{518400}-\frac{t^{7}}{25401600}+O\left(t^{8}\right)\right) \ln (t)\right. \\
& \left.+2 t-\frac{3 t^{2}}{4}+\frac{11 t^{3}}{108}-\frac{25 t^{4}}{3456}+\frac{137 t^{5}}{432000}-\frac{49 t^{6}}{5184000}+\frac{121 t^{7}}{592704000}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Replacing \(t\) by \(\frac{1}{x}\) gives
\[
y=c_{1}\left(-\frac{1}{x}+1+\frac{1}{4 x^{2}}-\frac{1}{36 x^{3}}+\frac{1}{576 x^{4}}-\frac{1}{14400 x^{5}}+\frac{1}{518400 x^{6}}-\frac{1}{25401600 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right)+c_{2}\left(\left(-\frac{1}{x}-\right.\right.
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y=c_{1}\left(-\frac{1}{x}+1+\frac{1}{4 x^{2}}-\frac{1}{36 x^{3}}+\frac{1}{576 x^{4}}-\frac{1}{14400 x^{5}}+\frac{1}{518400 x^{6}}-\frac{1}{25401600 x^{7}}\right. \\
&\left.+O\left(\frac{1}{x^{8}}\right)\right)+c_{2}\left(\left(-\frac{1}{x}+1+\frac{1}{4 x^{2}}-\frac{1}{36 x^{3}}+\frac{1}{576 x^{4}}-\frac{1}{14400 x^{5}}+\frac{1}{518400\left(x^{6}\right)}\right.\right. \\
&-\left.\frac{1}{25401600 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right) \ln \left(\frac{1}{x}\right) \\
&+\frac{2}{x}-\frac{3}{4 x^{2}}+\frac{11}{108 x^{3}}-\frac{25}{3456 x^{4}}+\frac{137}{432000 x^{5}} \\
&\left.-\frac{49}{5184000 x^{6}}+\frac{121}{592704000 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right)
\end{aligned}
\]

Verification of solutions
\[
\begin{aligned}
y= & c_{1}\left(-\frac{1}{x}+1+\frac{1}{4 x^{2}}-\frac{1}{36 x^{3}}+\frac{1}{576 x^{4}}-\frac{1}{14400 x^{5}}+\frac{1}{518400 x^{6}}-\frac{1}{25401600 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right) \\
& +c_{2}\left(\left(-\frac{1}{x}+1+\frac{1}{4 x^{2}}-\frac{1}{36 x^{3}}+\frac{1}{576 x^{4}}-\frac{1}{14400 x^{5}}+\frac{1}{518400 x^{6}}-\frac{1}{25401600 x^{7}}\right.\right. \\
& \left.+O\left(\frac{1}{x^{8}}\right)\right) \ln \left(\frac{1}{x}\right)+\frac{2}{x}-\frac{3}{4 x^{2}}+\frac{11}{108 x^{3}}-\frac{25}{3456 x^{4}}+\frac{137}{432000 x^{5}}-\frac{49}{5184000 x^{6}} \\
& \left.+\frac{121}{592704000 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right)
\end{aligned}
\]

Verified OK.

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     <- Bessel successful <- special function solution successful`

```
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 207
```

Order:=8;
dsolve(x^3*diff(y(x),x\$2)+x^2*diff(y(x),x)+y(x)=0,y(x),type='series',x=infinity);

```
\[
\begin{array}{r}
y(x)=\left(1-\frac{\left(x-\text { Infinity }^{2}\right.}{2 \text { Infinity }^{3}}+\frac{2\left(x-\text { Infinity }^{3}\right.}{3 \text { Infinity }^{4}}+\frac{(-18 \text { Infinity }+1)\left(x-\text { Infinity }^{4}\right.}{24 \text { Infinity }^{6}}\right. \\
+\frac{(96 \text { Infinity }-14)\left(x-\text { Infinity }^{5}\right)^{5}}{120 \text { Infinity }^{7}}+\frac{\left(-600 \text { Infinity }^{2}+156 \text { Infinity }-1\right)\left(x-\text { Infinity }^{6}\right.}{720 \text { Infinity }^{9}} \\
\left.+\frac{\left(4320 \text { Infinity }^{2}-1692 \text { Infinity }+30\right)\left(x-\text { Infinity }^{7}\right.}{5040 \text { Infinity }^{10}}\right) y(\text { Infinity }) \\
\end{array}
\]
\[
-\frac{\left(\text { Infinity }-\frac{4}{3}\right)(x-\text { Infinity })^{4}}{4 \text { Infinity }^{4}}
\]
\[
+\frac{\left(24 \text { Infinity }^{3}-58 \text { Infinity }^{2}+\text { Infinity }\right)\left(x-\text { Infinity }^{5}{ }^{5}\right.}{120 \text { Infinity }^{7}}
\]
\[
+\frac{\left(-120 \text { Infinity }^{4}+444 \text { Infinity }^{3}-21 \text { Infinity }^{2}\right)\left(x-\text { Infinity }^{6}{ }^{6}\right.}{720 \text { Infinity }^{9}}
\]
\[
\left.+\frac{\left(720 \text { Infinity }^{4}-3708 \text { Infinity }^{3}+324 \text { Infinity }^{2}-\text { Infinity }\right)\left(x-\text { Infinity }^{7}\right.}{5040 \text { Infinity }^{10}}\right) D(y)(\text { Infinity })
\]
\[
+O\left(x^{8}\right)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 171
AsymptoticDSolveValue [x^3*y' \([\mathrm{x}]+\mathrm{x} \wedge 2 * \mathrm{y}\) ' \([\mathrm{x}]+\mathrm{y}[\mathrm{x}]==0, \mathrm{y}[\mathrm{x}],\{\mathrm{x}\), infinity, 7\(\}]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{1}\left(-\frac{1}{25401600 x^{7}}+\frac{1}{518400 x^{6}}-\frac{1}{14400 x^{5}}+\frac{1}{576 x^{4}}-\frac{1}{36 x^{3}}+\frac{1}{4 x^{2}}-\frac{1}{x}+1\right) \\
&+c_{2}\left(\frac{121}{592704000 x^{7}}+\frac{\log (x)}{25401600 x^{7}}-\frac{49}{5184000 x^{6}}-\frac{\log (x)}{518400 x^{6}}+\frac{137}{432000 x^{5}}\right. \\
&+\frac{\log (x)}{14400 x^{5}}-\frac{25}{3456 x^{4}}-\frac{\log (x)}{576 x^{4}}+\frac{11}{108 x^{3}}+\frac{\log (x)}{36 x^{3}}-\frac{3}{4 x^{2}}-\frac{\log (x)}{4 x^{2}}+\frac{2}{x}+\frac{\log (x)}{x} \\
&-\log (x))
\end{aligned}
\]

\section*{23.2 problem 1(b)}
23.2.1 Maple step by step solution . 3832

Internal problem ID [6497]
Internal file name [OUTPUT/5745_Sunday_June_05_2022_03_52_29_PM_25435504/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (B) Challenge Problems . Page 194
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
9(-2+x)^{2}(x-3) y^{\prime \prime}+6 x(-2+x) y^{\prime}+16 y=0
\]

With the expansion point for the power series method at \(x=\infty\).
Since expansion is around \(\infty\), then the independent variable \(x\) is replaced by \(\frac{1}{t}\) and the expansion is made around \(t=0\) and after solving, the solution is changed back to \(x\) using \(x=\frac{1}{t}\). Changing variables results in the new ode
\[
-9\left(-2+\frac{1}{t}\right)^{2}\left(\frac{1}{t}-3\right)\left(-\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-2 t\left(\frac{d}{d t} y(t)\right)\right) t^{2}-\left(\frac{6}{t^{2}}-\frac{12}{t}\right)\left(\frac{d}{d t} y(t)\right) t^{2}+16 y(t)=0
\]

The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(-108 t^{4}+144 t^{3}-63 t^{2}+9 t\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(-216 t^{3}+288 t^{2}-114 t+12\right)\left(\frac{d}{d t} y(t)\right)+16 y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
p(t) & =\frac{12 t^{2}-10 t+\frac{4}{3}}{t(-1+3 t)(2 t-1)} \\
q(t) & =-\frac{16}{9(2 t-1)^{2}(-1+3 t) t}
\end{aligned}
\]

Table 517: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{12 t^{2}-10 t+\frac{4}{3}}{t(-1+3 t)(2 t-1)}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline\(t=\frac{1}{2}\) & "regular" \\
\hline\(t=\frac{1}{3}\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=-\frac{16}{9(2 t-1)^{2}(-1+3 t) t}\)} \\
\hline singularity & type \\
\hline\(t=0\) & "regular" \\
\hline\(t=\frac{1}{2}\) & "regular" \\
\hline\(t=\frac{1}{3}\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \(\left[0, \frac{1}{2}, \frac{1}{3}, \infty\right]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\(-9 t\left(12 t^{3}-16 t^{2}+7 t-1\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+\left(-216 t^{3}+288 t^{2}-114 t+12\right)\left(\frac{d}{d t} y(t)\right)+16 y(t)=0\)
Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& -9 t\left(12 t^{3}-16 t^{2}+7 t-1\right)\left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right) \tag{1}\\
& +\left(-216 t^{3}+288 t^{2}-114 t+12\right)\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right)+16\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
\sum_{n=0}^{\infty} & \left(-108 t^{n+r+2} a_{n}(n+r)(n+r-1)\right) \\
& +\left(\sum_{n=0}^{\infty} 144 t^{1+n+r} a_{n}(n+r)(n+r-1)\right) \\
& +\sum_{n=0}^{\infty}\left(-63 t^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& +\left(\sum_{n=0}^{\infty} 9 t^{n+r-1} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-216 t^{n+r+2} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} 288 t^{1+n+r} a_{n}(n+r)\right)+\sum_{n=0}^{\infty}\left(-114 t^{n+r} a_{n}(n+r)\right) \\
& +\left(\sum_{n=0}^{\infty} 12(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=0}^{\infty} 16 a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r-1\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r-1}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-108 t^{n+r+2} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=3}^{\infty}\left(-108 a_{n-3}(n+r-3)(n-4+r) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 144 t^{1+n+r} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} 144 a_{n-2}(n+r-2)(n+r-3) t^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-63 t^{n+r} a_{n}(n+r)(n+r-1)\right) & =\sum_{n=1}^{\infty}\left(-63 a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right)
\end{aligned}
\]
\[
\begin{aligned}
\sum_{n=0}^{\infty}\left(-216 t^{n+r+2} a_{n}(n+r)\right) & =\sum_{n=3}^{\infty}\left(-216 a_{n-3}(n+r-3) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 288 t^{1+n+r} a_{n}(n+r) & =\sum_{n=2}^{\infty} 288 a_{n-2}(n+r-2) t^{n+r-1} \\
\sum_{n=0}^{\infty}\left(-114 t^{n+r} a_{n}(n+r)\right) & =\sum_{n=1}^{\infty}\left(-114 a_{n-1}(n+r-1) t^{n+r-1}\right) \\
\sum_{n=0}^{\infty} 16 a_{n} t^{n+r} & =\sum_{n=1}^{\infty} 16 a_{n-1} t^{n+r-1}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r-1\).
\[
\begin{align*}
\sum_{n=3}^{\infty} & \left(-108 a_{n-3}(n+r-3)(n-4+r) t^{n+r-1}\right) \\
& +\left(\sum_{n=2}^{\infty} 144 a_{n-2}(n+r-2)(n+r-3) t^{n+r-1}\right) \\
& +\sum_{n=1}^{\infty}\left(-63 a_{n-1}(n+r-1)(n+r-2) t^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} 9 t^{n+r-1} a_{n}(n+r)(n+r-1)\right) \tag{2B}\\
& +\sum_{n=3}^{\infty}\left(-216 a_{n-3}(n+r-3) t^{n+r-1}\right) \\
& +\left(\sum_{n=2}^{\infty} 288 a_{n-2}(n+r-2) t^{n+r-1}\right)+\sum_{n=1}^{\infty}\left(-114 a_{n-1}(n+r-1) t^{n+r-1}\right) \\
& +\left(\sum_{n=0}^{\infty} 12(n+r) a_{n} t^{n+r-1}\right)+\left(\sum_{n=1}^{\infty} 16 a_{n-1} t^{n+r-1}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
9 t^{n+r-1} a_{n}(n+r)(n+r-1)+12(n+r) a_{n} t^{n+r-1}=0
\]

When \(n=0\) the above becomes
\[
9 t^{-1+r} a_{0} r(-1+r)+12 r a_{0} t^{-1+r}=0
\]

Or
\[
\left(9 t^{-1+r} r(-1+r)+12 r t^{-1+r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(9 r^{2}+3 r\right) t^{-1+r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
9 r^{2}+3 r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=0 \\
& r_{2}=-\frac{1}{3}
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(9 r^{2}+3 r\right) t^{-1+r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Since \(r_{1}-r_{2}=\frac{1}{3}\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n-\frac{1}{3}}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
a_{2}=\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{align*}
& -108 a_{n-3}(n+r-3)(n-4+r)+144 a_{n-2}(n+r-2)(n+r-3) \tag{3}\\
& \quad-63 a_{n-1}(n+r-1)(n+r-2)+9 a_{n}(n+r)(n+r-1)-216 a_{n-3}(n+r-3) \\
& +288 a_{n-2}(n+r-2)-114 a_{n-1}(n+r-1)+12 a_{n}(n+r)+16 a_{n-1}=0
\end{align*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\(a_{n}=\frac{108 n^{2} a_{n-3}-144 n^{2} a_{n-2}+63 n^{2} a_{n-1}+216 n r a_{n-3}-288 n r a_{n-2}+126 n r a_{n-1}+108 r^{2} a_{n-3}-144 r^{2} a_{r}}{9 n^{2}+}\)
Which for the root \(r=0\) becomes
\(a_{n}=\frac{\left(108 a_{n-3}-144 a_{n-2}+63 a_{n-1}\right) n^{2}+\left(-540 a_{n-3}+432 a_{n-2}-75 a_{n-1}\right) n+648 a_{n-3}-288 a_{n-2}-4 a_{n-}}{9 n^{2}+3 n}\)
At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=0\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{28}{9}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}
\]

Which for the root \(r=0\) becomes
\[
a_{3}=-\frac{3004}{405}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{28}{9}\) \\
\hline\(a_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) & \(-\frac{3004}{405}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r-\right.}
\]

Which for the root \(r=0\) becomes
\[
a_{4}=-\frac{285704}{15795}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{4}{3}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{28}{9}\) \\
\hline\(a_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) & \(-\frac{300}{405}\) \\
\hline\(a_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) & \(-\frac{285}{157}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\(a_{5}=\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r\right.}\)
Which for the root \(r=0\) becomes
\[
a_{5}=-\frac{822592}{18225}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(a_{n, r}\) \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) \\
\hline\(a_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) \\
\hline\(a_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(a_{5}\) & \(\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+964786860468}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right.}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}-}{729\left(3 r^{2}+31 r+80\right.}
\]

Which for the root \(r=0\) becomes
\[
a_{6}=-\frac{4666732192}{40514175}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(a_{n, r}\) \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) \\
\hline\(a_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) \\
\hline\(a_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(a_{5}\) & \(\frac{\left.95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+964786860468\right)}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(a_{6}\) & \(\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}+360297425137320 r^{7}+940035462956685}{729\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}-\right.}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=\underline{80674338123 r^{14}+4080569276151 r^{13}+92307128293827 r^{12}+1233512636444739 r^{11}+10829721106}
\]

Which for the root \(r=0\) becomes
\[
a_{7}=-\frac{401483448544}{1336967775}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(a_{n, r}\) \\
\hline\(a_{0}\) & 1 \\
\hline\(a_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) \\
\hline\(a_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) \\
\hline\(a_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+947 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) \\
\hline\(a_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(a_{5}\) & \(\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+9647868604687}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(a_{6}\) & \(\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}+360297425137320 r^{7}+940035462956685}{729\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}-\right.}\) \\
\hline\(a_{7}\) & \(\frac{80674338123 r^{14}+4080569276151 r^{13}+92307128293827 r^{12}+1233512636444739 r^{11}+10829721106831365 r^{10}+65685074939730909 r^{9}+281}{2187\left(3 r^{2}+31 r+80\right.}\) \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots \\
& =1-\frac{4 t}{3}-\frac{28 t^{2}}{9}-\frac{3004 t^{3}}{405}-\frac{285704 t^{4}}{15795}-\frac{822592 t^{5}}{18225}-\frac{4666732192 t^{6}}{40514175}-\frac{401483448544 t^{7}}{1336967775}+O\left(t^{8}\right)
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}
\]

Substituting \(n=2\) in Eq. (2B) gives
\[
b_{2}=\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}
\]

For \(3 \leq n\) the recursive equation is
\[
\begin{align*}
& -108 b_{n-3}(n+r-3)(n-4+r)+144 b_{n-2}(n+r-2)(n+r-3) \tag{3}\\
& -63 b_{n-1}(n+r-1)(n+r-2)+9 b_{n}(n+r)(n+r-1)-216 b_{n-3}(n+r-3) \\
& +288 b_{n-2}(n+r-2)-114 b_{n-1}(n+r-1)+12(n+r) b_{n}+16 b_{n-1}=0
\end{align*}
\]

Solving for \(b_{n}\) from recursive equation (4) gives
\(b_{n}=\frac{108 n^{2} b_{n-3}-144 n^{2} b_{n-2}+63 n^{2} b_{n-1}+216 n r b_{n-3}-288 n r b_{n-2}+126 n r b_{n-1}+108 r^{2} b_{n-3}-144 r^{2} b_{n-}}{9 n^{2}+1}\)

Which for the root \(r=-\frac{1}{3}\) becomes
\[
\begin{equation*}
b_{n}=\frac{\left(108 b_{n-3}-144 b_{n-2}+63 b_{n-1}\right) n^{2}+\left(-612 b_{n-3}+528 b_{n-2}-117 b_{n-1}\right) n+840 b_{n-3}-448 b_{n-2}+28 b_{n-}}{9 n^{2}-3 n} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=-\frac{1}{3}\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{13}{3}\) \\
\hline\(b_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{251}{45}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}
\]

Which for the root \(r=-\frac{1}{3}\) becomes
\[
b_{3}=-\frac{7781}{810}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{13}{3}\) \\
\hline\(b_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{251}{45}\) \\
\hline\(b_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) & \(-\frac{7781}{810}\) \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\(b_{4}=\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+\right.}\)
Which for the root \(r=-\frac{1}{3}\) becomes
\[
b_{4}=-\frac{22151}{1215}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) & \(-\frac{13}{3}\) \\
\hline\(b_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) & \(-\frac{251}{45}\) \\
\hline\(b_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) & \(-\frac{778}{810}\) \\
\hline\(b_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) & \(-\frac{221}{121}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r\right.}
\]

Which for the root \(r=-\frac{1}{3}\) becomes
\[
b_{5}=-\frac{669229}{18225}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(b_{n, r}\) \\
\hline\(b_{0}\) & 1 \\
\hline\(b_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) \\
\hline\(b_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) \\
\hline\(b_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) \\
\hline\(b_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(b_{5}\) & \(\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+964786860468 r}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\(b_{6}=\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}+}{729\left(3 r^{2}+31 r+80\right)}\)
Which for the root \(r=-\frac{1}{3}\) becomes
\[
b_{6}=-\frac{216463313}{2788425}
\]

And the table now becomes
\begin{tabular}{|l|l|}
\hline\(n\) & \(b_{n, r}\) \\
\hline\(b_{0}\) & 1 \\
\hline\(b_{1}\) & \(\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}\) \\
\hline\(b_{2}\) & \(\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}\) \\
\hline\(b_{3}\) & \(\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}\) \\
\hline\(b_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(b_{5}\) & \(\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+964786860468 r}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline\(b_{6}\) & \(\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}+360297425137320 r^{7}+940035462956685 r}{729\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+\right.}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\(b_{7}=\underline{80674338123 r^{14}+4080569276151 r^{13}+92307128293827 r^{12}+1233512636444739 r^{11}+10829721106}\)

Which for the root \(r=-\frac{1}{3}\) becomes
\[
b_{7}=-\frac{7179886604}{41826375}
\]

And the table now becomes
\begin{tabular}{|c|c|}
\hline \(n\) & \(b_{n, r}\) \\
\hline \(b_{0}\) & 1 \\
\hline \(b_{1}\) & \[
\frac{63 r^{2}+51 r-16}{9 r^{2}+21 r+12}
\] \\
\hline \(b_{2}\) & \[
\frac{2673 r^{4}+10044 r^{3}+9441 r^{2}+438 r-1568}{81 r^{4}+540 r^{3}+1305 r^{2}+1350 r+504}
\] \\
\hline \(b_{3}\) & \[
\frac{95499 r^{6}+844911 r^{5}+2671137 r^{4}+3571317 r^{3}+1572804 r^{2}-419508 r-336448}{729 r^{6}+9477 r^{5}+49815 r^{4}+135135 r^{3}+198936 r^{2}+150228 r+45360}
\] \\
\hline \(b_{4}\) & \(\frac{3103353 r^{8}+49898592 r^{7}+320994738 r^{6}+1054759968 r^{5}+1851078825 r^{4}+1583317152 r^{3}+348879276 r^{2}-293260704 r-127995392}{81\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}\) \\
\hline \(b_{5}\) & \[
\frac{95127939 r^{10}+2420949951 r^{9}+26064871578 r^{8}+154759665150 r^{7}+552318920667 r^{6}+1204450764687 r^{5}+1536667458552 r^{4}+964786860468 r}{243\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r r^{5}+1845 r^{4}+5005 r^{3}+7368 r^{2}+5564 r+1680\right)}
\] \\
\hline \(b_{6}\) & \(\frac{2806539921 r^{12}+103709648268 r^{11}+1676277992835 r^{10}+15583794209910 r^{9}+92090095190235 r^{8}+360297425137320 r^{7}+940035462956685 r}{729\left(3 r^{2}+31 r+80\right)\left(3 r^{2}+25 r+52\right)\left(27 r^{6}+351 r^{5}+1845 r^{4}+\right.}\) \\
\hline \(b_{7}\) & \[
\frac{80674338123 r^{14}+4080569276151 r^{13}+92307128293827 r^{12}+1233512636444739 r^{11}+10829721106831365 r^{10}+65685074939730909 r^{9}+2814}{2187\left(3 r^{2}+31 r+80\right)}
\] \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =1\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots\right) \\
& =\frac{1-\frac{13 t}{3}-\frac{251 t^{2}}{45}-\frac{7781 t^{3}}{810}-\frac{22151 t^{4}}{1215}-\frac{669229 t^{5}}{18225}-\frac{216463313 t^{6}}{2788425}-\frac{7179886604 t^{7}}{41826375}+O\left(t^{8}\right)}{t^{\frac{1}{3}}}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
y_{h}(t)= & c_{1} y_{1}(t)+c_{2} y_{2}(t) \\
= & c_{1}\left(1-\frac{4 t}{3}-\frac{28 t^{2}}{9}-\frac{3004 t^{3}}{405}-\frac{285704 t^{4}}{15795}-\frac{822592 t^{5}}{18225}-\frac{4666732192 t^{6}}{40514175}\right. \\
& \left.-\frac{401483448544 t^{7}}{1336967775}+O\left(t^{8}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{13 t}{3}-\frac{251 t^{2}}{45}-\frac{7781 t^{3}}{810}-\frac{22151 t^{4}}{1215}-\frac{669229 t^{5}}{18225}-\frac{216463313 t^{6}}{2788425}-\frac{7179886604 t^{7}}{41826375}+O\left(t^{8}\right)\right)}{t^{\frac{1}{3}}}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
y(t)= & y_{h} \\
= & c_{1}\left(1-\frac{4 t}{3}-\frac{28 t^{2}}{9}-\frac{3004 t^{3}}{405}-\frac{285704 t^{4}}{15795}-\frac{822592 t^{5}}{18225}-\frac{4666732192 t^{6}}{40514175}\right. \\
& \left.-\frac{401483448544 t^{7}}{13369677775}+O\left(t^{8}\right)\right) \\
& +\frac{c_{2}\left(1-\frac{13 t}{3}-\frac{251 t^{2}}{45}-\frac{7781 t^{3}}{810}-\frac{22151 t^{4}}{1215}-\frac{669229 t^{5}}{1825}-\frac{216463313 t^{6}}{2788425}-\frac{7179886604 t^{7}}{41826375}+O\left(t^{8}\right)\right)}{t^{\frac{1}{3}}}
\end{aligned}
\]

Replacing \(t\) by \(\frac{1}{x}\) gives
\(y=c_{1}\left(1-\frac{4}{3 x}-\frac{28}{9 x^{2}}-\frac{3004}{405 x^{3}}-\frac{285704}{15795 x^{4}}-\frac{822592}{18225 x^{5}}-\frac{4666732192}{40514175 x^{6}}-\frac{401483448544}{1336967775 x^{7}}+O\left(\frac{1}{x^{8}}\right)\right)+\frac{c_{2}}{}\)
Summary
The solution(s) found are the following
\[
\begin{aligned}
& y= c_{1}\left(1-\frac{4}{3 x}-\frac{28}{9 x^{2}}-\frac{3004}{405 x^{3}}-\frac{285704}{15795 x^{4}}-\frac{822592}{18225 x^{5}}-\frac{4666732192}{40514175 x^{6}}-\frac{401483448544}{1336967775 x^{7}}\right. \\
&\left.+O\left(\frac{1}{x^{8}}\right) 1\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
& y= c_{1}\left(1-\frac{4}{3 x}-\frac{28}{9 x^{2}}-\frac{3004}{405 x^{3}}-\frac{285704}{15795 x^{4}}-\frac{822592}{18225 x^{5}}-\frac{4666732192}{40514175 x^{6}}-\frac{401483448544}{1336967775 x^{7}}\right. \\
&\left.+O\left(\frac{1}{x^{8}}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{23.2.1 Maple step by step solution}

Let's solve
\(9(-2+x)^{2}(x-3) y^{\prime \prime}+\left(6 x^{2}-12 x\right) y^{\prime}+16 y=0\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Isolate 2nd derivative
\(y^{\prime \prime}=-\frac{16 y}{9(-2+x)^{2}(x-3)}-\frac{2 x y^{\prime}}{3(x-3)(-2+x)}\)
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear
\[
y^{\prime \prime}+\frac{2 x y^{\prime}}{3(x-3)(-2+x)}+\frac{16 y}{9(-2+x)^{2}(x-3)}=0
\]

Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2 x}{3(x-3)(-2+x)}, P_{3}(x)=\frac{16}{9(-2+x)^{2}(x-3)}\right]\)
- \(\quad(-2+x) \cdot P_{2}(x)\) is analytic at \(x=2\)
\(\left.\left((-2+x) \cdot P_{2}(x)\right)\right|_{x=2}=-\frac{4}{3}\)
- \((-2+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=2\)
\(\left.\left((-2+x)^{2} \cdot P_{3}(x)\right)\right|_{x=2}=-\frac{16}{9}\)
- \(x=2\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point \(x_{0}=2\)
- Multiply by denominators
\[
9(-2+x)^{2}(x-3) y^{\prime \prime}+6 x(-2+x) y^{\prime}+16 y=0
\]
- \(\quad\) Change variables using \(x=u+2\) so that the regular singular point is at \(u=0\) \(\left(9 u^{3}-9 u^{2}\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+\left(6 u^{2}+12 u\right)\left(\frac{d}{d u} y(u)\right)+16 y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=1 . .2\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=2 . .3\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}\)
Rewrite ODE with series expansions
\[
-a_{0}\left(9 r^{2}-21 r-16\right) u^{r}+\left(\sum _ { k = 1 } ^ { \infty } \left(-a_{k}\left(9 k^{2}+18 k r+9 r^{2}-21 k-21 r-16\right)+3 a_{k-1}(k+r-1)(\right.\right.
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-9 r^{2}+21 r+16=0\)
- Values of \(r\) that satisfy the indicial equation
\(r \in\left\{\frac{7}{6}-\frac{\sqrt{113}}{6}, \frac{7}{6}+\frac{\sqrt{113}}{6}\right\}\)
- Each term in the series must be 0 , giving the recursion relation
\(9(k+r-1)\left(k-\frac{4}{3}+r\right) a_{k-1}-9 a_{k}\left(k^{2}+\left(2 r-\frac{7}{3}\right) k+r^{2}-\frac{7 r}{3}-\frac{16}{9}\right)=0\)
- \(\quad\) Shift index using \(k->k+1\)
\(9(k+r)\left(k-\frac{1}{3}+r\right) a_{k}-9 a_{k+1}\left((k+1)^{2}+\left(2 r-\frac{7}{3}\right)(k+1)+r^{2}-\frac{7 r}{3}-\frac{16}{9}\right)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{3(k+r)(3 k+3 r-1) a_{k}}{9 k^{2}+18 k r+9 r^{2}-3 k-3 r-28}
\]
- \(\quad\) Recursion relation for \(r=\frac{7}{6}-\frac{\sqrt{113}}{6}\)
\[
a_{k+1}=\frac{3\left(k+\frac{7}{6}-\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}-\frac{\sqrt{113}}{2}\right) a_{k}}{9 k^{2}+18 k\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right)^{2}-3 k-\frac{63}{2}+\frac{\sqrt{113}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{7}{6}-\frac{\sqrt{113}}{6}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+\frac{7}{6}-\frac{\sqrt{113}}{6}}, a_{k+1}=\frac{3\left(k+\frac{7}{6}-\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}-\sqrt{113}\right.}{2}\right) a_{k} .
\]
- \(\quad\) Revert the change of variables \(u=-2+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(-2+x)^{k+\frac{7}{6}-\frac{\sqrt{113}}{6}}, a_{k+1}=\frac{3\left(k+\frac{7}{6}-\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}-\frac{\sqrt{113}}{2}\right) a_{k}}{9 k^{2}+18 k\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right)^{2}-3 k-\frac{63}{2}+\frac{\sqrt{113}}{2}}\right]
\]
- \(\quad\) Recursion relation for \(r=\frac{7}{6}+\frac{\sqrt{113}}{6}\)
\[
a_{k+1}=\frac{3\left(k+\frac{7}{6}+\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}+\frac{\sqrt{113}}{2}\right) a_{k}}{9 k^{2}+18 k\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)^{2}-3 k-\frac{63}{2}-\frac{\sqrt{113}}{2}}
\]
- \(\quad\) Solution for \(r=\frac{7}{6}+\frac{\sqrt{113}}{6}\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{\left.\left.\left.k+\frac{7}{6}+\frac{\sqrt{113}}{6}, a_{k+1}=\frac{3\left(k+\frac{7}{6}+\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}+\frac{\sqrt{113}}{2}\right) a_{k}}{9 k^{2}+18 k\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)^{2}-3 k-\frac{63}{2}-\frac{\sqrt{113}}{2}}\right] .\right] .\right] . ~}\right.
\]
- \(\quad\) Revert the change of variables \(u=-2+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(-2+x)^{k+\frac{7}{6}+\frac{\sqrt{113}}{6}}, a_{k+1}=\frac{3\left(k+\frac{7}{6}+\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}+\frac{\sqrt{113}}{2}\right) a_{k}}{9 k^{2}+18 k\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}+\frac{\sqrt{113}}{6}\right)^{2}-3 k-\frac{63}{2}-\frac{\sqrt{113}}{2}}\right]
\]
- Combine solutions and rename parameters
\[
\left[y=\left(\sum_{k=0}^{\infty} a_{k}(-2+x)^{k+\frac{7}{6}-\frac{\sqrt{113}}{6}}\right)+\left(\sum_{k=0}^{\infty} b_{k}(-2+x)^{k+\frac{7}{6}+\frac{\sqrt{113}}{6}}\right), a_{k+1}=\frac{3\left(k+\frac{7}{6}-\frac{\sqrt{113}}{6}\right)\left(3 k+\frac{5}{2}-\right.}{9 k^{2}+18 k\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right)+9\left(\frac{7}{6}-\frac{\sqrt{113}}{6}\right.}\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients checking if the LODE is of Euler type trying a symmetry of the form [xi=0, eta=F(x)] checking if the LODE is missing y -> Trying a Liouvillian solution using Kovacics algorithm <- No Liouvillian solutions exists -> Trying a solution in terms of special functions:     -> Bessel     -> elliptic     -> Legendre     -> Kummer     -> hyper3: Equivalence to 1F1 under a power @ Moebius     -> hypergeometric         -> heuristic approach         -> hyper3: Equivalence to 2F1, 1F1 or OF1 under a power @ Moebius         <- hyper3 successful: received ODE is equivalent to the 2F1 ODE     <- hypergeometric successful <- special function solution successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.063 (sec). Leaf size: 414
```

Order:=8;
dsolve(9*(x-2)^2*(x-3)*diff(y(x),x\$2)+6*x*(x-2)*diff (y(x),x)+16*y(x)=0,y(x),type='series',x=

```

Expression too large to display
\(\checkmark\) Solution by Mathematica
Time used: 0.009 (sec). Leaf size: 130
AsymptoticDSolveValue \(\left[9 *(x-2)^{\wedge} 2 *(x-3) * y{ }^{\prime} '[x]+6 * x *(x-2) * y '[x]+16 * y[x]==0, y[x],\{x\right.\), infinity, 7\(\left.\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow c_{2}\left(-\frac{13}{3 x^{2 / 3}}-\frac{251}{45 x^{5 / 3}}-\frac{7781}{810 x^{8 / 3}}-\frac{22151}{1215 x^{11 / 3}}-\frac{669229}{18225 x^{14 / 3}}-\frac{216463313}{2788425 x^{17 / 3}}\right. \\
& -\frac{7179886604}{41826375 x^{20 / 3}} \\
& \quad+\sqrt[3]{x})+c_{1}\left(-\frac{401483448544}{1336967775 x^{7}}-\frac{4666732192}{40514175 x^{6}}-\frac{822592}{18225 x^{5}}-\frac{285704}{15795 x^{4}}-\frac{3004}{405 x^{3}}-\frac{28}{9 x^{2}}-\frac{4}{3 x}+1\right)
\end{aligned}
\]

\section*{23.3 problem 1(c)}
23.3.1 Maple step by step solution 3849

Internal problem ID [6498]
Internal file name [OUTPUT/5746_Sunday_June_05_2022_03_52_34_PM_45330625/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 4. Power Series Solutions and Special Functions. Problems for review and discovert. (B) Challenge Problems . Page 194
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type
[_Gegenbauer]
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+p(p+1) y=0
\]

With the expansion point for the power series method at \(x=\infty\).
Since expansion is around \(\infty\), then the independent variable \(x\) is replaced by \(\frac{1}{t}\) and the expansion is made around \(t=0\) and after solving, the solution is changed back to \(x\) using \(x=\frac{1}{t}\). Changing variables results in the new ode
\[
-\left(-\frac{1}{t^{2}}+1\right)\left(-\left(\frac{d^{2}}{d t^{2}} y(t)\right) t^{2}-2 t\left(\frac{d}{d t} y(t)\right)\right) t^{2}+2 t\left(\frac{d}{d t} y(t)\right)+\left(p^{2}+p\right) y(t)=0
\]

The transformed ODE is now solved. The type of the expansion point is first determined. This is done on the homogeneous part of the ODE.
\[
\left(t^{4}-t^{2}\right)\left(\frac{d^{2}}{d t^{2}} y(t)\right)+2\left(\frac{d}{d t} y(t)\right) t^{3}+\left(p^{2}+p\right) y(t)=0
\]

The following is summary of singularities for the above ode. Writing the ode as
\[
\frac{d^{2}}{d t^{2}} y(t)+p(t) \frac{d}{d t} y(t)+q(t) y(t)=0
\]

Where
\[
\begin{aligned}
& p(t)=\frac{2 t}{t^{2}-1} \\
& q(t)=\frac{p(p+1)}{\left(t^{2}-1\right) t^{2}}
\end{aligned}
\]

Table 519: Table \(p(t), q(t)\) singularites.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(p(t)=\frac{2 t}{t^{2}-1}\)} \\
\hline singularity & type \\
\hline\(t=-1\) & "regular" \\
\hline\(t=1\) & "regular" \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\(q(t)=\frac{p(p+1)}{\left(t^{2}-1\right) t^{2}}\)} \\
\hline singularity & type \\
\hline\(t=-1\) & "regular" \\
\hline\(t=0\) & "regular" \\
\hline\(t=1\) & "regular" \\
\hline
\end{tabular}

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([-1,1,0, \infty]\)
Irregular singular points : []
Since \(t=0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be
\[
\left(\frac{d^{2}}{d t^{2}} y(t)\right)\left(t^{2}-1\right) t^{2}+2\left(\frac{d}{d t} y(t)\right) t^{3}+\left(p^{2}+p\right) y(t)=0
\]

Let the solution be represented as Frobenius power series of the form
\[
y(t)=\sum_{n=0}^{\infty} a_{n} t^{n+r}
\]

Then
\[
\begin{aligned}
\frac{d}{d t} y(t) & =\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1} \\
\frac{d^{2}}{d t^{2}} y(t) & =\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}
\end{aligned}
\]

Substituting the above back into the ode gives
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty}(n+r)(n+r-1) a_{n} t^{n+r-2}\right)\left(t^{2}-1\right) t^{2} \tag{1}\\
& +2\left(\sum_{n=0}^{\infty}(n+r) a_{n} t^{n+r-1}\right) t^{3}+\left(p^{2}+p\right)\left(\sum_{n=0}^{\infty} a_{n} t^{n+r}\right)=0
\end{align*}
\]

Which simplifies to
\[
\begin{align*}
& \left(\sum_{n=0}^{\infty} t^{n+r+2} a_{n}(n+r)(n+r-1)\right)+\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2~A}\\
& \quad+\left(\sum_{n=0}^{\infty} 2 t^{n+r+2} a_{n}(n+r)\right)+\left(\sum_{n=0}^{\infty}\left(p^{2}+p\right) a_{n} t^{n+r}\right)=0
\end{align*}
\]

The next step is to make all powers of \(t\) be \(n+r\) in each summation term. Going over each summation term above with power of \(t\) in it which is not already \(t^{n+r}\) and adjusting the power and the corresponding index gives
\[
\begin{aligned}
\sum_{n=0}^{\infty} t^{n+r+2} a_{n}(n+r)(n+r-1) & =\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) t^{n+r} \\
\sum_{n=0}^{\infty} 2 t^{n+r+2} a_{n}(n+r) & =\sum_{n=2}^{\infty} 2 a_{n-2}(n+r-2) t^{n+r}
\end{aligned}
\]

Substituting all the above in \(\mathrm{Eq}(2 \mathrm{~A})\) gives the following equation where now all powers of \(t\) are the same and equal to \(n+r\).
\[
\begin{align*}
& \left(\sum_{n=2}^{\infty} a_{n-2}(n+r-2)(n-3+r) t^{n+r}\right)+\sum_{n=0}^{\infty}\left(-t^{n+r} a_{n}(n+r)(n+r-1)\right) \tag{2~B}\\
& \quad+\left(\sum_{n=2}^{\infty} 2 a_{n-2}(n+r-2) t^{n+r}\right)+\left(\sum_{n=0}^{\infty}\left(p^{2}+p\right) a_{n} t^{n+r}\right)=0
\end{align*}
\]

The indicial equation is obtained from \(n=0\). From Eq (2B) this gives
\[
-t^{n+r} a_{n}(n+r)(n+r-1)+\left(p^{2}+p\right) a_{n} t^{n+r}=0
\]

When \(n=0\) the above becomes
\[
-t^{r} a_{0} r(-1+r)+\left(p^{2}+p\right) a_{0} t^{r}=0
\]

Or
\[
\left(-t^{r} r(-1+r)+\left(p^{2}+p\right) t^{r}\right) a_{0}=0
\]

Since \(a_{0} \neq 0\) then the above simplifies to
\[
\left(p^{2}-r^{2}+p+r\right) t^{r}=0
\]

Since the above is true for all \(t\) then the indicial equation becomes
\[
p^{2}-r^{2}+p+r=0
\]

Solving for \(r\) gives the roots of the indicial equation as
\[
\begin{aligned}
& r_{1}=-p \\
& r_{2}=p+1
\end{aligned}
\]

Since \(a_{0} \neq 0\) then the indicial equation becomes
\[
\left(p^{2}-r^{2}+p+r\right) t^{r}=0
\]

Solving for \(r\) gives the roots of the indicial equation as Assuming the roots differ by non-integer Since \(r_{1}-r_{2}=-2 p-1\) is not an integer, then we can construct two linearly independent solutions
\[
\begin{aligned}
& y_{1}(t)=t^{r_{1}}\left(\sum_{n=0}^{\infty} a_{n} t^{n}\right) \\
& y_{2}(t)=t^{r_{2}}\left(\sum_{n=0}^{\infty} b_{n} t^{n}\right)
\end{aligned}
\]

Or
\[
\begin{aligned}
& y_{1}(t)=\sum_{n=0}^{\infty} a_{n} t^{n-p} \\
& y_{2}(t)=\sum_{n=0}^{\infty} b_{n} t^{n+p+1}
\end{aligned}
\]

We start by finding \(y_{1}(t)\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
a_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\[
\begin{equation*}
a_{n-2}(n+r-2)(n-3+r)-a_{n}(n+r)(n+r-1)+2 a_{n-2}(n+r-2)+a_{n} p(p+1)=0 \tag{3}
\end{equation*}
\]

Solving for \(a_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}\left(n^{2}+2 n r+r^{2}-3 n-3 r+2\right)}{n^{2}+2 n r-p^{2}+r^{2}-n-p-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=-p\) becomes
\[
\begin{equation*}
a_{n}=\frac{a_{n-2}(n-1-p)(n-p-2)}{n(n-2 p-1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r=-p\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
a_{2}=-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}
\]

Which for the root \(r=-p\) becomes
\[
a_{2}=-\frac{(-1+p) p}{4 p-2}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
a_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
a_{4}=\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}
\]

Which for the root \(r=-p\) becomes
\[
a_{4}=\frac{(-1+p) p(p-3)(p-2)}{32 p^{2}-64 p+24}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(-1+p) p(p-3)(p-2)}{32 p^{2}-64 p+24}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
a_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(-1+p) p(p-3)(p-2)}{32 p^{2}-64 p+24}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
a_{6}=-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}
\]

Which for the root \(r=-p\) becomes
\[
a_{6}=-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{384 p^{3}-1728 p^{2}+2208 p-720}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(-1+p) p(p-3)(p-2)}{32 p^{2}-64 p+24}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}\) & \(-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{384 p^{3}-1728 p^{2}+2008 p-720}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
a_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(a_{n, r}\) & \(a_{n}\) \\
\hline\(a_{0}\) & 1 & 1 \\
\hline\(a_{1}\) & 0 & 0 \\
\hline\(a_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(-\frac{(-1+p) p}{4 p-2}\) \\
\hline\(a_{3}\) & 0 & 0 \\
\hline\(a_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(-1+p) p(p-3)(p-2)}{32 p^{2}-64 p+24}\) \\
\hline\(a_{5}\) & 0 & 0 \\
\hline\(a_{6}\) & \(-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}\) & \(-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{384 p^{3}-1728 p^{2}+2208 p-720}\) \\
\hline\(a_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{1}(t)\) is
\[
\begin{aligned}
y_{1}(t) & =t^{-p}\left(a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}+a_{8} t^{8} \ldots\right) \\
& =t^{-p}\left(1-\frac{(-1+p) p t^{2}}{4 p-2}+\frac{(-1+p) p(p-3)(p-2) t^{4}}{32 p^{2}-64 p+24}-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{384 p^{3}-1728 p^{2}+2208 p-720}\right.
\end{aligned}
\]

Now the second solution \(y_{2}(t)\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n=0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0}=1\). Substituting \(n=1\) in Eq. (2B) gives
\[
b_{1}=0
\]

For \(2 \leq n\) the recursive equation is
\(b_{n-2}(n+r-2)(n-3+r)-b_{n}(n+r)(n+r-1)+2 b_{n-2}(n+r-2)+p(p+1) b_{n}=0\)

Solving for \(b_{n}\) from recursive equation (4) gives
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}\left(n^{2}+2 n r+r^{2}-3 n-3 r+2\right)}{n^{2}+2 n r-p^{2}+r^{2}-n-p-r} \tag{4}
\end{equation*}
\]

Which for the root \(r=p+1\) becomes
\[
\begin{equation*}
b_{n}=\frac{b_{n-2}(n+p)(n+p-1)}{n(n+2 p+1)} \tag{5}
\end{equation*}
\]

At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r=p+1\) and after as more terms are found using the above recursive equation.
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=2\), using the above recursive equation gives
\[
b_{2}=-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}
\]

Which for the root \(r=p+1\) becomes
\[
b_{2}=\frac{(p+2)(p+1)}{4 p+6}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline
\end{tabular}

For \(n=3\), using the above recursive equation gives
\[
b_{3}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=4\), using the above recursive equation gives
\[
b_{4}=\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}
\]

Which for the root \(r=p+1\) becomes
\[
b_{4}=\frac{(p+1)(p+2)(p+3)(p+4)}{32 p^{2}+128 p+120}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(p+1)(p+2)(p+3)(p+4)}{32 p^{2}+128 p+120}\) \\
\hline
\end{tabular}

For \(n=5\), using the above recursive equation gives
\[
b_{5}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(p+1)(p+2)(p+3)(p+4)}{32 p^{2}+128 p+120}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline
\end{tabular}

For \(n=6\), using the above recursive equation gives
\[
b_{6}=-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}
\]

Which for the root \(r=p+1\) becomes
\[
b_{6}=\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p)}{384 p^{3}+2880 p^{2}+6816 p+5040}
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(p+1)(p+2)(p+3)(p+4)}{32 p^{2}+128 p+120}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}\) & \(\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p)}{384 p^{3}+2880 p^{2}+6816 p+5040}\) \\
\hline
\end{tabular}

For \(n=7\), using the above recursive equation gives
\[
b_{7}=0
\]

And the table now becomes
\begin{tabular}{|l|l|l|}
\hline\(n\) & \(b_{n, r}\) & \(b_{n}\) \\
\hline\(b_{0}\) & 1 & 1 \\
\hline\(b_{1}\) & 0 & 0 \\
\hline\(b_{2}\) & \(-\frac{(1+r) r}{p^{2}-r^{2}+p-3 r-2}\) & \(\frac{(p+2)(p+1)}{4 p+6}\) \\
\hline\(b_{3}\) & 0 & 0 \\
\hline\(b_{4}\) & \(\frac{(1+r) r(r+3)(r+2)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)}\) & \(\frac{(p+1)(p+2)(p+3)(p+4)}{32 p^{2}+128 p+120}\) \\
\hline\(b_{5}\) & 0 & 0 \\
\hline\(b_{6}\) & \(-\frac{(1+r) r(r+3)(r+2)(r+5)(4+r)}{(p+r+2)(p-1-r)(p+4+r)(p-3-r)(p+6+r)(p-5-r)}\) & \(\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p)}{384 p^{3}+2880 p^{2}+6816 p+5040}\) \\
\hline\(b_{7}\) & 0 & 0 \\
\hline
\end{tabular}

Using the above table, then the solution \(y_{2}(t)\) is
\[
\begin{aligned}
y_{2}(t) & =t^{-p}\left(b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}+b_{8} t^{8} \ldots\right) \\
& =t^{p+1}\left(1+\frac{(p+2)(p+1) t^{2}}{4 p+6}+\frac{(p+1)(p+2)(p+3)(p+4) t^{4}}{32 p^{2}+128 p+120}+\frac{(p+2)(p+1)(p+4)(p+3)(p}{384 p^{3}+2880 p^{2}+6816 p}\right.
\end{aligned}
\]

Therefore the homogeneous solution is
\[
y_{h}(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
\[
\begin{aligned}
= & c_{1} t^{-p}\left(1-\frac{(-1+p) p t^{2}}{4 p-2}+\frac{(-1+p) p(p-3)(p-2) t^{4}}{32 p^{2}-64 p+24}\right. \\
& \left.\quad-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p) t^{6}}{384 p^{3}-1728 p^{2}+2208 p-720}+O\left(t^{8}\right)\right) \\
& +c_{2} t^{p+1}(1+
\end{aligned} \begin{aligned}
& \frac{(p+2)(p+1) t^{2}}{4 p+6}+\frac{(p+1)(p+2)(p+3)(p+4) t^{4}}{32 p^{2}+128 p+120} \\
& \left.+\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p) t^{6}}{384 p^{3}+2880 p^{2}+6816 p+5040}+O\left(t^{8}\right)\right)
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
& y(t)= \\
& \begin{aligned}
= & y_{1} t^{-p}\left(1-\frac{(-1+p) p t^{2}}{4 p-2}+\frac{(-1+p) p(p-3)(p-2) t^{4}}{32 p^{2}-64 p+24}\right. \\
& \left.\quad-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p) t^{6}}{384 p^{3}-1728 p^{2}+2208 p-720}+O\left(t^{8}\right)\right) \\
& +c_{2} t^{p+1}\left(1+\frac{(p+2)(p+1) t^{2}}{4 p+6}+\frac{(p+1)(p+2)(p+3)(p+4) t^{4}}{32 p^{2}+128 p+120}\right. \\
& \left.+\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p) t^{6}}{384 p^{3}+2880 p^{2}+6816 p+5040}+O\left(t^{8}\right)\right)
\end{aligned}
\end{aligned}
\]

Replacing \(t\) by \(\frac{1}{x}\) gives
\(y=c_{1}\left(\frac{1}{x}\right)^{-p}\left(1-\frac{(-1+p) p}{(4 p-2) x^{2}}+\frac{(-1+p) p(p-3)(p-2)}{\left(32 p^{2}-64 p+24\right) x^{4}}-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{\left(384 p^{3}-1728 p^{2}+2208 p-720\right) x^{6}}\right.\)

\section*{Summary}

The solution(s) found are the following
\[
\begin{aligned}
& y= c_{1}\left(\frac{1}{x}\right)^{-p}(1- \\
& \quad \frac{(-1+p) p}{(4 p-2) x^{2}}+\frac{(-1+p) p(p-3)(p-2)}{\left(32 p^{2}-64 p+24\right) x^{4}} \\
&\left.\quad-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{\left(384 p^{3}-1728 p^{2}+2208 p-720\right) x^{6}}+O\left(\frac{1}{x^{8}}\right)\right) \\
&+c_{2}\left(\frac{1}{x}\right)^{p+1}\left(1+\frac{(p+2)(p+1)}{(4 p+6) x^{2}}+\frac{(p+1)(p+2)(p+3)(p+4)}{\left(32 p^{2}+128 p+120\right) x^{4}}\right. \\
&\left.+\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p)}{\left(384 p^{3}+2880 p^{2}+6816 p+5040\right) x^{6}}+O\left(\frac{1}{x^{8}}\right)\right)
\end{aligned}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
y=c_{1}\left(\frac{1}{x}\right)^{-p}(1- & \frac{(-1+p) p}{(4 p-2) x^{2}}+\frac{(-1+p) p(p-3)(p-2)}{\left(32 p^{2}-64 p+24\right) x^{4}} \\
& \left.\quad-\frac{(-1+p) p(p-3)(p-2)(p-5)(-4+p)}{\left(384 p^{3}-1728 p^{2}+2208 p-720\right) x^{6}}+O\left(\frac{1}{x^{8}}\right)\right) \\
+ & c_{2}\left(\frac{1}{x}\right)^{p+1}\left(1+\frac{(p+2)(p+1)}{(4 p+6) x^{2}}+\frac{(p+1)(p+2)(p+3)(p+4)}{\left(32 p^{2}+128 p+120\right) x^{4}}\right. \\
& \left.+\frac{(p+2)(p+1)(p+4)(p+3)(p+6)(5+p)}{\left(384 p^{3}+2880 p^{2}+6816 p+5040\right) x^{6}}+O\left(\frac{1}{x^{8}}\right)\right)
\end{aligned}
\]

Verified OK.

\subsection*{23.3.1 Maple step by step solution}

Let's solve
\[
\left(-x^{2}+1\right) y^{\prime \prime}-2 x y^{\prime}+\left(p^{2}+p\right) y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Isolate 2nd derivative
\[
y^{\prime \prime}=\frac{p(p+1) y}{x^{2}-1}-\frac{2 x y^{\prime}}{x^{2}-1}
\]
- Group terms with \(y\) on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear \(y^{\prime \prime}+\frac{2 x y^{\prime}}{x^{2}-1}-\frac{p(p+1) y}{x^{2}-1}=0\)
\(\square \quad\) Check to see if \(x_{0}\) is a regular singular point
- Define functions
\(\left[P_{2}(x)=\frac{2 x}{x^{2}-1}, P_{3}(x)=-\frac{p(p+1)}{x^{2}-1}\right]\)
- \((1+x) \cdot P_{2}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x) \cdot P_{2}(x)\right)\right|_{x=-1}=1\)
- \((1+x)^{2} \cdot P_{3}(x)\) is analytic at \(x=-1\)
\(\left.\left((1+x)^{2} \cdot P_{3}(x)\right)\right|_{x=-1}=0\)
- \(x=-1\) is a regular singular point

Check to see if \(x_{0}\) is a regular singular point
\[
x_{0}=-1
\]
- Multiply by denominators
\(\left(x^{2}-1\right) y^{\prime \prime}+2 x y^{\prime}-p(p+1) y=0\)
- \(\quad\) Change variables using \(x=u-1\) so that the regular singular point is at \(u=0\) \(\left(u^{2}-2 u\right)\left(\frac{d^{2}}{d u^{2}} y(u)\right)+(2 u-2)\left(\frac{d}{d u} y(u)\right)+\left(-p^{2}-p\right) y(u)=0\)
- \(\quad\) Assume series solution for \(y(u)\)
\(y(u)=\sum_{k=0}^{\infty} a_{k} u^{k+r}\)
Rewrite ODE with series expansions
- Convert \(u^{m} \cdot\left(\frac{d}{d u} y(u)\right)\) to series expansion for \(m=0 . .1\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r) u^{k+r-1+m}
\]
- Shift index using \(k->k+1-m\)
\[
u^{m} \cdot\left(\frac{d}{d u} y(u)\right)=\sum_{k=-1+m}^{\infty} a_{k+1-m}(k+1-m+r) u^{k+r}
\]
- Convert \(u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)\) to series expansion for \(m=1\).. 2
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=0}^{\infty} a_{k}(k+r)(k+r-1) u^{k+r-2+m}
\]
- Shift index using \(k->k+2-m\)
\[
u^{m} \cdot\left(\frac{d^{2}}{d u^{2}} y(u)\right)=\sum_{k=-2+m}^{\infty} a_{k+2-m}(k+2-m+r)(k+1-m+r) u^{k+r}
\]

Rewrite ODE with series expansions
\[
-2 a_{0} r^{2} u^{-1+r}+\left(\sum_{k=0}^{\infty}\left(-2 a_{k+1}(k+1+r)^{2}+a_{k}(r+1+p+k)(r-p+k)\right) u^{k+r}\right)=0
\]
- \(\quad a_{0}\) cannot be 0 by assumption, giving the indicial equation
\(-2 r^{2}=0\)
- Values of \(r\) that satisfy the indicial equation
\(r=0\)
- Each term in the series must be 0 , giving the recursion relation
\(-2 a_{k+1}(k+1)^{2}+a_{k}(1+p+k)(-p+k)=0\)
- Recursion relation that defines series solution to ODE
\[
a_{k+1}=\frac{a_{k}(1+p+k)(-p+k)}{2(k+1)^{2}}
\]
- Recursion relation for \(r=0\)
\[
a_{k+1}=\frac{a_{k}(1+p+k)(-p+k)}{2(k+1)^{2}}
\]
- \(\quad\) Solution for \(r=0\)
\[
\left[y(u)=\sum_{k=0}^{\infty} a_{k} u^{k}, a_{k+1}=\frac{a_{k}(1+p+k)(-p+k)}{2(k+1)^{2}}\right]
\]
- \(\quad\) Revert the change of variables \(u=1+x\)
\[
\left[y=\sum_{k=0}^{\infty} a_{k}(1+x)^{k}, a_{k+1}=\frac{a_{k}(1+p+k)(-p+k)}{2(k+1)^{2}}\right]
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
checking if the LODE has constant coefficients
checking if the LODE is of Euler type
trying a symmetry of the form [xi=0, eta=F(x)]
checking if the LODE is missing y
-> Trying a Liouvillian solution using Kovacics algorithm
<- No Liouvillian solutions exists
-> Trying a solution in terms of special functions:
-> Bessel
-> elliptic
-> Legendre
<- Legendre successful
<- special function solution successful

```
\(\checkmark\) Solution by Maple
Time used: 0.063 (sec). Leaf size: 1124
```

Order:=8;
dsolve((1-x^2)*diff (y (x),x\$2)-2*x*diff (y(x),x)+p*(p+1)*y(x)=0,y(x),type='series',x=infinity)

```

Expression too large to display

\section*{Solution by Mathematica}

Time used: 0.01 (sec). Leaf size: 2707

AsymptoticDSolveValue \(\left[\left(1-x^{\wedge} 2\right) * y^{\prime} \quad[x]-2 * x * y\right.\) ' \([x]+p *(p+1) * y[x]==0, y[x],\{x\), infinity, 7\(\left.\}\right]\)
\[
\begin{aligned}
& y(x) \rightarrow\left(\frac{p^{2} x^{-p-7}}{-p^{2}-p+(p+6)(p+7)}+\frac{3 p x^{-p-7}}{-p^{2}-p+(p+6)(p+7)}\right. \\
& +\frac{p^{4} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{6 p^{3} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{17 p^{2} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{24 p x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{12 x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{p^{4} x^{-p-7}}{\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{6 p^{3} x^{-p-7}}{\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{21 p^{2} x^{-p-7}}{\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{36 p x^{-p-7}}{\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{p^{6} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{9 p^{5} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& 45 p^{4} x^{-p-7} \\
& +\frac{45 p^{4} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& 135 p^{3} x^{-p-7} \\
& +\frac{}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{254 p^{2} x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{276 p x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{120 x^{-p-7}}{\left(-p^{2}-p+(p+2)(p+3)\right)\left(-p^{2}-p+(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{20 x^{-p-7}}{\left(-p^{2}-p_{8} 8_{2}(p+4)(p+5)\right)\left(-p^{2}-p+(p+6)(p+7)\right)} \\
& +\frac{2 x^{-p-7}}{-p^{2}-p+(p+6)(p+7)}+\frac{p^{2} x^{-p-5}}{-p^{2}-p+(p+4)(p+5)}+\frac{3 p x^{-p-5}}{-p^{2}-p+(p+4)(p+5)}
\end{aligned}
\]
24 Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions. Page 303
24.1 problem 1(a) 3854
24.2 problem 1(b) 3860
24.3 problem 1(c) 3866
24.4 problem 7(a) 3872
24.5 problem 7(b) 3877
24.6 problem 7(c) 3882

\section*{24.1 problem 1(a)}
24.1.1 Existence and uniqueness analysis 3854
24.1.2 Maple step by step solution . 3857

Internal problem ID [6499]
Internal file name [OUTPUT/5747_Sunday_June_05_2022_03_52_36_PM_71358093/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions.
Page 303
Problem number: 1(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+5 y^{\prime}+6 y=5 \mathrm{e}^{3 t}
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=0\right]
\]

\subsection*{24.1.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =5 \\
q(t) & =6 \\
F & =5 \mathrm{e}^{3 t}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+5 y^{\prime}+6 y=5 \mathrm{e}^{3 t}
\]

The domain of \(p(t)=5\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=6\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=5 \mathrm{e}^{3 t}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+5 s Y(s)-5 y(0)+6 Y(s)=\frac{5}{s-3} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)+5 s Y(s)+6 Y(s)=\frac{5}{s-3}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{5}{(s-3)\left(s^{2}+5 s+6\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{5}{6(s+3)}-\frac{1}{s+2}+\frac{1}{6 s-18}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{5}{6(s+3)}\right) & =\frac{5 \mathrm{e}^{-3 t}}{6} \\
\mathcal{L}^{-1}\left(-\frac{1}{s+2}\right) & =-\mathrm{e}^{-2 t} \\
\mathcal{L}^{-1}\left(\frac{1}{6 s-18}\right) & =\frac{\mathrm{e}^{3 t}}{6}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\cosh (3 t)-\frac{2 \sinh (3 t)}{3}-\mathrm{e}^{-2 t}
\]

Simplifying the solution gives
\[
y=\cosh (3 t)-\frac{2 \sinh (3 t)}{3}-\mathrm{e}^{-2 t}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\cosh (3 t)-\frac{2 \sinh (3 t)}{3}-\mathrm{e}^{-2 t} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\cosh (3 t)-\frac{2 \sinh (3 t)}{3}-\mathrm{e}^{-2 t}
\]

Verified OK.

\subsection*{24.1.2 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}+5 y^{\prime}+6 y=5 \mathrm{e}^{3 t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}+5 r+6=0
\]
- Factor the characteristic polynomial
\[
(r+3)(r+2)=0
\]
- Roots of the characteristic polynomial
\[
r=(-3,-2)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(t)=\mathrm{e}^{-3 t}
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(t)=\mathrm{e}^{-2 t}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-2 t}+y_{p}(t)
\]

Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\[
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=5 \mathrm{e}^{3 t}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{-2 t} \\ -3 \mathrm{e}^{-3 t} & -2 \mathrm{e}^{-2 t}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{-5 t}\)
- Substitute functions into equation for \(y_{p}(t)\)
\(y_{p}(t)=-5 \mathrm{e}^{-3 t}\left(\int \mathrm{e}^{6 t} d t\right)+5 \mathrm{e}^{-2 t}\left(\int \mathrm{e}^{5 t} d t\right)\)
- Compute integrals
\(y_{p}(t)=\frac{\mathrm{e}^{3 t}}{6}\)
- \(\quad\) Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{3 t}}{6}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{3 t}}{6}\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}+c_{2}+\frac{1}{6}\)
- Compute derivative of the solution
\[
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}-2 c_{2} \mathrm{e}^{-2 t}+\frac{\mathrm{e}^{3 t}}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=0\)
\(0=-3 c_{1}-2 c_{2}+\frac{1}{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=\frac{5}{6}, c_{2}=-1\right\}\)
- Substitute constant values into general solution and simplify
\(y=\frac{\left(\mathrm{e}^{6 t}-6 \mathrm{e}^{t}+5\right) \mathrm{e}^{-3 t}}{6}\)
- \(\quad\) Solution to the IVP
\(y=\frac{\left(\mathrm{e}^{6 t}-6 \mathrm{e}^{t}+5\right) \mathrm{e}^{-3 t}}{6}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.859 (sec). Leaf size: 21
```

dsolve([diff(y(t),t\$2)+5*diff(y(t),t)+6*y(t)=5*exp(3*t),y(0) = 0, D(y)(0) = 0],y(t), singsol

```
\[
y(t)=\cosh (3 t)-\frac{2 \sinh (3 t)}{3}-\mathrm{e}^{-2 t}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 26
DSolve [\{y' ' \([\mathrm{t}]+5 * y\) ' \(\left.[\mathrm{t}]+6 * y[\mathrm{t}]==5 * \operatorname{Exp}[3 * \mathrm{t}],\left\{y[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolution
\[
y(t) \rightarrow \frac{1}{6} e^{-3 t}\left(-6 e^{t}+e^{6 t}+5\right)
\]

\section*{24.2 problem 1(b)}
24.2.1 Existence and uniqueness analysis 3860
24.2.2 Maple step by step solution . 3863

Internal problem ID [6500]
Internal file name [OUTPUT/5748_Sunday_June_05_2022_03_52_38_PM_12557919/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions. Page 303
Problem number: 1(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+y^{\prime}-6 y=t
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=0\right]
\]

\subsection*{24.2.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =1 \\
q(t) & =-6 \\
F & =t
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+y^{\prime}-6 y=t
\]

The domain of \(p(t)=1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=-6\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=t\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)-6 Y(s)=\frac{1}{s^{2}} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)+s Y(s)-6 Y(s)=\frac{1}{s^{2}}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{1}{s^{2}\left(s^{2}+s-6\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=-\frac{1}{36 s}-\frac{1}{45(s+3)}+\frac{1}{20 s-40}-\frac{1}{6 s^{2}}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{36 s}\right) & =-\frac{1}{36} \\
\mathcal{L}^{-1}\left(-\frac{1}{45(s+3)}\right) & =-\frac{\mathrm{e}^{-3 t}}{45} \\
\mathcal{L}^{-1}\left(\frac{1}{20 s-40}\right) & =\frac{\mathrm{e}^{2 t}}{20} \\
\mathcal{L}^{-1}\left(-\frac{1}{6 s^{2}}\right) & =-\frac{t}{6}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\frac{\mathrm{e}^{2 t}}{20}-\frac{1}{36}-\frac{\mathrm{e}^{-3 t}}{45}-\frac{t}{6}
\]

Simplifying the solution gives
\[
y=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180} \tag{1}
\end{equation*}
\]

(a) Solution plot

Verification of solutions
\[
y=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180}
\]

Verified OK.

\subsection*{24.2.2 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+y^{\prime}-6 y=t, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+r-6=0\)
- Factor the characteristic polynomial
\((r+3)(r-2)=0\)
- Roots of the characteristic polynomial
\[
r=(-3,2)
\]
- \(\quad\) 1st solution of the homogeneous ODE
\[
y_{1}(t)=\mathrm{e}^{-3 t}
\]
- \(\quad 2\) nd solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{2 t}\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function \(\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t\right]\)
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-3 t} & \mathrm{e}^{2 t} \\ -3 \mathrm{e}^{-3 t} & 2 \mathrm{e}^{2 t}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=5 \mathrm{e}^{-t}\)
- Substitute functions into equation for \(y_{p}(t)\)
\[
y_{p}(t)=\frac{\left(\mathrm{e}^{5 t}\left(\int t \mathrm{e}^{-2 t} d t\right)-\left(\int t \mathrm{e}^{3 t} d t\right)\right) \mathrm{e}^{-3 t}}{5}
\]
- Compute integrals
\[
y_{p}(t)=-\frac{1}{36}-\frac{t}{6}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}-\frac{1}{36}-\frac{t}{6}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{-3 t}+c_{2} \mathrm{e}^{2 t}-\frac{1}{36}-\frac{t}{6}\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}+c_{2}-\frac{1}{36}\)
- Compute derivative of the solution
\[
y^{\prime}=-3 c_{1} \mathrm{e}^{-3 t}+2 c_{2} \mathrm{e}^{2 t}-\frac{1}{6}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=0\)
\[
0=-3 c_{1}+2 c_{2}-\frac{1}{6}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{1}{45}, c_{2}=\frac{1}{20}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180}
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.531 (sec). Leaf size: 21
```

dsolve([diff(y(t),t\$2)+diff(y(t),t)-6*y(t)=t,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

```
\[
y(t)=\frac{\left(9 \mathrm{e}^{5 t}-30 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4\right) \mathrm{e}^{-3 t}}{180}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 28
```

DSolve[{y''[t]+y'[t]-6*y[t]==t,{y[0]==0,y'[0]==0}},y[t],t,IncludeSingularSolutions -> True]

```
\[
y(t) \rightarrow \frac{1}{180}\left(-30 t-4 e^{-3 t}+9 e^{2 t}-5\right)
\]

\section*{24.3 problem 1(c)}
24.3.1 Existence and uniqueness analysis 3866
24.3.2 Maple step by step solution . 3869

Internal problem ID [6501]
Internal file name [OUTPUT/5749_Sunday_June_05_2022_03_52_40_PM_91277379/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions.
Page 303
Problem number: 1(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y=t^{2}
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=0\right]
\]

\subsection*{24.3.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =0 \\
q(t) & =-1 \\
F & =t^{2}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-y=t^{2}
\]

The domain of \(p(t)=0\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=-1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=t^{2}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-Y(s)=\frac{2}{s^{3}} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-Y(s)=\frac{2}{s^{3}}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{2}{s^{3}\left(s^{2}-1\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{1}{s+1}+\frac{1}{s-1}-\frac{2}{s^{3}}-\frac{2}{s}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1}{s+1}\right) & =\mathrm{e}^{-t} \\
\mathcal{L}^{-1}\left(\frac{1}{s-1}\right) & =\mathrm{e}^{t} \\
\mathcal{L}^{-1}\left(-\frac{2}{s^{3}}\right) & =-t^{2} \\
\mathcal{L}^{-1}\left(-\frac{2}{s}\right) & =-2
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=-2-t^{2}+2 \cosh (t)
\]

Simplifying the solution gives
\[
y=-2-t^{2}+2 \cosh (t)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=-2-t^{2}+2 \cosh (t) \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

Verification of solutions
\[
y=-2-t^{2}+2 \cosh (t)
\]

Verified OK.

\subsection*{24.3.2 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}-y=t^{2}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=0\right]\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-1=0
\]
- Factor the characteristic polynomial
\((r-1)(r+1)=0\)
- Roots of the characteristic polynomial
\(r=(-1,1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\mathrm{e}^{-t}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{t}\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- Substitute in solutions of the homogeneous ODE
\(y=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\[
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t^{2}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\mathrm{e}^{-t} & \mathrm{e}^{t} \\ -\mathrm{e}^{-t} & \mathrm{e}^{t}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=2\)
- Substitute functions into equation for \(y_{p}(t)\)
\(y_{p}(t)=-\frac{\mathrm{e}^{-t}\left(\int \mathrm{e}^{t} t^{2} d t\right)}{2}+\frac{\mathrm{e}^{t}\left(\int \mathrm{e}^{-t} t^{2} d t\right)}{2}\)
- Compute integrals
\(y_{p}(t)=-t^{2}-2\)
- \(\quad\) Substitute particular solution into general solution to ODE \(y=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}-t^{2}-2\)
Check validity of solution \(y=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}-t^{2}-2\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}-2+c_{2}\)
- Compute derivative of the solution
\[
y^{\prime}=-\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}-2 t
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=0\)
\(0=-c_{1}+c_{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\(\left\{c_{1}=1, c_{2}=1\right\}\)
- Substitute constant values into general solution and simplify
\[
y=\mathrm{e}^{-t}+\mathrm{e}^{t}-t^{2}-2
\]
- \(\quad\) Solution to the IVP
\[
y=\mathrm{e}^{-t}+\mathrm{e}^{t}-t^{2}-2
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.516 (sec). Leaf size: 15
```

dsolve([diff(y(t),t\$2)-y(t)=t^2,y(0) = 0, D(y)(0) = 0],y(t), singsol=all)

```
\[
y(t)=-2-t^{2}+2 \cosh (t)
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.015 (sec). Leaf size: 20
DSolve[\{y'' \(\left.[\mathrm{t}]-\mathrm{y}[\mathrm{t}]==\mathrm{t}^{\wedge} 2,\left\{\mathrm{y}[0]==0, \mathrm{y}^{\prime}[0]==0\right\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolutions \(\rightarrow\) True]
\[
y(t) \rightarrow-t^{2}+e^{-t}+e^{t}-2
\]

\section*{24.4 problem 7(a)}
24.4.1 Existence and uniqueness analysis 3872
24.4.2 Solving as laplace ode . 3873
24.4.3 Maple step by step solution . 3874

Internal problem ID [6502]
Internal file name [OUTPUT/5750_Sunday_June_05_2022_03_52_42_PM_3334797/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions.
Page 303
Problem number: 7(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
L i^{\prime}+R i=E_{0} \text { Heaviside }(t)
\]

With initial conditions
\[
[i(0)=0]
\]

\subsection*{24.4.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
i^{\prime}+p(t) i=q(t)
\]

Where here
\[
\begin{aligned}
p(t) & =\frac{R}{L} \\
q(t) & =\frac{E_{0} \text { Heaviside }(t)}{L}
\end{aligned}
\]

Hence the ode is
\[
i^{\prime}+\frac{R i}{L}=\frac{E_{0} \operatorname{Heaviside}(t)}{L}
\]

The domain of \(p(t)=\frac{R}{L}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=\frac{E_{0} \text { Heaviside }(t)}{L}\) is
\[
\{t<0 \vee 0<t\}
\]

But the point \(t_{0}=0\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

\subsection*{24.4.2 Solving as laplace ode}

Solving using the Laplace transform method. Let
\[
\mathcal{L}(i)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\mathcal{L}\left(i^{\prime}\right)=s Y(s)-i(0)
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
L Y(s) s-L i(0)+R Y(s)=\frac{E_{0}}{s} \tag{1}
\end{equation*}
\]

Replacing initial condition gives
\[
L Y(s) s+R Y(s)=\frac{E_{0}}{s}
\]

Solving for \(Y(s)\) gives
\[
Y(s)=\frac{E_{0}}{s(L s+R)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=-\frac{E_{0}}{R\left(s+\frac{R}{L}\right)}+\frac{E_{0}}{R s}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{E_{0}}{R\left(s+\frac{R}{L}\right)}\right) & =-\frac{E_{0} \mathrm{e}^{-\frac{R t}{L}}}{R} \\
\mathcal{L}^{-1}\left(\frac{E_{0}}{R s}\right) & =\frac{E_{0}}{R}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
i=\frac{E_{0}\left(1-\mathrm{e}^{-\frac{R t}{L}}\right)}{R}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
i=\frac{E_{0}\left(1-\mathrm{e}^{-\frac{R t}{L}}\right)}{R} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
i=\frac{E_{0}\left(1-\mathrm{e}^{-\frac{R t}{L}}\right)}{R}
\]

Verified OK.

\subsection*{24.4.3 Maple step by step solution}

Let's solve
\(\left[L i^{\prime}+R i=E_{0} \operatorname{Heaviside}(t), i(0)=0\right]\)
- Highest derivative means the order of the ODE is 1
\(i^{\prime}\)
- Isolate the derivative
\(i^{\prime}=-\frac{R i}{L}+\frac{E_{0} \text { Heaviside }(t)}{L}\)
- Group terms with \(i\) on the lhs of the ODE and the rest on the rhs of the ODE
\(i^{\prime}+\frac{R i}{L}=\frac{E_{0} \text { Heaviside }(t)}{L}\)
- The ODE is linear; multiply by an integrating factor \(\mu(t)\)
\(\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\frac{\mu(t) E_{0} \text { Heaviside }(t)}{L}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d t}(\mu(t) i)\)
\[
\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\mu^{\prime}(t) i+\mu(t) i^{\prime}
\]
- Isolate \(\mu^{\prime}(t)\)
\(\mu^{\prime}(t)=\frac{\mu(t) R}{L}\)
- Solve to find the integrating factor
\(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
- Integrate both sides with respect to \(t\)
\(\int\left(\frac{d}{d t}(\mu(t) i)\right) d t=\int \frac{\mu(t) E_{0} \operatorname{Heaviside}(t)}{L} d t+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(t) i=\int \frac{\mu(t) E_{0} \text { Heaviside }(t)}{L} d t+c_{1}\)
- \(\quad\) Solve for \(i\)
\(i=\frac{\int \frac{\mu(t) E_{0} \text { Heaviside }(t)}{L} d t+c_{1}}{\mu(t)}\)
- \(\quad\) Substitute \(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
\(i=\frac{\int \frac{\mathrm{e}^{\frac{R t}{L}} E_{0} \text { Heaviside }(t)}{L} d t+c_{1}}{\mathrm{e}^{\frac{R t}{L}}}\)
- Evaluate the integrals on the rhs

- Simplify
\(i=\frac{E_{0} \text { Heaviside }(t)-E_{0} \text { Heaviside }(t) \mathrm{e}^{-\frac{R t}{L}}+R c_{1} \mathrm{e}^{-\frac{R t}{L}}}{R}\)
- Use initial condition \(i(0)=0\)
\(0=c_{1}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=0\)
- \(\quad\) Substitute \(c_{1}=0\) into general solution and simplify
\(i=-\frac{E_{0} \operatorname{Heaviside}(t)\left(\mathrm{e}^{-\frac{R t}{L}}-1\right)}{R}\)
- \(\quad\) Solution to the IVP
\(i=-\frac{E_{0} \text { Heaviside }(t)\left(\mathrm{e}^{-\frac{R t}{L}}-1\right)}{R}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.625 (sec). Leaf size: 21
```

dsolve([L*diff(i(t),t)+R*i(t)=E__0*Heaviside(t),i(0) = 0],i(t), singsol=all)

```
\[
i(t)=-\frac{E_{0}\left(\mathrm{e}^{-\frac{R t}{L}}-1\right)}{R}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.077 (sec). Leaf size: 25
DSolve[\{L*i' \([t]+R * i[t]==E 0 *\) UnitStep \([t],\{i[0]==0\}\}, i[t], t\), IncludeSingularSolutions \(\rightarrow\) True]
\[
i(t) \rightarrow \frac{\mathrm{E} 0 \theta(t)\left(1-e^{-\frac{R t}{L}}\right)}{R}
\]

\section*{24.5 problem 7(b)}
24.5.1 Existence and uniqueness analysis 3877
24.5.2 Solving as laplace ode . 3878
24.5.3 Maple step by step solution . 3879

Internal problem ID [6503]
Internal file name [OUTPUT/5751_Sunday_June_05_2022_03_52_45_PM_9236993/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions.
Page 303
Problem number: 7(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
L i^{\prime}+R i=E_{0} \delta(t)
\]

With initial conditions
\[
[i(0)=0]
\]

\subsection*{24.5.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
i^{\prime}+p(t) i=q(t)
\]

Where here
\[
\begin{aligned}
p(t) & =\frac{R}{L} \\
q(t) & =\frac{E_{0} \delta(t)}{L}
\end{aligned}
\]

Hence the ode is
\[
i^{\prime}+\frac{R i}{L}=\frac{E_{0} \delta(t)}{L}
\]

The domain of \(p(t)=\frac{R}{L}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=\frac{E_{0} \delta(t)}{L}\) is
\[
\{t<0 \vee 0<t\}
\]

But the point \(t_{0}=0\) is not inside this domain. Hence existence and uniqueness theorem does not apply. There could be infinite number of solutions, or one solution or no solution at all.

\subsection*{24.5.2 Solving as laplace ode}

Solving using the Laplace transform method. Let
\[
\mathcal{L}(i)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\mathcal{L}\left(i^{\prime}\right)=s Y(s)-i(0)
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
L Y(s) s-L i(0)+R Y(s)=E_{0} \tag{1}
\end{equation*}
\]

Replacing initial condition gives
\[
L Y(s) s+R Y(s)=E_{0}
\]

Solving for \(Y(s)\) gives
\[
Y(s)=\frac{E_{0}}{L s+R}
\]

Taking inverse Laplace transform gives
\[
\mathcal{L}^{-1}\left(\frac{E_{0}}{L s+R}\right)=\frac{E_{0} \mathrm{e}^{-\frac{R t}{L}}}{L}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
i=\frac{E_{0} \mathrm{e}^{-\frac{R t}{L}}}{L} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
i=\frac{E_{0} \mathrm{e}^{-\frac{R t}{L}}}{L}
\]

Verified OK.

\subsection*{24.5.3 Maple step by step solution}

Let's solve
\(\left[L i^{\prime}+R i=E_{0} \operatorname{Dirac}(t), i(0)=0\right]\)
- Highest derivative means the order of the ODE is 1
\(i^{\prime}\)
- Isolate the derivative
\(i^{\prime}=-\frac{R i}{L}+\frac{E_{0} \operatorname{Dirac}(t)}{L}\)
- Group terms with \(i\) on the lhs of the ODE and the rest on the rhs of the ODE
\(i^{\prime}+\frac{R i}{L}=\frac{E_{0} \operatorname{Dirac}(t)}{L}\)
- The ODE is linear; multiply by an integrating factor \(\mu(t)\)
\(\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\frac{\mu(t) E_{0} \operatorname{Dirac}(t)}{L}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d t}(\mu(t) i)\)
\(\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\mu^{\prime}(t) i+\mu(t) i^{\prime}\)
- Isolate \(\mu^{\prime}(t)\)
\(\mu^{\prime}(t)=\frac{\mu(t) R}{L}\)
- \(\quad\) Solve to find the integrating factor
\(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
- Integrate both sides with respect to \(t\)
\(\int\left(\frac{d}{d t}(\mu(t) i)\right) d t=\int \frac{\mu(t) E_{0} \operatorname{Dirac}(t)}{L} d t+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(t) i=\int \frac{\mu(t) E_{0} \operatorname{Dirac}(t)}{L} d t+c_{1}\)
- \(\quad\) Solve for \(i\)
\(i=\frac{\int \frac{\mu(t) E_{0} D_{\text {iraca }}(t)}{L} d t+c_{1}}{\mu(t)}\)
- \(\quad\) Substitute \(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
\(i=\frac{\int_{\frac{\mathrm{e}^{\frac{R t}{L}}}{E_{0} D \text { irace }(t)}}^{L} d t+c_{1}}{\mathrm{e}^{\frac{R t}{L}}}\)
- Evaluate the integrals on the rhs
\(i=\frac{\frac{E_{0} \text { Heaviside }(t)}{L}+c_{1}}{\mathrm{e}^{\frac{R t}{L}}}\)
- Simplify
\(i=\frac{\mathrm{e}^{-\frac{R t}{L}}\left(E_{0} \text { Heaviside }(t)+L c_{1}\right)}{L}\)
- Use initial condition \(i(0)=0\)
\(0=\frac{E_{0} \text { undefined }+L c_{1}}{L}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=-\frac{E_{0} \text { undefined }}{L}\)
- Substitute \(c_{1}=-\frac{E_{0} \text { undefined }}{L}\) into general solution and simplify
\(i=\frac{\mathrm{e}^{-\frac{R t}{L}} E_{0}(\text { undefined }+ \text { Heaviside }(t))}{L}\)
- Solution to the IVP
\(i=\frac{\mathrm{e}^{-\frac{R t}{L}} E_{0}(\text { undefined }+ \text { Heaviside }(t))}{L}\)

Maple trace
```

`Methods for first order ODEs: --- Trying classification methods --- trying a quadrature trying 1st order linear <- 1st order linear successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.562 (sec). Leaf size: 17
dsolve([L*diff(i(t), \(\left.t)+R * i(t)=E_{-} 0 * \operatorname{Dirac}(t), i(0)=0\right], i(t)\), singsol=all)
\[
i(t)=\frac{\mathrm{e}^{-\frac{R t}{L}} E_{0}}{L}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.041 (sec). Leaf size: 26
DSolve \(\left[\left\{\mathrm{L} * \mathrm{i}^{\prime}[\mathrm{t}]+\mathrm{R} * \mathrm{i}[\mathrm{t}]==\mathrm{E} 0 * \operatorname{DiracDelta}[\mathrm{t}],\{\mathrm{i}[0]==0\}\right\}, \mathrm{i}[\mathrm{t}], \mathrm{t}\right.\), IncludeSingularSolutions \(->\) True]
\[
i(t) \rightarrow \frac{\mathrm{E} 0(\theta(t)-\theta(0)) e^{-\frac{R t}{L}}}{L}
\]

\section*{24.6 problem 7(c)}
24.6.1 Existence and uniqueness analysis 3882
24.6.2 Solving as laplace ode . 3883
24.6.3 Maple step by step solution 3884

Internal problem ID [6504]
Internal file name [OUTPUT/5752_Sunday_June_05_2022_03_52_48_PM_16266900/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 The Unit Step and Impulse Functions.
Page 303
Problem number: 7(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "exact", "linear", "first_order_ode_lie__symmetry_lookup"

Maple gives the following as the ode type
[[_linear, `class A`]]
\[
L i^{\prime}+R i=E_{0} \sin (\omega t)
\]

With initial conditions
\[
[i(0)=0]
\]

\subsection*{24.6.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
i^{\prime}+p(t) i=q(t)
\]

Where here
\[
\begin{aligned}
p(t) & =\frac{R}{L} \\
q(t) & =\frac{E_{0} \sin (\omega t)}{L}
\end{aligned}
\]

Hence the ode is
\[
i^{\prime}+\frac{R i}{L}=\frac{E_{0} \sin (\omega t)}{L}
\]

The domain of \(p(t)=\frac{R}{L}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=\frac{E_{0} \sin (\omega t)}{L}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.

\subsection*{24.6.2 Solving as laplace ode}

Solving using the Laplace transform method. Let
\[
\mathcal{L}(i)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\mathcal{L}\left(i^{\prime}\right)=s Y(s)-i(0)
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
L Y(s) s-L i(0)+R Y(s)=\frac{E_{0} \omega}{\omega^{2}+s^{2}} \tag{1}
\end{equation*}
\]

Replacing initial condition gives
\[
L Y(s) s+R Y(s)=\frac{E_{0} \omega}{\omega^{2}+s^{2}}
\]

Solving for \(Y(s)\) gives
\[
Y(s)=\frac{E_{0} \omega}{\left(\omega^{2}+s^{2}\right)(L s+R)}
\]

Applying partial fractions decomposition results in
\(Y(s)=\frac{E_{0} \omega L}{\left(\omega^{2} L^{2}+R^{2}\right)\left(s+\frac{R}{L}\right)}-\frac{\left(L \sqrt{-\omega^{2}}-R\right) E_{0} \omega}{2\left(\omega^{2} L^{2}+R^{2}\right) \sqrt{-\omega^{2}}\left(s-\sqrt{-\omega^{2}}\right)}+\frac{\left(-L \sqrt{-\omega^{2}}-R\right) E_{0} \omega}{2\left(\omega^{2} L^{2}+R^{2}\right) \sqrt{-\omega^{2}}\left(s+\sqrt{-\omega^{2}}\right)}\)

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{E_{0} \omega L}{\left(\omega^{2} L^{2}+R^{2}\right)\left(s+\frac{R}{L}\right)}\right) & =\frac{E_{0} \omega L \mathrm{e}^{-\frac{R t}{L}}}{\omega^{2} L^{2}+R^{2}} \\
\mathcal{L}^{-1}\left(-\frac{\left(L \sqrt{-\omega^{2}}-R\right) E_{0} \omega}{2\left(\omega^{2} L^{2}+R^{2}\right) \sqrt{-\omega^{2}}\left(s-\sqrt{-\omega^{2}}\right)}\right) & =\frac{E_{0} \mathrm{e}^{i \operatorname{csgn}(i \omega) \omega t}(-i R \operatorname{csgn}(i \omega)-L \omega)}{2 \omega^{2} L^{2}+2 R^{2}} \\
\mathcal{L}^{-1}\left(\frac{\left(-L \sqrt{-\omega^{2}}-R\right) E_{0} \omega}{2\left(\omega^{2} L^{2}+R^{2}\right) \sqrt{-\omega^{2}}\left(s+\sqrt{-\omega^{2}}\right)}\right) & =\frac{E_{0} \mathrm{e}^{-i \operatorname{csgn}(i \omega) \omega t}(i R \operatorname{csgn}(i \omega)-L \omega)}{2 \omega^{2} L^{2}+2 R^{2}}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
i=\frac{E_{0}\left(R \sin (\omega t)+\left(-\cos (\omega t)+\mathrm{e}^{-\frac{R t}{L}}\right) \omega L\right)}{\omega^{2} L^{2}+R^{2}}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
i=\frac{E_{0}\left(R \sin (\omega t)+\left(-\cos (\omega t)+\mathrm{e}^{-\frac{R t}{L}}\right) \omega L\right)}{\omega^{2} L^{2}+R^{2}} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
i=\frac{E_{0}\left(R \sin (\omega t)+\left(-\cos (\omega t)+\mathrm{e}^{-\frac{R t}{L}}\right) \omega L\right)}{\omega^{2} L^{2}+R^{2}}
\]

Verified OK.

\subsection*{24.6.3 Maple step by step solution}

Let's solve
\[
\left[L i^{\prime}+R i=E_{0} \sin (\omega t), i(0)=0\right]
\]
- Highest derivative means the order of the ODE is 1
\(i^{\prime}\)
- Isolate the derivative
\(i^{\prime}=-\frac{R i}{L}+\frac{E_{0} \sin (\omega t)}{L}\)
- Group terms with \(i\) on the lhs of the ODE and the rest on the rhs of the ODE \(i^{\prime}+\frac{R i}{L}=\frac{E_{0} \sin (\omega t)}{L}\)
- The ODE is linear; multiply by an integrating factor \(\mu(t)\)
\(\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\frac{\mu(t) E_{0} \sin (\omega t)}{L}\)
- Assume the lhs of the ODE is the total derivative \(\frac{d}{d t}(\mu(t) i)\)
\(\mu(t)\left(i^{\prime}+\frac{R i}{L}\right)=\mu^{\prime}(t) i+\mu(t) i^{\prime}\)
- Isolate \(\mu^{\prime}(t)\)
\(\mu^{\prime}(t)=\frac{\mu(t) R}{L}\)
- \(\quad\) Solve to find the integrating factor
\(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
- Integrate both sides with respect to \(t\)
\(\int\left(\frac{d}{d t}(\mu(t) i)\right) d t=\int \frac{\mu(t) E_{0} \sin (\omega t)}{L} d t+c_{1}\)
- Evaluate the integral on the lhs
\(\mu(t) i=\int \frac{\mu(t) E_{0} \sin (\omega t)}{L} d t+c_{1}\)
- \(\quad\) Solve for \(i\)
\(i=\frac{\int \frac{\mu(t) E_{0} \sin (\omega t)}{L(t)} d t+c_{1}}{\mu(t)}\)
- \(\quad\) Substitute \(\mu(t)=\mathrm{e}^{\frac{R t}{L}}\)
\(i=\frac{\int^{\frac{e^{\frac{R t}{L}} E_{0} \sin (\omega t)}{L} d t+c_{1}}}{\mathrm{e}^{\frac{R t}{L}}}\)
- Evaluate the integrals on the rhs
\[
i=\frac{E_{0}\left(-\frac{\omega \mathrm{e}^{\frac{R t}{L}} \cos (\omega t)}{\omega^{2}+\frac{R^{2}}{L^{2}}}+\frac{R \mathrm{e}^{\frac{R t}{L}} \sin (\omega t)}{L\left(\omega^{2}+\frac{R^{2}}{L^{2}}\right)}\right)}{L}+c_{1} .
\]
- Simplify
\(i=\frac{c_{1}\left(\omega^{2} L^{2}+R^{2}\right) \mathrm{e}^{-\frac{R t}{L}}-E_{0}(L \omega \cos (\omega t)-R \sin (\omega t))}{\omega^{2} L^{2}+R^{2}}\)
- Use initial condition \(i(0)=0\)
\(0=\frac{c_{1}\left(\omega^{2} L^{2}+R^{2}\right)-E_{0} \omega L}{\omega^{2} L^{2}+R^{2}}\)
- \(\quad\) Solve for \(c_{1}\)
\(c_{1}=\frac{E_{0} \omega L}{\omega^{2} L^{2}+R^{2}}\)
- \(\quad\) Substitute \(c_{1}=\frac{E_{0} \omega L}{\omega^{2} L^{2}+R^{2}}\) into general solution and simplify
\(i=-\frac{E_{0}\left(L \omega \cos (\omega t)-\omega L \mathrm{e}^{-\frac{R t}{L}}-R \sin (\omega t)\right)}{\omega^{2} L^{2}+R^{2}}\)
- \(\quad\) Solution to the IVP
\[
i=-\frac{E_{0}\left(L \omega \cos (\omega t)-\omega L \mathrm{e}^{-\frac{R t}{L}}-R \sin (\omega t)\right)}{\omega^{2} L^{2}+R^{2}}
\]

Maple trace
- Methods for first order ODEs:
--- Trying classification methods ---
trying a quadrature
trying 1st order linear
<- 1st order linear successful`
\(\checkmark\) Solution by Maple
Time used: 1.75 (sec). Leaf size: 44
dsolve([L*diff(i(t), \(\left.t)+R * i(t)=E _0 * \sin (o m e g a * t), i(0)=0\right], i(t)\), singsol=all)
\[
i(t)=\frac{\left(\omega L \mathrm{e}^{-\frac{R t}{L}}-L \cos (\omega t) \omega+\sin (\omega t) R\right) E_{0}}{\omega^{2} L^{2}+R^{2}}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.114 (sec). Leaf size: 47
DSolve \(\left[\left\{\mathrm{L} * \mathrm{i}^{\prime}[\mathrm{t}]+\mathrm{R} * \mathrm{i}[\mathrm{t}]==\mathrm{E} 0 * \operatorname{Sin}[\backslash[0 \mathrm{mega}] * \mathrm{t}],\{\mathrm{i}[0]==0\}\right\}, \mathrm{i}[\mathrm{t}], \mathrm{t}\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
i(t) \rightarrow \frac{\mathrm{E} 0\left(L \omega e^{-\frac{R t}{L}}-L \omega \cos (t \omega)+R \sin (t \omega)\right)}{L^{2} \omega^{2}+R^{2}}
\]

\section*{25 Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309}
25.1 problem 3(a) 3888
25.2 problem 3(b) 3895
25.3 problem 3(c) 3901
25.4 problem 3(d) 3908
25.5 problem 4(a) 3915
25.6 problem 4(b) 3919
25.7 problem 4(c) 3925
25.8 problem 4(d) 3930

\section*{25.1 problem 3(a)}
25.1.1 Existence and uniqueness analysis 3888
25.1.2 Maple step by step solution . 3891

Internal problem ID [6505]
Internal file name [OUTPUT/5753_Sunday_June_05_2022_03_52_50_PM_67993605/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309
Problem number: 3(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _missing_x]]
\[
y^{\prime \prime}+3 y^{\prime}-5 y=1
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=1\right]
\]

\subsection*{25.1.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =3 \\
q(t) & =-5 \\
F & =1
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+3 y^{\prime}-5 y=1
\]

The domain of \(p(t)=3\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=-5\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 s Y(s)-3 y(0)-5 Y(s)=\frac{1}{s} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-1+3 s Y(s)-5 Y(s)=\frac{1}{s}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{1+s}{s\left(s^{2}+3 s-5\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{\frac{1}{10}+\frac{13 \sqrt{29}}{290}}{s+\frac{3}{2}-\frac{\sqrt{29}}{2}}+\frac{\frac{1}{10}-\frac{13 \sqrt{29}}{290}}{s+\frac{3}{2}+\frac{\sqrt{29}}{2}}-\frac{1}{5 s}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{1}{10}+\frac{13 \sqrt{29}}{290}}{s+\frac{3}{2}-\frac{\sqrt{29}}{2}}\right) & =\frac{(29+13 \sqrt{29}) \mathrm{e}^{-\frac{3 t}{2}+\frac{t \sqrt{29}}{2}}}{290} \\
\mathcal{L}^{-1}\left(\frac{\frac{1}{10}-\frac{13 \sqrt{29}}{290}}{s+\frac{3}{2}+\frac{\sqrt{29}}{2}}\right) & =\frac{\mathrm{e}^{\frac{\left.(-3-\sqrt{29})\left(-\frac{3(3+\sqrt{29}) t}{2\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right.}\right)-\frac{(3+\sqrt{29}) t \sqrt{29}}{2\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right)}\right)}{6+2 \sqrt{29}}}(29-13 \sqrt{29})}{290} \\
\mathcal{L}^{-1}\left(-\frac{1}{5 s}\right) & =-\frac{1}{5}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=-\frac{1}{5}+\frac{\mathrm{e}^{-\frac{3 t}{2}}\left(13 \sqrt{29} \sinh \left(\frac{t \sqrt{29}}{2}\right)+29 \cosh \left(\frac{t \sqrt{29}}{2}\right)\right)}{145}
\]

Simplifying the solution gives
\[
y=\frac{13 \sqrt{29} \sinh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{145}+\frac{\cosh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{5}-\frac{1}{5}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{13 \sqrt{29} \sinh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{145}+\frac{\cosh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{5}-\frac{1}{5} \tag{1}
\end{equation*}
\]

Verification of solutions
\[
y=\frac{13 \sqrt{29} \sinh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{145}+\frac{\cosh \left(\frac{t \sqrt{29}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}}}{5}-\frac{1}{5}
\]

Verified OK.

\subsection*{25.1.2 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}+3 y^{\prime}-5 y=1, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]\)
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+3 r-5=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-3) \pm(\sqrt{29})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(-\frac{3}{2}-\frac{\sqrt{29}}{2},-\frac{3}{2}+\frac{\sqrt{29}}{2}\right)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function \(\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=1\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t} & \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t} \\
\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t} & \left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(t), y_{2}(t)\right)=\sqrt{29} \mathrm{e}^{-3 t}
\]
- Substitute functions into equation for \(y_{p}(t)\)
\(y_{p}(t)=-\frac{\sqrt{29}\left(\mathrm{e}^{-\frac{(3+\sqrt{29}) t}{2}}\left(\int \mathrm{e}^{\frac{(3+\sqrt{29}) t}{2}} d t\right)-\mathrm{e}^{\frac{(-3+\sqrt{29}) t}{2}}\left(\int \mathrm{e}^{-\frac{(-3+\sqrt{29}) t}{2} d t}\right)\right)}{29}\)
- Compute integrals
\(y_{p}(t)=-\frac{1}{5}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}-\frac{1}{5}\)
Check validity of solution \(y=c_{1} \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t}+c_{2} \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}-\frac{1}{5}\)
- Use initial condition \(y(0)=0\)
\(0=c_{1}+c_{2}-\frac{1}{5}\)
- Compute derivative of the solution
\[
y^{\prime}=c_{1}\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) \mathrm{e}^{\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right) t}+c_{2}\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) \mathrm{e}^{\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right) t}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=1\)
\[
1=c_{1}\left(-\frac{3}{2}-\frac{\sqrt{29}}{2}\right)+c_{2}\left(-\frac{3}{2}+\frac{\sqrt{29}}{2}\right)
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=\frac{1}{10}-\frac{13 \sqrt{29}}{290}, c_{2}=\frac{1}{10}+\frac{13 \sqrt{29}}{290}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{(29+13 \sqrt{29}) \mathrm{e}^{\frac{(-3+\sqrt{29}) t}{2}}}{290}-\frac{1}{5}+\frac{(29-13 \sqrt{29}) \mathrm{e}^{-\frac{(3+\sqrt{29}) t}{2}}}{290}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{(29+13 \sqrt{29}) \mathrm{e}^{\frac{(-3+\sqrt{29}) t}{2}}}{290}-\frac{1}{5}+\frac{(29-13 \sqrt{29}) \mathrm{e}^{-\frac{(3+\sqrt{29}) t}{2}}}{290}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 1.953 (sec). Leaf size: 34
```

dsolve([diff(y(t),t\$2)+3*diff(y(t),t)-5*y(t)=1,y(0)=0, D(y)(0) = 1],y(t), singsol=all)

```
\[
y(t)=\frac{13 \mathrm{e}^{-\frac{3 t}{2}} \sqrt{29} \sinh \left(\frac{t \sqrt{29}}{2}\right)}{145}+\frac{\mathrm{e}^{-\frac{3 t}{2}} \cosh \left(\frac{t \sqrt{29}}{2}\right)}{5}-\frac{1}{5}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.026 (sec). Leaf size: 67
DSolve \(\left[\left\{\mathrm{y}^{\prime} \mathrm{'}^{\prime}[\mathrm{t}]+3 * \mathrm{y}\right.\right.\) ' \([\mathrm{t}]-5 * \mathrm{y}[\mathrm{t}]==1,\{\mathrm{y}[0]==0, \mathrm{y}\) ' \(\left.[0]==1\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolutions \(\rightarrow\) True
\[
y(t) \rightarrow \frac{1}{290} e^{-\frac{1}{2}(3+\sqrt{29}) t}\left((29+13 \sqrt{29}) e^{\sqrt{29 t}}-58 e^{\frac{1}{2}(3+\sqrt{29}) t}+29-13 \sqrt{29}\right)
\]

\section*{25.2 problem 3(b)}
25.2.1 Existence and uniqueness analysis 3895

Internal problem ID [6506]
Internal file name [OUTPUT/5754_Sunday_June_05_2022_03_52_52_PM_88188911/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery.
Section A, Drill exercises. Page 309
Problem number: 3(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}+3 y^{\prime}-2 y=-6 \mathrm{e}^{\pi-t}
\]

With initial conditions
\[
\left[y(\pi)=1, y^{\prime}(\pi)=4\right]
\]

\subsection*{25.2.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =3 \\
q(t) & =-2 \\
F & =-6 \mathrm{e}^{\pi-t}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+3 y^{\prime}-2 y=-6 \mathrm{e}^{\pi-t}
\]

The domain of \(p(t)=3\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=\pi\) is inside this domain. The domain of \(q(t)=-2\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=\pi\) is also inside this domain. The domain of \(F=-6 \mathrm{e}^{\pi-t}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=\pi\) is also inside this domain. Hence solution exists and is unique.
Since both initial conditions are not at zero, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 s Y(s)-3 y(0)-2 Y(s)=-\frac{6 \mathrm{e}^{\pi}}{s+1} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}+3 s Y(s)-3 c_{1}-2 Y(s)=-\frac{6 \mathrm{e}^{\pi}}{s+1}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=-\frac{-s^{2} c_{1}-4 s c_{1}-c_{2} s+6 \mathrm{e}^{\pi}-3 c_{1}-c_{2}}{(s+1)\left(s^{2}+3 s-2\right)}
\]

Applying partial fractions decomposition results in
\(Y(s)=\frac{\left(-\frac{3 \mathrm{e}^{\pi}}{34}+\frac{3 c_{1}}{17}+\frac{2 c_{2}}{17}\right)\left(-\frac{3}{2}+\frac{\sqrt{17}}{2}\right)-\frac{15 \mathrm{e}^{\pi}}{17}+\frac{13 c_{1}}{17}+\frac{3 c_{2}}{17}}{s+\frac{3}{2}-\frac{\sqrt{17}}{2}}+\frac{\left(-\frac{3 \mathrm{e}^{\pi}}{34}+\frac{3 c_{1}}{17}+\frac{2 c_{2}}{17}\right)\left(-\frac{3}{2}-\frac{\sqrt{17}}{2}\right)-\frac{15 \mathrm{e}^{\pi}}{17}+\frac{1}{}}{s+\frac{3}{2}+\frac{\sqrt{17}}{2}}\)
The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\left(-\frac{3 \mathrm{e}^{\pi}}{34}+\frac{3 c_{1}}{17}+\frac{2 c_{2}}{17}\right)\left(-\frac{3}{2}+\frac{\sqrt{17}}{2}\right)-\frac{15 \mathrm{e}^{\pi}}{17}+\frac{13 c_{1}}{17}+\frac{3 c_{2}}{17}}{s+\frac{3}{2}-\frac{\sqrt{17}}{2}}\right) & =\frac{\mathrm{e}^{-\frac{3 t}{2}+\frac{t \sqrt{17}}{2}}\left(4 c_{2} \sqrt{17}-3 \mathrm{e}^{\pi} \sqrt{17}-51 \mathrm{e}^{\pi}+2 c\right.}{68} \\
\mathcal{L}^{-1}\left(\frac{\left(-\frac{3 \mathrm{e}^{\pi}}{34}+\frac{3 c_{1}}{17}+\frac{2 c_{2}}{17}\right)\left(-\frac{3}{2}-\frac{\sqrt{17}}{2}\right)-\frac{15 \mathrm{e}^{\pi}}{17}+\frac{13 c_{1}}{17}+\frac{3 c_{2}}{17}}{s+\frac{3}{2}+\frac{\sqrt{17}}{2}}\right) & =\frac{\mathrm{e}^{\frac{(-3-\sqrt{17})\left(-\frac{3(3+\sqrt{17}) t}{2\left(-\frac{3}{2}-\frac{\sqrt{17}}{2}\right)}-\frac{(3+\sqrt{17}) t \sqrt{17}}{2\left(-\frac{3}{2}-\frac{\sqrt{17}}{2}\right)}\right)}{6+2 \sqrt{17}}}\left(-4 c_{2} \sqrt{ }\right.}{6} \\
\mathcal{L}^{-1}\left(\frac{3 \mathrm{e}^{\pi}}{2(s+1)}\right) & =\frac{3 \mathrm{e}^{\pi-t}}{2}
\end{aligned}
\]

Adding the above results and simplifying gives
\(y=\frac{3 \mathrm{e}^{\pi-t}}{2}+\frac{\left(17 \cosh \left(\frac{t \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+2 c_{1}\right)+\sqrt{17} \sinh \left(\frac{t \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+6 c_{1}+4 c_{2}\right)\right) \mathrm{e}^{-\frac{3 t}{2}}}{34}\)
Since both initial conditions given are not at zero, then we need to setup two equations to solve for \(c_{1}, c_{1}\). At \(t=\pi\) the first equation becomes, using the above solution
\[
1=\frac{3}{2}+\frac{\left(17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+2 c_{1}\right)+\sqrt{17} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+6 c_{1}+4 c_{2}\right)\right) \mathrm{e}^{-\frac{3 \pi}{2}}}{34}
\]

And taking derivative of the solution and evaluating at \(t=\pi\) gives the second equation as
\(4=-\frac{3}{2}+\frac{\left(\frac{17 \sqrt{17} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+2 c_{1}\right)}{2}+\frac{17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+6 c_{1}+4 c_{2}\right)}{2}\right) \mathrm{e}^{-\frac{3 \pi}{2}}}{34}-\frac{3\left(17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)\left(-3 \mathrm{e}^{\pi}+2 c_{1}\right.\right.}{24}\)

Solving gives
\[
\begin{aligned}
& c_{1}=\frac{\mathrm{e}^{\frac{3 \pi}{2}\left(51 \mathrm{e}^{\pi} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2} \mathrm{e}^{-\frac{3 \pi}{2}}-51 \mathrm{e}^{\pi} \mathrm{e}^{-\frac{3 \pi}{2}} \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}+19 \sqrt{17} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)+17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)\right)}}{34 \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}-34 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}} \\
& c_{2}=-\frac{\left(51 \mathrm{e}^{\pi} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2} \mathrm{e}^{-\frac{3 \pi}{2}}-51 \mathrm{e}^{\pi} \mathrm{e}^{-\frac{3 \pi}{2}} \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}+37 \sqrt{17} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)+187 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)\right) \mathrm{e}^{\frac{3 \pi}{2}}}{2\left(17 \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}-17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}\right)}
\end{aligned}
\]

Subtituting these in the solution obtained above gives
\[
\begin{aligned}
y & =\frac{3 \mathrm{e}^{\pi-t}}{2}+\frac{\left(1 7 \operatorname { c o s h } (\frac { t \sqrt { 1 7 } } { 2 }) \left(-3 \mathrm{e}^{\pi}+\frac{\mathrm{e}^{\frac{3 \pi}{2}}\left(51 \mathrm{e}^{\pi} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2} \mathrm{e}^{-\frac{3 \pi}{2}}-51 \mathrm{e}^{\pi} \mathrm{e}^{-\frac{3 \pi}{2}} \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}+19 \sqrt{17} \sinh \left(\frac{\pi \sqrt{17}}{2}\right)+17 \cosh \right.}{17 \sinh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}-17 \cosh \left(\frac{\pi \sqrt{17}}{2}\right)^{2}}\right.\right.}{} \\
& =-\frac{19\left(-\frac{51 \mathrm{e}^{-\frac{\pi}{2}-t}}{19}+\mathrm{e}^{-\frac{3 t}{2}}\left(\left(-\sqrt{17} \sinh \left(\frac{t \sqrt{17}}{2}\right)+\frac{17 \cosh \left(\frac{t \sqrt{17}}{2}\right)}{19}\right) \cosh \left(\frac{\pi \sqrt{17}}{2}\right)+\sinh \left(\frac{\pi \sqrt{17}}{2}\right)(\sqrt{17} \cosh \right.\right.}{34}
\end{aligned}
\]

Simplifying the solution gives
\(y=\)
\[
-\frac{19\left(-\frac{51 \mathrm{e}^{-\frac{\pi}{2}-t}}{19}+\mathrm{e}^{-\frac{3 t}{2}}\left(\left(-\sqrt{17} \sinh \left(\frac{t \sqrt{17}}{2}\right)+\frac{17 \cosh \left(\frac{t \sqrt{17}}{2}\right)}{19}\right) \cosh \left(\frac{\pi \sqrt{17}}{2}\right)+\sinh \left(\frac{\pi \sqrt{17}}{2}\right)(\sqrt{17} \cosh (\right.\right.}{34}
\]

Summary
The solution(s) found are the following
\(y=\)
\(-\frac{19\left(-\frac{51 \mathrm{e}^{-\frac{\pi}{2}-t}}{19}+\mathrm{e}^{-\frac{3 t}{2}}\left(\left(-\sqrt{17} \sinh \left(\frac{t \sqrt{17}}{2}\right)+\frac{17 \cosh \left(\frac{t \sqrt{17}}{2}\right)}{19}\right) \cosh \left(\frac{\pi \sqrt{17}}{2}\right)+\sinh \left(\frac{\pi \sqrt{17}}{2}\right)(\sqrt{17} \cosh (\right.\right.}{34}\)

\section*{Verification of solutions}
\(y=\)
\[
-\frac{19\left(-\frac{51 \mathrm{e}^{-\frac{\pi}{2}-t}}{19}+\mathrm{e}^{-\frac{3 t}{2}}\left(\left(-\sqrt{17} \sinh \left(\frac{t \sqrt{17}}{2}\right)+\frac{17 \cosh \left(\frac{t \sqrt{17}}{2}\right)}{19}\right) \cosh \left(\frac{\pi \sqrt{17}}{2}\right)+\sinh \left(\frac{\pi \sqrt{17}}{2}\right)(\sqrt{17} \cosh (\right.\right.}{34}
\]

Verified OK.
Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 2.078 (sec). Leaf size: 53
dsolve \(([\operatorname{diff}(y(t), t \$ 2)+3 * \operatorname{diff}(y(t), t)-2 * y(t)=-6 * \exp (\operatorname{Pi}-t), y(P i)=1, D(y)(P i)=4], y(t), \sin\)
\[
y(t)=-\frac{19 \sinh \left(\frac{(\pi-t) \sqrt{17}}{2}\right) \sqrt{17} \mathrm{e}^{-\frac{3 t}{2}+\frac{3 \pi}{2}}}{34}-\frac{\cosh \left(\frac{(\pi-t) \sqrt{17}}{2}\right) \mathrm{e}^{-\frac{3 t}{2}+\frac{3 \pi}{2}}}{2}+\frac{3 \mathrm{e}^{\pi-t}}{2}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.354 (sec). Leaf size: 103
DSolve \(\left[\left\{\mathrm{y}^{\prime}\right.\right.\) ' \([\mathrm{t}]+3 * \mathrm{y}\) ' \([\mathrm{t}]-2 * \mathrm{y}[\mathrm{t}]==-6 * \operatorname{Exp}[\mathrm{Pi}-\mathrm{t}],\{\mathrm{y}[\mathrm{Pi}]==1, \mathrm{y}\) ' \(\left.[\mathrm{Pi}]==4\}\right\}, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolu
\[
\begin{array}{r}
y(t) \rightarrow \frac{1}{68} e^{-\frac{1}{2}(3+\sqrt{17}) t-\frac{1}{2}(\sqrt{17}-3) \pi\left((19 \sqrt{17}-17) e^{\sqrt{17 t}}+\right.} 102 e^{\frac{1}{2}((1+\sqrt{17}) t+(\sqrt{17}-1) \pi)} \\
\\
\left.-\left((17+19 \sqrt{17}) e^{\sqrt{17} \pi}\right)\right)
\end{array}
\]

\section*{25.3 problem 3(c)}
25.3.1 Existence and uniqueness analysis 3901
25.3.2 Maple step by step solution . 3904

Internal problem ID [6507]
Internal file name [OUTPUT/5755_Sunday_June_05_2022_03_52_55_PM_56265727/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309
Problem number: 3(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}+2 y^{\prime}-y=t \mathrm{e}^{-t}
\]

With initial conditions
\[
\left[y(0)=0, y^{\prime}(0)=1\right]
\]

\subsection*{25.3.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =2 \\
q(t) & =-1 \\
F & =t \mathrm{e}^{-t}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}+2 y^{\prime}-y=t \mathrm{e}^{-t}
\]

The domain of \(p(t)=2\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=-1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=t \mathrm{e}^{-t}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+2 s Y(s)-2 y(0)-Y(s)=\frac{1}{(s+1)^{2}} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =1
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-1+2 s Y(s)-Y(s)=\frac{1}{(s+1)^{2}}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{s^{2}+2 s+2}{(s+1)^{2}\left(s^{2}+2 s-1\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=-\frac{1}{2(s+1)^{2}}+\frac{3 \sqrt{2}}{8(s-\sqrt{2}+1)}-\frac{3 \sqrt{2}}{8(s+1+\sqrt{2})}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(-\frac{1}{2(s+1)^{2}}\right) & =-\frac{t \mathrm{e}^{-t}}{2} \\
\mathcal{L}^{-1}\left(\frac{3 \sqrt{2}}{8(s-\sqrt{2}+1)}\right) & =\frac{3 \sqrt{2} \mathrm{e}^{t \sqrt{2}-t}}{8} \\
\mathcal{L}^{-1}\left(-\frac{3 \sqrt{2}}{8(s+1+\sqrt{2})}\right) & =-\frac{3 \sqrt{2} \mathrm{e}^{\frac{(-1-\sqrt{2})\left(-\frac{t \sqrt{2}(1+\sqrt{2})}{-1-\sqrt{2}}-\frac{t(1+\sqrt{2})}{-1-\sqrt{2}}\right)}{1+\sqrt{2}}}}{8}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\frac{\mathrm{e}^{-t}(3 \sqrt{2} \sinh (t \sqrt{2})-2 t)}{4}
\]

Simplifying the solution gives
\[
y=\frac{\mathrm{e}^{-t}(3 \sqrt{2} \sinh (t \sqrt{2})-2 t)}{4}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{-t}(3 \sqrt{2} \sinh (t \sqrt{2})-2 t)}{4} \tag{1}
\end{equation*}
\]

\section*{Verification of solutions}
\[
y=\frac{\mathrm{e}^{-t}(3 \sqrt{2} \sinh (t \sqrt{2})-2 t)}{4}
\]

Verified OK.

\subsection*{25.3.2 Maple step by step solution}

Let's solve
\[
\left[y^{\prime \prime}+2 y^{\prime}-y=t \mathrm{e}^{-t}, y(0)=0,\left.y^{\prime}\right|_{\{t=0\}}=1\right]
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+2 r-1=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{8})}{2}\)
- Roots of the characteristic polynomial
\(r=(-1-\sqrt{2}, \sqrt{2}-1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(t)=\mathrm{e}^{(-1-\sqrt{2}) t}
\]
- \(\quad 2 n d\) solution of the homogeneous ODE
\[
y_{2}(t)=\mathrm{e}^{(\sqrt{2}-1) t}
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
\]
- Substitute in solutions of the homogeneous ODE
\[
y=c_{1} \mathrm{e}^{(-1-\sqrt{2}) t}+c_{2} \mathrm{e}^{(\sqrt{2}-1) t}+y_{p}(t)
\]

Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function \(\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t \mathrm{e}^{-t}\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{(-1-\sqrt{2}) t} & \mathrm{e}^{(\sqrt{2}-1) t} \\
(-1-\sqrt{2}) \mathrm{e}^{(-1-\sqrt{2}) t} & (\sqrt{2}-1) \mathrm{e}^{(\sqrt{2}-1) t}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(t), y_{2}(t)\right)=2 \sqrt{2} \mathrm{e}^{-2 t}
\]
- Substitute functions into equation for \(y_{p}(t)\)
\[
y_{p}(t)=-\frac{\sqrt{2}\left(\mathrm{e}^{-t(1+\sqrt{2})}\left(\int t \mathrm{e}^{t \sqrt{2}} d t\right)-\mathrm{e}^{(\sqrt{2}-1) t}\left(\int t \mathrm{e}^{-t \sqrt{2}} d t\right)\right)}{4}
\]
- Compute integrals
\[
y_{p}(t)=-\frac{t \mathrm{e}^{-t}}{2}
\]
- Substitute particular solution into general solution to ODE
\[
y=c_{1} \mathrm{e}^{(-1-\sqrt{2}) t}+c_{2} \mathrm{e}^{(\sqrt{2}-1) t}-\frac{t \mathrm{e}^{-t}}{2}
\]

Check validity of solution \(y=c_{1} \mathrm{e}^{(-1-\sqrt{2}) t}+c_{2} \mathrm{e}^{(\sqrt{2}-1) t}-\frac{t \mathrm{e}^{-t}}{2}\)
- Use initial condition \(y(0)=0\)
\[
0=c_{1}+c_{2}
\]
- Compute derivative of the solution
\[
y^{\prime}=c_{1}(-1-\sqrt{2}) \mathrm{e}^{(-1-\sqrt{2}) t}+c_{2}(\sqrt{2}-1) \mathrm{e}^{(\sqrt{2}-1) t}-\frac{\mathrm{e}^{-t}}{2}+\frac{t \mathrm{e}^{-t}}{2}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=1\)
\[
1=c_{1}(-1-\sqrt{2})+c_{2}(\sqrt{2}-1)-\frac{1}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=-\frac{3 \sqrt{2}}{8}, c_{2}=\frac{3 \sqrt{2}}{8}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=-\frac{3 \sqrt{2} \mathrm{e}^{-t(1+\sqrt{2})}}{8}+\frac{3 \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) t}}{8}-\frac{t \mathrm{e}^{-t}}{2}
\]
- \(\quad\) Solution to the IVP
\[
y=-\frac{3 \sqrt{2} \mathrm{e}^{-t(1+\sqrt{2})}}{8}+\frac{3 \sqrt{2} \mathrm{e}^{(\sqrt{2}-1) t}}{8}-\frac{t \mathrm{e}^{-t}}{2}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.969 (sec). Leaf size: 25
```

dsolve([diff(y(t),t\$2)+2*\operatorname{diff}(y(t),t)-y(t)=t*exp(-t),y(0) = 0, D(y)(0) = 1],y(t), singsol=al

```
\[
y(t)=\frac{\mathrm{e}^{-t}(3 \sqrt{2} \sinh (\sqrt{2} t)-2 t)}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.029 (sec). Leaf size: 51
DSolve \(\left[\left\{y y^{\prime} \cdot[t]+2 * y{ }^{\prime}[t]-y[t]==t * \operatorname{Exp}[-t],\left\{y[0]==0, y^{\prime}[0]==1\right\}\right\}, y[t], t\right.\), IncludeSingularSolutions
\[
y(t) \rightarrow \frac{1}{8} e^{-t}\left(-4 t-3 \sqrt{2} e^{-\sqrt{2} t}+3 \sqrt{2} e^{\sqrt{2} t}\right)
\]

\section*{25.4 problem 3(d)}
25.4.1 Existence and uniqueness analysis 3908
25.4.2 Maple step by step solution . 3911

Internal problem ID [6508]
Internal file name [OUTPUT/5756_Sunday_June_05_2022_03_52_57_PM_36386801/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery.
Section A, Drill exercises. Page 309
Problem number: 3(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _with_linear_symmetries]]
\[
y^{\prime \prime}-y^{\prime}+y=3 \mathrm{e}^{-t}
\]

With initial conditions
\[
\left[y(0)=3, y^{\prime}(0)=2\right]
\]

\subsection*{25.4.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=F
\]

Where here
\[
\begin{aligned}
p(t) & =-1 \\
q(t) & =1 \\
F & =3 \mathrm{e}^{-t}
\end{aligned}
\]

Hence the ode is
\[
y^{\prime \prime}-y^{\prime}+y=3 \mathrm{e}^{-t}
\]

The domain of \(p(t)=-1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=1\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=3 \mathrm{e}^{-t}\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-s Y(s)+y(0)+Y(s)=\frac{3}{s+1} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =3 \\
y^{\prime}(0) & =2
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)+1-3 s-s Y(s)+Y(s)=\frac{3}{s+1}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{3 s^{2}+2 s+2}{(s+1)\left(s^{2}-s+1\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{1-\frac{2 i \sqrt{3}}{3}}{s-\frac{1}{2}-\frac{i \sqrt{3}}{2}}+\frac{1+\frac{2 i \sqrt{3}}{3}}{s-\frac{1}{2}+\frac{i \sqrt{3}}{2}}+\frac{1}{s+1}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{1-\frac{2 i \sqrt{3}}{3}}{s-\frac{1}{2}-\frac{i \sqrt{3}}{2}}\right) & =\frac{(3-2 i \sqrt{3}) \mathrm{e}^{\frac{(1+i \sqrt{3}) t}{2}}}{3} \\
\mathcal{L}^{-1}\left(\frac{1+\frac{2 i \sqrt{3}}{3}}{s-\frac{1}{2}+\frac{i \sqrt{3}}{2}}\right) & =\frac{(2 i \sqrt{3}+3) \mathrm{e}^{\frac{(1-i \sqrt{3}) t}{2}}}{3} \\
\mathcal{L}^{-1}\left(\frac{1}{s+1}\right) & =\mathrm{e}^{-t}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\mathrm{e}^{-t}+\frac{2 \mathrm{e}^{\frac{t}{2}}\left(2 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3}
\]

Simplifying the solution gives
\[
y=\frac{\left(4 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+6 \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3\right) \mathrm{e}^{-t}}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\left(4 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+6 \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3\right) \mathrm{e}^{-t}}{3} \tag{1}
\end{equation*}
\]

(a) Solution plot
(b) Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\left(4 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+6 \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3\right) \mathrm{e}^{-t}}{3}
\]

Verified OK.

\subsection*{25.4.2 Maple step by step solution}

Let's solve
\(\left[y^{\prime \prime}-y^{\prime}+y=3 \mathrm{e}^{-t}, y(0)=3,\left.y^{\prime}\right|_{\{t=0\}}=2\right]\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-r+1=0
\]
- Use quadratic formula to solve for \(r\)
\(r=\frac{1 \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\(r=\left(\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}, \frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}\)
- 2nd solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\[
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=3 \mathrm{e}^{-t}\right]
\]
- Wronskian of solutions of the homogeneous equation
\(W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}} & \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) \\ -\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{2}+\frac{\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{2} & \frac{\mathrm{e}^{\frac{t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{2}+\frac{\mathrm{e}^{\frac{t}{2}} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}\end{array}\right]\)
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{3} e^{t}}{2}\)
- Substitute functions into equation for \(y_{p}(t)\)
\[
y_{p}(t)=-2 \sqrt{3} \mathrm{e}^{\frac{t}{2}}\left(\cos \left(\frac{\sqrt{3} t}{2}\right)\left(\int \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) d t\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)\left(\int \mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) d t\right)\right)
\]
- Compute integrals
\[
y_{p}(t)=\mathrm{e}^{-t}
\]
- Substitute particular solution into general solution to ODE
\(y=c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)+\mathrm{e}^{-t}\)
Check validity of solution \(y=c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}+c_{2} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)+\mathrm{e}^{-t}\)
- Use initial condition \(y(0)=3\)
\[
3=c_{1}+1
\]
- Compute derivative of the solution
\[
y^{\prime}=-\frac{c_{1} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{2}+\frac{c_{1} \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{t}{2}}}{2}+\frac{c_{2} \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{c_{2} \mathrm{e}^{\frac{t}{2}} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}-\mathrm{e}^{-t}
\]
- Use the initial condition \(\left.y^{\prime}\right|_{\{t=0\}}=2\)
\[
2=-1+\frac{c_{1}}{2}+\frac{c_{2} \sqrt{3}}{2}
\]
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=2, c_{2}=\frac{4 \sqrt{3}}{3}\right\}
\]
- Substitute constant values into general solution and simplify
\[
y=\frac{\left(4 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+6 \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3\right) \mathrm{e}^{-t}}{3}
\]
- \(\quad\) Solution to the IVP
\[
y=\frac{\left(4 \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+6 \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}}+3\right) \mathrm{e}^{-t}}{3}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

Solution by Maple
Time used: 2.016 (sec). Leaf size: 37
```

dsolve([diff(y(t),t\$2)-\operatorname{diff}(y(t),t)+y(t)=3*\operatorname{exp}(-t),y(0)=3,D(y)(0) = 2],y(t), singsol=all)

```
\[
y(t)=\frac{\left(4 \sqrt{3} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)+6 \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)+3\right) \mathrm{e}^{-t}}{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.03 (sec). Leaf size: 56
DSolve[\{y''[t]-y'[t]+y[t]==3*Exp[-t],\{y[0]==3,y'[0]==2\}\},y[t],t,IncludeSingularSolutions ->
\[
y(t) \rightarrow e^{-t}+\frac{4 e^{t / 2} \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3}}+2 e^{t / 2} \cos \left(\frac{\sqrt{3} t}{2}\right)
\]

\section*{25.5 problem 4(a)}
25.5.1 Maple step by step solution 3917

Internal problem ID [6509]
Internal file name [OUTPUT/5757_Sunday_June_05_2022_03_52_59_PM_20889182/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309
Problem number: 4(a).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second_order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}-5 y^{\prime}+4 y=0
\]

Since no initial conditions are explicitly given, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-5 s Y(s)+5 y(0)+4 Y(s)=0 \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}-5 s Y(s)+5 c_{1}+4 Y(s)=0
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{s c_{1}-5 c_{1}+c_{2}}{s^{2}-5 s+4}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{\frac{4 c_{1}}{3}-\frac{c_{2}}{3}}{s-1}+\frac{-\frac{c_{1}}{3}+\frac{c_{2}}{3}}{s-4}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{\frac{4 c_{1}}{3}-\frac{c_{2}}{3}}{s-1}\right) & =\frac{\left(4 c_{1}-c_{2}\right) \mathrm{e}^{t}}{3} \\
\mathcal{L}^{-1}\left(\frac{-\frac{c_{1}}{3}+\frac{c_{2}}{3}}{s-4}\right) & =\frac{\mathrm{e}^{4 t}\left(-c_{1}+c_{2}\right)}{3}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\frac{\mathrm{e}^{\frac{5 t}{2}}\left(3 c_{1} \cosh \left(\frac{3 t}{2}\right)+\sinh \left(\frac{3 t}{2}\right)\left(-5 c_{1}+2 c_{2}\right)\right)}{3}
\]

Simplifying the solution gives
\[
y=\frac{\mathrm{e}^{\frac{5 t}{2}}\left(-5 c_{1}+2 c_{2}\right) \sinh \left(\frac{3 t}{2}\right)}{3}+\mathrm{e}^{\frac{5 t}{2}} c_{1} \cosh \left(\frac{3 t}{2}\right)
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{\frac{5 t}{2}}\left(-5 c_{1}+2 c_{2}\right) \sinh \left(\frac{3 t}{2}\right)}{3}+\mathrm{e}^{\frac{5 t}{2}} c_{1} \cosh \left(\frac{3 t}{2}\right) \tag{1}
\end{equation*}
\]

Figure 481: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\mathrm{e}^{\frac{5 t}{2}}\left(-5 c_{1}+2 c_{2}\right) \sinh \left(\frac{3 t}{2}\right)}{3}+\mathrm{e}^{\frac{5 t}{2}} c_{1} \cosh \left(\frac{3 t}{2}\right)
\]

Verified OK.

\subsection*{25.5.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}-5 y^{\prime}+4 y=0
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of ODE
\[
r^{2}-5 r+4=0
\]
- Factor the characteristic polynomial
\[
(r-1)(r-4)=0
\]
- Roots of the characteristic polynomial
\[
r=(1,4)
\]
- \(\quad 1\) st solution of the ODE
\(y_{1}(t)=\mathrm{e}^{t}\)
- \(\quad 2 n d\) solution of the ODE
\(y_{2}(t)=\mathrm{e}^{4 t}\)
- General solution of the ODE
\[
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)
\]
- Substitute in solutions
\[
y=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{4 t}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature checking if the LODE has constant coefficients <- constant coefficients successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.687 (sec). Leaf size: 33
```

dsolve(diff(y(t),t\$2)-5*diff(y(t),t)+4*y(t)=0,y(t), singsol=all)

```
\[
y(t)=\frac{\mathrm{e}^{\frac{5 t}{2}}\left(3 y(0) \cosh \left(\frac{3 t}{2}\right)+\sinh \left(\frac{3 t}{2}\right)(2 D(y)(0)-5 y(0))\right)}{3}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 20
```

DSolve[y''[t]-5*y'[t] +4*y[t]==0,y[t],t,IncludeSingularSolutions -> True]

```
\[
y(t) \rightarrow e^{t}\left(c_{2} e^{3 t}+c_{1}\right)
\]

\section*{25.6 problem 4(b)}
25.6.1 Maple step by step solution

3922
Internal problem ID [6510]
Internal file name [OUTPUT/5758_Sunday_June_05_2022_03_53_01_PM_80445232/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309
Problem number: 4(b).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _missing_x]]

```
\[
y^{\prime \prime}+3 y^{\prime}+3 y=2
\]

Since no initial conditions are explicitly given, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+3 s Y(s)-3 y(0)+3 Y(s)=\frac{2}{s} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}+3 s Y(s)-3 c_{1}+3 Y(s)=\frac{2}{s}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{c_{1} s^{2}+3 s c_{1}+c_{2} s+2}{s\left(s^{2}+3 s+3\right)}
\]

Applying partial fractions decomposition results in
\(Y(s)=\frac{2}{3 s}+\frac{\left(-c_{1}-\frac{2 c_{2}}{3}+\frac{2}{3}\right)\left(-\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)-c_{1}-c_{2}+\frac{2}{3}}{s+\frac{3}{2}-\frac{i \sqrt{3}}{2}}+\frac{\left(-c_{1}-\frac{2 c_{2}}{3}+\frac{2}{3}\right)\left(-\frac{3}{2}-\frac{i \sqrt{3}}{2}\right)-c_{1}-c_{2}+\frac{2}{3}}{s+\frac{3}{2}+\frac{i \sqrt{3}}{2}}\)
The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{2}{3 s}\right)=\frac{2}{3} \\
& \mathcal{L}^{-1}\left(\frac{\left(-c_{1}-\frac{2 c_{2}}{3}+\frac{2}{3}\right)\left(-\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)-c_{1}-c_{2}+\frac{2}{3}}{s+\frac{3}{2}-\frac{i \sqrt{3}}{2}}\right)=\frac{\mathrm{e}^{-\frac{(-i \sqrt{3}+3)\left(-\frac{t \sqrt{3}}{2\left(-\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)}+\frac{i t}{-3+i \sqrt{3}}\right) \sqrt{3}}{2}}\left(-2-2 i c_{2} \sqrt{3}+2\right.}{6} \\
& \mathcal{L}^{-1}\left(\frac{\left(-c_{1}-\frac{2 c_{2}}{3}+\frac{2}{3}\right)\left(-\frac{3}{2}-\frac{i \sqrt{3}}{2}\right)-c_{1}-c_{2}+\frac{2}{3}}{s+\frac{3}{2}+\frac{i \sqrt{3}}{2}}\right)=\frac{\mathrm{e}^{-\frac{(i \sqrt{3}+3)\left(-\frac{t \sqrt{3}}{2\left(-\frac{3}{2}-\frac{i \sqrt{3}}{2}\right)}-\frac{i t}{2\left(-\frac{3}{2}-\frac{i \sqrt{3}}{2}\right)}\right) \sqrt{3}}{2}}\left(-2+2 i c_{2} \sqrt{3}-\right.}{6}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\frac{2}{3}+\frac{\left(\cos \left(\frac{\sqrt{3} t}{2}\right)\left(-2+3 c_{1}\right)+\sin \left(\frac{\sqrt{3} t}{2}\right) \sqrt{3}\left(3 c_{1}+2 c_{2}-2\right)\right) \mathrm{e}^{-\frac{3 t}{2}}}{3}
\]

Simplifying the solution gives
\[
y=\sqrt{3} \mathrm{e}^{-\frac{3 t}{2}}\left(c_{1}+\frac{2 c_{2}}{3}-\frac{2}{3}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)+\frac{2}{3}+\frac{\mathrm{e}^{-\frac{3 t}{2}\left(-2+3 c_{1}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)}}{3}
\]

Summary
The solution(s) found are the following
\[
\begin{equation*}
y=\sqrt{3} \mathrm{e}^{-\frac{3 t}{2}}\left(c_{1}+\frac{2 c_{2}}{3}-\frac{2}{3}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)+\frac{2}{3}+\frac{\mathrm{e}^{-\frac{3 t}{2}}\left(-2+3 c_{1}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)}{3} \tag{1}
\end{equation*}
\]

Figure 482: Slope field plot

Verification of solutions
\[
y=\sqrt{3} \mathrm{e}^{-\frac{3 t}{2}}\left(c_{1}+\frac{2 c_{2}}{3}-\frac{2}{3}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)+\frac{2}{3}+\frac{\mathrm{e}^{-\frac{3 t}{2}}\left(-2+3 c_{1}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)}{3}
\]

Verified OK.

\subsection*{25.6.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+3 y^{\prime}+3 y=2
\]
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+3 r+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-3) \pm(\sqrt{-3})}{2}\)
- Roots of the characteristic polynomial
\[
r=\left(-\frac{3}{2}-\frac{\mathrm{I} \sqrt{3}}{2},-\frac{3}{2}+\frac{\mathrm{I} \sqrt{3}}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\[
y_{1}(t)=\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)
\]
- 2nd solution of the homogeneous ODE
\[
y_{2}(t)=\mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)
\]
- General solution of the ODE
\[
y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)
\]
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\[
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=2\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) & \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) \\
-\frac{3 \mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}-\frac{\sqrt{3} \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2} & -\frac{3 \mathrm{e}^{-\frac{3 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{2}+\frac{\sqrt{3} \mathrm{e}^{-\frac{3 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{3} \mathrm{e}^{-3 t}}{2}
\]
- Substitute functions into equation for \(y_{p}(t)\)
\[
y_{p}(t)=-\frac{4 \sqrt{3} \mathrm{e}^{-\frac{3 t}{2}}\left(\cos \left(\frac{\sqrt{3} t}{2} t\right)\left(\int \sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2} t} d t\right)-\sin \left(\frac{\sqrt{3} t}{2}\right)\left(\int \cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{\frac{3 t}{2}} d t\right)\right)}{3}
\]
- Compute integrals
\[
y_{p}(t)=\frac{2}{3}
\]
- Substitute particular solution into general solution to ODE
\[
y=\cos \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{1}+\sin \left(\frac{\sqrt{3} t}{2}\right) \mathrm{e}^{-\frac{3 t}{2}} c_{2}+\frac{2}{3}
\]

Maple trace
```

Methods for second order ODEs:
--- Trying classification methods ---
trying a quadrature
trying high order exact linear fully integrable
trying differential order: 2; linear nonhomogeneous with symmetry [0,1]
trying a double symmetry of the form [xi=0, eta=F(x)]
-> Try solving first the homogeneous part of the ODE
checking if the LODE has constant coefficients
<- constant coefficients successful
<- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.844 (sec). Leaf size: 48
```

dsolve(diff(y(t),t\$2)+3*diff(y(t),t)+3*y(t)=2,y(t), singsol=all)
y(t)=\frac{2}{3}+\frac{(\operatorname{cos}(\frac{\sqrt{}{3}t}{2})(-2+3y(0))+\operatorname{sin}(\frac{\sqrt{}{3}t}{2})\sqrt{}{3}(2D(y)(0)+3y(0)-2))\mp@subsup{\textrm{e}}{}{-\frac{3t}{2}}}{3}

```
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 51
DSolve[y'' \([\mathrm{t}]+3 * y\) ' \([\mathrm{t}]+3 * \mathrm{y}[\mathrm{t}]==2, \mathrm{y}[\mathrm{t}], \mathrm{t}\), IncludeSingularSolutions \(->\) True]
\[
y(t) \rightarrow c_{2} e^{-3 t / 2} \cos \left(\frac{\sqrt{3} t}{2}\right)+c_{1} e^{-3 t / 2} \sin \left(\frac{\sqrt{3} t}{2}\right)+\frac{2}{3}
\]

\section*{25.7 problem 4(c)}
25.7.1 Maple step by step solution . 3927

Internal problem ID [6511]
Internal file name [OUTPUT/5759_Sunday_June_05_2022_03_53_02_PM_19961650/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section A, Drill exercises. Page 309
Problem number: 4(c).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
```

[[_2nd_order, _with_linear_symmetries]]

```
\[
y^{\prime \prime}+y^{\prime}+2 y=t
\]

Since no initial conditions are explicitly given, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)+s Y(s)-y(0)+2 Y(s)=\frac{1}{s^{2}} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}+s Y(s)-c_{1}+2 Y(s)=\frac{1}{s^{2}}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{c_{1} s^{3}+c_{1} s^{2}+c_{2} s^{2}+1}{s^{2}\left(s^{2}+s+2\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{\left(-\frac{c_{1}}{7}-\frac{2 c_{2}}{7}+\frac{3}{28}\right)\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right)+\frac{3 c_{1}}{7}-\frac{c_{2}}{7}+\frac{5}{28}}{s+\frac{1}{2}-\frac{i \sqrt{7}}{2}}+\frac{\left(-\frac{c_{1}}{7}-\frac{2 c_{2}}{7}+\frac{3}{28}\right)\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right)+\frac{3 c_{1}}{7}-\frac{c_{2}}{7}+\frac{5}{28}}{s+\frac{1}{2}+\frac{i \sqrt{7}}{2}}-\frac{1}{4}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
& \mathcal{L}^{-1}\left(\frac{\left(-\frac{c_{1}}{7}-\frac{2 c_{2}}{7}+\frac{3}{28}\right)\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right)+\frac{3 c_{1}}{7}-\frac{c_{2}}{7}+\frac{5}{28}}{\left.s+\frac{1}{2}-\frac{i \sqrt{7}}{2}\right)}=\frac{\mathrm{e}^{-\frac{(1-i \sqrt{7})\left(-\frac{t}{2\left(-\frac{1}{2}+\frac{i \sqrt{7}}{2}\right)}+\frac{i \sqrt{7} t}{-1+i \sqrt{7}}\right)}{2}}\left(7-8 i c_{2} \sqrt{7}+3 i v\right.}{56}\right. \\
& \mathcal{L}^{-1}\left(\frac{\left(-\frac{c_{1}}{7}-\frac{2 c_{2}}{7}+\frac{3}{28}\right)\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right)+\frac{3 c_{1}}{7}-\frac{c_{2}}{7}+\frac{5}{28}}{s+\frac{1}{2}+\frac{i \sqrt{7}}{2}}\right)=\frac{\mathrm{e}^{-\frac{(1+i \sqrt{7})}{}\left(-\frac{t}{2\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right)}-\frac{i \sqrt{7} t}{2\left(-\frac{1}{2}-\frac{i \sqrt{7}}{2}\right)}\right)}}{2}\left(7+8 i c_{2} \sqrt{7}-\right. \\
& 56 \\
& \mathcal{L}^{-1}\left(-\frac{1}{4 s}\right)=-\frac{1}{4} \\
& \mathcal{L}^{-1}\left(\frac{1}{2 s^{2}}\right)=\frac{t}{2}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=-\frac{1}{4}+\frac{t}{2}+\frac{\left(7 \cos \left(\frac{\sqrt{7} t}{2}\right)\left(1+4 c_{1}\right)+\sin \left(\frac{\sqrt{7} t}{2}\right) \sqrt{7}\left(4 c_{1}+8 c_{2}-3\right)\right) \mathrm{e}^{-\frac{t}{2}}}{28}
\]

Simplifying the solution gives
\[
y=-\frac{1}{4}+\frac{\sqrt{7} \mathrm{e}^{-\frac{t}{2}}\left(c_{1}+2 c_{2}-\frac{3}{4}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}+\frac{\left(1+4 c_{1}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{4}+\frac{t}{2}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=-\frac{1}{4}+\frac{\sqrt{7} \mathrm{e}^{-\frac{t}{2}}\left(c_{1}+2 c_{2}-\frac{3}{4}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}+\frac{\left(1+4 c_{1}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{4}+\frac{t}{2} \tag{1}
\end{equation*}
\]

Figure 483: Slope field plot

Verification of solutions
\[
y=-\frac{1}{4}+\frac{\sqrt{7} \mathrm{e}^{-\frac{t}{2}}\left(c_{1}+2 c_{2}-\frac{3}{4}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}+\frac{\left(1+4 c_{1}\right) \mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{4}+\frac{t}{2}
\]

Verified OK.

\subsection*{25.7.1 Maple step by step solution}

Let's solve
\[
y^{\prime \prime}+y^{\prime}+2 y=t
\]
- Highest derivative means the order of the ODE is 2
\(y^{\prime \prime}\)
- Characteristic polynomial of homogeneous ODE
\(r^{2}+r+2=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-1) \pm(\sqrt{-7})}{2}\)
- Roots of the characteristic polynomial
\[
r=\left(-\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2},-\frac{1}{2}+\frac{\mathrm{I} \sqrt{7}}{2}\right)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- Substitute in solutions of the homogeneous ODE
\(y=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{2}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\[
\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) & \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) \\
-\frac{\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}-\frac{\sqrt{7} \mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2} & -\frac{\mathrm{e}^{-\frac{t}{2} \sin \left(\frac{\sqrt{7} t}{2}\right)}}{2}+\frac{\mathrm{e}^{-\frac{t}{2} \sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right)}}{2}
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(y_{1}(t), y_{2}(t)\right)=\frac{\sqrt{7} \mathrm{e}^{-t}}{2}
\]
- Substitute functions into equation for \(y_{p}(t)\)
\[
y_{p}(t)=-\frac{2 \sqrt{7} \mathrm{e}^{-\frac{t}{2}}\left(\cos \left(\frac{\sqrt{7} t}{2}\right)\left(\int t \mathrm{e}^{\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) d t\right)-\sin \left(\frac{\sqrt{7} t}{2}\right)\left(\int t \mathrm{e}^{\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) d t\right)\right)}{7}
\]
- Compute integrals
\[
y_{p}(t)=\frac{t}{2}-\frac{1}{4}
\]
- Substitute particular solution into general solution to ODE
\[
y=\mathrm{e}^{-\frac{t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}+\mathrm{e}^{-\frac{t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{2}+\frac{t}{2}-\frac{1}{4}
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```

\section*{\(\checkmark\) Solution by Maple}

Time used: 2.0 (sec). Leaf size: 52
```

dsolve(diff(y(t),t\$2)+diff(y(t),t)+2*y(t)=t,y(t), singsol=all)

```
\(y(t)=-\frac{1}{4}+\frac{t}{2}+\frac{\left(7 \cos \left(\frac{\sqrt{7} t}{2}\right)(1+4 y(0))+\sin \left(\frac{\sqrt{7} t}{2}\right) \sqrt{7}(8 D(y)(0)+4 y(0)-3)\right) \mathrm{e}^{-\frac{t}{2}}}{28}\)
Solution by Mathematica
Time used: 0.027 (sec). Leaf size: 56
```

DSolve[y''[t]+y'[t]+2*y[t]==t,y[t],t,IncludeSingularSolutions -> True]

```
\[
y(t) \rightarrow \frac{t}{2}+c_{2} e^{-t / 2} \cos \left(\frac{\sqrt{7} t}{2}\right)+c_{1} e^{-t / 2} \sin \left(\frac{\sqrt{7} t}{2}\right)-\frac{1}{4}
\]

\section*{25.8 problem 4(d)}
25.8.1 Maple step by step solution

Internal problem ID [6512]
Internal file name [OUTPUT/5760_Sunday_June_05_2022_03_53_04_PM_51888636/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery.
Section A, Drill exercises. Page 309
Problem number: 4(d).
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second__order_linear_constant__coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
y^{\prime \prime}-7 y^{\prime}+12 y=t \mathrm{e}^{2 t}
\]

Since no initial conditions are explicitly given, then let
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Solving using the Laplace transform method. Let
\[
\mathcal{L}(y)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(y^{\prime}\right) & =s Y(s)-y(0) \\
\mathcal{L}\left(y^{\prime \prime}\right) & =s^{2} Y(s)-y^{\prime}(0)-s y(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-y^{\prime}(0)-s y(0)-7 s Y(s)+7 y(0)+12 Y(s)=\frac{1}{(s-2)^{2}} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
y(0) & =c_{1} \\
y^{\prime}(0) & =c_{2}
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-c_{2}-s c_{1}-7 s Y(s)+7 c_{1}+12 Y(s)=\frac{1}{(s-2)^{2}}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=\frac{c_{1} s^{3}-11 c_{1} s^{2}+c_{2} s^{2}+32 s c_{1}-4 c_{2} s-28 c_{1}+4 c_{2}+1}{(s-2)^{2}\left(s^{2}-7 s+12\right)}
\]

Applying partial fractions decomposition results in
\[
Y(s)=\frac{-3 c_{1}+c_{2}+\frac{1}{4}}{s-4}+\frac{1}{2(s-2)^{2}}+\frac{3}{4(s-2)}+\frac{4 c_{1}-c_{2}-1}{s-3}
\]

The inverse Laplace of each term above is now found, which gives
\[
\begin{aligned}
\mathcal{L}^{-1}\left(\frac{-3 c_{1}+c_{2}+\frac{1}{4}}{s-4}\right) & =\frac{\mathrm{e}^{4 t}\left(-12 c_{1}+4 c_{2}+1\right)}{4} \\
\mathcal{L}^{-1}\left(\frac{1}{2(s-2)^{2}}\right) & =\frac{t \mathrm{e}^{2 t}}{2} \\
\mathcal{L}^{-1}\left(\frac{3}{4(s-2)}\right) & =\frac{3 \mathrm{e}^{2 t}}{4} \\
\mathcal{L}^{-1}\left(\frac{4 c_{1}-c_{2}-1}{s-3}\right) & =\left(4 c_{1}-c_{2}-1\right) \mathrm{e}^{3 t}
\end{aligned}
\]

Adding the above results and simplifying gives
\[
y=\frac{\mathrm{e}^{2 t}(2 t+3)}{4}+\left(4 c_{1}-c_{2}-1\right) \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}\left(-12 c_{1}+4 c_{2}+1\right)}{4}
\]

Simplifying the solution gives
\[
y=\frac{\mathrm{e}^{2 t}(2 t+3)}{4}+\left(4 c_{1}-c_{2}-1\right) \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}\left(-12 c_{1}+4 c_{2}+1\right)}{4}
\]

\section*{Summary}

The solution(s) found are the following
\[
\begin{equation*}
y=\frac{\mathrm{e}^{2 t}(2 t+3)}{4}+\left(4 c_{1}-c_{2}-1\right) \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}\left(-12 c_{1}+4 c_{2}+1\right)}{4} \tag{1}
\end{equation*}
\]

Figure 484: Slope field plot

\section*{Verification of solutions}
\[
y=\frac{\mathrm{e}^{2 t}(2 t+3)}{4}+\left(4 c_{1}-c_{2}-1\right) \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}\left(-12 c_{1}+4 c_{2}+1\right)}{4}
\]

Verified OK.

\subsection*{25.8.1 Maple step by step solution}

Let's solve
\(y^{\prime \prime}-7 y^{\prime}+12 y=t \mathrm{e}^{2 t}\)
- Highest derivative means the order of the ODE is 2
\[
y^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\[
r^{2}-7 r+12=0
\]
- Factor the characteristic polynomial
\[
(r-3)(r-4)=0
\]
- Roots of the characteristic polynomial
\[
r=(3,4)
\]
- \(\quad 1\) st solution of the homogeneous ODE
\(y_{1}(t)=\mathrm{e}^{3 t}\)
- \(\quad 2 n d\) solution of the homogeneous ODE
\(y_{2}(t)=\mathrm{e}^{4 t}\)
- General solution of the ODE
\(y=c_{1} y_{1}(t)+c_{2} y_{2}(t)+y_{p}(t)\)
- \(\quad\) Substitute in solutions of the homogeneous ODE
\(y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{4 t}+y_{p}(t)\)
Find a particular solution \(y_{p}(t)\) of the ODE
- Use variation of parameters to find \(y_{p}\) here \(f(t)\) is the forcing function
\(\left[y_{p}(t)=-y_{1}(t)\left(\int \frac{y_{2}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right)+y_{2}(t)\left(\int \frac{y_{1}(t) f(t)}{W\left(y_{1}(t), y_{2}(t)\right)} d t\right), f(t)=t \mathrm{e}^{2 t}\right]\)
- Wronskian of solutions of the homogeneous equation
\[
W\left(y_{1}(t), y_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{3 t} & \mathrm{e}^{4 t} \\
3 \mathrm{e}^{3 t} & 4 \mathrm{e}^{4 t}
\end{array}\right]
\]
- Compute Wronskian
\(W\left(y_{1}(t), y_{2}(t)\right)=\mathrm{e}^{7 t}\)
- Substitute functions into equation for \(y_{p}(t)\)
\(y_{p}(t)=-\mathrm{e}^{3 t}\left(\int t \mathrm{e}^{-t} d t\right)+\mathrm{e}^{4 t}\left(\int t \mathrm{e}^{-2 t} d t\right)\)
- Compute integrals
\(y_{p}(t)=\frac{\mathrm{e}^{2 t}(2 t+3)}{4}\)
- Substitute particular solution into general solution to ODE
\(y=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{4 t}+\frac{\mathrm{e}^{2 t}(2 t+3)}{4}\)

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(\checkmark\) Solution by Maple
Time used: 1.828 (sec). Leaf size: 47
```

dsolve(diff(y(t),t\$2)-7*diff(y(t),t)+12*y(t)=t*exp(2*t),y(t), singsol=all)

```
\[
y(t)=\frac{(2 t+3) \mathrm{e}^{2 t}}{4}+(4 y(0)-D(y)(0)-1) \mathrm{e}^{3 t}+\frac{\mathrm{e}^{4 t}(-12 y(0)+4 D(y)(0)+1)}{4}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 35
DSolve[y''[t]-7*y'[t]+12*y[t]==t*Exp[2*t],y[t],t,IncludeSingularSolutions \(\rightarrow\) True]
\[
y(t) \rightarrow \frac{1}{4} e^{2 t}\left(2 t+4 c_{1} e^{t}+4 c_{2} e^{2 t}+3\right)
\]

\title{
26 Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery. Section B, Challenge Problems. Page 310
}
26.1 problem 3 . 3936

\section*{26.1 problem 3}
26.1.1 Existence and uniqueness analysis 3936
26.1.2 Maple step by step solution . 3940

Internal problem ID [6513]
Internal file name [OUTPUT/5761_Sunday_June_05_2022_03_53_07_PM_95044538/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 7. Laplace Transforms. Section 7.5 Problesm for review and discovery.
Section B, Challenge Problems. Page 310
Problem number: 3.
ODE order: 2.
ODE degree: 1 .

The type(s) of ODE detected by this program : "second__order_laplace", "second_order_linear_constant_coeff"

Maple gives the following as the ode type
[[_2nd_order, _linear, _nonhomogeneous]]
\[
i^{\prime \prime}+2 i^{\prime}+3 i=\left\{\begin{array}{cc}
30 & 0<t<2 \pi \\
0 & 2 \pi \leq t \leq 5 \pi \\
10 & 5 \pi<t<\infty
\end{array}\right.
\]

With initial conditions
\[
\left[i(0)=8, i^{\prime}(0)=0\right]
\]

\subsection*{26.1.1 Existence and uniqueness analysis}

This is a linear ODE. In canonical form it is written as
\[
i^{\prime \prime}+p(t) i^{\prime}+q(t) i=F
\]

Where here
\[
\begin{aligned}
p(t) & =2 \\
q(t) & =3 \\
F & =\left\{\begin{array}{cc}
0 & t \leq 0 \\
30 & t<2 \pi \\
0 & t \leq 5 \pi \\
10 & 5 \pi<t
\end{array}\right.
\end{aligned}
\]

Hence the ode is
\[
i^{\prime \prime}+2 i^{\prime}+3 i=\left\{\begin{array}{cc}
0 & t \leq 0 \\
30 & t<2 \pi \\
0 & t \leq 5 \pi \\
10 & 5 \pi<t
\end{array}\right.
\]

The domain of \(p(t)=2\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is inside this domain. The domain of \(q(t)=3\) is
\[
\{-\infty<t<\infty\}
\]

And the point \(t_{0}=0\) is also inside this domain. The domain of \(F=\left\{\begin{array}{cc}0 & t \leq 0 \\ 30 & t<2 \pi \\ 0 & t \leq 5 \pi \\ 10 & 5 \pi<t\end{array}\right.\) is
\[
\{0 \leq t \leq 2 \pi, 2 \pi \leq t \leq 5 \pi, 5 \pi \leq t \leq \infty,-\infty \leq t \leq 0\}
\]

And the point \(t_{0}=0\) is also inside this domain. Hence solution exists and is unique.
Solving using the Laplace transform method. Let
\[
\mathcal{L}(i)=Y(s)
\]

Taking the Laplace transform of the ode and using the relations that
\[
\begin{aligned}
\mathcal{L}\left(i^{\prime}\right) & =s Y(s)-i(0) \\
\mathcal{L}\left(i^{\prime \prime}\right) & =s^{2} Y(s)-i^{\prime}(0)-s i(0)
\end{aligned}
\]

The given ode now becomes an algebraic equation in the Laplace domain
\[
\begin{equation*}
s^{2} Y(s)-i^{\prime}(0)-s i(0)+2 s Y(s)-2 i(0)+3 Y(s)=\frac{30-30 \mathrm{e}^{-2 \pi s}+10 \mathrm{e}^{-5 \pi s}}{s} \tag{1}
\end{equation*}
\]

But the initial conditions are
\[
\begin{aligned}
i(0) & =8 \\
i^{\prime}(0) & =0
\end{aligned}
\]

Substituting these initial conditions in above in Eq (1) gives
\[
s^{2} Y(s)-16-8 s+2 s Y(s)+3 Y(s)=\frac{30-30 \mathrm{e}^{-2 \pi s}+10 \mathrm{e}^{-5 \pi s}}{s}
\]

Solving the above equation for \(Y(s)\) results in
\[
Y(s)=-\frac{2\left(-4 s^{2}+15 \mathrm{e}^{-2 \pi s}-5 \mathrm{e}^{-5 \pi s}-8 s-15\right)}{s\left(s^{2}+2 s+3\right)}
\]

Taking the inverse Laplace transform gives
\[
\begin{aligned}
i & =\mathcal{L}^{-1}(Y(s)) \\
& =\mathcal{L}^{-1}\left(-\frac{2\left(-4 s^{2}+15 \mathrm{e}^{-2 \pi s}-5 \mathrm{e}^{-5 \pi s}-8 s-15\right)}{s\left(s^{2}+2 s+3\right)}\right) \\
& =10-\mathrm{e}^{-t}(\sqrt{2} \sin (t \sqrt{2})+2 \cos (t \sqrt{2}))+\frac{5(i \sqrt{2}+2)\left(4-2 i \sqrt{2}-3 \mathrm{e}^{-(i \sqrt{2}+1)(t-5 \pi)}-(1-2 i \sqrt{2}) \mathrm{e}\right.}{18}
\end{aligned}
\]

Hence the final solution is
\[
\begin{aligned}
i= & 10-\mathrm{e}^{-t}(\sqrt{2} \sin (t \sqrt{2})+2 \cos (t \sqrt{2})) \\
& +\frac{5(i \sqrt{2}+2)\left(4-2 i \sqrt{2}-3 \mathrm{e}^{-(i \sqrt{2}+1)(t-5 \pi)}-(1-2 i \sqrt{2}) \mathrm{e}^{-(-i \sqrt{2}+1)(t-5 \pi)}\right) \text { Heaviside }(t-5 \pi)}{18} \\
& +\frac{5(i \sqrt{2}+2)\left(-4+2 i \sqrt{2}+3 \mathrm{e}^{-(i \sqrt{2}+1)(t-2 \pi)}+(1-2 i \sqrt{2}) \mathrm{e}^{-(-i \sqrt{2}+1)(t-2 \pi)}\right) \text { Heaviside }(t-2 \pi)}{6}
\end{aligned}
\]

Simplifying the solution gives
\[
\begin{aligned}
i= & 10+\frac{5 \text { Heaviside }(t-2 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-2 \pi)}(i \sqrt{2}+2)}{2} \\
& -\frac{5 \text { Heaviside }(t-5 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-5 \pi)}(i \sqrt{2}+2)}{6} \\
& +\frac{5(-i \sqrt{2}+2) \text { Heaviside }(t-2 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-2 \pi)}}{2} \\
& +\frac{5(i \sqrt{2}-2) \operatorname{Heaviside}(t-5 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-5 \pi)}}{6}-\mathrm{e}^{-t \sqrt{2} \sin (t \sqrt{2})} \\
& -2 \mathrm{e}^{-t} \cos (t \sqrt{2})+\frac{10 \text { Heaviside }(t-5 \pi)}{3}-10 \operatorname{Heaviside}(t-2 \pi)
\end{aligned}
\]

Summary
The solution(s) found are the following
\[
\begin{align*}
i= & 10+\frac{5 \text { Heaviside }(t-2 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-2 \pi)}(i \sqrt{2}+2)}{2} \\
& -\frac{5 \text { Heaviside }(t-5 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-5 \pi)}(i \sqrt{2}+2)}{6} \\
& +\frac{5(-i \sqrt{2}+2) \text { Heaviside }(t-2 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-2 \pi)}}{2} \tag{1}\\
& +\frac{5(i \sqrt{2}-2) \text { Heaviside }(t-5 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-5 \pi)}}{6}-\mathrm{e}^{-t \sqrt{2} \sin (t \sqrt{2})} \\
& -2 \mathrm{e}^{-t} \cos (t \sqrt{2})+\frac{10 \text { Heaviside }(t-5 \pi)}{3}-10 \operatorname{Heaviside}(t-2 \pi)
\end{align*}
\]

\section*{Verification of solutions}
\[
\begin{aligned}
i= & 10+\frac{5 \text { Heaviside }(t-2 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-2 \pi)}(i \sqrt{2}+2)}{2} \\
& -\frac{5 \text { Heaviside }(t-5 \pi) \mathrm{e}^{-(i \sqrt{2}+1)(t-5 \pi)}(i \sqrt{2}+2)}{6} \\
& +\frac{5(-i \sqrt{2}+2) \text { Heaviside }(t-2 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-2 \pi)}}{2} \\
& +\frac{5(i \sqrt{2}-2) \text { Heaviside }(t-5 \pi) \mathrm{e}^{(i \sqrt{2}-1)(t-5 \pi)}}{6}-\mathrm{e}^{-t} \sqrt{2} \sin (t \sqrt{2}) \\
& -2 \mathrm{e}^{-t} \cos (t \sqrt{2})+\frac{10 \text { Heaviside }(t-5 \pi)}{3}-10 \operatorname{Heaviside}(t-2 \pi)
\end{aligned}
\]

Verified OK.

\subsection*{26.1.2 Maple step by step solution}

Let's solve
\[
\left[i^{\prime \prime}+2 i^{\prime}+3 i=\left\{\begin{array}{cc}
0 & t \leq 0 \\
30 & t<2 \pi \\
0 & t \leq 5 \pi \\
10 & 5 \pi<t
\end{array}, i(0)=8,\left.i^{\prime}\right|_{\{t=0\}}=0\right]\right.
\]
- Highest derivative means the order of the ODE is 2
\[
i^{\prime \prime}
\]
- Characteristic polynomial of homogeneous ODE
\(r^{2}+2 r+3=0\)
- Use quadratic formula to solve for \(r\)
\(r=\frac{(-2) \pm(\sqrt{-8})}{2}\)
- Roots of the characteristic polynomial
\(r=(-1-\mathrm{I} \sqrt{2}, \mathrm{I} \sqrt{2}-1)\)
- \(\quad 1\) st solution of the homogeneous ODE
\(i_{1}(t)=\mathrm{e}^{-t} \cos (t \sqrt{2})\)
- \(\quad 2\) nd solution of the homogeneous ODE
\(i_{2}(t)=\mathrm{e}^{-t} \sin (t \sqrt{2})\)
- General solution of the ODE
\(i=c_{1} i_{1}(t)+c_{2} i_{2}(t)+i_{p}(t)\)
- Substitute in solutions of the homogeneous ODE
\(i=c_{1} \mathrm{e}^{-t} \cos (t \sqrt{2})+c_{2} \mathrm{e}^{-t} \sin (t \sqrt{2})+i_{p}(t)\)
Find a particular solution \(i_{p}(t)\) of the ODE
- Use variation of parameters to find \(i_{p}\) here \(f(t)\) is the forcing function
\[
i_{p}(t)=-i_{1}(t)\left(\int \frac{i_{2}(t) f(t)}{W\left(i_{1}(t), i_{2}(t)\right)} d t\right)+i_{2}(t)\left(\int \frac{i_{1}(t) f(t)}{W\left(i_{1}(t), i_{2}(t)\right)} d t\right), f(t)=\left\{\begin{array}{cc}
0 & t \leq 0 \\
30 & t<2 \pi \\
0 & t \leq 5 \pi \\
10 & 5 \pi<t
\end{array}\right]
\]
- Wronskian of solutions of the homogeneous equation
\[
W\left(i_{1}(t), i_{2}(t)\right)=\left[\begin{array}{cc}
\mathrm{e}^{-t} \cos (t \sqrt{2}) & \mathrm{e}^{-t} \sin (t \sqrt{2}) \\
-\mathrm{e}^{-t} \cos (t \sqrt{2})-\mathrm{e}^{-t} \sqrt{2} \sin (t \sqrt{2}) & -\mathrm{e}^{-t} \sin (t \sqrt{2})+\mathrm{e}^{-t} \sqrt{2} \cos (t \sqrt{2})
\end{array}\right]
\]
- Compute Wronskian
\[
W\left(i_{1}(t), i_{2}(t)\right)=\sqrt{2} \mathrm{e}^{-2 t}
\]
- Substitute functions into equation for \(i_{p}(t)\)
\(i_{p}(t)=\frac{\sqrt{2} \mathrm{e}^{-t}\left(-\cos (t \sqrt{2})\left(\int \mathrm{e}^{t} \sin (t \sqrt{2})\left(\left\{\begin{array}{cc}0 & t \leq 0 \\ 30 & t<2 \pi \\ 0 & t \leq 5 \pi \\ 10 & 5 \pi<t\end{array}\right)\right) d t\right)+\sin (t \sqrt{2})\left(\int \mathrm{e}^{t} \cos (t \sqrt{2})\left(\left\{\begin{array}{cc}0 & t \leq 0 \\ 30 & t<2 \pi \\ 0 & t \leq 5 \pi \\ 10 & 5 \pi<t\end{array}\right) d t\right)\right.\right.}{2}\)
- Compute integrals
\[
i_{p}(t)=5\left(\left\{\begin{array}{r}
\\
\sqrt{2}\left(\mathrm{e}^{2 \pi}(\sqrt{2} \sin (t \sqrt{2})-\cos (t\right.
\end{array},\right.\right.
\]
- Substitute particular solution into general solution to ODE
\[
i=c_{1} \mathrm{e}^{-t} \cos (t \sqrt{2})+c_{2} \mathrm{e}^{-t} \sin (t \sqrt{2})+5
\]
\[
\frac{2}{3}+((\sqrt{2} \sin (t \sqrt{2})+2 \cos (t \sqrt{2})) \cos (2 \pi \sqrt{2})-
\]
\[
\text { Check validity of solution } i=c_{1} \mathrm{e}^{-t} \cos (t \sqrt{2})+c_{2} \mathrm{e}^{-t} \sin (t \sqrt{2})+5\left\{\begin{array}{l}
\\
\frac{2}{3}+((\sqrt{2} \sin (t \sqrt{2})+
\end{array}\right.
\]
- Use initial condition \(i(0)=8\)
\[
8=c_{1}
\]
- Compute derivative of the solution
\[
i^{\prime}=-c_{1} \mathrm{e}^{-t} \cos (t \sqrt{2})-c_{1} \mathrm{e}^{-t} \sqrt{2} \sin (t \sqrt{2})-c_{2} \mathrm{e}^{-t} \sin (t \sqrt{2})+c_{2} \mathrm{e}^{-t} \sqrt{2} \cos (t \sqrt{2})+5
\]
- Use the initial condition \(\left.i^{\prime}\right|_{\{t=0\}}=0\)
\(0=-c_{1}+c_{2} \sqrt{2}\)
- Solve for \(c_{1}\) and \(c_{2}\)
\[
\left\{c_{1}=8, c_{2}=4 \sqrt{2}\right\}
\]
- Substitute constant values into general solution and simplify
\[
i=8 \mathrm{e}^{-t} \cos (t \sqrt{2})+4 \mathrm{e}^{-t} \sqrt{2} \sin (t \sqrt{2})+5\left(\left\{\begin{array}{l}
\\
\frac{2}{3}+((\sqrt{2} \sin (t \sqrt{2})+2 \cos (t \sqrt{2})) \cos (2 \pi \sqrt{2})
\end{array}\right.\right.
\]
- \(\quad\) Solution to the IVP
\[
i=8 \mathrm{e}^{-t} \cos (t \sqrt{2})+4 \mathrm{e}^{-t} \sqrt{2} \sin (t \sqrt{2})+5\left(\left\{\begin{array}{l}
\\
\frac{2}{3}+((\sqrt{2} \sin (t \sqrt{2})+2 \cos (t \sqrt{2})) \cos (2 \pi \sqrt{2})
\end{array}\right.\right.
\]

Maple trace
```

`Methods for second order ODEs: --- Trying classification methods --- trying a quadrature trying high order exact linear fully integrable trying differential order: 2; linear nonhomogeneous with symmetry [0,1] trying a double symmetry of the form [xi=0, eta=F(x)] -> Try solving first the homogeneous part of the ODE     checking if the LODE has constant coefficients     <- constant coefficients successful <- solving first the homogeneous part of the ODE successful`

```
\(X\) Solution by Maple
dsolve ([diff \((i(t), t \$ 2)+2 * \operatorname{diff}(i(t), t)+3 * i(t)=\) piecewise \((0<t\) and \(t<2 * \operatorname{Pi}, 30,2 * \operatorname{Pi}<=t\) and \(t<=5 *\)

No solution found
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.234 (sec). Leaf size: 297
```

DSolve[{i''[t]+2*i'[t]+3*i[t]==Piecewise[{{30,0<t<2*Pi},{0,2*Pi<= t <= 5*Pi},{10,5*Pi<t<Infi

```
\(i(t)\)
\(\rightarrow\{\)
\[
e^{-t}\left(-2 \cos (\sqrt{2} t)+10 e^{t}-\sqrt{2} \sin (\sqrt{2} t)\right)
\]
\[
4 e^{-t}(2 \cos (\sqrt{2} t)+\sqrt{2} \sin (\sqrt{2} t))
\]
\[
-e^{-t}\left(2 \cos (\sqrt{2} t)-10 e^{2 \pi} \cos (\sqrt{2}(t-2 \pi))+\sqrt{2}(\sin (\sqrt{2} t)-5 \epsilon\right.
\]
\[
\frac{1}{3} e^{-t}\left(-6 \cos (\sqrt{2} t)+10 e^{t}-10 e^{5 \pi} \cos (\sqrt{2}(t-5 \pi))+30 e^{2 \pi} \cos (\sqrt{2}(t-2 \pi))-3 \sqrt{2} \sin (\sqrt{2} t)-\right.
\]

\section*{27 Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380}
27.1 problem 2(a) . 3945
27.2 problem 2(c) . 3954
27.3 problem 3(a) . 3962
27.4 problem 3(c) . 3971
27.5 problem 5 . 3983
27.6 problem 6(a) . 3990

\section*{27.1 problem 2(a)}
27.1.1 Solution using Matrix exponential method 3945
27.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3946
27.1.3 Maple step by step solution . 3951

Internal problem ID [6514]
Internal file name [OUTPUT/5762_Sunday_June_05_2022_03_53_30_PM_18803338/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+3 y(t) \\
y^{\prime}(t) & =3 x(t)+y(t)
\end{aligned}
\]

\subsection*{27.1.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & \frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & \frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{2} \\
\left(\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2}+c_{1}\right) \mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{2} \\
\frac{\left(c_{2}-c_{1}\right) \mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{27.1.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda-8=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-2
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-2 & 1 & real eigenvalue \\
\hline 4 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 3 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=4\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=t\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 4 & 1 & 1 & No & {\(\left[\begin{array}{c}1 \\
1\end{array}\right]\)} \\
\hline-2 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the
corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{4 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
\]

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
c_{1} \mathrm{e}^{4 t}-c_{2} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 485: Phase plot

\subsection*{27.1.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=x(t)+3 y(t), y^{\prime}(t)=3 x(t)+y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)
- Consider eigenpair
\(\left[4,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{4 t} .\left[\begin{array}{l}1 \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t} \\
c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=-c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}, y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 35
```

dsolve([diff $(x(t), t)=x(t)+3 * y(t), \operatorname{diff}(y(t), t)=3 * x(t)+y(t)]$, singsol=all)

```
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t} \\
& y(t)=-c_{1} \mathrm{e}^{-2 t}+c_{2} \mathrm{e}^{4 t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.02 (sec). Leaf size: 68
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+3 * y[t], y^{\prime}[t]==3 * x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow\) Tru
\[
\begin{aligned}
x(t) & \rightarrow \frac{1}{2} e^{-2 t}\left(c_{1}\left(e^{6 t}+1\right)+c_{2}\left(e^{6 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{2} e^{-2 t}\left(c_{1}\left(e^{6 t}-1\right)+c_{2}\left(e^{6 t}+1\right)\right)
\end{aligned}
\]

\section*{27.2 problem 2(c)}
27.2.1 Solution using Matrix exponential method 3954
27.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3955

Internal problem ID [6515]
Internal file name [OUTPUT/5763_Sunday_June_05_2022_03_53_32_PM_75425383/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+3 y(t) \\
y^{\prime}(t) & =3 x(t)+y(t)
\end{aligned}
\]

With initial conditions
\[
[x(0)=5, y(0)=1]
\]

\subsection*{27.2.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & \frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{x}_{0} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2} & \frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} \\
\frac{\mathrm{e}^{4 t}}{2}-\frac{\mathrm{e}^{-2 t}}{2} & \frac{\mathrm{e}^{-2 t}}{2}+\frac{\mathrm{e}^{4 t}}{2}
\end{array}\right]\left[\begin{array}{l}
5 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
2 \mathrm{e}^{-2 t}+3 \mathrm{e}^{4 t} \\
3 \mathrm{e}^{4 t}-2 \mathrm{e}^{-2 t}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{27.2.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 3 \\
3 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda-8=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-2
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-2 & 1 & real eigenvalue \\
\hline 4 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
3 & 3 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=4\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
3 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=t\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 4 & 1 & 1 & No & {\(\left[\begin{array}{c}1 \\
1\end{array}\right]\)} \\
\hline-2 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{4 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{4 t}
\end{aligned}
\]

Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-2 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{4 t} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-2 t} \\
\mathrm{e}^{-2 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{4 t}-c_{2} \mathrm{e}^{-2 t} \\
c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-2 t}
\end{array}\right]
\]

Since initial conditions are given, the solution above needs to be updated by solving for the constants of integrations using the given initial conditions
\[
\left[\begin{array}{l}
x(0)=5 \tag{1}\\
y(0)=1
\end{array}\right]
\]

Substituting initial conditions into the above solution at \(t=0\) gives
\[
\left[\begin{array}{c}
5 \\
1
\end{array}\right]=\left[\begin{array}{l}
c_{1}-c_{2} \\
c_{1}+c_{2}
\end{array}\right]
\]

Solving for the constants of integrations gives
\[
\left[\begin{array}{c}
c_{1}=3 \\
c_{2}=-2
\end{array}\right]
\]

Substituting these constants back in original solution in Eq. (1) gives
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
2 \mathrm{e}^{-2 t}+3 \mathrm{e}^{4 t} \\
3 \mathrm{e}^{4 t}-2 \mathrm{e}^{-2 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 486: Phase plot

The following are plots of each solution.

\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 34
dsolve \(([\operatorname{diff}(x(t), t)=x(t)+3 * y(t), \operatorname{diff}(y(t), t)=3 * x(t)+y(t), x(0)=5, y(0)=1]\), singsol
\[
\begin{aligned}
& x(t)=2 \mathrm{e}^{-2 t}+3 \mathrm{e}^{4 t} \\
& y(t)=-2 \mathrm{e}^{-2 t}+3 \mathrm{e}^{4 t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 38
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+3 * y[t], y^{\prime}[t]==3 * x[t]+y[t]\right\},\{x[0]==5, y[0]==1\},\{x[t], y[t]\}, t\right.\), IncludeSingul
\[
\begin{aligned}
x(t) & \rightarrow e^{-2 t}\left(3 e^{6 t}+2\right) \\
y(t) & \rightarrow e^{-2 t}\left(3 e^{6 t}-2\right)
\end{aligned}
\]

\section*{27.3 problem 3(a)}
27.3.1 Solution using Matrix exponential method 3962
27.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3963
27.3.3 Maple step by step solution . 3968

Internal problem ID [6516]
Internal file name [OUTPUT/5764_Sunday_June_05_2022_03_53_34_PM_6081269/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 3(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+2 y(t) \\
y^{\prime}(t) & =3 x(t)+2 y(t)
\end{aligned}
\]

\subsection*{27.3.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5}\right) c_{1}+\left(\frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{1}-2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5} \\
\frac{\left(-3 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{27.3.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-3 \lambda-4=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=4 \\
& \lambda_{2}=-1
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 4 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=4\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{2 t}{3}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 4 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{2}{3} \\
1\end{array}\right]\)} \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{4 t} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] e^{4 t}
\end{aligned}
\]

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{4 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{4 t}}{3}-c_{2} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 487: Phase plot

\subsection*{27.3.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+2 y(t), y^{\prime}(t)=3 x(t)+2 y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[4,\left[\begin{array}{c}\frac{2}{3} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{l}\frac{2}{3} \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=\mathrm{e}^{-t} c_{1} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{4 t} \cdot\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{-t} c_{1}+\frac{2 c_{2} \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{4 t}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=-\mathrm{e}^{-t} c_{1}+\frac{2 c_{2} \mathrm{e}^{4 t}}{3}, y(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{4 t}\right\}
\]

Solution by Maple
Time used: 0.016 (sec). Leaf size: 36
```

dsolve([diff(x(t),t)=x(t)+2*y(t), diff (y (t),t)=3*x(t)+2*y(t)],singsol=all)

```
\[
\begin{aligned}
x(t) & =c_{1} \mathrm{e}^{4 t}+c_{2} \mathrm{e}^{-t} \\
y(t) & =\frac{3 c_{1} \mathrm{e}^{4 t}}{2}-c_{2} \mathrm{e}^{-t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 74
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+2 * y[t], y^{\prime}[t]==3 * x[t]+2 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(->\) I
\[
\begin{aligned}
x(t) & \rightarrow \frac{1}{5} e^{-t}\left(c_{1}\left(2 e^{5 t}+3\right)+2 c_{2}\left(e^{5 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{5} e^{-t}\left(3 c_{1}\left(e^{5 t}-1\right)+c_{2}\left(3 e^{5 t}+2\right)\right)
\end{aligned}
\]

\section*{27.4 problem 3(c)}
27.4.1 Solution using Matrix exponential method 3971
27.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3973
27.4.3 Maple step by step solution . 3978

Internal problem ID [6517]
Internal file name [OUTPUT/5765_Sunday_June_05_2022_03_53_36_PM_53780418/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 3(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+2 y(t)+t-1 \\
y^{\prime}(t) & =3 x(t)+2 y(t)-5 t-2
\end{aligned}
\]

\subsection*{27.4.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
t-1 \\
-5 t-2
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5}\right) c_{1}+\left(\frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5}\right) c_{2} \\
\left(\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5}\right) c_{1}+\left(\frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{1}-2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5} \\
\frac{\left(-3 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}\left(c_{1}+c_{2}\right)}{5}
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(3 \mathrm{e}^{5 t}+2\right) \mathrm{e}^{-4 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-4 t}}{5} \\
-\frac{3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-4 t}}{5} & \frac{\left(2 \mathrm{e}^{5 t}+3\right) \mathrm{e}^{-4 t}}{5}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(3 \mathrm{e}^{5 t}+2\right) \mathrm{e}^{-4 t}}{5} & -\frac{2\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-4 t}}{5} \\
-\frac{3\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-4 t}}{5} & \frac{\left(2 \mathrm{e}^{5 t}+3\right) \mathrm{e}^{-4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
t-1 \\
-5 t-2
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{\left(13 \mathrm{e}^{5 t} t-12 \mathrm{e}^{5 t}+2 t+2\right) \mathrm{e}^{-4 t}}{5} \\
-\frac{\left(13 \mathrm{e}^{5 t} t-12 \mathrm{e}^{5 t}-3 t-3\right) \mathrm{e}^{-4 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 t-2 \\
3-2 t
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(3 c_{1}-2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{\left(2 c_{1}+2 c_{2}\right) \mathrm{e}^{4 t}}{5}+3 t-2 \\
\frac{\left(-3 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}}{5}+\frac{\left(3 c_{1}+3 c_{2}\right) \mathrm{e}^{4 t}}{5}-2 t+3
\end{array}\right]
\end{aligned}
\]

\subsection*{27.4.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
t-1 \\
-5 t-2
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
3 & 2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-3 \lambda-4=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=4
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 4 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 2 & 0 \\
3 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{3 R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=4\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]-(4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
3 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{2 t}{3}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{2 t}{3} \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline 4 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{2}{3} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Since eigenvalue 4 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{4 t} \\
& =\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] e^{4 t}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{4 t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} & \mathrm{e}^{4 t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{t}}{5} & \frac{2 \mathrm{e}^{t}}{5} \\
\frac{3 \mathrm{e}^{-4 t}}{5} & \frac{3 \mathrm{e}^{-4 t}}{5}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} & \mathrm{e}^{4 t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{3 \mathrm{e}^{t}}{5} & \frac{2 \mathrm{e}^{t}}{5} \\
\frac{3 \mathrm{e}^{-4 t}}{5} & \frac{3 \mathrm{e}^{-4 t}}{5}
\end{array}\right]\left[\begin{array}{c}
t-1 \\
-5 t-2
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} & \mathrm{e}^{4 t}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}(13 t+1)}{5} \\
-\frac{3 \mathrm{e}^{-4 t}(4 t+3)}{5}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} & \mathrm{e}^{4 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}(13 t-12)}{5} \\
\frac{3 \mathrm{e}^{-4 t}(t+1)}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 t-2 \\
3-2 t
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t} \\
c_{1} \mathrm{e}^{-t}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 c_{2} \mathrm{e}^{4 t}}{3} \\
c_{2} \mathrm{e}^{4 t}
\end{array}\right]+\left[\begin{array}{c}
3 t-2 \\
3-2 t
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{-t}+\frac{2 c_{2} \mathrm{e}^{4 t}}{3}+3 t-2 \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{4 t}+3-2 t
\end{array}\right]
\]

\subsection*{27.4.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+2 y(t)+t-1, y^{\prime}(t)=3 x(t)+2 y(t)-5 t-2\right]
\]
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
t-1 \\
-5 t-2
\end{array}\right]
\]
- \(\quad\) System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 2 \\ 3 & 2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}t-1 \\ -5 t-2\end{array}\right]\)
- Define the forcing function
\(\vec{f}(t)=\left[\begin{array}{c}t-1 \\ -5 t-2\end{array}\right]\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right]
\]
- Rewrite the system as
\(\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[4,\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)
- Consider eigenpair
\(\left[4,\left[\begin{array}{c}\frac{2}{3} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{4 t} \cdot\left[\begin{array}{c}\frac{2}{3} \\ 1\end{array}\right]\)
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}(\) \(\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)\)
Fundamental matrix
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst \(\phi(t)=\left[\begin{array}{cc}-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\ \mathrm{e}^{-t} & \mathrm{e}^{4 t}\end{array}\right]\)
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th
\[
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
\]
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
-\mathrm{e}^{-t} & \frac{2 \mathrm{e}^{4 t}}{3} \\
\mathrm{e}^{-t} & \mathrm{e}^{4 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-1 & \frac{2}{3} \\
1 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{-t}}{5}+\frac{2 \mathrm{e}^{4 t}}{5} & \frac{2 \mathrm{e}^{4 t}}{5}-\frac{2 \mathrm{e}^{-t}}{5} \\
\frac{3 \mathrm{e}^{4 t}}{5}-\frac{3 \mathrm{e}^{-t}}{5} & \frac{2 \mathrm{e}^{-t}}{5}+\frac{3 \mathrm{e}^{4 t}}{5}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution
\(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs \(\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\(\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)\)
- Multiply by the inverse of the fundamental matrix
\[
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
\]
- Integrate to solve for \(\vec{v}(t)\)
\[
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
\]
- Plug \(\vec{v}(t)\) into the equation for the particular solution
\[
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
\]
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{c}
3 t+\frac{12 \mathrm{e}^{-t}}{5}-2-\frac{2 \mathrm{e}^{4 t}}{5} \\
-\frac{3 \mathrm{e}^{4 t}}{5}-2 t+3-\frac{12 \mathrm{e}^{-t}}{5}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
3 t+\frac{12 \mathrm{e}^{-t}}{5}-2-\frac{2 \mathrm{e}^{4 t}}{5} \\
-\frac{3 \mathrm{e}^{4 t}}{5}-2 t+3-\frac{12 \mathrm{e}^{-t}}{5}
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{l}
\frac{\left(-15 c_{1}+36\right) \mathrm{e}^{-t}}{15}+\frac{\left(10 c_{2}-6\right) \mathrm{e}^{4 t}}{15}+3 t-2 \\
\frac{\left(-12+5 c_{1}\right) \mathrm{e}^{-t}}{5}+\frac{\left(-3+5 c_{2}\right) \mathrm{e}^{4 t}}{5}-2 t+3
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(-15 c_{1}+36\right) \mathrm{e}^{-t}}{15}+\frac{\left(10 c_{2}-6\right) \mathrm{e}^{4 t}}{15}+3 t-2, y(t)=\frac{\left(-12+5 c_{1}\right) \mathrm{e}^{-t}}{5}+\frac{\left(-3+5 c_{2}\right) \mathrm{e}^{4 t}}{5}-2 t+3\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 44
\[
\begin{gathered}
\text { dsolve }([\operatorname{diff}(\mathrm{x}(\mathrm{t}), \mathrm{t})=\mathrm{x}(\mathrm{t})+2 * \mathrm{y}(\mathrm{t})+\mathrm{t}-1, \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=3 * \mathrm{x}(\mathrm{t})+2 * \mathrm{y}(\mathrm{t})-5 * \mathrm{t}-2], \text { singsol }=\mathrm{all}) \\
x(t)=c_{2} \mathrm{e}^{4 t}+\mathrm{e}^{-t} c_{1}+3 t-2 \\
y(t)=\frac{3 c_{2} \mathrm{e}^{4 t}}{2}-\mathrm{e}^{-t} c_{1}+3-2 t
\end{gathered}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.188 (sec). Leaf size: 88
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+2 * y[t]+t-1, y^{\prime}[t]==3 * x[t]+2 * y[t]-5 * t-2\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolu
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-t}\left(5 e^{t}(3 t-2)+2\left(c_{1}+c_{2}\right) e^{5 t}+3 c_{1}-2 c_{2}\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-t}\left(-5 e^{t}(2 t-3)+3\left(c_{1}+c_{2}\right) e^{5 t}-3 c_{1}+2 c_{2}\right)
\end{aligned}
\]

\section*{27.5 problem 5}
27.5.1 Solution using Matrix exponential method 3983
27.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3984

Internal problem ID [6518]
Internal file name [OUTPUT/5766_Sunday_June_05_2022_03_53_38_PM_94886050/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 5.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =y(t)
\end{aligned}
\]

\subsection*{27.5.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
0 & \mathrm{e}^{t}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} & t \mathrm{e}^{t} \\
0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} c_{1}+t \mathrm{e}^{t} c_{2} \\
\mathrm{e}^{t} c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
\mathrm{e}^{t} c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{27.5.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right]\right)=0
\]

Since the matrix \(A\) is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes
\[
(1-\lambda)(1-\lambda)=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=1
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{1}\right\}\) and the leading variables are \(\left\{v_{2}\right\}\). Let \(v_{1}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{2}=0\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 1 & 2 & 1 & Yes & {\(\left[\begin{array}{l}1 \\
0\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 488: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \(\vec{v}_{2}\) by solving
\[
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
\]

Where \(\vec{v}_{1}\) is the normal (rank 1) eigenvector found above. Hence we need to solve
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] }
\end{aligned}
\]

Solving for \(\vec{v}_{2}\) gives
\[
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \\
0
\end{array}\right]
\end{aligned}
\]

And
\[
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(t+1) \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t}(t+1) \\
\mathrm{e}^{t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right) \\
c_{2} \mathrm{e}^{t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 489: Phase plot
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 20
```

dsolve([diff(x(t),t)=x(t)+y(t), diff(y(t),t)=y(t)], singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& y(t)=c_{2} \mathrm{e}^{t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.05 (sec). Leaf size: 25
DSolve[\{x' \(\left.[t]==x[t]+y[t], y^{\prime}[t]==y[t]\right\},\{x[t], y[t]\}, t\), IncludeSingularSolutions \(\rightarrow>\) True \(]\)
\[
\begin{aligned}
& x(t) \rightarrow e^{t}\left(c_{2} t+c_{1}\right) \\
& y(t) \rightarrow c_{2} e^{t}
\end{aligned}
\]

\section*{27.6 problem 6(a)}
27.6.1 Solution using Matrix exponential method 3990
27.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 3991
27.6.3 Maple step by step solution . 3995

Internal problem ID [6519]
Internal file name [OUTPUT/5767_Sunday_June_05_2022_03_53_40_PM_39283079/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.2 Linear Systems. Page 380
Problem number: 6(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t) \\
y^{\prime}(t) & =y(t)
\end{aligned}
\]

\subsection*{27.6.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} & 0 \\
0 & \mathrm{e}^{t}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\mathrm{e}^{t} & 0 \\
0 & \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{e}^{t} c_{1} \\
\mathrm{e}^{t} c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{27.6.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right]\right)=0
\]

Since the matrix \(A\) is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes
\[
(1-\lambda)(1-\lambda)=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=1
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{1}, v_{2}\right\}\) and there are no leading variables. Let \(v_{1}=t\). Let \(v_{2}=s\). Since there are two free Variable, we have found two eigenvectors associated with this eigenvalue. The above can be written as
\[
\begin{aligned}
{\left[\begin{array}{l}
t \\
s
\end{array}\right] } & =\left[\begin{array}{l}
t \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
s
\end{array}\right] \\
& =t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+s\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
\]

By letting \(t=1\) and \(s=1\) then the above becomes
\[
\left[\begin{array}{l}
t \\
s
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

Hence the two eigenvectors associated with this eigenvalue are
\[
\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 1 & 2 & 2 & No & {\(\left[\begin{array}{ll}0 & 1 \\
1 & 0\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 490: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 which is the same as its geometric multiplicity 2 , then it is complete eigenvalue and this falls into case 1 shown above. Hence the corresponding eigenvector basis are
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{t} \\
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
0
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 491: Phase plot

\subsection*{27.6.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t), y^{\prime}(t)=y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]\right]
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[1,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
\]
- First solution from eigenvalue 1
\[
\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]
- Form of the 2nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=1\) is the eigenvalue, and
\(\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})\)
- \(\quad\) Note that the \(t\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obtair
- \(\quad\) Substitute \(\vec{x}_{2}(t)\) into the homogeneous system
\[
\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})
\]
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})\)
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{x}_{2}(t)\) to be a solution to the homogeneous system \((A-\lambda \cdot I) \cdot \vec{p}=\vec{v}\)
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue 1
\[
\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\(\vec{p}=\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- Second solution from eigenvalue 1
\[
\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{e}^{t}\left(t c_{2}+c_{1}\right)
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=0, y(t)=\mathrm{e}^{t}\left(t c_{2}+c_{1}\right)\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 16
```

dsolve([diff(x(t),t)=x(t),\operatorname{diff}(y(t),t)=y(t)],singsol=all)

```
\[
\begin{aligned}
x(t) & =c_{2} \mathrm{e}^{t} \\
y(t) & =c_{1} \mathrm{e}^{t}
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.04 (sec). Leaf size: 57
DSolve[\{x' \(\left.[t]==x[t], y^{\prime}[t]==y[t]\right\},\{x[t], y[t]\}, t\), IncludeSingularSolutions \(\rightarrow\) True \(]\)
\[
\begin{aligned}
& x(t) \rightarrow c_{1} e^{t} \\
& y(t) \rightarrow c_{2} e^{t} \\
& x(t) \rightarrow c_{1} e^{t} \\
& y(t) \rightarrow 0 \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow c_{2} e^{t} \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow 0
\end{aligned}
\]

\section*{28 Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387}
28.1 problem 1(a) 4000
28.2 problem 1(b) 4009
28.3 problem 1(c) 4018
28.4 problem 1(d) 4028
28.5 problem 1(e) 4037
28.6 problem 1(f) 4046
28.7 problem 1(g) 4056
28.8 problem 1(h) 4065
28.9 problem 5(b) 4074

\section*{28.1 problem 1(a)}
28.1.1 Solution using Matrix exponential method 4000
28.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4001
28.1.3 Maple step by step solution . 4006

Internal problem ID [6520]
Internal file name [OUTPUT/5768_Sunday_June_05_2022_03_53_41_PM_17801438/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+4 y(t) \\
y^{\prime}(t) & =-2 x(t)+3 y(t)
\end{aligned}
\]

\subsection*{28.1.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
2 \mathrm{e}^{-t}-\mathrm{e}^{t} & 2 \mathrm{e}^{t}-2 \mathrm{e}^{-t} \\
-\mathrm{e}^{t}+\mathrm{e}^{-t} & -\mathrm{e}^{-t}+2 \mathrm{e}^{t}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
2 \mathrm{e}^{-t}-\mathrm{e}^{t} & 2 \mathrm{e}^{t}-2 \mathrm{e}^{-t} \\
-\mathrm{e}^{t}+\mathrm{e}^{-t} & -\mathrm{e}^{-t}+2 \mathrm{e}^{t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 \mathrm{e}^{-t}-\mathrm{e}^{t}\right) c_{1}+\left(2 \mathrm{e}^{t}-2 \mathrm{e}^{-t}\right) c_{2} \\
\left(-\mathrm{e}^{t}+\mathrm{e}^{-t}\right) c_{1}+\left(-\mathrm{e}^{-t}+2 \mathrm{e}^{t}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(2 c_{1}-2 c_{2}\right) \mathrm{e}^{-t}-\mathrm{e}^{t}\left(-2 c_{2}+c_{1}\right) \\
\left(-c_{2}+c_{1}\right) \mathrm{e}^{-t}-\mathrm{e}^{t}\left(-2 c_{2}+c_{1}\right)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.1.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & 4 \\
-2 & 3-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-1=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=1
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-2 & 4 \\
-2 & 4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
-2 & 4 & 0 \\
-2 & 4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=2 t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
-4 & 4 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
-4 & 4 & 0 \\
-2 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-4 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-4 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=t\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{l}2 \\
1\end{array}\right]\)} \\
\hline 1 & 1 & 1 & No & {\(\left[\begin{array}{l}1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{-t} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
2 c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 492: Phase plot

\subsection*{28.1.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=-3 x(t)+4 y(t), y^{\prime}(t)=-2 x(t)+3 y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-3 & 4 \\ -2 & 3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-3 & 4 \\ -2 & 3\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
-3 & 4 \\
-2 & 3
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]\)
- Consider eigenpair
\(\left[1,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{\mathrm{t}} .\left[\begin{array}{l}1 \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=\mathrm{e}^{-t} c_{1} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
2 \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t} \\
\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=2 \mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}, y(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{t}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 31
dsolve([diff \((x(t), t)=-3 * x(t)+4 * y(t), \operatorname{diff}(y(t), t)=-2 * x(t)+3 * y(t)]\), singsol=all)
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t} \\
& y(t)=c_{1} \mathrm{e}^{t}+\frac{c_{2} \mathrm{e}^{-t}}{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 67
DSolve \(\left[\left\{x^{\prime}[t]==-3 * x[t]+4 * y[t], y^{\prime}[t]==-2 * x[t]+3 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions
\[
\begin{aligned}
x(t) & \rightarrow e^{-t}\left(2 c_{2}\left(e^{2 t}-1\right)-c_{1}\left(e^{2 t}-2\right)\right) \\
y(t) & \rightarrow e^{-t}\left(c_{2}\left(2 e^{2 t}-1\right)-c_{1}\left(e^{2 t}-1\right)\right)
\end{aligned}
\]

\section*{28.2 problem 1(b)}
28.2.1 Solution using Matrix exponential method 4009
28.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4010
28.2.3 Maple step by step solution . 4015

Internal problem ID [6521]
Internal file name [OUTPUT/5769_Sunday_June_05_2022_03_53_43_PM_80895195/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =4 x(t)-2 y(t) \\
y^{\prime}(t) & =5 x(t)+2 y(t)
\end{aligned}
\]

\subsection*{28.2.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{3 t} \cos (3 t)+\frac{\mathrm{e}^{3 t} \sin (3 t)}{3} & -\frac{2 \mathrm{e}^{3 t} \sin (3 t)}{3} \\
\frac{5 \mathrm{e}^{3 t} \sin (3 t)}{3} & \mathrm{e}^{3 t} \cos (3 t)-\frac{\mathrm{e}^{3 t} \sin (3 t)}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}(3 \cos (3 t)+\sin (3 t))}{3} & -\frac{2 \mathrm{e}^{3 t} \sin (3 t)}{3} \\
\frac{5 \mathrm{e}^{3 t} \sin (3 t)}{3} & \frac{\mathrm{e}^{3 t}(3 \cos (3 t)-\sin (3 t))}{3}
\end{array}\right]
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{3 t}(3 \cos (3 t)+\sin (3 t))}{3} & -\frac{2 \mathrm{e}^{3 t} \sin (3 t)}{3} \\
\frac{5 \mathrm{e}^{3 t} \sin (3 t)}{3} & \frac{\mathrm{e}^{3 t}(3 \cos (3 t)-\sin (3 t))}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}(3 \cos (3 t)+\sin (3 t)) c_{1}}{3}-\frac{2 \mathrm{e}^{3 t} \sin (3 t) c_{2}}{3} \\
\frac{5 \mathrm{e}^{3 t} \sin (3 t) c_{1}}{3}+\frac{\mathrm{e}^{3 t}\left(3 \cos (3 t)-\sin (3 t) c_{2}\right.}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}\left(-2 c_{2}+c_{1}\right) \sin (3 t)}{3}+\mathrm{e}^{3 t} \cos (3 t) c_{1} \\
\frac{\mathrm{e}^{3 t}\left(5 c_{1}-c_{2}\right) \sin (3 t)}{3}+\mathrm{e}^{3 t} \cos (3 t) c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.2.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -2 \\
5 & 2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-6 \lambda+18=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=3+3 i \\
& \lambda_{2}=3-3 i
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(3-3 i\) & 1 & complex eigenvalue \\
\hline \(3+3 i\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=3-3 i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]-(3-3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
1+3 i & -2 \\
5 & -1+3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
1+3 i & -2 & 0 \\
5 & -1+3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}+\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1+3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
1+3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\left(\frac{1}{5}-\frac{3 i}{5}\right) t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 i}{5}\right) t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5}-\frac{3 i}{5} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1-3 i \\
5
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=3+3 i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]-(3+3 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1-3 i & -2 \\
5 & -1-3 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
1-3 i & -2 & 0 \\
5 & -1-3 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+\left(-\frac{1}{2}-\frac{3 i}{2}\right) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1-3 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
1-3 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\left(\frac{1}{5}+\frac{3 i}{5}\right) t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 i}{5}\right) t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{5}+\frac{3 i}{5} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 \mathrm{I}}{5}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
1+3 i \\
5
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & \multirow{2}{*}{} & algebraic \(m\)
\end{tabular} geometric \(k\) defective? \begin{tabular}{c}
eigenvectors \\
\hline \(3+3 i\)
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 i}{5}\right) \mathrm{e}^{(3+3 i) t} \\
\mathrm{e}^{(3+3 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 i}{5}\right) \mathrm{e}^{(3-3 i) t} \\
\mathrm{e}^{(3-3 i) t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(\frac{1}{5}+\frac{3 i}{5}\right) c_{1} \mathrm{e}^{(3+3 i) t}+\left(\frac{1}{5}-\frac{3 i}{5}\right) c_{2} \mathrm{e}^{(3-3 i) t} \\
c_{1} \mathrm{e}^{(3+3 i) t}+c_{2} \mathrm{e}^{(3-3 i) t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 493: Phase plot

\subsection*{28.2.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=4 x(t)-2 y(t), y^{\prime}(t)=5 x(t)+2 y(t)\right]\)
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]
- System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right] \cdot \vec{x}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
4 & -2 \\
5 & 2
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[3-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right],\left[3+3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{5}+\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[3-3 \mathrm{I},\left[\begin{array}{c}
\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{(3-3 \mathrm{I}) t} \cdot\left[\begin{array}{c}
\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{3 t} \cdot(\cos (3 t)-\mathrm{I} \sin (3 t)) \cdot\left[\begin{array}{c}
\frac{1}{5}-\frac{3 \mathrm{I}}{5} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\left(\frac{1}{5}-\frac{3 \mathrm{I}}{5}\right)(\cos (3 t)-\mathrm{I} \sin (3 t)) \\
\cos (3 t)-\mathrm{I} \sin (3 t)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{\cos (3 t)}{5}-\frac{3 \sin (3 t)}{5} \\
\cos (3 t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\frac{\sin (3 t)}{5}-\frac{3 \cos (3 t)}{5} \\
-\sin (3 t)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\(\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)\)
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{\cos (3 t)}{5}-\frac{3 \sin (3 t)}{5} \\
\cos (3 t)
\end{array}\right]+\mathrm{e}^{3 t} c_{2} \cdot\left[\begin{array}{c}
-\frac{\sin (3 t)}{5}-\frac{3 \cos (3 t)}{5} \\
-\sin (3 t)
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(c_{1}-3 c_{2}\right) \cos (3 t)-3\left(c_{1}+\frac{c_{2}}{3}\right) \sin (3 t)\right) \mathrm{e}^{3 t}}{5} \\
\mathrm{e}^{3 t}\left(c_{1} \cos (3 t)-c_{2} \sin (3 t)\right)
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(\left(c_{1}-3 c_{2}\right) \cos (3 t)-3\left(c_{1}+\frac{c_{2}}{3}\right) \sin (3 t)\right) \mathrm{e}^{3 t}}{5}, y(t)=\mathrm{e}^{3 t}\left(c_{1} \cos (3 t)-c_{2} \sin (3 t)\right)\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 59
```

dsolve([diff(x(t),t)=4*x(t)-2*y(t), diff(y(t),t)=5*x(t)+2*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}\left(c_{1} \sin (3 t)+c_{2} \cos (3 t)\right) \\
& y(t)=\frac{\mathrm{e}^{3 t}\left(c_{1} \sin (3 t)+3 c_{2} \sin (3 t)-3 c_{1} \cos (3 t)+c_{2} \cos (3 t)\right)}{2}
\end{aligned}
\]

Solution by Mathematica
Time used: 0.006 (sec). Leaf size: 70
```

DSolve[{x'[t]==4*x[t]-2*y[t],y'[t]==5*x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions }

```
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{3 t}\left(3 c_{1} \cos (3 t)+\left(c_{1}-2 c_{2}\right) \sin (3 t)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{3 t}\left(3 c_{2} \cos (3 t)+\left(5 c_{1}-c_{2}\right) \sin (3 t)\right)
\end{aligned}
\]

\section*{28.3 problem 1(c)}
28.3.1 Solution using Matrix exponential method 4018
28.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4019
28.3.3 Maple step by step solution . 4024

Internal problem ID [6522]
Internal file name [OUTPUT/5770_Sunday_June_05_2022_03_53_46_PM_49252342/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =5 x(t)+4 y(t) \\
y^{\prime}(t) & =-x(t)+y(t)
\end{aligned}
\]

\subsection*{28.3.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
(2 t+1) \mathrm{e}^{3 t} & 4 t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1-2 t)
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
(2 t+1) \mathrm{e}^{3 t} & 4 t \mathrm{e}^{3 t} \\
-t \mathrm{e}^{3 t} & \mathrm{e}^{3 t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
(2 t+1) \mathrm{e}^{3 t} c_{1}+4 t \mathrm{e}^{3 t} c_{2} \\
-t \mathrm{e}^{3 t} c_{1}+\mathrm{e}^{3 t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(2 t c_{1}+4 c_{2} t+c_{1}\right) \\
\mathrm{e}^{3 t}\left(-t c_{1}-2 c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.3.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]-\lambda\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 4 \\
-1 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-6 \lambda+9=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=3
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 4 & 0 \\
-1 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
2 & 4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-2 t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 3 & 2 & 1 & Yes & {\(\left[\begin{array}{c}-2 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 494: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \(\vec{v}_{2}\) by solving
\[
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
\]

Where \(\vec{v}_{1}\) is the normal (rank 1) eigenvector found above. Hence we need to solve
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \\
{\left[\begin{array}{cc}
2 & 4 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\end{aligned}
\]

Solving for \(\vec{v}_{2}\) gives
\[
\vec{v}_{2}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right]
\]

We have found two generalized eigenvectors for eigenvalue 3 . Therefore the two basis solution associated with this eigenvalue are
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-2 \\
1
\end{array}\right] \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
-2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
\]

And
\[
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-2 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-3 \\
1
\end{array}\right]\right) \mathrm{e}^{3 t} \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(-2 t-3) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-2 \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{3 t}(-2 t-3) \\
\mathrm{e}^{3 t}(t+1)
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-2 c_{2} t-2 c_{1}-3 c_{2}\right) \\
\mathrm{e}^{3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 495: Phase plot

\subsection*{28.3.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=5 x(t)+4 y(t), y^{\prime}(t)=-x(t)+y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & 4 \\ -1 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & 4 \\ -1 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[3,\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[3,\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right]
\]
- First solution from eigenvalue 3
\(\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}-2 \\ 1\end{array}\right]\)
- Form of the 2nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=3\) is the eigenvalue, and \(\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})\)
- Note that the \(t\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obtair
- \(\quad\) Substitute \(\vec{x}_{2}(t)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})\)
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{x}_{2}(t)\) to be a solution to the homogeneous system \((A-\lambda \cdot I) \cdot \vec{p}=\vec{v}\)
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue 3
\[
\left(\left[\begin{array}{cc}
5 & 4 \\
-1 & 1
\end{array}\right]-3 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue 3
\[
\vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
\]
- General solution to the system of ODEs
\(\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)\)
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\mathrm{e}^{3 t} c_{2} \cdot\left(t \cdot\left[\begin{array}{c}
-2 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right]\right)
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{3 t}\left(-2 t c_{2}-2 c_{1}-c_{2}\right) \\
\mathrm{e}^{3 t}\left(t c_{2}+c_{1}\right)
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=\mathrm{e}^{3 t}\left(-2 t c_{2}-2 c_{1}-c_{2}\right), y(t)=\mathrm{e}^{3 t}\left(t c_{2}+c_{1}\right)\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 35
```

dsolve([diff (x (t), t)=5*x (t)+4*y (t), diff (y(t),t)=-x(t)+y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\frac{\mathrm{e}^{3 t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)}{4}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 46
DSolve \(\left[\left\{x^{\prime}[t]==5 * x[t]+4 * y[t], y^{\prime}[t]==-x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow \mathrm{Tr}\)
\[
\begin{aligned}
x(t) & \rightarrow e^{3 t}\left(2 c_{1} t+4 c_{2} t+c_{1}\right) \\
y(t) & \rightarrow e^{3 t}\left(c_{2}-\left(c_{1}+2 c_{2}\right) t\right)
\end{aligned}
\]

\section*{28.4 problem 1(d)}
28.4.1 Solution using Matrix exponential method 4028
28.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4029
28.4.3 Maple step by step solution . 4034

Internal problem ID [6523]
Internal file name [OUTPUT/5771_Sunday_June_05_2022_03_53_48_PM_31022794/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =4 x(t)-3 y(t) \\
y^{\prime}(t) & =8 x(t)-6 y(t)
\end{aligned}
\]

\subsection*{28.4.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
-2 \mathrm{e}^{-2 t}+3 & -\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} \\
4-4 \mathrm{e}^{-2 t} & 3 \mathrm{e}^{-2 t}-2
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-2 \mathrm{e}^{-2 t}+3 & -\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2} \\
4-4 \mathrm{e}^{-2 t} & 3 \mathrm{e}^{-2 t}-2
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-2 \mathrm{e}^{-2 t}+3\right) c_{1}+\left(-\frac{3}{2}+\frac{3 \mathrm{e}^{-2 t}}{2}\right) c_{2} \\
\left(4-4 \mathrm{e}^{-2 t}\right) c_{1}+\left(3 \mathrm{e}^{-2 t}-2\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-4 c_{1}+3 c_{2}\right) \mathrm{e}^{-2 t}}{2}+3 c_{1}-\frac{3 c_{2}}{2} \\
\left(-4 c_{1}+3 c_{2}\right) \mathrm{e}^{-2 t}+4 c_{1}-2 c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.4.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
4-\lambda & -3 \\
8 & -6-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+2 \lambda=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-2 \\
& \lambda_{2}=0
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 0 & 1 & real eigenvalue \\
\hline-2 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{array}{r}
\left(\left[\begin{array}{cc}
4 & -3 \\
8 & -6
\end{array}\right]-(-2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
6 & -3 \\
8 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
6 & -3 & 0 \\
8 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{4 R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
6 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
6 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=0\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
4 & -3 \\
8 & -6
\end{array}\right]-(0)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & -3 & 0 \\
8 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
4 & -3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
4 & -3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{3 t}{4}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{4} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{3 t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{3 t}{4} \\
t
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-2 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline 0 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{3}{4} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-2 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-2 t}
\end{aligned}
\]

Since eigenvalue 0 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{0} \\
& =\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right] e^{0}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{-2 t}}{2} \\
\mathrm{e}^{-2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-2 t}}{2}+\frac{3 c_{2}}{4} \\
c_{1} \mathrm{e}^{-2 t}+c_{2}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 496: Phase plot

\subsection*{28.4.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=4 x(t)-3 y(t), y^{\prime}(t)=8 x(t)-6 y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}4 & -3 \\ 8 & -6\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}4 & -3 \\ 8 & -6\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
4 & -3 \\
8 & -6
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-2,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[0,\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-2,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[0,\left[\begin{array}{c}\frac{3}{4} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{2}=\left[\begin{array}{c}
\frac{3}{4} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{-2 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]+\left[\begin{array}{c}
\frac{3 c_{2}}{4} \\
c_{2}
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{-2 t}}{2}+\frac{3 c_{2}}{4} \\
c_{1} \mathrm{e}^{-2 t}+c_{2}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{c_{1} \mathrm{e}^{-2 t}}{2}+\frac{3 c_{2}}{4}, y(t)=c_{1} \mathrm{e}^{-2 t}+c_{2}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 27
```

dsolve([diff(x(t),t)=4*x(t)-3*y(t), diff (y(t),t)=8*x(t)-6*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=c_{1}+c_{2} \mathrm{e}^{-2 t} \\
& y(t)=2 c_{2} \mathrm{e}^{-2 t}+\frac{4 c_{1}}{3}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 59
DSolve[\{x' \(\left.[t]==4 * x[t]-3 * y[t], y^{\prime}[t]==8 * x[t]-6 * y[t]\right\},\{x[t], y[t]\}, t\), IncludeSingularSolutions
\[
\begin{aligned}
& x(t) \rightarrow c_{1}\left(3-2 e^{-2 t}\right)+\frac{3}{2} c_{2}\left(e^{-2 t}-1\right) \\
& y(t) \rightarrow c_{1}\left(4-4 e^{-2 t}\right)+c_{2}\left(3 e^{-2 t}-2\right)
\end{aligned}
\]

\section*{28.5 problem 1(e)}
28.5.1 Solution using Matrix exponential method 4037
28.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4038
28.5.3 Maple step by step solution . 4043

Internal problem ID [6524]
Internal file name [OUTPUT/5772_Sunday_June_05_2022_03_53_49_PM_37503988/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =2 x(t) \\
y^{\prime}(t) & =3 y(t)
\end{aligned}
\]

\subsection*{28.5.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
0 & \mathrm{e}^{3 t}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{2 t} & 0 \\
0 & \mathrm{e}^{3 t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\mathrm{e}^{2 t} c_{1} \\
\mathrm{e}^{3 t} c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.5.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
2-\lambda & 0 \\
0 & 3-\lambda
\end{array}\right]\right)=0
\]

Since the matrix \(A\) is triangular matrix, then the determinant is the product of the elements along the diagonal. Therefore the above becomes
\[
(2-\lambda)(3-\lambda)=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=3
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 2 & 1 & real eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ll|l}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\]

Since the current pivot \(A(1,2)\) is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives
\[
\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{1}\right\}\) and the leading variables are \(\left\{v_{2}\right\}\). Let \(v_{1}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{2}=0\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
t \\
0
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{cc|c}
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=0\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=t\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
0 \\
t
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 2 & 1 & 1 & No & {\(\left[\begin{array}{l}1 \\
0\end{array}\right]\)} \\
\hline 3 & 1 & 1 & No & {\(\left[\begin{array}{l}0 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
0
\end{array}\right] e^{2 t}
\end{aligned}
\]

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right] e^{3 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\mathrm{e}^{2 t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
0 \\
\mathrm{e}^{3 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{3 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 497: Phase plot

\subsection*{28.5.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=2 x(t), y^{\prime}(t)=3 y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[2,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[2,\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 0\end{array}\right]\)
- Consider eigenpair
\[
\left[3,\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{2 t} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\mathrm{e}^{3 t} c_{2} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
c_{1} \mathrm{e}^{2 t} \\
\mathrm{e}^{3 t} c_{2}
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=c_{1} \mathrm{e}^{2 t}, y(t)=\mathrm{e}^{3 t} c_{2}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.0 (sec). Leaf size: 20
```

dsolve([diff(x(t),t)=2*x(t), diff(y(t),t)=3*y(t)],singsol=all)

```
\[
\begin{aligned}
x(t) & =c_{2} \mathrm{e}^{2 t} \\
y(t) & =c_{1} \mathrm{e}^{3 t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.044 (sec). Leaf size: 65
DSolve \(\left[\left\{x^{\prime}[t]==2 * x[t], y^{\prime}[t]==3 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow\) True \(]\)
\[
\begin{aligned}
& x(t) \rightarrow c_{1} e^{2 t} \\
& y(t) \rightarrow c_{2} e^{3 t} \\
& x(t) \rightarrow c_{1} e^{2 t} \\
& y(t) \rightarrow 0 \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow c_{2} e^{3 t} \\
& x(t) \rightarrow 0 \\
& y(t) \rightarrow 0
\end{aligned}
\]

\section*{28.6 problem 1(f)}
28.6.1 Solution using Matrix exponential method 4046
28.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4047
28.6.3 Maple step by step solution . 4052

Internal problem ID [6525]
Internal file name [OUTPUT/5773_Sunday_June_05_2022_03_53_51_PM_12984942/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-4 x(t)-y(t) \\
y^{\prime}(t) & =x(t)-2 y(t)
\end{aligned}
\]

\subsection*{28.6.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(-t+1) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{-3 t}(-t+1) & -t \mathrm{e}^{-3 t} \\
t \mathrm{e}^{-3 t} & \mathrm{e}^{-3 t}(t+1)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{-3 t}(-t+1) c_{1}-t \mathrm{e}^{-3 t} c_{2} \\
t \mathrm{e}^{-3 t} c_{1}+\mathrm{e}^{-3 t}(t+1) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-3 t}\left(c_{1}(t-1)+c_{2} t\right) \\
\mathrm{e}^{-3 t}\left(t c_{1}+c_{2} t+c_{2}\right)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.6.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & -1 \\
1 & -2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+6 \lambda+9=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=-3
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
1 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-3 & 2 & 1 & Yes & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue -3 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 498: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \(\vec{v}_{2}\) by solving
\[
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
\]

Where \(\vec{v}_{1}\) is the normal (rank 1) eigenvector found above. Hence we need to solve
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right] }
\end{aligned}
\]

Solving for \(\vec{v}_{2}\) gives
\[
\vec{v}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\]

We have found two generalized eigenvectors for eigenvalue -3 . Therefore the two basis solution associated with this eigenvalue are
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]
\end{aligned}
\]

And
\[
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \mathrm{e}^{-3 t} \\
& =\left[\begin{array}{c}
-t \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-t \mathrm{e}^{-3 t} \\
\mathrm{e}^{-3 t}(t+1)
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{-3 t}\left(-t c_{2}-c_{1}\right) \\
\mathrm{e}^{-3 t}\left(t c_{2}+c_{1}+c_{2}\right)
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 499: Phase plot

\subsection*{28.6.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=-4 x(t)-y(t), y^{\prime}(t)=x(t)-2 y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-4 & -1 \\ 1 & -2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- \(\quad\) System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-4 & -1 \\ 1 & -2\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[-3,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[-3,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
\]
- First solution from eigenvalue -3
\(\vec{x}_{1}(t)=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)
- Form of the 2 nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=-3\) is the eigenvalue, an \(\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})\)
- Note that the \(t\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obtair
- Substitute \(\vec{x}_{2}(t)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})\)
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{x}_{2}(t)\) to be a solution to the homogeneous system \((A-\lambda \cdot I) \cdot \vec{p}=\vec{v}\)
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue -3
\[
\left(\left[\begin{array}{cc}
-4 & -1 \\
1 & -2
\end{array}\right]-(-3) \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]
- Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
\]
- \(\quad\) Second solution from eigenvalue -3
\[
\vec{x}_{2}(t)=\mathrm{e}^{-3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{-3 t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{e}^{-3 t}\left((t-1) c_{2}+c_{1}\right) \\
\mathrm{e}^{-3 t}\left(t c_{2}+c_{1}\right)
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=-\mathrm{e}^{-3 t}\left((t-1) c_{2}+c_{1}\right), y(t)=\mathrm{e}^{-3 t}\left(t c_{2}+c_{1}\right)\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.016 (sec). Leaf size: 30
```

dsolve([diff(x(t),t)=-4*x(t)-y(t), diff (y (t),t)=x(t)-2*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\mathrm{e}^{-3 t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 43
DSolve \(\left[\left\{x^{\prime}[t]==-4 * x[t]-y[t], y^{\prime}[t]==x[t]-2 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow \mathrm{Tr}\)
\[
\begin{aligned}
& x(t) \rightarrow e^{-3 t}\left(c_{1}(-t)-c_{2} t+c_{1}\right) \\
& y(t) \rightarrow e^{-3 t}\left(\left(c_{1}+c_{2}\right) t+c_{2}\right)
\end{aligned}
\]

\section*{28.7 problem 1(g)}
28.7.1 Solution using Matrix exponential method 4056
28.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4057
28.7.3 Maple step by step solution . 4062

Internal problem ID [6526]
Internal file name [OUTPUT/5774_Sunday_June_05_2022_03_53_52_PM_6362923/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(g).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =7 x(t)+6 y(t) \\
y^{\prime}(t) & =2 x(t)+6 y(t)
\end{aligned}
\]

\subsection*{28.7.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{3 t}}{7}+\frac{4 \mathrm{e}^{10 t}}{7} & \frac{6 \mathrm{e}^{10 t}}{7}-\frac{6 \mathrm{e}^{3 t}}{7} \\
\frac{2 \mathrm{e}^{10 t}}{7}-\frac{2 \mathrm{e}^{3 t}}{7} & \frac{4 \mathrm{e}^{3 t}}{7}+\frac{3 \mathrm{e}^{10 t}}{7}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{3 \mathrm{e}^{3 t}}{7}+\frac{4 \mathrm{e}^{10 t}}{7} & \frac{6 \mathrm{e}^{10 t}}{7}-\frac{6 \mathrm{e}^{3 t}}{7} \\
\frac{2 \mathrm{e}^{10 t}}{7}-\frac{2 \mathrm{e}^{3 t}}{7} & \frac{4 \mathrm{e}^{3 t}}{7}+\frac{3 \mathrm{e}^{10 t}}{7}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(\frac{3 \mathrm{e}^{3 t}}{7}+\frac{4 \mathrm{e}^{10 t}}{7}\right) c_{1}+\left(\frac{6 \mathrm{e}^{10 t}}{7}-\frac{6 \mathrm{e}^{3 t}}{7}\right) c_{2} \\
\left(\frac{2 \mathrm{e}^{10 t}}{7}-\frac{2 \mathrm{e}^{3 t}}{7}\right) c_{1}+\left(\frac{4 \mathrm{e}^{3 t}}{7}+\frac{3 \mathrm{e}^{10 t}}{7}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(4 c_{1}+6 c_{2}\right) \mathrm{e}^{10 t}}{7}+\frac{3 \mathrm{e}^{3 t}\left(-2 c_{2}+c_{1}\right)}{7} \\
\frac{\left(2 c_{1}+3 c_{2}\right) \mathrm{e}^{10 t}}{7}-\frac{2 \mathrm{e}^{3 t}\left(-2 c_{2}+c_{1}\right)}{7}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.7.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
7-\lambda & 6 \\
2 & 6-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-13 \lambda+30=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=3 \\
& \lambda_{2}=10
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline 10 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
4 & 6 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 6 & 0 \\
2 & 3 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ll|l}
4 & 6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
4 & 6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{3 t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{3 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{3 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-3 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=10\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]-(10)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3 & 6 \\
2 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3 & 6 & 0 \\
2 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{2 R_{1}}{3} \Longrightarrow\left[\begin{array}{cc|c}
-3 & 6 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3 & 6 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=2 t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 3 & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{3}{2} \\
1\end{array}\right]\)} \\
\hline 10 & 1 & 1 & No & {\(\left[\begin{array}{c}2 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{3 t} \\
& =\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
\]

Since eigenvalue 10 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{10 t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{10 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{3 \mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \mathrm{e}^{10 t} \\
\mathrm{e}^{10 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 c_{1} \mathrm{e}^{3 t}}{2}+2 c_{2} \mathrm{e}^{10 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{10 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 500: Phase plot

\subsection*{28.7.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=7 x(t)+6 y(t), y^{\prime}(t)=2 x(t)+6 y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}7 & 6 \\ 2 & 6\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}7 & 6 \\ 2 & 6\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
7 & 6 \\
2 & 6
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[3,\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]\right],\left[10,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[3,\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}-\frac{3}{2} \\ 1\end{array}\right]\)
- Consider eigenpair
\(\left[10,\left[\begin{array}{l}2 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{10 t} \cdot\left[\begin{array}{l}2 \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{10 t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{3 c_{1} \mathrm{e}^{3 t}}{2}+2 c_{2} \mathrm{e}^{10 t} \\
c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{10 t}
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=-\frac{3 c_{1} \mathrm{e}^{3 t}}{2}+2 c_{2} \mathrm{e}^{10 t}, y(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{10 t}\right\}
\]

Solution by Maple
Time used: 0.015 (sec). Leaf size: 36
```

dsolve([diff(x(t),t)=7*x(t)+6*y(t), diff (y(t),t)=2*x(t)+6*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{10 t}+c_{2} \mathrm{e}^{3 t} \\
& y(t)=\frac{c_{1} \mathrm{e}^{10 t}}{2}-\frac{2 c_{2} \mathrm{e}^{3 t}}{3}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 74
DSolve \(\left[\left\{x^{\prime}[t]==7 * x[t]+6 * y[t], y^{\prime}[t]==2 * x[t]+6 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow\)
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{7} e^{3 t}\left(c_{1}\left(4 e^{7 t}+3\right)+6 c_{2}\left(e^{7 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{7} e^{3 t}\left(2 c_{1}\left(e^{7 t}-1\right)+c_{2}\left(3 e^{7 t}+4\right)\right)
\end{aligned}
\]

\section*{28.8 problem 1(h)}
28.8.1 Solution using Matrix exponential method 4065
28.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4066
28.8.3 Maple step by step solution . 4071

Internal problem ID [6527]
Internal file name [OUTPUT/5775_Sunday_June_05_2022_03_53_54_PM_78998523/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 1(h).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)-2 y(t) \\
y^{\prime}(t) & =4 x(t)+5 y(t)
\end{aligned}
\]

\subsection*{28.8.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{3 t} \cos (2 t)-\mathrm{e}^{3 t} \sin (2 t) & -\mathrm{e}^{3 t} \sin (2 t) \\
2 \mathrm{e}^{3 t} \sin (2 t) & \mathrm{e}^{3 t} \cos (2 t)+\mathrm{e}^{3 t} \sin (2 t)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(\cos (2 t)-\sin (2 t)) & -\mathrm{e}^{3 t} \sin (2 t) \\
2 \mathrm{e}^{3 t} \sin (2 t) & \mathrm{e}^{3 t}(\cos (2 t)+\sin (2 t))
\end{array}\right]
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{3 t}(\cos (2 t)-\sin (2 t)) & -\mathrm{e}^{3 t} \sin (2 t) \\
2 \mathrm{e}^{3 t} \sin (2 t) & \mathrm{e}^{3 t}(\cos (2 t)+\sin (2 t))
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{3 t}(\cos (2 t)-\sin (2 t)) c_{1}-\mathrm{e}^{3 t} \sin (2 t) c_{2} \\
2 \mathrm{e}^{3 t} \sin (2 t) c_{1}+\mathrm{e}^{3 t}(\cos (2 t)+\sin (2 t)) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\left(-c_{1}-c_{2}\right) \sin (2 t)+c_{1} \cos (2 t)\right) \mathrm{e}^{3 t} \\
\mathrm{e}^{3 t}\left(2 c_{1}+c_{2}\right) \sin (2 t)+\mathrm{e}^{3 t} \cos (2 t) c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{28.8.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -2 \\
4 & 5-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-6 \lambda+13=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=3+2 i \\
& \lambda_{2}=3-2 i
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(3-2 i\) & 1 & complex eigenvalue \\
\hline \(3+2 i\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=3-2 i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]-(3-2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2+2 i & -2 \\
4 & 2+2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-2+2 i & -2 & 0 \\
4 & 2+2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1+i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2+2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2+2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\left(-\frac{1}{2}-\frac{i}{2}\right) t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}-\frac{i}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1-i \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=3+2 i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]-(3+2 i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2-2 i & -2 \\
4 & 2-2 i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-2-2 i & -2 & 0 \\
4 & 2-2 i & 0
\end{array}\right]} \\
R_{2}=R_{2}+(1-i) R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2-2 i & -2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2-2 i & -2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\left(-\frac{1}{2}+\frac{i}{2}\right) t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2}+\frac{i}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{\mathrm{I}}{2}\right) t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1+i \\
2
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline \(3+2 i\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{2}+\frac{i}{2} \\
1\end{array}\right]\)} \\
\hline \(3-2 i\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{2}-\frac{i}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) \mathrm{e}^{(3+2 i) t} \\
\mathrm{e}^{(3+2 i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{i}{2}\right) \mathrm{e}^{(3-2 i) t} \\
\mathrm{e}^{(3-2 i) t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\left(-\frac{1}{2}+\frac{i}{2}\right) c_{1} \mathrm{e}^{(3+2 i) t}+\left(-\frac{1}{2}-\frac{i}{2}\right) c_{2} \mathrm{e}^{(3-2 i) t} \\
c_{1} \mathrm{e}^{(3+2 i) t}+c_{2} \mathrm{e}^{(3-2 i) t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 501: Phase plot

\subsection*{28.8.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=x(t)-2 y(t), y^{\prime}(t)=4 x(t)+5 y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & -2 \\ 4 & 5\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
1 & -2 \\
4 & 5
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[3-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right],\left[3+2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}+\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[3-2 \mathrm{I},\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution from eigenpair
\[
\mathrm{e}^{(3-2 \mathrm{I}) t} \cdot\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{3 t} \cdot(\cos (2 t)-\mathrm{I} \sin (2 t)) \cdot\left[\begin{array}{c}
-\frac{1}{2}-\frac{\mathrm{I}}{2} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\left(-\frac{1}{2}-\frac{\mathrm{I}}{2}\right)(\cos (2 t)-\mathrm{I} \sin (2 t)) \\
\cos (2 t)-\mathrm{I} \sin (2 t)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\(\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)\)
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
-\frac{\cos (2 t)}{2}-\frac{\sin (2 t)}{2} \\
\cos (2 t)
\end{array}\right]+\mathrm{e}^{3 t} c_{2} \cdot\left[\begin{array}{c}
\frac{\sin (2 t)}{2}-\frac{\cos (2 t)}{2} \\
-\sin (2 t)
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\left(\left(c_{1}+c_{2}\right) \cos (2 t)+\sin (2 t)\left(c_{1}-c_{2}\right)\right) \mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=-\frac{\left(\left(c_{1}+c_{2}\right) \cos (2 t)+\sin (2 t)\left(c_{1}-c_{2}\right)\right) \mathrm{e}^{3 t}}{2}, y(t)=\mathrm{e}^{3 t}\left(c_{1} \cos (2 t)-c_{2} \sin (2 t)\right)\right\}
\]

Solution by Maple
Time used: 0.016 (sec). Leaf size: 58
dsolve([diff \((x(t), t)=x(t)-2 * y(t), \operatorname{diff}(y(t), t)=4 * x(t)+5 * y(t)]\), singsol=all)
\[
\begin{aligned}
& x(t)=\mathrm{e}^{3 t}\left(c_{1} \sin (2 t)+c_{2} \cos (2 t)\right) \\
& y(t)=-\mathrm{e}^{3 t}\left(c_{1} \sin (2 t)-c_{2} \sin (2 t)+c_{1} \cos (2 t)+c_{2} \cos (2 t)\right)
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 59
DSolve \(\left[\left\{x^{\prime}[t]==x[t]-2 * y[t], y^{\prime}[t]==4 * x[t]+5 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(\rightarrow\) T
\[
\begin{aligned}
x(t) & \rightarrow e^{3 t}\left(c_{1} \cos (2 t)-\left(c_{1}+c_{2}\right) \sin (2 t)\right) \\
y(t) & \rightarrow e^{3 t}\left(c_{2} \cos (2 t)+\left(2 c_{1}+c_{2}\right) \sin (2 t)\right)
\end{aligned}
\]

\section*{28.9 problem 5(b)}
28.9.1 Solution using Matrix exponential method 4074
28.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4076
28.9.3 Maple step by step solution . 4081

Internal problem ID [6528]
Internal file name [OUTPUT/5776_Sunday_June_05_2022_03_53_56_PM_44093963/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section 10.3 Homogeneous Linear Systems with Constant Coefficients. Page 387
Problem number: 5(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
& x^{\prime}(t)=x(t)+y(t)-5 t+2 \\
& y^{\prime}(t)=4 x(t)-2 y(t)-8 t-8
\end{aligned}
\]

\subsection*{28.9.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-5 t+2 \\
-8 t-8
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t} c_{1}}{5}+\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t} c_{2}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t} c_{1}}{5}+\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t} c_{2}}{5}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{\mathrm{e}^{-3 t}\left(\left(4 c_{1}+c_{2}\right) \mathrm{e}^{5 t}-c_{2}+c_{1}\right)}{5} \\
\frac{4\left(\left(c_{1}+\frac{c_{2}}{4}\right) \mathrm{e}^{5 t}+c_{2}-c_{1}\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-2 t}}{5} & -\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-2 t}}{5} & -\frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-2 t}}{5} & \frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right]\left[\begin{array}{l}
-5 t+2 \\
-8 t-8
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]\left[\begin{array}{c}
\frac{\left((t+3) \mathrm{e}^{5 t}+14 t+7\right) \mathrm{e}^{-2 t}}{5} \\
-\frac{\left(4 \mathrm{e}^{5 t} t+12 \mathrm{e}^{5 t}-14 t-7\right) \mathrm{e}^{-2 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{l}
2+3 t \\
2 t-1
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\left(4 \mathrm{e}^{5 t} c_{1}+\mathrm{e}^{5 t} c_{2}+15 t \mathrm{e}^{3 t}+10 \mathrm{e}^{3 t}+c_{1}-c_{2}\right) \mathrm{e}^{-3 t}}{5} \\
\frac{\left(4 \mathrm{e}^{5 t} c_{1}+\mathrm{e}^{5 t} c_{2}+10 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}-4 c_{1}+4 c_{2}\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\end{aligned}
\]

\subsection*{28.9.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-5 t+2 \\
-8 t-8
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & -2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+\lambda-6=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-3 \\
& \lambda_{2}=2
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-3 & 1 & real eigenvalue \\
\hline 2 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{array}{r}
\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 1 & 0 \\
4 & 1 & 0
\end{array}\right]} \\
R_{2}=R_{2}-R_{1} \Longrightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
4 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t}{4}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{t}{4} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
4 & -4 & 0
\end{array}\right]} \\
R_{2}=R_{2}+4 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=t\right\}\)

Hence the solution is
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{l}
t \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-3 & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{4} \\
1\end{array}\right]\)} \\
\hline 2 & 1 & 1 & No & {\(\left[\begin{array}{c}1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -3 is real and distinct then the
corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-3 t} \\
& =\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right] e^{-3 t}
\end{aligned}
\]

Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{2 t} \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-3 t}}{4} \\
\mathrm{e}^{-3 t}
\end{array}\right]+c_{2}\left[\begin{array}{l}
\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
-\frac{4 \mathrm{e}^{3 t}}{5} & \frac{4 \mathrm{e}^{3 t}}{5} \\
\frac{4 \mathrm{e}^{-2 t}}{5} & \frac{\mathrm{e}^{-2 t}}{5}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t}
\end{array}\right] \int\left[\begin{array}{cc}
-\frac{4 \mathrm{e}^{3 t}}{5} & \frac{4 \mathrm{e}^{3 t}}{5} \\
\frac{4 \mathrm{e}^{-2 t}}{5} & \frac{\mathrm{e}^{-2 t}}{5}
\end{array}\right]\left[\begin{array}{c}
-5 t+2 \\
-8 t-8
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t}
\end{array}\right] \int\left[\begin{array}{c}
4 \mathrm{e}^{3 t}\left(-2-\frac{3 t}{5}\right) \\
-\frac{28 t \mathrm{e}^{-2 t}}{5}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{c}
-\frac{4 \mathrm{e}^{3 t}(t+3)}{5} \\
\frac{7(2 t+1) \mathrm{e}^{-2 t}}{5}
\end{array}\right] \\
& =\left[\begin{array}{c}
2+3 t \\
2 t-1
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-3 t}}{4} \\
c_{1} \mathrm{e}^{-3 t}
\end{array}\right]+\left[\begin{array}{c}
c_{2} \mathrm{e}^{2 t} \\
c_{2} \mathrm{e}^{2 t}
\end{array}\right]+\left[\begin{array}{c}
2+3 t \\
2 t-1
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(4 c_{2} \mathrm{e}^{5 t}+12 t \mathrm{e}^{3 t}+8 \mathrm{e}^{3 t}-c_{1}\right) \mathrm{e}^{-3 t}}{4} \\
\left(c_{2} \mathrm{e}^{5 t}+2 t \mathrm{e}^{3 t}-\mathrm{e}^{3 t}+c_{1}\right) \mathrm{e}^{-3 t}
\end{array}\right]
\]

\subsection*{28.9.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+y(t)-5 t+2, y^{\prime}(t)=4 x(t)-2 y(t)-8 t-8\right]
\]
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-5 t+2 \\
-8 t-8
\end{array}\right]
\]
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & 1 \\ 4 & -2\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}-5 t+2 \\ -8 t-8\end{array}\right]\)
- Define the forcing function
\(\vec{f}(t)=\left[\begin{array}{l}-5 t+2 \\ -8 t-8\end{array}\right]\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right]
\]
- Rewrite the system as
\(\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-3,\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-3,\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{-3 t} \cdot\left[\begin{array}{c}-\frac{1}{4} \\ 1\end{array}\right]\)
- Consider eigenpair
\(\left[2,\left[\begin{array}{l}1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]\)
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}(\) \(\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)\)
\(\square \quad\) Fundamental matrix
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst \(\phi(t)=\left[\begin{array}{cc}-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\ \mathrm{e}^{-3 t} & \mathrm{e}^{2 t}\end{array}\right]\)
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th
\[
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
\]
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-3 t}}{4} & \mathrm{e}^{2 t} \\
\mathrm{e}^{-3 t} & \mathrm{e}^{2 t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{1}{4} & 1 \\
1 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{ll}
\frac{\left(4 \mathrm{e}^{5 t}+1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} \\
\frac{4\left(\mathrm{e}^{5 t}-1\right) \mathrm{e}^{-3 t}}{5} & \frac{\left(\mathrm{e}^{5 t}+4\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution
\(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs
\(\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\[
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
\]
- Multiply by the inverse of the fundamental matrix
\[
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
\]
- Integrate to solve for \(\vec{v}(t)\)
\[
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
\]
- Plug \(\vec{v}(t)\) into the equation for the particular solution
\[
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
\]
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{l}
\frac{\left(-7 \mathrm{e}^{5 t}+15 t \mathrm{e}^{3 t}+10 \mathrm{e}^{3 t}-3\right) \mathrm{e}^{-3 t}}{5} \\
\frac{\left(-7 \mathrm{e}^{5 t}+10 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}+12\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{\left(-7 \mathrm{e}^{5 t}+15 t \mathrm{e}^{3 t}+10 \mathrm{e}^{3 t}-3\right) \mathrm{e}^{-3 t}}{5} \\
\frac{\left(-7 \mathrm{e}^{5 t}+10 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}+12\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(20 c_{2} \mathrm{e}^{5 t}-28 \mathrm{e}^{5 t}+60 t \mathrm{e}^{3 t}+40 \mathrm{e}^{3 t}-5 c_{1}-12\right) \mathrm{e}^{-3 t}}{20} \\
\frac{\left(5 c_{2} \mathrm{e}^{5 t}-7 \mathrm{e}^{5 t}+10 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}+5 c_{1}+12\right) \mathrm{e}^{-3 t}}{5}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(20 c_{2} \mathrm{e}^{5 t}-28 \mathrm{e}^{5 t}+60 t \mathrm{e}^{3 t}+40 \mathrm{e}^{3 t}-5 c_{1}-12\right) \mathrm{e}^{-3 t}}{20}, y(t)=\frac{\left(5 c_{2} \mathrm{e}^{5 t}-7 \mathrm{e}^{5 t}+10 t \mathrm{e}^{3 t}-5 \mathrm{e}^{3 t}+5 c_{1}+12\right) \mathrm{e}^{-3 t}}{5}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 43
dsolve([diff \((x(t), t)=x(t)+y(t)-5 * t+2, \operatorname{diff}(y(t), t)=4 * x(t)-2 * y(t)-8 * t-8]\), singsol=all)
\[
\begin{aligned}
& x(t)=c_{2} \mathrm{e}^{-3 t}+c_{1} \mathrm{e}^{2 t}+3 t+2 \\
& y(t)=-4 c_{2} \mathrm{e}^{-3 t}+c_{1} \mathrm{e}^{2 t}-1+2 t
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.15 (sec). Leaf size: 92
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+y[t]-5 * t+2, y^{\prime}[t]==4 * x[t]-2 * y[t]-8 * t-8\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolu
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{5} e^{-3 t}\left(5 e^{3 t}(3 t+2)+\left(4 c_{1}+c_{2}\right) e^{5 t}+c_{1}-c_{2}\right) \\
& y(t) \rightarrow \frac{1}{5} e^{-3 t}\left(5 e^{3 t}(2 t-1)+\left(4 c_{1}+c_{2}\right) e^{5 t}-4 c_{1}+4 c_{2}\right)
\end{aligned}
\]

\section*{29 Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400}
29.1 problem 2(a) . 4087
29.2 problem 2(b) . 4096
29.3 problem 2(c) . 4105
29.4 problem 2(d) . 4112
29.5 problem 3(a) . 4121
29.6 problem 3(b) . 4131
29.7 problem 3(c) . 4139
29.8 problem 3(d) . 4148
29.9 problem 3(e) . 4157
29.10problem 3(f) . 4170
29.11problem 4(a) . 4186
29.12problem 4(b) . 4199
29.13problem 4(c) . 4211

\section*{29.1 problem 2(a)}
29.1.1 Solution using Matrix exponential method 4087
29.1.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4088
29.1.3 Maple step by step solution . 4093

Internal problem ID [6529]
Internal file name [OUTPUT/5777_Sunday_June_05_2022_03_53_59_PM_74613779/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 2(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =3 x(t)-4 y(t) \\
y^{\prime}(t) & =4 x(t)-7 y(t)
\end{aligned}
\]

\subsection*{29.1.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\left(4 \mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} & -\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} \\
\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} & -\frac{\left(\mathrm{e}^{6 t}-4\right) \mathrm{e}^{-5 t}}{3}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\left(4 \mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} & -\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} \\
\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t}}{3} & -\frac{\left(\mathrm{e}^{6 t}-4\right) \mathrm{e}^{-5 t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(4 \mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t} c_{1}}{3}-\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t} c_{2}}{3} \\
\frac{2\left(\mathrm{e}^{6 t}-1\right) \mathrm{e}^{-5 t} c_{1}}{3}-\frac{\left(\mathrm{e}^{6 t}-4\right) \mathrm{e}^{-5 t} c_{2}}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-5 t}\left(2\left(-c_{2}+2 c_{1}\right) \mathrm{e}^{6 t}+2 c_{2}-c_{1}\right)}{3} \\
\frac{2 \mathrm{e}^{-5 t}\left(\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{6 t}+2 c_{2}-c_{1}\right)}{3}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.1.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
3 & -4 \\
4 & -7
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -4 \\
4 & -7
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -4 \\
4 & -7-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+4 \lambda-5=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-5
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline-5 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-5\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{array}{r}
\left(\left[\begin{array}{cc}
3 & -4 \\
4 & -7
\end{array}\right]-(-5)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
8 & -4 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
8 & -4 & 0 \\
4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
8 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
8 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
3 & -4 \\
4 & -7
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & -4 \\
4 & -8
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & -4 & 0 \\
4 & -8 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2 & -4 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
2 & -4 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=2 t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
2 t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=t\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
2 t \\
t
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 1 & 1 & 1 & No & {\(\left[\begin{array}{c}2 \\
1\end{array}\right]\)} \\
\hline-5 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{l}
2 \\
1
\end{array}\right] e^{t}
\end{aligned}
\]

Since eigenvalue -5 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-5 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{-5 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
2 \mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{-5 t}}{2} \\
\mathrm{e}^{-5 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(4 c_{1} \mathrm{e}^{6 t}+c_{2}\right) \mathrm{e}^{-5 t}}{2} \\
\left(c_{1} \mathrm{e}^{6 t}+c_{2}\right) \mathrm{e}^{-5 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 502: Phase plot

\subsection*{29.1.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=3 x(t)-4 y(t), y^{\prime}(t)=4 x(t)-7 y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & -4 \\ 4 & -7\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & -4 \\ 4 & -7\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
3 & -4 \\
4 & -7
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-5,\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-5,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-5 t} \cdot\left[\begin{array}{l}
\frac{1}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[1,\left[\begin{array}{l}2 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{t} .\left[\begin{array}{l}2 \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{-5 t} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(4 c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}}{2} \\
\left(c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(4 c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}}{2}, y(t)=\left(c_{2} \mathrm{e}^{6 t}+c_{1}\right) \mathrm{e}^{-5 t}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 32
dsolve([diff \((x(t), t)=3 * x(t)-4 * y(t), \operatorname{diff}(y(t), t)=4 * x(t)-7 * y(t)]\), singsol=all)
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{-5 t}+c_{2} \mathrm{e}^{t} \\
& y(t)=2 c_{1} \mathrm{e}^{-5 t}+\frac{c_{2} \mathrm{e}^{t}}{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 73
DSolve \(\left[\left\{x^{\prime}[t]==3 * x[t]-4 * y[t], y^{\prime}[t]==4 * x[t]-7 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions
\[
\begin{aligned}
x(t) & \rightarrow \frac{1}{3} e^{-5 t}\left(c_{1}\left(4 e^{6 t}-1\right)-2 c_{2}\left(e^{6 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{3} e^{-5 t}\left(2 c_{1}\left(e^{6 t}-1\right)-c_{2}\left(e^{6 t}-4\right)\right)
\end{aligned}
\]

\section*{29.2 problem 2(b)}
29.2.1 Solution using Matrix exponential method 4096
29.2.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4097
29.2.3 Maple step by step solution . 4102

Internal problem ID [6530]
Internal file name [OUTPUT/5778_Sunday_June_05_2022_03_54_01_PM_19296232/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 2(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =4 x(t)+y(t)
\end{aligned}
\]

\subsection*{29.2.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} \\
\mathrm{e}^{3 t}-\mathrm{e}^{-t} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{1}+\left(\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4}\right) c_{2} \\
\left(\mathrm{e}^{3 t}-\mathrm{e}^{-t}\right) c_{1}+\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(-c_{2}+2 c_{1}\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{3 t}}{2} \\
\frac{\left(c_{2}-2 c_{1}\right) \mathrm{e}^{-t}}{2}+\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{3 t}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.2.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda-3=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=3
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ll|l}
2 & 1 & 0 \\
4 & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=3\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]-(3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
4 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline 3 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{c_{1} \mathrm{e}^{-t}}{2}+\frac{c_{2} \mathrm{e}^{3 t}}{2} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{3 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 503: Phase plot

\subsection*{29.2.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+y(t), y^{\prime}(t)=4 x(t)+y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[3,\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{l}\frac{1}{2} \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=\mathrm{e}^{-t} c_{1} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+\mathrm{e}^{3 t} c_{2} \cdot\left[\begin{array}{c}
\frac{1}{2} \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t} c_{1}}{2}+\frac{\mathrm{e}^{3 t} c_{2}}{2} \\
\mathrm{e}^{-t} c_{1}+\mathrm{e}^{3 t} c_{2}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=-\frac{\mathrm{e}^{-t} c_{1}}{2}+\frac{\mathrm{e}^{3 t} c_{2}}{2}, y(t)=\mathrm{e}^{-t} c_{1}+\mathrm{e}^{3 t} c_{2}\right\}
\]

Solution by Maple
Time used: 0.016 (sec). Leaf size: 36
```

dsolve([diff(x(t),t)=x(t)+y(t), diff (y(t),t)=4*x(t)+y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{3 t}+c_{2} \mathrm{e}^{-t} \\
& y(t)=2 c_{1} \mathrm{e}^{3 t}-2 c_{2} \mathrm{e}^{-t}
\end{aligned}
\]
\(\sqrt{ }\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 70
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+y[t], y^{\prime}[t]==4 * x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(->\) True \(]\)
\[
\begin{aligned}
x(t) & \rightarrow \frac{1}{4} e^{-t}\left(2 c_{1}\left(e^{4 t}+1\right)+c_{2}\left(e^{4 t}-1\right)\right) \\
y(t) & \rightarrow \frac{1}{2} e^{-t}\left(2 c_{1}\left(e^{4 t}-1\right)+c_{2}\left(e^{4 t}+1\right)\right)
\end{aligned}
\]

\section*{29.3 problem 2(c)}
29.3.1 Solution using Matrix exponential method 4105
29.3.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4106

Internal problem ID [6531]
Internal file name [OUTPUT/5779_Sunday_June_05_2022_03_54_02_PM_64605471/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400 Problem number: 2(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-3 x(t)+\sqrt{2} y(t) \\
y^{\prime}(t) & =\sqrt{2} x(t)-2 y(t)
\end{aligned}
\]

\subsection*{29.3.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & -\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right)}{3} \\
-\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3} & -\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right)}{3} \\
-\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right)}{3} & \frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{2 \mathrm{e}^{-4 t}}{3}+\frac{\mathrm{e}^{-t}}{3}\right) c_{1}-\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right) c_{2}}{3} \\
-\frac{\sqrt{2}\left(-\mathrm{e}^{-t}+\mathrm{e}^{-4 t}\right) c_{1}}{3}+\left(\frac{\mathrm{e}^{-4 t}}{3}+\frac{2 \mathrm{e}^{-t}}{3}\right) c_{2}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.3.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-3-\lambda & \sqrt{2} \\
\sqrt{2} & -2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+5 \lambda+4=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-1 \\
& \lambda_{2}=-4
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline-4 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-4\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-(-4)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
1 & \sqrt{2} \\
\sqrt{2} & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
\sqrt{2} & 2 & 0
\end{array}\right]} \\
R_{2}=R_{2}-\sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
1 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
1 & \sqrt{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\sqrt{2} t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\sqrt{2} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
-3 & \sqrt{2} \\
\sqrt{2} & -2
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-2 & \sqrt{2} \\
\sqrt{2} & -1
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 & \sqrt{2} & 0 \\
\sqrt{2} & -1 & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{\sqrt{2} R_{1}}{2} \Longrightarrow\left[\begin{array}{cc|c}
-2 & \sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2 & \sqrt{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{\sqrt{2} t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{\sqrt{2} t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\sqrt{2} \\
2
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{\sqrt{2}}{2} \\
1\end{array}\right]\)} \\
\hline-4 & 1 & 1 & No & {\(\left[\begin{array}{c}-\sqrt{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue -1 is real and distinct then the
corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{-t} \\
& =\left[\begin{array}{c}
\frac{\sqrt{2}}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Since eigenvalue -4 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-4 t} \\
& =\left[\begin{array}{c}
-\sqrt{2} \\
1
\end{array}\right] e^{-4 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\sqrt{2} \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\sqrt{2} \mathrm{e}^{-4 t} \\
\mathrm{e}^{-4 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{2} \mathrm{e}^{-t}\left(-2 c_{2} \mathrm{e}^{-3 t}+c_{1}\right)}{2} \\
c_{1} \mathrm{e}^{-t}+c_{2} \mathrm{e}^{-4 t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 504: Phase plot
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 41
```

dsolve([diff (x(t),t)=-3*x (t)+sqrt(2)*y(t), diff (y(t),t)=sqrt(2)*x(t)-2*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{-4 t} c_{1}+c_{2} \mathrm{e}^{-t} \\
& y(t)=\frac{\left(-\mathrm{e}^{-4 t} c_{1}+2 c_{2} \mathrm{e}^{-t}\right) \sqrt{2}}{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.004 (sec). Leaf size: 80
DSolve \(\left[\left\{x^{\prime}[t]==-3 * x[t]+S q r t[2] * y[t], y^{\prime}[t]==\operatorname{Sqrt}[2] * x[t]-2 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingula
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{3} e^{-4 t}\left(c_{1}\left(e^{3 t}+2\right)+\sqrt{2} c_{2}\left(e^{3 t}-1\right)\right) \\
& y(t) \rightarrow \frac{1}{3} e^{-4 t}\left(\sqrt{2} c_{1}\left(e^{3 t}-1\right)+c_{2}\left(2 e^{3 t}+1\right)\right)
\end{aligned}
\]

\section*{29.4 problem 2(d)}
29.4.1 Solution using Matrix exponential method 4112
29.4.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4113
29.4.3 Maple step by step solution . 4118

Internal problem ID [6532]
Internal file name [OUTPUT/5780_Sunday_June_05_2022_03_54_04_PM_36029301/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 2(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
& x^{\prime}(t)=5 x(t)+3 y(t) \\
& y^{\prime}(t)=-6 x(t)-4 y(t)
\end{aligned}
\]

\subsection*{29.4.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
-\mathrm{e}^{-t}+2 \mathrm{e}^{2 t} & \mathrm{e}^{2 t}-\mathrm{e}^{-t} \\
-2 \mathrm{e}^{2 t}+2 \mathrm{e}^{-t} & 2 \mathrm{e}^{-t}-\mathrm{e}^{2 t}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\mathrm{e}^{-t}+2 \mathrm{e}^{2 t} & \mathrm{e}^{2 t}-\mathrm{e}^{-t} \\
-2 \mathrm{e}^{2 t}+2 \mathrm{e}^{-t} & 2 \mathrm{e}^{-t}-\mathrm{e}^{2 t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-\mathrm{e}^{-t}+2 \mathrm{e}^{2 t}\right) c_{1}+\left(\mathrm{e}^{2 t}-\mathrm{e}^{-t}\right) c_{2} \\
\left(-2 \mathrm{e}^{2 t}+2 \mathrm{e}^{-t}\right) c_{1}+\left(2 \mathrm{e}^{-t}-\mathrm{e}^{2 t}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(-c_{1}-c_{2}\right) \mathrm{e}^{-t}+2\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{2 t} \\
\left(2 c_{1}+2 c_{2}\right) \mathrm{e}^{-t}-2\left(c_{1}+\frac{c_{2}}{2}\right) \mathrm{e}^{2 t}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.4.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
5-\lambda & 3 \\
-6 & -4-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-\lambda-2=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=2 \\
& \lambda_{2}=-1
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 2 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]-(-1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
6 & 3 \\
-6 & -3
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
6 & 3 & 0 \\
-6 & -3 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
6 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
6 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=2\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]-(2)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
3 & 3 & 0 \\
-6 & -6 & 0
\end{array}\right]} \\
R_{2}=R_{2}+2 R_{1} \Longrightarrow\left[\begin{array}{ll|l}
3 & 3 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
3 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 2 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 2 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{2 t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] e^{2 t}
\end{aligned}
\]

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{2 t} \\
\mathrm{e}^{2 t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{2 t}-\frac{c_{2} \mathrm{e}^{-t}}{2} \\
c_{1} \mathrm{e}^{2 t}+c_{2} \mathrm{e}^{-t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 505: Phase plot

\subsection*{29.4.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=5 x(t)+3 y(t), y^{\prime}(t)=-6 x(t)-4 y(t)\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}5 & 3 \\ -6 & -4\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
5 & 3 \\
-6 & -4
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right],\left[2,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\(\left[2,\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right]\)
- Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{2 t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=\mathrm{e}^{-t} c_{1} \cdot\left[\begin{array}{c}
-\frac{1}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{2 t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-t} c_{1}}{2}-c_{2} \mathrm{e}^{2 t} \\
\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{2 t}
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=-\frac{\mathrm{e}^{-t} c_{1}}{2}-c_{2} \mathrm{e}^{2 t}, y(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{2 t}\right\}
\]

Solution by Maple
Time used: 0.016 (sec). Leaf size: 36
dsolve([diff \((x(t), t)=5 * x(t)+3 * y(t), \operatorname{diff}(y(t), t)=-6 * x(t)-4 * y(t)]\), singsol \(=a l l)\)
\[
\begin{aligned}
& x(t)=\mathrm{e}^{-t} c_{1}+c_{2} \mathrm{e}^{2 t} \\
& y(t)=-2 \mathrm{e}^{-t} c_{1}-c_{2} \mathrm{e}^{2 t}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.003 (sec). Leaf size: 66
DSolve \(\left[\left\{x^{\prime}[t]==5 * x[t]+3 * y[t], y^{\prime}[t]==-6 * x[t]-4 * y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions
\[
\begin{aligned}
& x(t) \rightarrow e^{-t}\left(c_{1}\left(2 e^{3 t}-1\right)+c_{2}\left(e^{3 t}-1\right)\right) \\
& y(t) \rightarrow e^{-t}\left(-2 c_{1}\left(e^{3 t}-1\right)-c_{2}\left(e^{3 t}-2\right)\right)
\end{aligned}
\]

\section*{29.5 problem 3(a)}
29.5.1 Solution using Matrix exponential method 4121
29.5.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4122
29.5.3 Maple step by step solution . 4127

Internal problem ID [6533]
Internal file name [OUTPUT/5781_Sunday_June_05_2022_03_54_06_PM_72724581/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 3(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Solve
\[
\begin{aligned}
x^{\prime}(t) & =3 x(t)+2 y(t) \\
y^{\prime}(t) & =-2 x(t)-y(t)
\end{aligned}
\]

\subsection*{29.5.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t}(2 t+1) & 2 t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t}(2 t+1) & 2 t \mathrm{e}^{t} \\
-2 t \mathrm{e}^{t} & \mathrm{e}^{t}(1-2 t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}(2 t+1) c_{1}+2 t \mathrm{e}^{t} c_{2} \\
-2 t \mathrm{e}^{t} c_{1}+\mathrm{e}^{t}(1-2 t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(2 t c_{1}+2 c_{2} t+c_{1}\right) \\
\left(c_{2}(1-2 t)-2 t c_{1}\right) \mathrm{e}^{t}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.5.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & 2 \\
-2 & -1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda+1=0
\]

The roots of the above are the eigenvalues.
\[
\lambda_{1}=1
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
2 & 2 & 0 \\
-2 & -2 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{ll|l}
2 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
2 & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline 1 & 2 & 1 & Yes & {\(\left[\begin{array}{c}-1 \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. eigenvalue 1 is real and repated eigenvalue of multiplicity 2.There are two possible cases that can happen. This is illustrated in this diagram

Figure 506: Possible case for repeated \(\lambda\) of multiplicity 2

This eigenvalue has algebraic multiplicity of 2 , and geometric multiplicity 1 , therefore this is defective eigenvalue. The defect is 1 . This falls into case 2 shown above. We need to generate the missing additonal generalized eigevector \(\vec{v}_{2}\) by solving
\[
(A-\lambda I) \vec{v}_{2}=\vec{v}_{1}
\]

Where \(\vec{v}_{1}\) is the normal (rank 1) eigenvector found above. Hence we need to solve
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]-(1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]

Solving for \(\vec{v}_{2}\) gives
\[
\vec{v}_{2}=\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]
\]

We have found two generalized eigenvectors for eigenvalue 1. Therefore the two basis solution associated with this eigenvalue are
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\lambda t} \\
& =\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]
\end{aligned}
\]

And
\[
\begin{aligned}
\vec{x}_{2}(t) & =\left(\vec{v}_{1} t+\vec{v}_{2}\right) e^{\lambda t} \\
& =\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right] t+\left[\begin{array}{c}
-\frac{3}{2} \\
1
\end{array}\right]\right) \mathrm{e}^{t} \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{t}(2 t+3)}{2} \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\mathrm{e}^{t}\left(-t-\frac{3}{2}\right) \\
\mathrm{e}^{t}(t+1)
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(-c_{1}-c_{2} t-\frac{3}{2} c_{2}\right) \\
\mathrm{e}^{t}\left(c_{2} t+c_{1}+c_{2}\right)
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 507: Phase plot

\subsection*{29.5.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=3 x(t)+2 y(t), y^{\prime}(t)=-2 x(t)-y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & 2 \\ -2 & -1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right]\right]
\]
- Consider eigenpair, with eigenvalue of algebraic multiplicity 2
\[
\left[1,\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right]
\]
- First solution from eigenvalue 1
\(\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}-1 \\ 1\end{array}\right]\)
- Form of the 2 nd homogeneous solution where \(\vec{p}\) is to be solved for, \(\lambda=1\) is the eigenvalue, and \(\vec{x}_{2}(t)=\mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})\)
- Note that the \(t\) multiplying \(\vec{v}\) makes this solution linearly independent to the 1 st solution obtair
- \(\quad\) Substitute \(\vec{x}_{2}(t)\) into the homogeneous system
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\left(\mathrm{e}^{\lambda t} A\right) \cdot(t \vec{v}+\vec{p})\)
- Use the fact that \(\vec{v}\) is an eigenvector of \(A\)
\(\lambda \mathrm{e}^{\lambda t}(t \vec{v}+\vec{p})+\mathrm{e}^{\lambda t} \vec{v}=\mathrm{e}^{\lambda t}(\lambda t \vec{v}+A \cdot \vec{p})\)
- Simplify equation
\(\lambda \vec{p}+\vec{v}=A \cdot \vec{p}\)
- Make use of the identity matrix I
\[
(\lambda \cdot I) \cdot \vec{p}+\vec{v}=A \cdot \vec{p}
\]
- Condition \(\vec{p}\) must meet for \(\vec{x}_{2}(t)\) to be a solution to the homogeneous system \((A-\lambda \cdot I) \cdot \vec{p}=\vec{v}\)
- Choose \(\vec{p}\) to use in the second solution to the homogeneous system from eigenvalue 1
\[
\left(\left[\begin{array}{cc}
3 & 2 \\
-2 & -1
\end{array}\right]-1 \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \cdot \vec{p}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
\]
- \(\quad\) Choice of \(\vec{p}\)
\[
\vec{p}=\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right]
\]
- Second solution from eigenvalue 1
\[
\vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right]\right)
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left(t \cdot\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-\frac{1}{2} \\
0
\end{array}\right]\right)
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(-c_{1}-t c_{2}-\frac{1}{2} c_{2}\right) \\
\mathrm{e}^{t}\left(t c_{2}+c_{1}\right)
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=\mathrm{e}^{t}\left(-c_{1}-t c_{2}-\frac{1}{2} c_{2}\right), y(t)=\mathrm{e}^{t}\left(t c_{2}+c_{1}\right)\right\}
\]

\section*{Solution by Maple}

Time used: 0.016 (sec). Leaf size: 31
```

dsolve([diff(x(t),t)=3*x(t)+2*y(t),\operatorname{diff}(y(t),t)=-2*x(t)-y(t)], singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{2} t+c_{1}\right) \\
& y(t)=-\frac{\mathrm{e}^{t}\left(2 c_{2} t+2 c_{1}-c_{2}\right)}{2}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 40
DSolve \(\left[\left\{x^{\prime}[t]==3 * x[t]+2 * y[t], y^{\prime}[t]==-2 * x[t]-y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(->\)
\[
\begin{aligned}
& x(t) \rightarrow e^{t}\left(2 c_{1} t+2 c_{2} t+c_{1}\right) \\
& y(t) \rightarrow e^{t}\left(c_{2}-2\left(c_{1}+c_{2}\right) t\right)
\end{aligned}
\]

\section*{29.6 problem 3(b)}
29.6.1 Solution using Matrix exponential method 4131
29.6.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4132
29.6.3 Maple step by step solution . 4136

Internal problem ID [6534]
Internal file name [OUTPUT/5782_Sunday_June_05_2022_03_54_07_PM_48022315/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 3(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+y(t) \\
y^{\prime}(t) & =-x(t)+y(t)
\end{aligned}
\]

\subsection*{29.6.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (t) & \sin (t) \mathrm{e}^{t} \\
-\sin (t) \mathrm{e}^{t} & \mathrm{e}^{t} \cos (t)
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (t) & \sin (t) \mathrm{e}^{t} \\
-\sin (t) \mathrm{e}^{t} & \mathrm{e}^{t} \cos (t)
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \cos (t) c_{1}+\sin (t) \mathrm{e}^{t} c_{2} \\
-\sin (t) \mathrm{e}^{t} c_{1}+\mathrm{e}^{t} \cos (t) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t}\left(\cos (t) c_{1}+\sin (t) c_{2}\right) \\
\mathrm{e}^{t}\left(-\sin (t) c_{1}+\cos (t) c_{2}\right)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.6.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda+2=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=1+i \\
& \lambda_{2}=1-i
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(1+i\) & 1 & complex eigenvalue \\
\hline \(1-i\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1-i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]-(1-i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
i & 1 & 0 \\
-1 & i & 0
\end{array}\right]} \\
R_{2}=-i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{ll|l}
i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ll}
i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=i t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
i t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
i \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{l}
i \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1+i\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]-(1+i)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-i & 1 & 0 \\
-1 & -i & 0
\end{array}\right]} \\
R_{2}=i R_{1}+R_{2} \Longrightarrow\left[\begin{array}{cc|c}
-i & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-i & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-i t\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i t \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-i \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\mathrm{I} t \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline \(1+i\) & 1 & 1 & No & {\(\left[\begin{array}{c}-i \\
1\end{array}\right]\)} \\
\hline \(1-i\) & 1 & 1 & No & {\(\left[\begin{array}{c}i \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-i \mathrm{e}^{(1+i) t} \\
\mathrm{e}^{(1+i) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
i \mathrm{e}^{(1-i) t} \\
\mathrm{e}^{(1-i) t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
i\left(c_{2} \mathrm{e}^{(1-i) t}-c_{1} \mathrm{e}^{(1+i) t}\right) \\
c_{1} \mathrm{e}^{(1+i) t}+c_{2} \mathrm{e}^{(1-i) t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 508: Phase plot

\subsection*{29.6.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+y(t), y^{\prime}(t)=-x(t)+y(t)\right]
\]
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]
- System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] \cdot \vec{x}(t)
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\(\left[\left[1-\mathrm{I},\left[\begin{array}{l}\mathrm{I} \\ 1\end{array}\right]\right],\left[1+\mathrm{I},\left[\begin{array}{c}-\mathrm{I} \\ 1\end{array}\right]\right]\right]\)
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\(\left[1-\mathrm{I},\left[\begin{array}{l}\mathrm{I} \\ 1\end{array}\right]\right]\)
- Solution from eigenpair
\(\mathrm{e}^{(1-\mathrm{I}) t} \cdot\left[\begin{array}{l}\mathrm{I} \\ 1\end{array}\right]\)
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{t} \cdot(\cos (t)-\mathrm{I} \sin (t)) \cdot\left[\begin{array}{l}
\mathrm{I} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\mathrm{I}(\cos (t)-\mathrm{I} \sin (t)) \\
\cos (t)-\mathrm{I} \sin (t)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t)
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\sin (t) \\
\cos (t)
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\cos (t) \\
-\sin (t)
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}^{t}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
\mathrm{e}^{t}\left(c_{1} \cos (t)-c_{2} \sin (t)\right)
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\mathrm{e}^{t}\left(c_{1} \sin (t)+c_{2} \cos (t)\right), y(t)=\mathrm{e}^{t}\left(c_{1} \cos (t)-c_{2} \sin (t)\right)\right\}
\]

Solution by Maple
Time used: 0.015 (sec). Leaf size: 33
```

dsolve([diff(x(t),t)=x(t)+y(t), diff(y(t),t)=-x(t)+y(t)],singsol=all)

$$
\begin{aligned}
x(t) & =\mathrm{e}^{t}\left(c_{1} \sin (t)+c_{2} \cos (t)\right) \\
y(t) & =\mathrm{e}^{t}\left(c_{1} \cos (t)-c_{2} \sin (t)\right)
\end{aligned}
$$

```
\(\checkmark\) Solution by Mathematica
Time used: 0.002 (sec). Leaf size: 39
```

DSolve[{x'[t]==x[t]+y[t], y'[t]==-x[t]+y[t]},{x[t],y[t]},t,IncludeSingularSolutions -> True]

```
\[
\begin{aligned}
& x(t) \rightarrow e^{t}\left(c_{1} \cos (t)+c_{2} \sin (t)\right) \\
& y(t) \rightarrow e^{t}\left(c_{2} \cos (t)-c_{1} \sin (t)\right)
\end{aligned}
\]

\section*{29.7 problem 3(c)}
29.7.1 Solution using Matrix exponential method 4139
29.7.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4140
29.7.3 Maple step by step solution . 4145

Internal problem ID [6535]
Internal file name [OUTPUT/5783_Sunday_June_05_2022_03_54_10_PM_52946076/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 3(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =3 x(t)-5 y(t) \\
y^{\prime}(t) & =-x(t)+2 y(t)
\end{aligned}
\]

\subsection*{29.7.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\(e^{A t}=\left[\begin{array}{c}\frac{(-\sqrt{21}+21) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}+\frac{\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(\sqrt{21}+21)}{42} \\ \frac{\left(-\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+\mathrm{e}^{\left.-\frac{(-5+\sqrt{21}) t}{2}\right) \sqrt{21}}\right.}{21}\end{array}\right.\)

Therefore the homogeneous solution is
\[
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& \left.=\left[\begin{array}{cc}
\frac{(-\sqrt{21}+21) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}+\frac{5\left(-\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+\mathrm{e}^{\left.-\frac{(-5+\sqrt{21}) t}{2}\right)}(\sqrt{21}+21)\right.}{42} & \frac{\sqrt{21}}{21} \\
\left(-\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+\mathrm{e}^{\left.-\frac{(-5+\sqrt{21}) t}{2}\right) \sqrt{21}}\right. & 21
\end{array} \frac{(\sqrt{21}+21) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}-\frac{\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(\sqrt{21}-21)}{42}\right)\right]\left[\begin{array}{l}
c_{1} \\
\frac{c_{2}}{c_{2}}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(-\sqrt{21}+21) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}+\frac{\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(\sqrt{21}+21)}{42}\right) c_{1}+\frac{5\left(-\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+\mathrm{e}^{\left.-\frac{(-5+\sqrt{21}) t}{2}\right) \sqrt{21} c_{2}}\right.}{21} \\
\left(-\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+\mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}\right) \sqrt{21} c_{1} \\
\frac{(\sqrt{21}+21) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}-\left(\frac{\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(\sqrt{21}-21)}{42}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(-c_{1}+10 c_{2}\right) \sqrt{21}+21 c_{1}\right) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}+\frac{\left(\left(c_{1}-10 c_{2}\right) \sqrt{21}+21 c_{1}\right) \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}}{42} \\
\frac{\left(\left(2 c_{1}+c_{2}\right) \sqrt{21}+21 c_{2}\right) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{42}-\frac{\left(\left(c_{1}+\frac{c_{2}}{2}\right) \sqrt{21}-\frac{21 c_{2}}{2}\right) \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}}{21}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.7.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

\section*{Expanding gives}
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
3-\lambda & -5 \\
-1 & 2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-5 \lambda+1=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=\frac{5}{2}+\frac{\sqrt{21}}{2} \\
& \lambda_{2}=\frac{5}{2}-\frac{\sqrt{21}}{2}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline\(\frac{5}{2}+\frac{\sqrt{21}}{2}\) & 1 & real eigenvalue \\
\hline\(\frac{5}{2}-\frac{\sqrt{21}}{2}\) & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=\frac{5}{2}-\frac{\sqrt{21}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]-\right. & \left.\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{21}}{2} & -5 \\
-1 & -\frac{1}{2}+\frac{\sqrt{21}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{21}}{2} & -5 & 0 \\
-1 & -\frac{1}{2}+\frac{\sqrt{21}}{2} & 0
\end{array}\right]
\]
\[
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}+\frac{\sqrt{21}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{\sqrt{21}}{2} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\frac{1}{2}+\frac{\sqrt{21}}{2} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{10 t}{1+\sqrt{21}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
\frac{10 t}{1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{10 t}{1+\sqrt{21}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{10 t}{1+\sqrt{21}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{10}{1+\sqrt{21}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{10 t}{1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{10}{1+\sqrt{21}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{10 t}{1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{10}{1+\sqrt{21}} \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=\frac{5}{2}+\frac{\sqrt{21}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\left.\begin{array}{rl}
\left(\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right]-\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
-1 & -\frac{1}{2}-\frac{\sqrt{21}}{2} \\
-5 \\
-1 & -\frac{\sqrt{21}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{21}}{2} & -5 & 0 \\
-1 & -\frac{1}{2}-\frac{\sqrt{21}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}-\frac{\sqrt{21}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{\sqrt{21}}{2} & -5 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\frac{1}{2}-\frac{\sqrt{21}}{2} & -5 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{10 t}{-1+\sqrt{21}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
-\frac{10 t}{-1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10 t}{-1+\sqrt{21}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{10 t}{-1+\sqrt{21}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{10}{-1+\sqrt{21}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{10 t}{-1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10}{-1+\sqrt{21}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{10 t}{-1+\sqrt{21}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{10}{-1+\sqrt{21}} \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated
with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline\(\frac{5}{2}+\frac{\sqrt{21}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
1\end{array}\right]\)} \\
\hline\(\frac{5}{2}-\frac{\sqrt{21}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue \(\frac{5}{2}+\frac{\sqrt{21}}{2}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t} \\
& =\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
1
\end{array}\right] e^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t}
\end{aligned}
\]

Since eigenvalue \(\frac{5}{2}-\frac{\sqrt{21}}{2}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t} \\
& =\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
1
\end{array}\right] e^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t}}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
\mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{5 \mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t}}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
\mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{2}(-1+\sqrt{21}) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{2}-\frac{\mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}} c_{1}(1+\sqrt{21})}{2} \\
c_{1} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 509: Phase plot

\subsection*{29.7.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=3 x(t)-5 y(t), y^{\prime}(t)=-x(t)+2 y(t)\right]
\]
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
3 & -5 \\
-1 & 2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\(A=\left[\begin{array}{cc}3 & -5 \\ -1 & 2\end{array}\right]\)
- Rewrite the system as
\(\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[\frac{5}{2}-\frac{\sqrt{21}}{2},\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]\right],\left[\frac{5}{2}+\frac{\sqrt{21}}{2},\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[\frac{5}{2}-\frac{\sqrt{21}}{2},\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\(\vec{x}_{1}=\mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t} \cdot\left[\begin{array}{c}-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\ 1\end{array}\right]\)
- Consider eigenpair
\[
\left[\frac{5}{2}+\frac{\sqrt{21}}{2},\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\(\vec{x}_{2}=\mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t} \cdot\left[\begin{array}{c}-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\ 1\end{array}\right]\)
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{\left(\frac{5}{2}-\frac{\sqrt{21}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}-\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{\left(\frac{5}{2}+\frac{\sqrt{21}}{2}\right) t} \cdot\left[\begin{array}{c}
-\frac{5}{-\frac{1}{2}+\frac{\sqrt{21}}{2}} \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{c_{1}(-1+\sqrt{21}) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(1+\sqrt{21})}{2} \\
c_{1} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}+c_{2} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}
\end{array}\right]
\]
- Solution to the system of ODEs
\[
\left\{x(t)=\frac{c_{1}(-1+\sqrt{21}) \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{2}-\frac{c_{2} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}(1+\sqrt{21})}{2}, y(t)=c_{1} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}+c_{2} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}\right\}
\]

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.015 (sec). Leaf size: 86
```

dsolve([diff (x (t),t)=3*x (t) -5*y (t), diff (y (t),t)=-x(t)+2*y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}} \\
& y(t)=-\frac{c_{1} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}} \sqrt{21}}{10}+\frac{c_{2} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}} \sqrt{21}}{10}+\frac{c_{1} \mathrm{e}^{\frac{(5+\sqrt{21}) t}{2}}}{10}+\frac{c_{2} \mathrm{e}^{-\frac{(-5+\sqrt{21}) t}{2}}}{10}
\end{aligned}
\]

Solution by Mathematica
Time used: 0.011 (sec). Leaf size: 144
```

DSolve[{x'[t]==3*x[t]-5*y[t], y'[t]==-x[t]+2*y[t]},{x[t],y[t]},t,IncludeSingularSolutions ->

```
\[
\begin{aligned}
& x(t) \rightarrow \frac{1}{42} e^{-\frac{1}{2}(\sqrt{21}-5) t}\left(c_{1}\left((21+\sqrt{21}) e^{\sqrt{21} t}+21-\sqrt{21}\right)-10 \sqrt{21} c_{2}\left(e^{\sqrt{21} t}-1\right)\right) \\
& y(t) \rightarrow-\frac{1}{42} e^{-\frac{1}{2}(\sqrt{21}-5) t}\left(2 \sqrt{21} c_{1}\left(e^{\sqrt{21} t}-1\right)+c_{2}\left((\sqrt{21}-21) e^{\sqrt{21} t}-21-\sqrt{21}\right)\right)
\end{aligned}
\]

\section*{29.8 problem 3(d)}
29.8.1 Solution using Matrix exponential method 4148
29.8.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4149
29.8.3 Maple step by step solution . 4154

Internal problem ID [6536]
Internal file name [OUTPUT/5784_Sunday_June_05_2022_03_54_12_PM_38804077/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 3(d).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+2 y(t) \\
y^{\prime}(t) & =-4 x(t)+y(t)
\end{aligned}
\]

\subsection*{29.8.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t \sqrt{2}) & \frac{\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2}}{2} \\
-\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2} & \mathrm{e}^{t} \cos (2 t \sqrt{2})
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\mathrm{e}^{t} \cos (2 t \sqrt{2}) & \frac{\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2}}{2} \\
-\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2} & \mathrm{e}^{t} \cos (2 t \sqrt{2})
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \cos (2 t \sqrt{2}) c_{1}+\frac{\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2} c_{2}}{2} \\
-\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2} c_{1}+\mathrm{e}^{t} \cos (2 t \sqrt{2}) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\mathrm{e}^{t} \cos (2 t \sqrt{2}) c_{1}+\frac{\mathrm{e}^{t} \sin (2 t \sqrt{2}) \sqrt{2} c_{2}}{2} \\
\mathrm{e}^{t}\left(-\sin (2 t \sqrt{2}) \sqrt{2} c_{1}+\cos (2 t \sqrt{2}) c_{2}\right)
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.8.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
-4 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda+9=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=2 i \sqrt{2}+1 \\
& \lambda_{2}=1-2 i \sqrt{2}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(1-2 i \sqrt{2}\) & 1 & complex eigenvalue \\
\hline \(2 i \sqrt{2}+1\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1-2 i \sqrt{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]-(1-2 i \sqrt{2})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
2 i \sqrt{2} & 2 \\
-4 & 2 i \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
2 i \sqrt{2} & 2 & 0 \\
-4 & 2 i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}-i \sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
2 i \sqrt{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
2 i \sqrt{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{i t \sqrt{2}}{2}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i t \sqrt{2}}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
i \sqrt{2} \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=2 i \sqrt{2}+1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]-(2 i \sqrt{2}+1)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-2 i \sqrt{2} & 2 & 0 \\
-4 & -2 i \sqrt{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+i \sqrt{2} R_{1} \Longrightarrow\left[\begin{array}{cc|c}
-2 i \sqrt{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-2 i \sqrt{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{i t \sqrt{2}}{2}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i t \sqrt{2}}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{i \sqrt{2}}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} t \sqrt{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
-i \sqrt{2} \\
2
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline \(2 i \sqrt{2}+1\) & 1 & 1 & No & {\(\left[\begin{array}{c}-\frac{i \sqrt{2}}{2} \\
1\end{array}\right]\)} \\
\hline \(1-2 i \sqrt{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{i \sqrt{2}}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\frac{i e^{(2 i \sqrt{2}+1) t} \sqrt{2}}{2} \\
\mathrm{e}^{(2 i \sqrt{2}+1) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{i e^{(1-2 i \sqrt{2}) t} \sqrt{2}}{2} \\
\mathrm{e}^{(1-2 i \sqrt{2}) t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{i \sqrt{2}\left(c_{1} \mathrm{e}^{2 i} \sqrt{2} t+t-c_{2} \mathrm{e}^{-2 i \sqrt{2} t+t)}\right.}{2} \\
c_{1} \mathrm{e}^{2 i \sqrt{2} t+t}+c_{2} \mathrm{e}^{-2 i \sqrt{2} t+t}
\end{array}\right]
\]

The following is the phase plot of the system.

Figure 510: Phase plot

\subsection*{29.8.3 Maple step by step solution}

Let's solve
\(\left[x^{\prime}(t)=x(t)+2 y(t), y^{\prime}(t)=-4 x(t)+y(t)\right]\)
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & 2 \\ -4 & 1\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}0 \\ 0\end{array}\right]\)
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}1 & 2 \\ -4 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
1 & 2 \\
-4 & 1
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- Eigenpairs of \(A\)
\[
\left[\left[1-2 \mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right],\left[2 \mathrm{I} \sqrt{2}+1,\left[\begin{array}{c}
-\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[1-2 \mathrm{I} \sqrt{2},\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{(1-2 \mathrm{I} \sqrt{2}) t} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2} \sqrt{2} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{t} \cdot(\cos (2 t \sqrt{2})-\mathrm{I} \sin (2 t \sqrt{2})) \cdot\left[\begin{array}{c}
\mathrm{I} \\
2 \\
2 \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\mathrm{I}}{2}(\cos (2 t \sqrt{2})-\mathrm{I} \sin (2 t \sqrt{2})) \sqrt{2} \\
\cos (2 t \sqrt{2})-\mathrm{I} \sin (2 t \sqrt{2})
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} \sin (2 t \sqrt{2})}{2} \\
\cos (2 t \sqrt{2})
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} \cos (2 t \sqrt{2})}{2} \\
-\sin (2 t \sqrt{2})
\end{array}\right]\right]
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]
- Substitute solutions into the general solution
\[
\vec{x}=c_{1} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} \sin (2 t \sqrt{2})}{2} \\
\cos (2 t \sqrt{2})
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
\frac{\sqrt{2} \cos (2 t \sqrt{2})}{2} \\
-\sin (2 t \sqrt{2})
\end{array}\right]
\]
- \(\quad\) Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{t} \sqrt{2}\left(c_{1} \sin (2 t \sqrt{2})+c_{2} \cos (2 t \sqrt{2})\right)}{2} \\
\mathrm{e}^{t}\left(c_{1} \cos (2 t \sqrt{2})-c_{2} \sin (2 t \sqrt{2})\right)
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\mathrm{e}^{t} \sqrt{2}\left(c_{1} \sin (2 t \sqrt{2})+c_{2} \cos (2 t \sqrt{2})\right)}{2}, y(t)=\mathrm{e}^{t}\left(c_{1} \cos (2 t \sqrt{2})-c_{2} \sin (2 t \sqrt{2})\right)\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.015 (sec). Leaf size: 56
```

dsolve([diff (x (t),t)=x(t)+2*y(t), diff (y (t),t)=-4*x(t)+y(t)],singsol=all)

```
\[
\begin{aligned}
& x(t)=\mathrm{e}^{t}\left(c_{2} \cos (2 \sqrt{2} t)+c_{1} \sin (2 \sqrt{2} t)\right) \\
& y(t)=\mathrm{e}^{t} \sqrt{2}\left(\cos (2 \sqrt{2} t) c_{1}-\sin (2 \sqrt{2} t) c_{2}\right)
\end{aligned}
\]

Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 79
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+2 * y[t], y^{\prime}[t]==-4 * x[t]+y[t]\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSolutions \(->\operatorname{Tr}\)
\[
\begin{aligned}
& x(t) \rightarrow c_{1} e^{t} \cos (2 \sqrt{2} t)+\frac{c_{2} e^{t} \sin (2 \sqrt{2} t)}{\sqrt{2}} \\
& y(t) \rightarrow e^{t}\left(c_{2} \cos (2 \sqrt{2} t)-\sqrt{2} c_{1} \sin (2 \sqrt{2} t)\right)
\end{aligned}
\]

\section*{29.9 problem 3(e)}
29.9.1 Solution using Matrix exponential method 4157
29.9.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4158
29.9.3 Maple step by step solution . 4166

Internal problem ID [6537]
Internal file name [OUTPUT/5785_Sunday_June_05_2022_03_54_14_PM_79079975/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 3(e).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =3 x(t)+2 y(t)+z(t) \\
y^{\prime}(t) & =-2 x(t)-y(t)+3 z(t) \\
z^{\prime}(t) & =x(t)+y(t)+z(t)
\end{aligned}
\]

\subsection*{29.9.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{ccc}
\frac{5 \mathrm{e}^{3 t}}{8}+\frac{3 \mathrm{e}^{t}}{4}-\frac{3 \mathrm{e}^{-t}}{8} & \frac{5 \mathrm{e}^{3 t}}{8}-\frac{3 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{t}}{4} & \frac{5 \mathrm{e}^{3 t}}{4}-2 \mathrm{e}^{t}+\frac{3 \mathrm{e}^{-t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{8}+\frac{7 \mathrm{e}^{-t}}{8}-\frac{3 \mathrm{e}^{t}}{4} & \frac{7 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{3 t}}{8}+\frac{\mathrm{e}^{t}}{4} & -\frac{\mathrm{e}^{3 t}}{4}+2 \mathrm{e}^{t}-\frac{7 \mathrm{e}^{-t}}{4} \\
\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{ccc}
\frac{5 \mathrm{e}^{3 t}}{8}+\frac{3 \mathrm{e}^{t}}{4}-\frac{3 \mathrm{e}^{-t}}{8} & \frac{5 \mathrm{e}^{3 t}}{8}-\frac{3 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{t}}{4} & \frac{5 \mathrm{e}^{3 t}}{4}-2 \mathrm{e}^{t}+\frac{3 \mathrm{e}^{-t}}{4} \\
-\frac{\mathrm{e}^{3 t}}{8}+\frac{7 \mathrm{e}^{-t}}{8}-\frac{3 \mathrm{e}^{t}}{4} & \frac{7 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{3 t}}{8}+\frac{\mathrm{e}^{t}}{4} & -\frac{\mathrm{e}^{3 t}}{4}+2 \mathrm{e}^{t}-\frac{7 \mathrm{e}^{-t}}{4} \\
\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4} & \frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{5 \mathrm{e}^{3 t}}{8}+\frac{3 \mathrm{e}^{t}}{4}-\frac{3 \mathrm{e}^{-t}}{8}\right) c_{1}+\left(\frac{5 \mathrm{e}^{3 t}}{8}-\frac{3 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{t}}{4}\right) c_{2}+\left(\frac{5 \mathrm{e}^{3 t}}{4}-2 \mathrm{e}^{t}+\frac{3 \mathrm{e}^{-t}}{4}\right) c_{3} \\
\left(-\frac{\mathrm{e}^{3 t}}{8}+\frac{7 \mathrm{e}^{-t}}{8}-\frac{3 \mathrm{e}^{t}}{4}\right) c_{1}+\left(\frac{7 \mathrm{e}^{-t}}{8}-\frac{\mathrm{e}^{3 t}}{8}+\frac{\mathrm{e}^{t}}{4}\right) c_{2}+\left(-\frac{\mathrm{e}^{3 t}}{4}+2 \mathrm{e}^{t}-\frac{7 \mathrm{e}^{-t}}{4}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left.\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4}\right) c_{1}+\left(\frac{\mathrm{e}^{3 t}}{4}-\frac{\mathrm{e}^{-t}}{4}\right) c_{2}+\left(\frac{\mathrm{e}^{-t}}{2}+\frac{\mathrm{e}^{3 t}}{2}\right) c_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{3\left(-c_{1}-c_{2}+2 c_{3}\right) \mathrm{e}^{-t}}{8}+\frac{5\left(c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{3 t}}{8}+\frac{3\left(c_{1}-\frac{c_{2}}{3}-\frac{\left.8 c_{3}\right) \mathrm{e}^{-t}}{4}\right) \mathrm{e}^{t}}{8}+\frac{\left(-c_{1}-c_{2}-2 c_{3}\right) \mathrm{e}^{3 t}}{8}-\frac{3\left(c_{1}-\frac{\left.c_{2}-\frac{8 c_{3}}{3}\right) \mathrm{e}^{t}}{4}\right.}{\frac{\left(-c_{1}-c_{2}+2 c_{3}\right) \mathrm{e}^{-t}}{4}+\frac{\left(c_{1}+c_{2}+2 c_{3}\right) \mathrm{e}^{3 t}}{4}}
\end{array}\right]
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.9.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{ccc}
3-\lambda & 2 & 1 \\
-2 & -1-\lambda & 3 \\
1 & 1 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{3}-3 \lambda^{2}-\lambda+3=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
\lambda_{1} & =1 \\
\lambda_{2} & =-1 \\
\lambda_{3} & =3
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline-1 & 1 & real eigenvalue \\
\hline 1 & 1 & real eigenvalue \\
\hline 3 & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]-(-1)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) {\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
&\left(\left[\begin{array}{ccc}
4 & 2 & 1 \\
-2 & 0 & 3 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]\right.
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ccc|c}
4 & 2 & 1 & 0 \\
-2 & 0 & 3 & 0 \\
1 & 1 & 2 & 0
\end{array}\right]
\]
\[
\begin{gathered}
R_{2}=R_{2}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 2 & 1 & 0 \\
0 & 1 & \frac{7}{2} & 0 \\
1 & 1 & 2 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{4} \Longrightarrow\left[\begin{array}{lll|l}
4 & 2 & 1 & 0 \\
0 & 1 & \frac{7}{2} & 0 \\
0 & \frac{1}{2} & \frac{7}{4} & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{lll|l}
4 & 2 & 1 & 0 \\
0 & 1 & \frac{7}{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ccc}
4 & 2 & 1 \\
0 & 1 & \frac{7}{2} \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{3}\right\}\) and the leading variables are \(\left\{v_{1}, v_{2}\right\}\). Let \(v_{3}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{3 t}{2}, v_{2}=-\frac{7 t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{7 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{7 t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{7 t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{7 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{3 t}{2} \\
-\frac{7 t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
3 \\
-7 \\
2
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]-(1)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
2 & 2 & 1 \\
-2 & -2 & 3 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{ccc|c}
2 & 2 & 1 & 0 \\
-2 & -2 & 3 & 0 \\
1 & 1 & 0 & 0
\end{array}\right]} \\
R_{2}=R_{2}+R_{1} \Longrightarrow\left[\begin{array}{lll|l}
2 & 2 & 1 & 0 \\
0 & 0 & 4 & 0 \\
1 & 1 & 0 & 0
\end{array}\right] \\
R_{3}=R_{3}-\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
2 & 2 & 1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & -\frac{1}{2} & 0
\end{array}\right]
\end{gathered}
\]
\[
R_{3}=R_{3}+\frac{R_{2}}{8} \Longrightarrow\left[\begin{array}{lll|l}
2 & 2 & 1 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{lll}
2 & 2 & 1 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}, v_{3}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-t, v_{3}=0\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=t\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-t \\
t \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{3}=3\)

We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right]-(3)\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ccc}
0 & 2 & 1 \\
-2 & -4 & 3 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{ccc|c}
0 & 2 & 1 & 0 \\
-2 & -4 & 3 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]
\]

Since the current pivot \(A(1,1)\) is zero, then the current pivot row is replaced with a row with a non-zero pivot. Swapping row 1 and row 2 gives
\[
\begin{gathered}
{\left[\begin{array}{ccc|c}
-2 & -4 & 3 & 0 \\
0 & 2 & 1 & 0 \\
1 & 1 & -2 & 0
\end{array}\right]} \\
R_{3}=R_{3}+\frac{R_{1}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -4 & 3 & 0 \\
0 & 2 & 1 & 0 \\
0 & -1 & -\frac{1}{2} & 0
\end{array}\right] \\
R_{3}=R_{3}+\frac{R_{2}}{2} \Longrightarrow\left[\begin{array}{ccc|c}
-2 & -4 & 3 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ccc}
-2 & -4 & 3 \\
0 & 2 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{3}\right\}\) and the leading variables are \(\left\{v_{1}, v_{2}\right\}\). Let \(v_{3}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{5 t}{2}, v_{2}=-\frac{t}{2}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{5 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{5 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{5 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{5 t}{2} \\
-\frac{t}{2} \\
t
\end{array}\right]=\left[\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } 1 & 1 & algebraic \(m\) & geometric \(k\) & defective? \\
eigenvectors \\
\hline-1 & 1 & 1 & No & {\(\left[\begin{array}{c}-1 \\
1 \\
0\end{array}\right]\)} \\
\hline 3 & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{3}{2} \\
-\frac{7}{2} \\
1\end{array}\right]\)} \\
\hline & & & No & {\(\left[\begin{array}{c}\frac{5}{2} \\
-\frac{1}{2} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue 1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{t} \\
& =\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] e^{t}
\end{aligned}
\]

Since eigenvalue -1 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{-t} \\
& =\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right] e^{-t}
\end{aligned}
\]

Since eigenvalue 3 is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{3}(t) & =\vec{v}_{3} e^{3 t} \\
& =\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right] e^{3 t}
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
\]

Which is written as
\[
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
-\mathrm{e}^{t} \\
\mathrm{e}^{t} \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-t}}{2} \\
-\frac{7 \mathrm{e}^{-t}}{2} \\
\mathrm{e}^{-t}
\end{array}\right]+c_{3}\left[\begin{array}{c}
\frac{5 \mathrm{e}^{3 t}}{2} \\
-\frac{\mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{3 t}
\end{array}\right]
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{1} \mathrm{e}^{t}+\frac{3 c_{2} \mathrm{e}^{-t}}{2}+\frac{5 c_{3} 3^{3 t}}{2} \\
c_{1} \mathrm{e}^{t}-\frac{7 c_{2} \mathrm{e}^{-t}}{2}-\frac{c_{3} \mathrm{e}^{3 t}}{2} \\
c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{3 t}
\end{array}\right]
\]

\subsection*{29.9.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=3 x(t)+2 y(t)+z(t), y^{\prime}(t)=-2 x(t)-y(t)+3 z(t), z^{\prime}(t)=x(t)+y(t)+z(t)\right]
\]
- Define vector
\[
\vec{x}(t)=\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
\]
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}
3 & 2 & 1 \\
-2 & -1 & 3 \\
1 & 1 & 1
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\]
- System to solve
\(\vec{x}^{\prime}(t)=\left[\begin{array}{ccc}3 & 2 & 1 \\ -2 & -1 & 3 \\ 1 & 1 & 1\end{array}\right] \cdot \vec{x}(t)\)
- Define the coefficient matrix
\(A=\left[\begin{array}{ccc}3 & 2 & 1 \\ -2 & -1 & 3 \\ 1 & 1 & 1\end{array}\right]\)
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)
\]
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-1,\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]\right],\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right],\left[3,\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[-1,\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{-t} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1,\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{2}=\mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
\]
- Consider eigenpair
\(\left[3,\left[\begin{array}{c}\frac{5}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]\right]\)
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{x}_{3}=\mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]
- General solution to the system of ODEs
\[
\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}
\]
- Substitute solutions into the general solution
\[
\vec{x}=\mathrm{e}^{-t} c_{1} \cdot\left[\begin{array}{c}
\frac{3}{2} \\
-\frac{7}{2} \\
1
\end{array}\right]+c_{2} \mathrm{e}^{t} \cdot\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+c_{3} \mathrm{e}^{3 t} \cdot\left[\begin{array}{c}
\frac{5}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{c}
x(t) \\
y(t) \\
z(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{3 \mathrm{e}^{-t} c_{1}}{2}-c_{2} \mathrm{e}^{t}+\frac{5 c_{3} \mathrm{e}^{3 t}}{2} \\
-\frac{7 \mathrm{e}^{-t} c_{1}}{2}+c_{2} \mathrm{e}^{t}-\frac{c_{3} \mathrm{e}^{3 t}}{2} \\
\mathrm{e}^{-t} c_{1}+c_{3} \mathrm{e}^{3 t}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{3 \mathrm{e}^{-t} c_{1}}{2}-c_{2} \mathrm{e}^{t}+\frac{5 c_{3} \mathrm{e}^{3 t}}{2}, y(t)=-\frac{7 \mathrm{e}^{-t} c_{1}}{2}+c_{2} \mathrm{e}^{t}-\frac{c_{3} \mathrm{e}^{3 t}}{2}, z(t)=\mathrm{e}^{-t} c_{1}+c_{3} \mathrm{e}^{3 t}\right\}
\]
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 63
dsolve([diff \((x(t), t)=3 * x(t)+2 * y(t)+z(t), \operatorname{diff}(y(t), t)=-2 * x(t)-y(t)+3 * z(t), \operatorname{diff}(z(t), t)=x(t)+y\)
\[
\begin{aligned}
& x(t)=c_{1} \mathrm{e}^{t}+c_{2} \mathrm{e}^{-t}+c_{3} \mathrm{e}^{3 t} \\
& y(t)=-c_{1} \mathrm{e}^{t}-\frac{7 c_{2} \mathrm{e}^{-t}}{3}-\frac{c_{3} \mathrm{e}^{3 t}}{5} \\
& z(t)=\frac{2 c_{2} \mathrm{e}^{-t}}{3}+\frac{2 c_{3} \mathrm{e}^{3 t}}{5}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 0.012 (sec). Leaf size: 180
DSolve \(\left[\left\{x^{\prime}[t]==3 * x[t]+2 * y[t]+z[t], y^{\prime}[t]==-2 * x[t]-y[t]+3 * z[t], z^{\prime}[t]==x[t]+y[t]+z[t]\right\},\{x[t], y[\right.\)
\[
\begin{aligned}
x(t) & \rightarrow \frac{1}{8} e^{-t}\left(c_{1}\left(6 e^{2 t}+5 e^{4 t}-3\right)+\left(e^{2 t}-1\right)\left(c_{2}\left(5 e^{2 t}+3\right)+2 c_{3}\left(5 e^{2 t}-3\right)\right)\right) \\
y(t) & \rightarrow \frac{1}{8} e^{-t}\left(-\left(c_{1}\left(6 e^{2 t}+e^{4 t}-7\right)\right)+c_{2}\left(2 e^{2 t}-e^{4 t}+7\right)-2 c_{3}\left(-8 e^{2 t}+e^{4 t}+7\right)\right) \\
z(t) & \rightarrow \frac{1}{4} e^{-t}\left(c_{1}\left(e^{4 t}-1\right)+c_{2}\left(e^{4 t}-1\right)+2 c_{3}\left(e^{4 t}+1\right)\right)
\end{aligned}
\]

\subsection*{29.10 problem 3(f)}
29.10.1 Solution using Matrix exponential method 4170
29.10.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4171

Internal problem ID [6538]
Internal file name [OUTPUT/5786_Sunday_June_05_2022_03_54_16_PM_17543604/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400 Problem number: 3(f).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-x(t)+y(t)-z(t) \\
y^{\prime}(t) & =2 x(t)-y(t)-4 z(t) \\
z^{\prime}(t) & =3 x(t)-y(t)+z(t)
\end{aligned}
\]

\subsection*{29.10.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
\]

For the above matrix \(A\), the matrix exponential can be found to be
\[
\begin{aligned}
e^{A t} & =\text { Expression too large to display } \\
& =\text { Expression too large to display }
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\text { Expression too large to display }\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right] \\
& =\text { Expression too large to display } \\
& =\text { Expression too large to display }
\end{aligned}
\]

Since no forcing function is given, then the final solution is \(\vec{x}_{h}(t)\) above.

\subsection*{29.10.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t) \\
z^{\prime}(t)
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t) \\
z(t)
\end{array}\right]
\]

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{ccc}
-1-\lambda & 1 & -1 \\
2 & -1-\lambda & -4 \\
3 & -1 & 1-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{3}+\lambda^{2}-4 \lambda+10=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3} \\
& \lambda_{2}=\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}+\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2} \\
& \lambda_{3}=\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}-\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l}
\hline eigenvalue & algebraic multiplicity & type o \\
\hline\(\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}-\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\) & 1 & comple \\
\hline\(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\) & 1 & real ei \\
\hline\(\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}+\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\) & 1 & comple \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\)

We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{gathered}
\left(\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]-\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right) \\
{\left[\begin{array}{ccc}
\frac{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} & 1 \\
2 & \frac{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} & -1 \\
-1 & \frac{(154+3 \sqrt{2391})^{\frac{2}{3}}+4(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}
\end{array}\right]}
\end{gathered}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{cc}
-\frac{2}{3}+\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} & 1 \\
2 & -\frac{2}{3}+\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} \\
2 & -1
\end{array}\right.
\]
\[
R_{2}=R_{2}-\frac{2 R_{1}}{-\frac{2}{3}+\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}} \Longrightarrow\left[\begin{array}{c}
\frac{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} \\
0 \\
3
\end{array}\right.
\]
\[
\begin{aligned}
& R_{3}=R_{3}-\frac{9(154+3 \sqrt{2391})^{\frac{1}{3}} R_{1}}{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13} \Longrightarrow\left[\begin{array}{c}
\frac{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} \\
R_{3}=R_{3}-\frac{\sqrt{2391}(1}{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149} \\
\\
\hline\left(-(154+3 \sqrt{2391})^{\frac{2}{3}}-7(154+3 \sqrt{2391})^{\frac{1}{3}}-13\right)(154+3 \sqrt{2391})^{\frac{1}{3}} R_{2}
\end{array}\right]
\end{aligned}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{ccc}
\frac{(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}} & 1 \\
0 & \frac{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149}{(154+3 \sqrt{2391})^{\frac{1}{3}}\left((154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)} & \frac{-4(154+}{(154+3} \\
0 & 0
\end{array}\right.
\]

The free variables are \(\left\{v_{3}\right\}\) and the leading variables are \(\left\{v_{1}, v_{2}\right\}\). Let \(v_{3}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{3(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+18(154+3 \sqrt{2391})^{\frac{2}{3}}-16 \sqrt{2391}-18\right.}{\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149\right)((154+3}\right.\)

Hence the solution is
\[
\left[\begin{array}{c}
\frac{3(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+18(154+3 \sqrt{2391})^{\frac{2}{3}}-16 \sqrt{2391}-18(154+3 \sqrt{2391})^{\frac{1}{3}}-765\right)}{\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149\right)\left((154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)} \\
-\frac{2 t\left(7(154+3 \sqrt{2391})^{\frac{2}{3}}-26(154+3 \sqrt{2391})^{\frac{1}{3}}-6 \sqrt{2391}-308\right)}{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149} \\
t
\end{array}\right.
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{3(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+18(154+3 \sqrt{2391})^{\frac{2}{3}}-16 \sqrt{2391}-18(154+3 \sqrt{2391})^{\frac{1}{3}}-765\right)}{\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149\right)\left((154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)} \\
-\frac{2 t\left(7(154+3 \sqrt{2391})^{\frac{2}{3}}-26(154+3 \sqrt{2391})^{\frac{1}{3}}-6 \sqrt{2391}-308\right)}{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149} \\
t
\end{array}\right]=t
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{3(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+18(154+3 \sqrt{2391})^{\frac{2}{3}}-16 \sqrt{2391}-18(154+3 \sqrt{2391})^{\frac{1}{3}}-765\right)}{\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149\right)\left((154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)} \\
-\frac{2 t\left(7(154+3 \sqrt{2391})^{\frac{2}{3}}-26(154+3 \sqrt{2391})^{\frac{1}{3}}-6 \sqrt{2391}-308\right)}{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149} \\
t
\end{array}\right]=
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{3(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+18(154+3 \sqrt{2391})^{\frac{2}{3}}-16 \sqrt{2391}-18(154+3 \sqrt{2391})^{\frac{1}{3}}-765\right)}{\left(\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149\right)\left((154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)} \\
-\frac{2 t\left(7(154+3 \sqrt{2391})^{\frac{2}{3}}-26(154+3 \sqrt{2391})^{\frac{1}{3}}-6 \sqrt{2391}-308\right)}{\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+4(154+3 \sqrt{2391})^{\frac{2}{3}}-4 \sqrt{2391}+34(154+3 \sqrt{2391})^{\frac{1}{3}}-149}
\end{array}\right.
\]

Considering the eigenvalue \(\lambda_{2}=\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}-\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{gathered}
\left(\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]-\left(\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}-\frac{i \sqrt{3}}{}\right.\right. \\
{\left[\begin{array}{c}
-\frac{(1+i \sqrt{3})(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}} \\
2
\end{array}-\frac{(1+i \sqrt{3})(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}}\right.} \\
3
\end{gathered}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[-\frac{2}{3}-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}-\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\right.
\]
\[
\begin{aligned}
& {[-(1+i \sqrt{3})(154} \\
& R_{2}=R_{2}-\frac{2 R_{1}}{-\frac{2}{3}-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}-\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}+\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}} \Longrightarrow \\
& R_{3}=R_{3}+\frac{18(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}} R_{1}}{(1+i \sqrt{3})(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+13} \Longrightarrow \\
& R_{3}=R_{3}-\frac{\left(-i(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}} \sqrt{3}-(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}+13 i \sqrt{3}+14(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}\right.}{\left(i(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}} \sqrt{3}+(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+13\right)((}
\end{aligned}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-\frac{(1+i \sqrt{3})(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}} & 1 \\
0 & \frac{(-34 i \sqrt{3}-3 i \sqrt{797}+\sqrt{2391}+34)(154+3 \sqrt{2391})^{\frac{1}{3}}-149 i \sqrt{3}-12 i \sqrt{797}}{(154+3 \sqrt{2391})^{\frac{1}{3}}\left(13+4(154+3 \sqrt{2391})^{\frac{1}{3}}+i\left((154+3 \sqrt{2391})^{\frac{2}{3}}\right.\right.} \\
0 & 0
\end{array}\right.
\]

The free variables are \(\left\{v_{3}\right\}\) and the leading variables are \(\left\{v_{1}, v_{2}\right\}\). Let \(v_{3}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{6(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(48 i \sqrt{797}-18 i \sqrt{3}(154+3 \sqrt{2391})^{\frac{1}{3}}+3 i \sqrt{797}\right.}{\left(i(154+3 \sqrt{2391})^{\frac{2}{3}} \sqrt{3}+(154+3 \sqrt{2391})^{\frac{2}{3}}-13 i \sqrt{3}+4(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)(3 i \sqrt{797}(154-}\right.\)
Hence the solution is

\section*{Expression too large to display}

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{r}
-\frac{6(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(48 \mathrm{I} \sqrt{797}-18 \mathrm{I} \sqrt{3}(154+3 \sqrt{2391})^{\frac{1}{3}}+3 \mathrm{I} \sqrt{797}(154+3 \sqrt{2391})^{\frac{1}{3}}-\sqrt{2391}(154+3 \sqrt{2391}\right.}{\left(\mathrm{I}(154+3 \sqrt{2391})^{\frac{2}{3}} \sqrt{3}+(154+3 \sqrt{2391})^{\frac{2}{3}}-13 \mathrm{I} \sqrt{3}+4(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right)\left(3 \mathrm{I} \sqrt{797}(154+3 \sqrt{2391})^{\frac{1}{3}}+34 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}-\sqrt{2}\right.} \\
-\frac{4 t\left(9 \mathrm{I} \sqrt{797}-13 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}+154 \mathrm{I} \sqrt{3}+7(154+3 \sqrt{2391})^{\frac{2}{3}}+\right.}{3 \mathrm{I} \sqrt{797}(154+3 \sqrt{2391})^{\frac{1}{3}}+34 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}-\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+149 \mathrm{I} \sqrt{3}+12 \mathrm{I}}
\end{array}\right.
\]

Let \(t=1\) the eigenvector becomes

> Expression too large to display

Which is normalized to

\section*{Expression too large to display}

Considering the eigenvalue \(\lambda_{3}=\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}+\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\)

We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
& \left(\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & -4 \\
3 & -1 & 1
\end{array}\right]-\left(\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}+\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}+\frac{i \sqrt{3}\left(-\frac{15}{}\right.}{}\right.\right. \\
& {\left[\frac{(i \sqrt{3}-1)(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}-13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}}\right.} \\
& 1 \\
& 2 \\
& \frac{(i \sqrt{3}-1)(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}-13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}} \\
& 3 \\
& -1
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[-\frac{2}{3}-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}-\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}\right.
\]

2
\[
-\frac{2}{3}-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}-\frac{}{6(154+3}
\]

3
\[
R_{2}=R_{2}-\frac{2 R_{1}}{-\frac{2}{3}-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{6}-\frac{13}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{i \sqrt{3}\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}+\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)}{2}} \Longrightarrow
\]
\[
\begin{aligned}
& R_{3}=R_{3}-\frac{18(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}} R_{1}}{(i \sqrt{3}-1)(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}-13} \Longrightarrow \\
& R_{3}=R_{3}-\frac{\left(-i(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}} \sqrt{3}+(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}+13 i \sqrt{3}-14(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}+\right.}{\left(i(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}} \sqrt{3}-(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}-13\right)(-}
\end{aligned}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\frac{(i \sqrt{3}-1)(154+3 \sqrt{3} \sqrt{797})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}-13}{6(154+3 \sqrt{3} \sqrt{797})^{\frac{1}{3}}} & 1 \\
0 & \frac{-(34 i \sqrt{3}+3 i \sqrt{797}+\sqrt{2391}+34)(154+3 \sqrt{2391})^{\frac{1}{3}}-149 i \sqrt{3}-12 i \sqrt{797}+4}{\left(-13-4(154+3 \sqrt{2391})^{\frac{1}{3}}+i\left((154+3 \sqrt{2391})^{\frac{2}{3}}-13\right) \sqrt{3}-(154+3)\right.} \\
0 & 0
\end{array}\right.
\]

The free variables are \(\left\{v_{3}\right\}\) and the leading variables are \(\left\{v_{1}, v_{2}\right\}\). Let \(v_{3}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{6(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(18 i \sqrt{3}(154+3 \sqrt{2391})^{\frac{1}{3}}-3 i \sqrt{797}(154+3 \sqrt{2}\right.}{\left(i(154+3 \sqrt{2391})^{\frac{2}{3}} \sqrt{3}-(154+3 \sqrt{2391})^{\frac{2}{3}}-13 i \sqrt{3}-4(154+3 \sqrt{2391})^{\frac{1}{3}}-13\right)(-34 i \sqrt{3}(154+3}\right.\) Hence the solution is

> Expression too large to display

Since there is one free Variable, we have found one eigenvector associated with this
eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
6(154+3 \sqrt{2391})^{\frac{1}{3}} t\left(18 \mathrm{I} \sqrt{3}(154+3 \sqrt{2391})^{\frac{1}{3}}-3 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{797}-\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+36(154+\right. \\
\left(\mathrm{I}(154+3 \sqrt{2391})^{\frac{2}{3}} \sqrt{3}-(154+3 \sqrt{2391})^{\frac{2}{3}}-13 \mathrm{I} \sqrt{3}-4(154+3 \sqrt{2391})^{\frac{1}{3}}-13\right)\left(-34 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}-3 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{797}-\sqrt{23}\right. \\
-\frac{4 t\left(13 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}+7(154+3 \sqrt{2391})^{\frac{2}{3}}-154 \mathrm{I} \sqrt{3}-9 \mathrm{I} \sqrt{797}+\frac{3}{3}\right.}{-34 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{3}-3 \mathrm{I}(154+3 \sqrt{2391})^{\frac{1}{3}} \sqrt{797}-\sqrt{2391}(154+3 \sqrt{2391})^{\frac{1}{3}}+8(154+3 \sqrt{2391}} \\
t
\end{array}\right.
\]

Let \(t=1\) the eigenvector becomes
Expression too large to display
Which is normalized to

\section*{Expression too large to display}

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue \(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
& \left.\vec{x}_{1}(t)=\vec{v}_{1} e^{\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\right.}\right) t \\
& =\left[\begin{array}{c}
-\frac{7\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}+\frac{14}{3}\right)}{\left(-\frac{7(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{91}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}+\frac{2}{3}+\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\right)^{2}\right)\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391}}\right.} \\
\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}-\frac{1}{3}\right)^{2}-32 \\
-\frac{7(154+3 \sqrt{23911})^{\frac{1}{3}}}{3}-\frac{91}{3(154+3 \sqrt{2391})^{\frac{1}{3}}}+\frac{2}{3}+\left(-\frac{(154+3 \sqrt{2391})^{\frac{1}{3}}}{3}-\frac{13}{3(154+3 \sqrt{23911})^{\frac{1}{3}}-\frac{1}{3}}\right)^{2}
\end{array}\right.
\end{aligned}
\]

Therefore the final solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)
\]

Which is written as

Which becomes
Expression too large to display
\(\checkmark\) Solution by Maple
Time used: 0.141 (sec). Leaf size: 3197
dsolve([diff \((x(t), t)=-x(t)+y(t)-z(t), \operatorname{diff}(y(t), t)=2 * x(t)-y(t)-4 * z(t), \operatorname{diff}(z(t), t)=3 * x(t)-y(t\)
\[
\begin{aligned}
& x(t)= c_{2} \mathrm{e}^{\frac{\left(13+(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}\right)^{t}}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}} \sin \left(\frac{\sqrt{3}\left((154+3 \sqrt{2391})^{\frac{2}{3}}-13\right) t}{\left.6(154+3 \sqrt{2391})^{\frac{1}{3}}\right)}\right. \\
&+c_{3} \mathrm{e}^{\frac{\left(13+(154+3 \sqrt{2391})^{\frac{2}{3}}-2(154+3 \sqrt{2391})^{\frac{1}{3}}\right)^{t}}{6(154+3 \sqrt{2391})^{\frac{1}{3}}} \cos \left(\frac{\sqrt{3}\left((154+3 \sqrt{2391})^{\frac{2}{3}}-13\right) t}{6(154+3 \sqrt{2391})^{\frac{1}{3}}}\right)} \\
&+c_{1} \mathrm{e}^{\left.-\frac{\left((154+3 \sqrt{2391})^{\frac{2}{3}}+(154+3 \sqrt{2391})^{\frac{1}{3}}+13\right.}{}\right) t} \\
& 3(154+3 \sqrt{2391})^{\frac{1}{3}}
\end{aligned}
\]

Expression too large to display
Expression too large to display

\section*{Solution by Mathematica}

Time used: 0.032 (sec). Leaf size: 501
DSolve \(\left[\left\{x^{\prime}[t]==-x[t]+y[t]-z[t], y^{\prime}[t]==2 * x[t]-y[t]-4 * z[t], z x^{\prime}[t]==3 * x[t]-y[t]+z[t]\right\},\{x[t], y[t]\right.\)
\[
\begin{aligned}
x(t) \rightarrow & c_{2} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& -c_{3} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1 e^{\# 1 t}+5 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& +c_{1} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1^{2} e^{\# 1 t}-5 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
y(t) \rightarrow & 2 c_{1} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1 e^{\# 1 t}-7 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& -2 c_{3} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{2 \# 1 e^{\# 1 t}+3 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& +c_{2} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1^{2} e^{\# 1 t}+2 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
z(t) \rightarrow & -c_{2} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1 e^{\# 1 t}-2 e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& +c_{1} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{3 \# 1 e^{\# 1 t}+e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right] \\
& +c_{3} \operatorname{RootSum}\left[\# 1^{3}+\# 1^{2}-4 \# 1+10 \&, \frac{\# 1^{2} e^{\# 1 t}+2 \# 1 e^{\# 1 t}-e^{\# 1 t}}{3 \# 1^{2}+2 \# 1-4} \&\right]
\end{aligned}
\]

\subsection*{29.11 problem 4(a)}
29.11.1 Solution using Matrix exponential method 4186
29.11.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4188
29.11.3 Maple step by step solution . 4194

Internal problem ID [6539]
Internal file name [OUTPUT/5787_Sunday_June_05_2022_03_54_27_PM_84229463/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 4(a).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t)+2 y(t)-4 t+1 \\
y^{\prime}(t) & =-x(t)+2 y(t)+3 t+4
\end{aligned}
\]

\subsection*{29.11.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)-\frac{\sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{7} t}{2}\right)}}{7} & \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)+\frac{\sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7}
\end{array}\right]
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{7} t}{2}\right)}}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{3 t}{2}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right) c_{1}}}{7}+\frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{2}}}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{1}}}{7}+\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right) c_{2}}{7}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{\left(\sqrt{7}\left(c_{1}-4 c_{2}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}\right) \mathrm{e}^{\frac{3 t}{2}}}{7} \\
2\left(\sqrt{7}\left(c_{1}-\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)-\frac{7 \cos \left(\frac{\sqrt{7} t}{2}\right) c_{2}}{2}\right) \mathrm{e}^{\frac{3 t}{2}} \\
7
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
\frac{\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right) \mathrm{e}^{-\frac{3 t}{2}}}{7} & -\frac{4 \sqrt{7} \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
\frac{2 \sqrt{7} \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & -\frac{\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right) \mathrm{e}^{-\frac{3 t}{2}}}{7}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{cc}
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right) \mathrm{e}^{-\frac{3 t}{2}}}{7} \\
\\
\end{array}\right]=\left[\begin{array}{cc}
\frac{2 \sqrt{7} \mathrm{e}^{-\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)-7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7}
\end{array}\right]\left[\begin{array}{c}
\frac{5\left(\left(\frac{49 t}{5}+\frac{35}{4}\right) \cos \left(\frac{\sqrt{7} t}{2}\right)+\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)\left(t+\frac{7}{2}\right.\right.}{14} \\
\frac{\mathrm{e}^{-\frac{3 t}{2}}(28 t-35) \cos \left(\frac{\sqrt{7} t}{2}\right)}{112}+\frac{27 \mathrm{e}^{-\frac{3 t}{2}}\left(t+\frac{35}{36}\right) \sqrt{ }}{28}
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{7 t}{2}+\frac{25}{8} \\
\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
-\frac{\mathrm{e}^{\frac{3 t}{2}} \sqrt{7}\left(c_{1}-4 c_{2}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}+\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}+\frac{7 t}{2}+\frac{25}{8} \\
-\frac{2 \sqrt{7}\left(c_{1}-\frac{c_{2}}{2}\right) \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7}+\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{2}+\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\end{aligned}
\]

\subsection*{29.11.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

\section*{Expanding gives}
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 2 \\
-1 & 2-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-3 \lambda+4=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=\frac{3}{2}+\frac{i \sqrt{7}}{2} \\
& \lambda_{2}=\frac{3}{2}-\frac{i \sqrt{7}}{2}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline\(\frac{3}{2}+\frac{i \sqrt{7}}{2}\) & 1 & complex eigenvalue \\
\hline\(\frac{3}{2}-\frac{i \sqrt{7}}{2}\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=\frac{3}{2}-\frac{i \sqrt{7}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]-\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{7}}{2} & 2 \\
-1 & \frac{i \sqrt{7}}{2}+\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{7}}{2} & 2 & 0 \\
-1 & \frac{i \sqrt{7}}{2}+\frac{1}{2} & 0
\end{array}\right]
\]
\[
R_{2}=R_{2}+\frac{R_{1}}{-\frac{1}{2}+\frac{i \sqrt{7}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
-\frac{1}{2}+\frac{i \sqrt{7}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-\frac{1}{2}+\frac{i \sqrt{7}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{4 t}{-1+i \sqrt{7}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
-\frac{4 t}{-1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4 t}{-1+i \sqrt{7}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{4 t}{-1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{4}{-1+i \sqrt{7}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{4 t}{-1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{-1+i \sqrt{7}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{4 t}{-1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{4}{-1+i \sqrt{7}} \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=\frac{3}{2}+\frac{i \sqrt{7}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]-\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{7}}{2} & 2 \\
-1 & \frac{1}{2}-\frac{i \sqrt{7}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-\frac{1}{2}-\frac{i \sqrt{7}}{2} & 2 & 0 \\
-1 & \frac{1}{2}-\frac{i \sqrt{7}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{-\frac{1}{2}-\frac{i \sqrt{7}}{2}} \Longrightarrow\left[\begin{array}{ccc|c}
-\frac{1}{2}-\frac{i \sqrt{7}}{2} & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-\frac{1}{2}-\frac{i \sqrt{7}}{2} & 2 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{4 t}{1+i \sqrt{7}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
\frac{4 t}{1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4 t}{1+i \sqrt{7}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{4 t}{1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{4}{1+i \sqrt{7}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{4 t}{1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{1+i \sqrt{7}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{4 t}{1+\mathrm{I} \sqrt{7}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{1+i \sqrt{7}} \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & \multirow{2}{*}{} & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline\(\frac{3}{2}+\frac{i \sqrt{7}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{2}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} \\
1\end{array}\right]\)} \\
\hline\(\frac{3}{2}-\frac{i \sqrt{7}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{2}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{ll}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} & \frac{2 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t} & \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
\frac{i \sqrt{7} \mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}}{7} & -\frac{\sqrt{7} \mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}(i-\sqrt{7})}{14} \\
-\frac{i \sqrt{7} \mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}}{7} & \frac{\sqrt{7} \mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}(i+\sqrt{7})}{14}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} & \frac{2 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t} & \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{i \sqrt{7} \mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}}{7} & -\frac{\sqrt{7} \mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}(i-\sqrt{7})}{14} \\
-\frac{i \sqrt{7} \mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}}{7} & \frac{\sqrt{7} \mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}(i+\sqrt{7})}{14}
\end{array}\right]\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} & \frac{2 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t} & \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}(28+i(-2-11 t) \sqrt{7}+21 t)}{14} \\
\frac{\mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}(28+i(11 t+2) \sqrt{7}+21 t)}{14}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{2 \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} & \frac{2 \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
\mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t} & \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{7} \mathrm{e}^{-\frac{(3+i \sqrt{7}) t}{2}}(92 \sqrt{7} t+65 \sqrt{7}+276 i t+315 i)(11 t+3 i \sqrt{7} t+2+4 i \sqrt{7})}{2128 i \sqrt{7}+10304 t+5936} \\
\frac{(92 i \sqrt{7} t+65 i \sqrt{7}+276 t+315) \sqrt{7} \mathrm{e}^{\frac{(i \sqrt{7}-3) t}{2}}(11 i t+3 \sqrt{7} t+2 i+4 \sqrt{7})}{2128 i \sqrt{7}-10304 t-5936}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{1288 t^{3}+2634 t^{2}+2137 t+725}{368 t^{2}+424 t+232} \\
\frac{184 t^{3}-18 t^{2}-149 t-145}{736 t^{2}+848 t+464}
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{2 c_{1} \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}}{\frac{i \sqrt{7}}{2}+\frac{1}{2}} \\
c_{1} \mathrm{e}^{\left(\frac{3}{2}+\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{2 c_{2} \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}}{\frac{1}{2}-\frac{i \sqrt{7}}{2}} \\
c_{2} \mathrm{e}^{\left(\frac{3}{2}-\frac{i \sqrt{7}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{1288 t^{3}+2634 t^{2}+2137 t+725}{368 t^{2}+424 t+232} \\
\frac{184 t^{3}-18 t^{2}-149 t-145}{736 t^{2}+848 t+464}
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{25}{8}+\frac{c_{1}(1-i \sqrt{7}) \mathrm{e}^{\frac{(3+i \sqrt{7}) t}{2}}}{2}+\frac{c_{2}(1+i \sqrt{7}) \mathrm{e}^{-\frac{(i \sqrt{7}-3) t}{2}}}{2}+\frac{7 t}{2} \\
c_{1} \mathrm{e}^{\frac{(3+i \sqrt{7}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{7}-3) t}{2}}+\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\]

\subsection*{29.11.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=x(t)+2 y(t)-4 t+1, y^{\prime}(t)=-x(t)+2 y(t)+3 t+4\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right]
\]
- System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right]
\]
- Define the forcing function
\[
\vec{f}(t)=\left[\begin{array}{c}
1-4 t \\
3 t+4
\end{array}\right]
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
1 & 2 \\
-1 & 2
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
\]
- \(\quad\) To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[\frac{3}{2}-\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{2}{2}-\frac{\mathrm{I} \sqrt{7}}{2} \\
1
\end{array}\right]\right],\left[\frac{3}{2}+\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{2}{\frac{\mathrm{I} \sqrt{7}}{2}+\frac{1}{2}} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[\frac{3}{2}-\frac{\mathrm{I} \sqrt{7}}{2},\left[\begin{array}{c}
\frac{2}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{\left(\frac{3}{2}-\frac{\mathrm{I} \sqrt{7}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{2}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{\frac{3 t}{2}} \cdot\left(\cos \left(\frac{\sqrt{7} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} t}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{2}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{\frac{3 t}{2}} \cdot\left[\begin{array}{c}
\frac{2\left(\cos \left(\frac{\sqrt{7} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} t}{2}\right)\right)}{\frac{1}{2}-\frac{\mathrm{I} \sqrt{7}}{2}} \\
\cos \left(\frac{\sqrt{7} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{7} t}{2}\right)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{\frac{3 t}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2} \\
\cos \left(\frac{\sqrt{7} t}{2}\right)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{\frac{3 t}{2}} \cdot\left[\begin{array}{c}
\frac{\sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{7} t}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{7} t}{2}\right)
\end{array}\right]\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}(\) \(\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\vec{x}_{p}(t)\)

\section*{Fundamental matrix}
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst
\[
\phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}\left(\frac{\cos \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2}\right)} \mathrm{e}^{\frac{3 t}{2}\left(\frac{\sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{7} t}{2}\right)}{2}\right)} \\
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) & -\mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)
\end{array}\right]
\]
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th \(\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}\)
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{\frac{3 t}{2}\left(\frac{\cos \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2}\right)} \mathrm{e}^{\frac{3 t}{2}\left(\frac{\sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}-\frac{\sin \left(\frac{\sqrt{7} t}{2}\right)}{2}\right)} \\
\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) & -\mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{7}}{2} \\
1 & 0
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right)-\sin \left(\frac{\sqrt{7} t}{2}\right)\right) \sqrt{7}}{7} & \frac{4 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} \\
-\frac{2 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{7} & \frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right)+7 \cos \left(\frac{\sqrt{7} t}{2}\right)\right)}{7}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution
\(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs
\(\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\(\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)\)
- Multiply by the inverse of the fundamental matrix
\(\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)\)
- Integrate to solve for \(\vec{v}(t)\)
\(\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\)
- Plug \(\vec{v}(t)\) into the equation for the particular solution \(\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)\)
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{l}
\frac{5 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{8}-\frac{25 \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{8}+\frac{7 t}{2}+\frac{25}{8} \\
\frac{15 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{16}+\frac{5 \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{16}+\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\left[\begin{array}{l}
\frac{5 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{8}-\frac{25 \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{8}+\frac{7 t}{2}+\frac{25}{8} \\
\frac{15 \sqrt{7} \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{16}+\frac{5 \mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right)}{16}+\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} c_{2}+c_{1}-\frac{25}{4}\right) \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{\left(\left(c_{1}+\frac{5}{4}\right) \sqrt{7}-c_{2}\right) \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{7 t}{2}+\frac{25}{8} \\
\frac{\mathrm{e}^{\frac{3 t}{2}}\left(16 c_{1}+5\right) \cos \left(\frac{\sqrt{7} t}{2}\right)}{16}-\mathrm{e}^{\frac{3 t}{2}}\left(c_{2}-\frac{15 \sqrt{7}}{16}\right) \sin \left(\frac{\sqrt{7} t}{2}\right)+\frac{t}{4}-\frac{5}{16}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\mathrm{e}^{\frac{3 t}{2}}\left(\sqrt{7} c_{2}+c_{1}-\frac{25}{4}\right) \cos \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{\left(\left(c_{1}+\frac{5}{4}\right) \sqrt{7}-c_{2}\right) \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right)}{2}+\frac{7 t}{2}+\frac{25}{8}, y(t)=\frac{\mathrm{e}^{\frac{3 t}{2}}\left(16 c_{1}+5\right) \cos \left(\frac{\sqrt{7} t}{2}\right)}{16} .\right.
\]

\section*{\(\checkmark\) Solution by Maple}

Time used: 0.047 (sec). Leaf size: 106
```

dsolve([diff(x(t),t)=x(t)+2*y(t)-4*t+1, diff(y(t),t)=-x(t)+2*y(t)+3*t+4],singsol=all)

```
\[
\begin{aligned}
x(t)= & \mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{2}+\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}+\frac{7 t}{2}+\frac{25}{8} \\
y(t)= & \frac{\mathrm{e}^{\frac{3 t}{2}} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{2}}{4}+\frac{\mathrm{e}^{\frac{3 t}{2}} \sqrt{7} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{2}}{4} \\
& +\frac{\mathrm{e}^{\frac{3 t}{2}} \cos \left(\frac{\sqrt{7} t}{2}\right) c_{1}}{4}-\frac{\mathrm{e}^{\frac{3 t}{2}} \sqrt{7} \sin \left(\frac{\sqrt{7} t}{2}\right) c_{1}}{4}-\frac{5}{16}+\frac{t}{4}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.624 (sec). Leaf size: 128
DSolve \(\left[\left\{x^{\prime}[t]==x[t]+2 * y[t]-4+t+1, y^{\prime}[t]==-x[t]+2 * y[t]+3 * t+4\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSol
\[
\begin{aligned}
& x(t) \rightarrow t+c_{1} e^{3 t / 2} \cos \left(\frac{\sqrt{7} t}{2}\right)-\frac{\left(c_{1}-4 c_{2}\right) e^{3 t / 2} \sin \left(\frac{\sqrt{7} t}{2}\right)}{\sqrt{7}}+\frac{9}{2} \\
& y(t) \rightarrow-t+c_{2} e^{3 t / 2} \cos \left(\frac{\sqrt{7} t}{2}\right)-\frac{\left(2 c_{1}-c_{2}\right) e^{3 t / 2} \sin \left(\frac{\sqrt{7} t}{2}\right)}{\sqrt{7}}-\frac{1}{4}
\end{aligned}
\]

\subsection*{29.12 problem 4(b)}
29.12.1 Solution using Matrix exponential method 4199
29.12.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4201
29.12.3 Maple step by step solution . 4207

Internal problem ID [6540]
Internal file name [OUTPUT/5788_Sunday_June_05_2022_03_54_30_PM_13946785/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 4(b).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-2 x(t)+y(t)-t+3 \\
y^{\prime}(t) & =x(t)+4 y(t)+t-2
\end{aligned}
\]

\subsection*{29.12.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{l}
-t+3 \\
-2+t
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
e^{A t}=\left[\begin{array}{cc}
\frac{(3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{(-3 \sqrt{10}+10) \mathrm{e}^{(1+\sqrt{10}) t}}{20} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20} & \frac{(-3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}(3 \sqrt{10}+10)}{20}
\end{array}\right]
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
& \vec{x}_{h}(t)=e^{A t} \vec{c} \\
& \left.=\left[\begin{array}{cc}
\frac{(3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{(-3 \sqrt{10}+10) \mathrm{e}^{(1+\sqrt{10}) t}}{20} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20} \\
20 & \frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20}
\end{array}\right] \frac{(-3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}(3 \sqrt{10}+10)}{20}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\left(\frac{(3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{(-3 \sqrt{10}+10) \mathrm{e}^{(1+\sqrt{10}) t}}{20}\right) c_{1}-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10} c_{2}}{20} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10} c_{1}}{20}+\left(\frac{(-3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}(3 \sqrt{10}+10)}{20}\right) c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\left(\left(3 c_{1}-c_{2}\right) \sqrt{10}+10 c_{1}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}-\frac{3\left(\left(c_{1}-\frac{c_{2}}{3}\right) \sqrt{10}-\frac{10 c_{1}}{3}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{20} \\
\frac{\left(\left(-c_{1}-3 c_{2}\right) \sqrt{10}+10 c_{2}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\left(\left(c_{1}+3 c_{2}\right) \sqrt{10}+10 c_{2}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{20}
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
e^{-A t}=\left(e^{A t}\right)^{-1}
\]
\[
=\left[\begin{array}{cc}
-\frac{\mathrm{e}^{-2 t}\left(3 \sqrt{10} \mathrm{e}^{-(-1+\sqrt{10}) t}-3 \sqrt{10} \mathrm{e}^{(1+\sqrt{10}) t}-10 \mathrm{e}^{-(-1+\sqrt{10}) t}-10 \mathrm{e}^{(1+\sqrt{10}) t}\right)}{20} & \frac{\sqrt{10} \mathrm{e}^{-2 t}\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}}\right.}{20} \\
\frac{\sqrt{10} \mathrm{e}^{-2 t}\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right)}{20} & \frac{\mathrm{e}^{-2 t}\left((3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}-3 \mathrm{e}^{(1+\sqrt{10}) t}\right.}{20}
\end{array}\right.
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{r}
\frac{(3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{(-3 \sqrt{10}+10) \mathrm{e}^{(1+\sqrt{10}) t}}{20} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20}
\end{array}\right. \\
& =\left[\begin{array}{c}
\frac{(3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{(-3 \sqrt{10}+10) \mathrm{e}^{(1+\sqrt{10}) t}}{20} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20}
\end{array}\right. \\
& =\left[\begin{array}{c}
-\frac{5 t}{9}+\frac{145}{81} \\
-\frac{t}{9}+\frac{2}{81}
\end{array}\right]
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{145}{81}+\frac{\left(\left(3 c_{1}-c_{2}\right) \sqrt{10}+10 c_{1}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\left(\left(-3 c_{1}+c_{2}\right) \sqrt{10}+10 c_{1}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{20}-\frac{5 t}{9} \\
\frac{\left(\left(-c_{1}-3 c_{2}\right) \sqrt{10}+10 c_{2}\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\left(\left(c_{1}+3 c_{2}\right) \sqrt{10}+10 c_{2}\right) \mathrm{e}^{(1+\sqrt{10}) t}}{20}-\frac{t}{9}+\frac{2}{81}
\end{array}\right]
\end{aligned}
\]

\subsection*{29.12.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t+3 \\
-2+t
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

Expanding gives
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-2-\lambda & 1 \\
1 & 4-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}-2 \lambda-9=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=1+\sqrt{10} \\
& \lambda_{2}=1-\sqrt{10}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|l|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline \(1-\sqrt{10}\) & 1 & real eigenvalue \\
\hline \(1+\sqrt{10}\) & 1 & real eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=1-\sqrt{10}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]-(1-\sqrt{10})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3+\sqrt{10} & 1 \\
1 & 3+\sqrt{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3+\sqrt{10} & 1 & 0 \\
1 & 3+\sqrt{10} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{-3+\sqrt{10}} \Longrightarrow\left[\begin{array}{cc|c}
-3+\sqrt{10} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3+\sqrt{10} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{t}{-3+\sqrt{10}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
-\frac{t}{-3+\sqrt{10}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{t}{-3+\sqrt{10}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{t}{-3+\sqrt{10}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{1}{-3+\sqrt{10}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{t}{-3+\sqrt{10}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{-3+\sqrt{10}} \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=1+\sqrt{10}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]-(1+\sqrt{10})\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{cc}
-3-\sqrt{10} & 1 \\
1 & 3-\sqrt{10}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
-3-\sqrt{10} & 1 & 0 \\
1 & 3-\sqrt{10} & 0
\end{array}\right]} \\
R_{2}=R_{2}-\frac{R_{1}}{-3-\sqrt{10}} \Longrightarrow\left[\begin{array}{cc|c}
-3-\sqrt{10} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
-3-\sqrt{10} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{t}{3+\sqrt{10}}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
\frac{t}{3+\sqrt{10}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{t}{3+\sqrt{10}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{t}{3+\sqrt{10}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{t}{3+\sqrt{10}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{t}{3+\sqrt{10}} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & & \\
\cline { 2 - 3 } & algebraic \(m\) & geometric \(k\) & defective? & eigenvectors \\
\hline \(1+\sqrt{10}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{3+\sqrt{10}} \\
1\end{array}\right]\)} \\
\hline \(1-\sqrt{10}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{3-\sqrt{10}} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Since eigenvalue \(1+\sqrt{10}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{1}(t) & =\vec{v}_{1} e^{(1+\sqrt{10}) t} \\
& =\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right] e^{(1+\sqrt{10}) t}
\end{aligned}
\]

Since eigenvalue \(1-\sqrt{10}\) is real and distinct then the corresponding eigenvector solution is
\[
\begin{aligned}
\vec{x}_{2}(t) & =\vec{v}_{2} e^{(1-\sqrt{10}) t} \\
& =\left[\begin{array}{c}
\frac{1}{3-\sqrt{10}} \\
1
\end{array}\right] e^{(1-\sqrt{10}) t}
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} \\
\mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
\mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \cdots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} & \frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{-(1+\sqrt{10}) t}}{20} & \frac{\sqrt{10}(3+\sqrt{10}) \mathrm{e}^{-(1+\sqrt{10}) t}}{20} \\
-\frac{\sqrt{10} \mathrm{e}^{(-1+\sqrt{10}) t}}{20} & \frac{\mathrm{e}^{(-1+\sqrt{10}) t} \sqrt{10}(-3+\sqrt{10})}{20}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
\vec{x}_{p}(t) & =\left[\begin{array}{ll}
\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} & \frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{\sqrt{10} \mathrm{e}^{-(1+\sqrt{10}) t}}{20} & \frac{\sqrt{10}(3+\sqrt{10}) \mathrm{e}^{-(1+\sqrt{10}) t}}{20} \\
-\frac{\sqrt{10} \mathrm{e}^{(-1+\sqrt{10}) t}}{20} & \frac{\mathrm{e}^{(-1+\sqrt{10}) t \sqrt{10}(-3+\sqrt{10})}}{20}
\end{array}\right]\left[\begin{array}{c}
-t+3 \\
-2+t
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} & \frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right] \int\left[\begin{array}{ll}
\frac{((2 t-3) \sqrt{10}+10 t-20) \mathrm{e}^{-(1+\sqrt{10}) t}}{20} \\
\frac{((3-2 t) \sqrt{10}+10 t-20) \mathrm{e}^{(-1+\sqrt{10}) t}}{20}
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} & \frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
\mathrm{e}^{(1+\sqrt{10}) t} & \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]\left[\begin{array}{l}
-\frac{(18 t \sqrt{10}-49 \sqrt{10}-18 t+94) \sqrt{10} \mathrm{e}^{-(1+\sqrt{10}) t}(t \sqrt{10}-2 \sqrt{10}+2 t-3)}{540(6 t-14+\sqrt{10})} \\
\frac{(18 t \sqrt{10}-49 \sqrt{10}+18 t-94) \sqrt{10} \mathrm{e}^{(-1+\sqrt{10}) t}(t \sqrt{10}-2 \sqrt{10}-2 t+3)}{3240 t-7560-540 \sqrt{10}}
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{-540 t^{3}+4260 t^{2}-10910 t+8990}{-270+27(6 t-14)^{2}} \\
\frac{-108 t^{3}+528 t^{2}-670 t+124}{-270+27(6 t-14)^{2}}
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} \\
c_{1} \mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2} \mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} \\
c_{2} \mathrm{e}^{(1-\sqrt{10}) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{-540 t^{3}+4260 t^{2}-10910 t+8990}{-270+(6 t-14)^{2}} \\
\frac{-108 t^{3}+228 t^{2}-670 t+124}{-270+27(6 t-14)^{2}}
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-c_{2}(3+\sqrt{10}) \mathrm{e}^{-(-1+\sqrt{10}) t}+c_{1}(-3+\sqrt{10}) \mathrm{e}^{(1+\sqrt{10}) t}-\frac{5 t}{9}+\frac{145}{81} \\
c_{1} \mathrm{e}^{(1+\sqrt{10}) t}+c_{2} \mathrm{e}^{-(-1+\sqrt{10}) t}-\frac{t}{9}+\frac{2}{81}
\end{array}\right]
\]

\subsection*{29.12.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=-2 x(t)+y(t)-t+3, y^{\prime}(t)=x(t)+4 y(t)+t-2\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\(\vec{x}^{\prime}(t)=\left[\begin{array}{cc}-2 & 1 \\ 1 & 4\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}-t+3 \\ -2+t\end{array}\right]\)
- \(\quad\) System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t+3 \\
-2+t
\end{array}\right]
\]
- Define the forcing function
\[
\vec{f}(t)=\left[\begin{array}{c}
-t+3 \\
-2+t
\end{array}\right]
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
-2 & 1 \\
1 & 4
\end{array}\right]
\]
- Rewrite the system as
\(\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}\)
- To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[1-\sqrt{10},\left[\begin{array}{c}
\frac{1}{3-\sqrt{10}} \\
1
\end{array}\right]\right],\left[1+\sqrt{10},\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]\right]\right]
\]
- Consider eigenpair
\[
\left[1-\sqrt{10},\left[\begin{array}{c}
\frac{1}{3-\sqrt{10}} \\
1
\end{array}\right]\right]
\]
- Solution to homogeneous system from eigenpair
\[
\vec{x}_{1}=\mathrm{e}^{(1-\sqrt{10}) t} \cdot\left[\begin{array}{c}
\frac{1}{3-\sqrt{10}} \\
1
\end{array}\right]
\]
- Consider eigenpair
\[
\left[1+\sqrt{10},\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]\right]
\]
- \(\quad\) Solution to homogeneous system from eigenpair
\[
\vec{x}_{2}=\mathrm{e}^{(1+\sqrt{10}) t} \cdot\left[\begin{array}{c}
\frac{1}{3+\sqrt{10}} \\
1
\end{array}\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}\) \(\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\vec{x}_{p}(t)\)

Fundamental matrix
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst \(\phi(t)=\left[\begin{array}{ll}\frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} & \frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} \\ \mathrm{e}^{(1-\sqrt{10}) t} & \mathrm{e}^{(1+\sqrt{10}) t}\end{array}\right]\)
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th
\[
\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}
\]
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{(1-\sqrt{10}) t}}{3-\sqrt{10}} & \frac{\mathrm{e}^{(1+\sqrt{10}) t}}{3+\sqrt{10}} \\
\mathrm{e}^{(1-\sqrt{10}) t} & \mathrm{e}^{(1+\sqrt{10}) t}
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
\frac{1}{3-\sqrt{10}} & \frac{1}{3+\sqrt{10}} \\
1 & 1
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\left((3+\sqrt{10}) \mathrm{e}^{-(-1+\sqrt{10}) t}+\mathrm{e}^{(1+\sqrt{10}) t}(-3+\sqrt{10})\right) \sqrt{10}}{20} & -\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20} \\
-\frac{\left(-\mathrm{e}^{(1+\sqrt{10}) t}+\mathrm{e}^{-(-1+\sqrt{10}) t}\right) \sqrt{10}}{20} & \frac{(-3 \sqrt{10}+10) \mathrm{e}^{-(-1+\sqrt{10}) t}}{20}+\frac{\mathrm{e}^{(1+\sqrt{10}) t}(3 \sqrt{10}+10)}{20}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution \(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs
\[
\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\[
\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)
\]
- Multiply by the inverse of the fundamental matrix
\[
\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)
\]
- Integrate to solve for \(\vec{v}(t)\)
\[
\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s
\]
- Plug \(\vec{v}(t)\) into the equation for the particular solution
\[
\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)
\]
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{c}
\frac{(-1450-433 \sqrt{10}) \mathrm{e}^{-(-1+\sqrt{10}) t}+(-1450+433 \sqrt{10}) \mathrm{e}^{(1+\sqrt{10}) t}-900 t+2900}{20(1+\sqrt{10})^{2}(-1+\sqrt{10})^{2}} \\
\frac{(151 \sqrt{10}-20) \mathrm{e}^{-(-1+\sqrt{10}) t}}{1620}+\frac{(-151 \sqrt{10}-20) \mathrm{e}^{(1+\sqrt{10}) t}}{1620}-\frac{t}{9}+\frac{2}{81}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\left[\begin{array}{c}
\frac{(-1450-433 \sqrt{10}) \mathrm{e}^{-(-1+\sqrt{10}) t}+(-1450+433 \sqrt{10}) \mathrm{e}^{(1+\sqrt{10}) t}-900 t+2900}{20(1+\sqrt{10})^{2}(-1+\sqrt{10})^{2}} \\
\frac{(151 \sqrt{10}-20) \mathrm{e}^{-(-1+\sqrt{10}) t}}{1620}+\frac{(-151 \sqrt{10}-20) \mathrm{e}^{(1+\sqrt{10}) t}}{1620}-\frac{t}{9}+\frac{2}{81}
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{\left(\left(-1620 c_{1}-433\right) \sqrt{10}-4860 c_{1}-1450\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{1620}+\frac{\left(\left(1620 c_{2}+433\right) \sqrt{10}-4860 c_{2}-1450\right) \mathrm{e}^{(1+\sqrt{10}) t}}{1620}-\frac{5 t}{9}- \\
\frac{\left(1620 c_{1}+151 \sqrt{10}-20\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{1620}+\frac{\left(1620 c_{2}-151 \sqrt{10}-20\right) \mathrm{e}^{(1+\sqrt{10}) t}}{1620}-\frac{t}{9}+\frac{2}{81}
\end{array}\right.
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=\frac{\left(\left(-1620 c_{1}-433\right) \sqrt{10}-4860 c_{1}-1450\right) \mathrm{e}^{-(-1+\sqrt{10}) t}}{1620}+\frac{\left(\left(1620 c_{2}+433\right) \sqrt{10}-4860 c_{2}-1450\right) \mathrm{e}^{(1+\sqrt{10}) t}}{1620}-\frac{5 t}{9}+\frac{145}{81},\right.
\]

Solution by Maple
Time used: 0.156 (sec). Leaf size: 90
```

dsolve([diff (x (t),t)=-2*x (t)+y(t)-t+3,\operatorname{diff}(y(t),t)=x(t)+4*y(t)+t-2], singsol=all)

```
\(x(t)=\mathrm{e}^{(1+\sqrt{10}) t} c_{2}+\mathrm{e}^{-(-1+\sqrt{10}) t} c_{1}-\frac{5 t}{9}+\frac{145}{81}\)
\(y(t)=\mathrm{e}^{(1+\sqrt{10}) t} c_{2} \sqrt{10}-\mathrm{e}^{-(-1+\sqrt{10}) t} c_{1} \sqrt{10}+3 \mathrm{e}^{(1+\sqrt{10}) t} c_{2}+3 \mathrm{e}^{-(-1+\sqrt{10}) t} c_{1}-\frac{t}{9}+\frac{2}{81}\)
Solution by Mathematica
Time used: 10.617 (sec). Leaf size: 190
```

DSolve[{x'[t]==-2*x[t]+y[t]-t+3, y'[t]==x[t]+4*y[t]+t-2},{x[t],y[t]},t,IncludeSingularSolutio

```
\[
x(t) \rightarrow
\]
\[
-\frac{e^{t-\sqrt{10} t}\left(100 e^{(\sqrt{10}-1) t}(9 t-29)+81\left((3 \sqrt{10}-10) c_{1}-\sqrt{10} c_{2}\right) e^{2 \sqrt{10} t}-81(10+3 \sqrt{10}) c_{1}+81 \sqrt{10} c_{2}\right.}{}
\]
\[
1620
\]
\(y(t)\)
\(\rightarrow \frac{e^{t-\sqrt{10}}\left(-20 e^{(\sqrt{10}-1) t}(9 t-2)+81\left(\sqrt{10} c_{1}+(10+3 \sqrt{10}) c_{2}\right) e^{2 \sqrt{10} t}-81\left(\sqrt{10} c_{1}+(3 \sqrt{10}-10) c_{2}\right)\right)}{1620}\)

\subsection*{29.13 problem 4(c)}
29.13.1 Solution using Matrix exponential method 4211
29.13.2 Solution using explicit Eigenvalue and Eigenvector method . . . 4213
29.13.3 Maple step by step solution . 4219

Internal problem ID [6541]
Internal file name [OUTPUT/5789_Sunday_June_05_2022_03_54_34_PM_60465517/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section A. Drill exercises. Page 400
Problem number: 4(c).
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs"
Solve
\[
\begin{aligned}
x^{\prime}(t) & =-4 x(t)+y(t)-t+3 \\
y^{\prime}(t) & =-x(t)-5 y(t)+t+1
\end{aligned}
\]

\subsection*{29.13.1 Solution using Matrix exponential method}

In this method, we will assume we have found the matrix exponential \(e^{A t}\) allready. There are different methods to determine this but will not be shown here. This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation
of parameters method applied to the fundamental matrix. For the above matrix \(A\), the matrix exponential can be found to be
\[
\begin{aligned}
e^{A t} & =\left[\begin{array}{cc}
\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)+\frac{\sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} & \mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)-\frac{\sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} & -\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3}
\end{array}\right]
\end{aligned}
\]

Therefore the homogeneous solution is
\[
\begin{aligned}
\vec{x}_{h}(t) & =e^{A t} \vec{c} \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2} t\right.}{3} & -\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} 3}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}}{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right) c_{1}}}{3}+\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2} t c_{2}\right.}}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right) c_{1}}}{3}-\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right) c_{2}}}{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3}\left(c_{1}+2 c_{2}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right) c_{1}\right)}}{3} \\
2\left(\sqrt{3}\left(c_{1}+\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)-\frac{3 \cos \left(\frac{\sqrt{3} t}{2}\right) c_{2}}{2}\right) \mathrm{e}^{-\frac{9 t}{2}} \\
-\frac{2}{3}
\end{array}\right]
\end{aligned}
\]

The particular solution given by
\[
\vec{x}_{p}(t)=e^{A t} \int e^{-A t} \vec{G}(t) d t
\]

But
\[
\begin{aligned}
e^{-A t} & =\left(e^{A t}\right)^{-1} \\
& =\left[\begin{array}{cc}
-\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right) \mathrm{e}^{\frac{9 t}{2}}}{3} & -\frac{2 \sqrt{3} \mathrm{e}^{\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} \\
\frac{2 \sqrt{3} \mathrm{e}^{\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} & \frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right) \mathrm{e}^{\frac{9 t}{2}}}{3}
\end{array}\right]
\end{aligned}
\]

Hence
\[
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2} t\right)+3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} & -\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3}
\end{array}\right] \int\left[\begin{array}{c}
-\frac{\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right) \mathrm{e}^{\frac{9 t}{2}}}{3} \\
\\
\end{array}\right]\left[\begin{array}{cc}
\frac{2 \sqrt{3} \mathrm{e}^{\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} 3}{2}\right)}{3} \\
\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)+3 \cos \left(\frac{\sqrt{3} t}{2} t\right)\right)}}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2} \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3} & -\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}{3}
\end{array}\right]\left[-\frac{2 \mathrm{e}^{\frac{9 t}{2}\left(\left(2 t-\frac{117}{14}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)+\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right.\right.}}{21}\right. \\
&-\frac{\mathrm{e}^{\frac{9 t}{2}}\left(\left(-5 t+\frac{1}{7}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)+\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)\right.}{21}
\end{aligned}
\]

Hence the complete solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
& =\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{9 t}{2} \sqrt{3}\left(c_{1}+2 c_{2}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)}}{3}+\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{1}-\frac{4 t}{21}+\frac{39}{49} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}}\left(c_{1}+\frac{c_{2}}{2}\right) \sin \left(\frac{\sqrt{3} t}{2}\right)}{3}+\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{2}+\frac{5 t}{21}-\frac{1}{147}
\end{array}\right]
\end{aligned}
\]

\subsection*{29.13.2 Solution using explicit Eigenvalue and Eigenvector method}

This is a system of linear ODE's given as
\[
\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)
\]

Or
\[
\left[\begin{array}{c}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right]
\]

Since the system is nonhomogeneous, then the solution is given by
\[
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)
\]

Where \(\vec{x}_{h}(t)\) is the homogeneous solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)\) and \(\vec{x}_{p}(t)\) is a particular solution to \(\vec{x}^{\prime}(t)=A \vec{x}(t)+\vec{G}(t)\). The particular solution will be found using variation of parameters method applied to the fundamental matrix.

The first step is find the homogeneous solution. We start by finding the eigenvalues of \(A\). This is done by solving the following equation for the eigenvalues \(\lambda\)
\[
\operatorname{det}(A-\lambda I)=0
\]

\section*{Expanding gives}
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=0
\]

Therefore
\[
\operatorname{det}\left(\left[\begin{array}{cc}
-4-\lambda & 1 \\
-1 & -5-\lambda
\end{array}\right]\right)=0
\]

Which gives the characteristic equation
\[
\lambda^{2}+9 \lambda+21=0
\]

The roots of the above are the eigenvalues.
\[
\begin{aligned}
& \lambda_{1}=-\frac{9}{2}+\frac{i \sqrt{3}}{2} \\
& \lambda_{2}=-\frac{9}{2}-\frac{i \sqrt{3}}{2}
\end{aligned}
\]

This table summarises the above result
\begin{tabular}{|c|l|l|}
\hline eigenvalue & algebraic multiplicity & type of eigenvalue \\
\hline\(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\) & 1 & complex eigenvalue \\
\hline\(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\) & 1 & complex eigenvalue \\
\hline
\end{tabular}

Now the eigenvector for each eigenvalue are found.
Considering the eigenvalue \(\lambda_{1}=-\frac{9}{2}-\frac{i \sqrt{3}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
\left(\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]-\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & {\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{3}}{2} & 1 & 0 \\
-1 & -\frac{1}{2}+\frac{i \sqrt{3}}{2} & 0
\end{array}\right]
\]
\[
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}+\frac{i \sqrt{3}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}+\frac{i \sqrt{3}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\frac{1}{2}+\frac{i \sqrt{3}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=-\frac{2 t}{1+i \sqrt{3}}\right\}\)

Hence the solution is
\[
\left[\begin{array}{c}
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2 t}{1+i \sqrt{3}} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
-\frac{2 t}{1+\mathrm{I} \sqrt{3}} \\
t
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{1+i \sqrt{3}} \\
1
\end{array}\right]
\]

Considering the eigenvalue \(\lambda_{2}=-\frac{9}{2}+\frac{i \sqrt{3}}{2}\)
We need to solve \(A \vec{v}=\lambda \vec{v}\) or \((A-\lambda I) \vec{v}=\overrightarrow{0}\) which becomes
\[
\begin{aligned}
&\left(\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]-\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& {\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{3}}{2} & 1 \\
-1 & -\frac{1}{2}-\frac{i \sqrt{3}}{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
\]

Now forward elimination is applied to solve for the eigenvector \(\vec{v}\). The augmented matrix is
\[
\begin{gathered}
{\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{3}}{2} & 1 & 0 \\
-1 & -\frac{1}{2}-\frac{i \sqrt{3}}{2} & 0
\end{array}\right]} \\
R_{2}=R_{2}+\frac{R_{1}}{\frac{1}{2}-\frac{i \sqrt{3}}{2}} \Longrightarrow\left[\begin{array}{cc|c}
\frac{1}{2}-\frac{i \sqrt{3}}{2} & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{gathered}
\]

Therefore the system in Echelon form is
\[
\left[\begin{array}{cc}
\frac{1}{2}-\frac{i \sqrt{3}}{2} & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\]

The free variables are \(\left\{v_{2}\right\}\) and the leading variables are \(\left\{v_{1}\right\}\). Let \(v_{2}=t\). Now we start back substitution. Solving the above equation for the leading variables in terms of free variables gives equation \(\left\{v_{1}=\frac{2 t}{i \sqrt{3}-1}\right\}\)
Hence the solution is
\[
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2 t}{i \sqrt{3}-1} \\
t
\end{array}\right]
\]

Since there is one free Variable, we have found one eigenvector associated with this eigenvalue. The above can be written as
\[
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=t\left[\begin{array}{c}
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
\]

Let \(t=1\) the eigenvector becomes
\[
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
\]

Which is normalized to
\[
\left[\begin{array}{c}
\frac{2 t}{\mathrm{I} \sqrt{3}-1} \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{i \sqrt{3}-1} \\
1
\end{array}\right]
\]

The following table gives a summary of this result. It shows for each eigenvalue the algebraic multiplicity \(m\), and its geometric multiplicity \(k\) and the eigenvectors associated with the eigenvalue. If \(m>k\) then the eigenvalue is defective which means the number
of normal linearly independent eigenvectors associated with this eigenvalue (called the geometric multiplicity \(k\)) does not equal the algebraic multiplicity \(m\), and we need to determine an additional \(m-k\) generalized eigenvectors for this eigenvalue.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{ eigenvalue } & \multicolumn{2}{|c|}{ multiplicity } & \multirow{2}{*}{\begin{tabular}{c}
defective?
\end{tabular}} & eigenvectors \\
\cline { 2 - 3 }\(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
1\end{array}\right]\)} \\
\hline\(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\) & 1 & 1 & No & {\(\left[\begin{array}{c}\frac{1}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
1\end{array}\right]\)} \\
\hline
\end{tabular}

Now that we found the eigenvalues and associated eigenvectors, we will go over each eigenvalue and generate the solution basis. The only problem we need to take care of is if the eigenvalue is defective. Therefore the homogeneous solution is
\[
\vec{x}_{h}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)
\]

Which is written as
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]+c_{2}\left[\begin{array}{c}
\frac{\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]
\]

Now that we found homogeneous solution above, we need to find a particular solution \(\vec{x}_{p}(t)\). We will use Variation of parameters. The fundamental matrix is
\[
\Phi=\left[\begin{array}{lll}
\vec{x}_{1} & \vec{x}_{2} & \ldots
\end{array}\right]
\]

Where \(\vec{x}_{i}\) are the solution basis found above. Therefore the fundamental matrix is
\[
\Phi(t)=\left[\begin{array}{ll}
\frac{\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t} & \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]
\]

The particular solution is then given by
\[
\vec{x}_{p}(t)=\Phi \int \Phi^{-1} \vec{G}(t) d t
\]

But
\[
\Phi^{-1}=\left[\begin{array}{ll}
\frac{i \sqrt{3} \mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}}{3} & \frac{\sqrt{3} \mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}(\sqrt{3}+i)}{6} \\
-\frac{i \sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}}{3} & -\frac{\sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}(i-\sqrt{3})}{6}
\end{array}\right]
\]

Hence
\[
\begin{aligned}
& \vec{x}_{p}(t)=\left[\begin{array}{ll}
\frac{e^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t} & \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{cc}
\frac{i \sqrt{3} \mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}}{3} & \frac{\sqrt{3} \mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}(\sqrt{3}+i)}{6} \\
-\frac{i \sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}}{3} & -\frac{\sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}(i-\sqrt{3})}{6}
\end{array}\right]\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right] d t \\
& =\left[\begin{array}{ll}
\frac{\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t} & \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right] \int\left[\begin{array}{c}
\frac{\mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}(3-i(t-7) \sqrt{3}+3 t)}{6} \\
\frac{\mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}(3+i(t-7) \sqrt{3}+3 t)}{6}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
\frac{\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}+\frac{i \sqrt{3}}{2}} & \frac{\mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
\mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t} & \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]\left[\begin{array}{c}
-\frac{\sqrt{3} \mathrm{e}^{-\frac{(-9+i \sqrt{3}) t}{2}}(-7 \sqrt{3} t-116 \sqrt{3}+63 i t-118 i)(t+i \sqrt{3} t-7+i \sqrt{3})}{1764(2 i \sqrt{3}+t-1)} \\
\frac{\sqrt{3} \mathrm{e}^{\frac{(i \sqrt{3}+9) t}{2}}(7 \sqrt{3} t+116 \sqrt{3}+63 i t-118 i)(-t+i \sqrt{3} t+7+i \sqrt{3})}{3528 i \sqrt{3}-1764 t+1764}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{28 t^{3}-173 t^{2}+598 t-1521}{-1764-147(t-1)^{2}} \\
\frac{-35 t^{3}+71 t^{2}-457 t+13}{-1764-147(t-1)^{2}}
\end{array}\right]
\end{aligned}
\]

Now that we found particular solution, the final solution is
\[
\begin{aligned}
\vec{x}(t) & =\vec{x}_{h}(t)+\vec{x}_{p}(t) \\
{\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right] } & =\left[\begin{array}{c}
\frac{c_{1} \mathrm{e}\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}{-\frac{1}{2}+\frac{\sqrt{3}}{2}} \\
c_{1} \mathrm{e}^{\left(-\frac{9}{2}+\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{c_{2} \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}}{-\frac{1}{2}-\frac{i \sqrt{3}}{2}} \\
c_{2} \mathrm{e}^{\left(-\frac{9}{2}-\frac{i \sqrt{3}}{2}\right) t}
\end{array}\right]+\left[\begin{array}{c}
\frac{28 t^{3}-173 t^{2}+598 t-1521}{-1764-147(t-1)^{2}} \\
\frac{-35 t^{3}+71 t^{2}-457+13}{-1764-147(t-1)^{2}}
\end{array}\right]
\end{aligned}
\]

Which becomes
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{39}{49}+\frac{c_{1}(-i \sqrt{3}-1) \mathrm{e}^{\frac{(-9+i \sqrt{3}) t}{2}}}{2}+\frac{c_{2}(i \sqrt{3}-1) \mathrm{e}^{-\frac{(i \sqrt{3}+9) t}{2}}}{2}-\frac{4 t}{21} \\
c_{1} \mathrm{e}^{\frac{(-9+i \sqrt{3}) t}{2}}+c_{2} \mathrm{e}^{-\frac{(i \sqrt{3}+9) t}{2}}+\frac{5 t}{21}-\frac{1}{147}
\end{array}\right]
\]

\subsection*{29.13.3 Maple step by step solution}

Let's solve
\[
\left[x^{\prime}(t)=-4 x(t)+y(t)-t+3, y^{\prime}(t)=-x(t)-5 y(t)+t+1\right]
\]
- Define vector
\(\vec{x}(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]\)
- Convert system into a vector equation
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right]
\]
- System to solve
\[
\vec{x}^{\prime}(t)=\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right] \cdot \vec{x}(t)+\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right]
\]
- Define the forcing function
\[
\vec{f}(t)=\left[\begin{array}{c}
-t+3 \\
t+1
\end{array}\right]
\]
- Define the coefficient matrix
\[
A=\left[\begin{array}{cc}
-4 & 1 \\
-1 & -5
\end{array}\right]
\]
- Rewrite the system as
\[
\vec{x}^{\prime}(t)=A \cdot \vec{x}(t)+\vec{f}
\]
- \(\quad\) To solve the system, find the eigenvalues and eigenvectors of \(A\)
- \(\quad\) Eigenpairs of \(A\)
\[
\left[\left[-\frac{9}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right],\left[-\frac{9}{2}+\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}+\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]\right]
\]
- Consider complex eigenpair, complex conjugate eigenvalue can be ignored
\[
\left[-\frac{9}{2}-\frac{\mathrm{I} \sqrt{3}}{2},\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]\right]
\]
- Solution from eigenpair
\[
\mathrm{e}^{\left(-\frac{9}{2}-\frac{\mathrm{I} \sqrt{3}}{2}\right) t} \cdot\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Use Euler identity to write solution in terms of sin and cos
\[
\mathrm{e}^{-\frac{9 t}{2}} \cdot\left(\cos \left(\frac{\sqrt{3} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{2}\right)\right) \cdot\left[\begin{array}{c}
\frac{1}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
1
\end{array}\right]
\]
- Simplify expression
\[
\mathrm{e}^{-\frac{9 t}{2}} \cdot\left[\begin{array}{c}
\frac{\cos \left(\frac{\sqrt{3} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{2}\right)}{-\frac{1}{2}-\frac{\mathrm{I} \sqrt{3}}{2}} \\
\cos \left(\frac{\sqrt{3} t}{2}\right)-\mathrm{I} \sin \left(\frac{\sqrt{3} t}{2}\right)
\end{array}\right]
\]
- Both real and imaginary parts are solutions to the homogeneous system
\[
\left[\vec{x}_{1}(t)=\mathrm{e}^{-\frac{9 t}{2}} \cdot\left[\begin{array}{c}
-\frac{\cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} 3}{2} t\right.}{2} \\
\cos \left(\frac{\sqrt{3} t}{2}\right)
\end{array}\right], \vec{x}_{2}(t)=\mathrm{e}^{-\frac{9 t}{2}} \cdot\left[\begin{array}{c}
\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} t}{2}\right)}{2} \\
-\sin \left(\frac{\sqrt{3} t}{2}\right)
\end{array}\right]\right]
\]
- General solution of the system of ODEs can be written in terms of the particular solution \(\vec{x}_{p}\) \(\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\vec{x}_{p}(t)\)

\section*{Fundamental matrix}
- Let \(\phi(t)\) be the matrix whose columns are the independent solutions of the homogeneous syst
\[
\phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{9 t}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}\right) & \mathrm{e}^{-\frac{9 t}{2}}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} t}{2}\right)}{2}\right) \\
\mathrm{e}^{-\frac{9 t}{2} \cos \left(\frac{\sqrt{3} t}{2}\right)} & -\mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)
\end{array}\right]
\]
- The fundamental matrix, \(\Phi(t)\) is a normalized version of \(\phi(t)\) satisfying \(\Phi(0)=I\) where \(I\) is th \(\Phi(t)=\phi(t) \cdot \frac{1}{\phi(0)}\)
- Substitute the value of \(\phi(t)\) and \(\phi(0)\)
\[
\Phi(t)=\left[\begin{array}{cc}
\mathrm{e}^{-\frac{9 t}{2}}\left(-\frac{\cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}\right) & \mathrm{e}^{-\frac{9 t}{2}\left(\frac{\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\sin \left(\frac{\sqrt{3} t}{2}\right)}{2}\right)} \\
\mathrm{e}^{-\frac{9 t}{2} \cos \left(\frac{\sqrt{3} t}{2}\right)} & -\mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)
\end{array}\right] \cdot \frac{1}{\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
1 & 0
\end{array}\right]}
\]
- Evaluate and simplify to get the fundamental matrix
\[
\Phi(t)=\left[\begin{array}{cc}
\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(\sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right)+\sin \left(\frac{\sqrt{3} t}{2}\right)\right) \sqrt{3}}{3} & \frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} \\
-\frac{2 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{3} & -\frac{\mathrm{e}^{-\frac{9 t}{2}\left(\sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right)-3 \cos \left(\frac{\sqrt{3} t}{2}\right)\right)}}{3}
\end{array}\right]
\]

Find a particular solution of the system of ODEs using variation of parameters
- Let the particular solution be the fundamental matrix multiplied by \(\vec{v}(t)\) and solve for \(\vec{v}(t)\) \(\vec{x}_{p}(t)=\Phi(t) \cdot \vec{v}(t)\)
- Take the derivative of the particular solution
\(\vec{x}_{p}^{\prime}(t)=\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)\)
- Substitute particular solution and its derivative into the system of ODEs
\(\Phi^{\prime}(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)\)
- The fundamental matrix has columns that are solutions to the homogeneous system so its der
\[
A \cdot \Phi(t) \cdot \vec{v}(t)+\Phi(t) \cdot \vec{v}^{\prime}(t)=A \cdot \Phi(t) \cdot \vec{v}(t)+\vec{f}(t)
\]
- Cancel like terms
\(\Phi(t) \cdot \vec{v}^{\prime}(t)=\vec{f}(t)\)
- Multiply by the inverse of the fundamental matrix
\(\vec{v}^{\prime}(t)=\frac{1}{\Phi(t)} \cdot \vec{f}(t)\)
- Integrate to solve for \(\vec{v}(t)\)
\(\vec{v}(t)=\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\)
- Plug \(\vec{v}(t)\) into the equation for the particular solution \(\vec{x}_{p}(t)=\Phi(t) \cdot\left(\int_{0}^{t} \frac{1}{\Phi(s)} \cdot \vec{f}(s) d s\right)\)
- Plug in the fundamental matrix and the forcing function and compute
\[
\vec{x}_{p}(t)=\left[\begin{array}{c}
-\frac{115 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{441}-\frac{4 t}{21}+\frac{39}{49}-\frac{39 \mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{49} \\
\frac{233 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{441}+\frac{5 t}{21}+\frac{\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{147}-\frac{1}{147}
\end{array}\right]
\]
- Plug particular solution back into general solution
\[
\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\left[\begin{array}{c}
-\frac{115 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{441}-\frac{4 t}{21}+\frac{39}{49}-\frac{39 \mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{49} \\
\frac{233 \sqrt{3} \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{441}+\frac{5 t}{21}+\frac{\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{147}-\frac{1}{147}
\end{array}\right]
\]
- Substitute in vector of dependent variables
\[
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(-c_{2} \sqrt{3}+c_{1}+\frac{78}{49}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\left(\left(c_{1}-\frac{230}{441}\right) \sqrt{3}+c_{2}\right) \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}-\frac{4 t}{21}+\frac{39}{49} \\
\frac{\left(441 c_{1}+3\right) \mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right)}{441}-\left(c_{2}-\frac{233 \sqrt{3}}{441}\right) \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)+\frac{5 t}{21}-\frac{1}{147}
\end{array}\right]
\]
- \(\quad\) Solution to the system of ODEs
\[
\left\{x(t)=-\frac{\mathrm{e}^{-\frac{9 t}{2}}\left(-c_{2} \sqrt{3}+c_{1}+\frac{78}{49}\right) \cos \left(\frac{\sqrt{3} t}{2}\right)}{2}+\frac{\left(\left(c_{1}-\frac{230}{441}\right) \sqrt{3}+c_{2}\right) \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right)}{2}-\frac{4 t}{21}+\frac{39}{49}, y(t)=\frac{\left(441 c_{1}+3\right) \mathrm{e}^{-\frac{9 t}{2}}}{441}\right.
\]
\(\checkmark\) Solution by Maple
Time used: 0.031 (sec). Leaf size: 106
```

dsolve([diff (x (t),t)=-4*x (t)+y(t) -t+3, diff (y(t),t)=-x(t) -5*y(t)+t+1], singsol=all)

```
\[
\begin{aligned}
x(t)= & \mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) c_{2}+\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{1}-\frac{4 t}{21}+\frac{39}{49} \\
y(t)= & -\frac{\mathrm{e}^{-\frac{9 t}{2}} \sin \left(\frac{\sqrt{3} t}{2}\right) c_{2}}{2}+\frac{\mathrm{e}^{-\frac{9 t}{2}} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{2}}{2} \\
& -\frac{\mathrm{e}^{-\frac{9 t}{2}} \cos \left(\frac{\sqrt{3} t}{2}\right) c_{1}}{2}-\frac{\mathrm{e}^{-\frac{9 t}{2} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{2}\right) c_{1}}}{2}-\frac{1}{147}+\frac{5 t}{21}
\end{aligned}
\]
\(\checkmark\) Solution by Mathematica
Time used: 2.267 (sec). Leaf size: 131
DSolve \(\left[\left\{x^{\prime}[t]==-4 * x[t]+y[t]-t+3, y^{\prime}[t]==-x[t]-5 * y[t]+t+1\right\},\{x[t], y[t]\}, t\right.\), IncludeSingularSoluti
\[
\begin{aligned}
& x(t) \rightarrow-\frac{4 t}{21}+c_{1} e^{-9 t / 2} \cos \left(\frac{\sqrt{3} t}{2}\right)+\frac{\left(c_{1}+2 c_{2}\right) e^{-9 t / 2} \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3}}+\frac{39}{49} \\
& y(t) \rightarrow \frac{5 t}{21}+c_{2} e^{-9 t / 2} \cos \left(\frac{\sqrt{3} t}{2}\right)-\frac{\left(2 c_{1}+c_{2}\right) e^{-9 t / 2} \sin \left(\frac{\sqrt{3} t}{2}\right)}{\sqrt{3}}-\frac{1}{147}
\end{aligned}
\]
30 Chapter 10. Systems of First-Order Equations. Section B. Challenge Problems. Page 401
30.1 problem 1 . 4225
30.2 problem 2 . 4227

\section*{30.1 problem 1}

Internal problem ID [6542]
Internal file name [OUTPUT/5790_Sunday_June_05_2022_03_54_37_PM_43080441/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section B. Challenge Problems.
Page 401
Problem number: 1.
ODE order: 1.
ODE degree: 1 .

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve
\[
\begin{aligned}
x^{\prime}(t) & =x(t) y(t)+1 \\
y^{\prime}(t) & =-x(t)+y(t)
\end{aligned}
\]

With initial conditions
\[
[x(0)=2, y(0)=-1]
\]

Does not currently support non linear system of equations. This is the phase plot of the system.

Figure 511: Phase plot

X Solution by Maple
dsolve([diff \((x(t), t)=x(t) * y(t)+1, \operatorname{diff}(y(t), t)=-x(t)+y(t), x(0)=2, y(0)=-1]\), singsol

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
```

DSolve[{x'[t]==x[t]*y[t]+1, y'[t]==-x[t]+y[t]},{x[0]==2,y[0]==-1},{x[t],y[t]},t,IncludeSingul

```

Not solved

\section*{30.2 problem 2}

Internal problem ID [6543]
Internal file name [OUTPUT/5791_Sunday_June_05_2022_03_54_40_PM_17429521/index.tex]
Book: Differential Equations: Theory, Technique, and Practice by George Simmons, Steven Krantz. McGraw-Hill NY. 2007. 1st Edition.
Section: Chapter 10. Systems of First-Order Equations. Section B. Challenge Problems.
Page 401
Problem number: 2.
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "system of linear ODEs" Unable to solve or complete t Solve
\[
\begin{aligned}
x^{\prime}(t) & =t y(t)+1 \\
y^{\prime}(t) & =-x(t) t+y(t)
\end{aligned}
\]

With initial conditions
\[
[x(0)=0, y(0)=-1]
\]

Does not currently support non autonomous system of first order linear differential equations. The following is the phase plot
\(X\) Solution by Maple
```

dsolve([diff(x(t),t) = t*y(t)+1, diff(y(t),t) = -t*x(t)+y(t), x(0) = 0, y(0) = -1], singsol=

```

No solution found
\(X\) Solution by Mathematica
Time used: 0.0 (sec). Leaf size: 0
DSolve \(\left[\left\{x^{\prime}[t]==x[t] * y[t]+1, y^{\prime}[t]==-x[t]+y[t]\right\},\{x[0]==2, y[0]==-1\},\{x[t], y[t]\}, t\right.\), IncludeSingul

Not solved```

